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The BNR project on singularities and surgery I.

I Since 2011 have joined András Némethi (Budapest) and
Maciej Borodzik (Warsaw) in a project on the topological
properties of the singularities of complex hypersurfaces.

I The aim of the project is to study the topological properties
of the singularity spectrum, defined using refinements of the
eigenvalues of the monodromy of the Milnor fibre.

I We have posted 3 preprints on the Arxiv this year:

BNR1 http://arxiv.org/abs/1207.3066 Morse theory for manifolds
with boundary

BNR2 http://arxiv.org/abs/1211.5964 Codimension 2 embeddings,
algebraic surgery and Seifert forms

BNR3 http://arxiv.org/abs/1210.0798 On the semicontinuity of the
mod 2 spectrum of hypersurface singularities

http://arxiv.org/abs/1207.3066
http://arxiv.org/abs/1211.5964
http://arxiv.org/abs/1210.0798
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The BNR project on singularities and surgery II.

I The project combines singularity techniques with algebraic
surgery theory to study the behaviour of the spectrum under
deformations.

I Morse theory decomposes cobordisms of manifolds into
elementary operations called surgeries.

I Algebraic surgery does the same for cobordisms of chain
complexes with Poincaré duality – generalized quadratic forms.

I The applications to singularities need a Morse theory for the
relative cobordisms of manifolds with boundary and their
algebraic analogues.
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Cobordism of closed manifolds

I Manifold = oriented differentiable manifold.

I An (absolute) (m + 1)-dimensional cobordism (W ;M0,M1)
consists of closed m-dimensional manifolds M0,M1 and an
(m + 1)-dimensional manifold W with boundary

∂W = M0 t −M1 .

I

M0 M1W
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The cobordism of closed manifolds is nontrivial

I Cobordism is an equivalence relation.
I The equivalence classes constitute an abelian group Ωm, with

addition by disjoint union, and 0 the cobordism class of the
empty manifold ∅.

I The cobordism groups Ωm have been studied since the
pioneering work of Thom in the 1950’s.

I Low-dimensional examples:

Ω0 = Z , Ω1 = Ω2 = Ω3 = 0 .

I The signature map
σ : Ω4k → Z

is surjective for k > 1, and an isomorphism for k = 1, with

σ(M4k) = signature(intersection form H2k(M)×H2k(M)→ Z) ∈ Z .

I The signature of a 4k-dimensional manifold was first defined
in 1923 by Hermann Weyl - in Spanish.

http://www.maths.ed.ac.uk/~aar/papers/weyl.pdf
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Cobordism of manifolds with boundary

I An (m + 2)-dimensional (relative) cobordism
(Ω; Σ0,Σ1,W ;M0,M1) consists of (m + 1)-dimensional
manifolds with boundary (Σ0,M0), (Σ1,M1), an absolute
cobordism (W ;M0,M1), and an (m + 2)-dimensional manifold
Ω with boundary

∂Ω = Σ0 ∪M0 W ∪M1 −Σ1 .

I

Σ0 Σ1Ω

M0 M1W



7

The cobordism of manifolds with boundary is trivial

I Proposition Every manifold with boundary (Σ,M) is
relatively cobordant to (∅, ∅) via the relative cobordism

(Ω; Σ0,Σ1,W ;M0,M1)

= (Σ× [0, 1]; Σ× {0},M × [0, 1] ∪ Σ× {1}; ∅, ∅)

I

Σ× {0} ∅Σ× [0, 1]

M × {0} ∅M × {0, 1} ∪ Σ× {1}

I Relative cobordisms are interesting, all the same!
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Right products

I A relative cobordism (Ω; Σ0,Σ1,W ;M0,M1) is a right
product if

(Ω; Σ0,Σ1,W ;M0,M1)

= (Σ1 × I ; Σ0 × {0},Σ1 × {1},W × {0} ∪M1 × I ;

M0 × {0},M1 × {1})
with

Σ1 = Σ0 ∪M0 W .

I

Σ0 × {0} Σ1 × {1}Ω = Σ1 × I

M0 × {0} M1 × {1}W × {0} ∪M1 × I



9

Left products

I A relative cobordism (Ω; Σ0,Σ1,W ;M0,M1) is a left product
if

(Ω; Σ0,Σ1,W ;M0,M1)

= (Σ1 × I ; Σ0 × {0},Σ1 × {1},W × {0} ∪M1 × I ;

M0 × {0},M1 × {1})
with

Σ0 = W ∪M1 Σ1 .

I

Σ0 × {0} Σ1 × {1}Ω = Σ0 × I

M0 × {0} M1 × {1}M0 × I ∪W × {1}
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Geometric surgery

I Given an m-dimensional manifold M and an embedding

S r × Dm−r ⊂ M

define the m-dimensional manifold obtained by an index r + 1
surgery

M ′ = cl.(M\S r × Dm−r ) ∪ Dr+1 × Sm−r−1 .

I The trace of the surgery is the (m + 1)-dimensional
cobordism (W ;M,M ′) obtained by attaching an index
(r + 1) handle to M × I

W = M × I ∪S r×Dm−r×{1} D
r+1 × Dm−r .

I M is obtained from M ′ by surgery on Dr+1 × Sm−r−1 ⊂ M ′ of
index m − r .
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The handlebody decomposition theorem

I Theorem (Thom, Milnor 1961) Every absolute cobordism
(W ;M,M ′) of closed m-dimensional manifolds has a handle
decomposition, i.e. can be expressed as a union

(W ;M,M ′) =
k⋃

j=0

(Wj ;Mj ,Mj+1) (M0 = M,Mk+1 = M ′)

of traces (Wj ;Mj ,Mj+1) of surgeries of non-decreasing index.

I Proved by Morse theory: there exists a Morse function

f : (W ;M,M ′)→ (I ; {0}, {1})

with critical values in the gaps between
c0 = 0 < c1 < c2 < · · · < ck < ck+1 = 1 and

(Wj ;Mj ,Mj+1) = f −1([cj , cj+1]; {cj}, {cj+1}) .
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Half-surgeries

I Given an (m + 1)-dimensional manifold with boundary
(Σ0,M0) and an embedding S r × Dm−r ⊂ M0 define the
(m + 1)-dimensional manifold with boundary obtained by an
index r + 1 right half-surgery

(Σ1,M1) = (Σ0 ∪S r×Dm−r Dr+1 × Dm−r ,

cl.(M0\S r × Dm−r ) ∪ Dr+1 × Sm−r−1) .

I Note that M1 is the output of an index r + 1 surgery on
S r × Dm−r ⊂ M0, and M0 is the output of an index m − r
surgery on Dr+1 × Sm−r−1 ⊂ M1.

I There is an opposite notion of a left half-surgery, with input

(Dr+1 × Dm−r ,Dr+1 × Sm−r−1) ⊂ (Σ1,M1)

and output (Σ0,M0).
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Half-handles

I The trace of the right half-surgery is the right product
cobordism

(Σ1 × I ; Σ0 × {0},Σ1 × {1},W ;M0,M1)

with W = M0 × I ∪ Dr+1 × Dm−r the trace of the surgery on
S r × Dm−r ⊂ M0. (Σ1,M1) obtained from (Σ0,M0) by
attaching an index r + 1 half-handle.

Σ0 × {0} Σ1 × {1}Σ1 × I

M0 × {0} M1 × {1}W
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The half-handlebody decomposition theorem

I Theorem 1 (BNR1, 4.18) Every relative cobordism
(Ω; Σ0,Σ1,W ;M0,M1) consisting of non-empty connected
manifolds is a union of right and left product cobordisms,
namely the traces of right and left half-surgeries.

I Theorem 1 is proved by a relative version of the Morse theory
proof of the Thom-Milnor handlebody decomposition
theorem. Quite hard analysis!

I Theorem 1 has an algebraic analogue, for the relative
cobordism of algebraic Poincaré pairs.
Statement and proof in BNR2.
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Fibred links

I A link is a codimension 2 submanifold Lm ⊂ Sm+2 with
neighbourhood L× D2 ⊂ Sm+2.

I The complement of the link is the (m + 2)-dimensional
manifold with boundary

(C , ∂C ) = (cl.(Sm+2\L× D2), L× S1)

such that
Sm+2 = L× D2 ∪L×S1 C .

I The link is fibred if the projection ∂C = L× S1 → S1 can be
extended to the projection of a fibre bundle p : C → S1, and
there is given a particular choice of extension.

I The monodromy automorphism (h, ∂h) : (F , ∂F )→ (F , ∂F )
of a fibred link has ∂h = id. : ∂F = L→ L and

C = T (h) = F × [0, 1]/{(y , 0) ∼ (h(y), 1) | y ∈ F} .
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Every link has Seifert surfaces

I A Seifert surface for a link Lm ⊂ Sm+2 is a codimension 1
submanifold Fm+1 ⊂ Sm+2 such that

∂F = L ⊂ Sm+2

with a trivial normal bundle F × D1 ⊂ Sm+2.

I Fact: every link L ⊂ Sm+2 admits a Seifert surface F .
Proof: extend the projection ∂C = L× S1 → S1 to a map

p : C = cl.(Sm+2\L× D2)→ S1

representing (1, 1, . . . , 1) ∈ H1(C ) = Z⊕ Z⊕ . . .Z (one Z for
each component of L) and let F = p−1(∗) ⊂ Sm+2 be the
transverse inverse image of ∗ ∈ S1.

I In general, Seifert surfaces are not canonical. A fibred link has
a canonical Seifert surface, namely the fibre F .
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The link of a singularity

I Let f : (Cn+1, 0)→ (C, 0) be the germ of an analytic function
such that the complex hypersurface

X = f −1(0) ⊂ Cn+1

has an isolated singularity at x ∈ X , with

∂f

∂zk
(x) = 0 for k = 1, 2, . . . , n + 1 .

I For ε > 0 let

Dε(x) = {y ∈ Cn+1 | ‖y − x‖ 6 ε} ∼= D2n+2 ,

Sε(x) = {y ∈ Cn+1 | ‖y − x‖ = ε} ∼= S2n+1 .

I For ε > 0 sufficiently small, the subset

L(x)2n−1 = X ∩ Sε(x) ⊂ Sε(x)2n+1

is a closed (2n − 1)-dimensional submanifold, the link of the
singularity of f at x .
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The link of singularity is fibred

I Proposition (Milnor, 1968) The link of an isolated
hypersurface singularity is fibred.

I The complement C (x) of L(x) ⊂ Sε(x)2n+1 is such that

p : C (x)→ S1 ; y 7→ f (y)

|f (y)|
is the projection of a fibre bundle.

I The Milnor fibre is a canonical Seifert surface

(F (x), ∂F (x)) = (p, ∂p)−1(∗) ⊂ (C (x), ∂C (x))

with
∂F (x) = L(x) ⊂ S(x)2n+1 .

I The fibre F (x) is (n − 1)-connected, and

F (x) '
∨

µ

Sn , Hn(F (x)) = Zµ

with µ = bn(F (x)) > 0 the Milnor number.
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The intersection form

I Let (F , ∂F ) be a 2n-dimensional manifold with boundary,
such as a Seifert surface. Denote Hn(F )/torsion by Hn(F ).

I The intersection form is the (−1)n-symmetric bilinear pairing

b : Hn(F )× Hn(F )→ Z ; (y , z) 7→ 〈y∗ ∪ z∗, [F ]〉
with y∗, z∗ ∈ Hn(F , ∂F ) the Poincaré-Lefschetz duals of
y , z ∈ Hn(F ) and [F ] ∈ H2n(F , ∂F ) the fundamental class.

I The intersection pairing is (−1)n-symmetric

b(y , z) = (−1)nb(z , y) ∈ Z .

I The adjoint Z-module morphism

b = (−1)nb∗ : Hn(F )→ Hn(F )∗ = HomZ(Hn(F ),Z) ;

y 7→ (z 7→ b(y , z)) .

is an isomorphism if ∂F and F have the same number of
components.
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The monodromy theorem

I The monodromy induces an automorphism of the intersection
form

h∗ : (Hn(F ), b)→ (Hn(F ), b) ,

or equivalently h∗ : (Hn(F ), b−1)→ (Hn(F ), b−1).
I Monodromy theorem (Brieskorn, 1970)

For the fibred link L ⊂ S2n+1 of a singularity the µ = bn(F )
eigenvalues of the monodromy automorphism

h∗ : Hn(F ;C) = Cµ → Hn(F ;C) = Cµ

are roots of 1

λk = e2πiαk ∈ S1 ⊂ C (1 6 k 6 µ)

for some {α1, α2, . . . , αµ} ∈ Q/Z ⊂ R/Z. Furthermore, h∗ is
such that for some N > 1

((h∗)N − id.)n+1 = 0 : Hn(F ;C)→ Hn(F ;C) .
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The spectrum of a singularity

I Let f : (Cn+1, 0)→ (C, 0) have an isolated singularity at
x ∈ f −1(0), with Milnor fibre F 2n = F (x) and Milnor number
µ = bn(F ).

I Steenbrink (1976) used analysis to construct a mixed Hodge
structure on Hn(F ;C), with both a Hodge and a weight
filtration. Invariant under h∗ and polarized by b. Each
αk ∈ Q/Z has a lift to α̃k ∈ Q.

I The spectrum of f at x is

Sp(f ) =

µ∑

k=1

α̃k ∈ N[Q]

I Arnold semicontinuity conjecture (1981)
The spectrum is semicontinuous: if (f , x) is adjacent to
(f ′, x ′) with µ′ < µ then α̃k 6 α̃′k for k = 1, 2, . . . , µ′.

I Varchenko (1983) and Steenbrink (1985) proved the
conjecture using Hodge theoretic methods.
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The mod 2 spectrum

I The real Seifert form and the spectral pairs of isolated
hypersurface singularities (Némethi, Comp. Math. 1995)
Introduced the mod 2 spectrum of f at an isolated
hypersurface singularity

Sp2(f ) =
µ∑

k=1

α̃k ∈ N[Q/2Z]

and related it to the real Seifert form.

I The spectrum is an analytic invariant, and the semicontinuity
is analytic. How much of it is purely topological?

http://www.maths.ed.ac.uk/~aar/papers/nemethi5.pdf
http://www.maths.ed.ac.uk/~aar/papers/nemethi5.pdf
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The BNR programme

I Borodzik+Némethi The spectrum of plane curves via knot
theory (Journal LMS, 2012) applied the cobordism theory of
links, Murasugi-type inequalities for the Tristram-Levine
signatures to give a topological proof of the semicontinuity of
the mod 2 spectrum of the links of isolated singularities of
f : (C2, 0)→ (C, 0).

I Ranicki High-dimensional knot theory (Springer, 1998)
Algebraic surgery in codimension 2.

I BNR1+BNR2+BNR3 (2012) use relative Morse theory and
algebraic surgery to prove more general Murasugi-type
inequalities, giving a topological proof for semicontinuity of
the mod 2 spectrum of the links of isolated singularities of
f : (Cn+1, 0)→ (C, 0) for all n > 1.

http://www.maths.ed.ac.uk/~aar/papers/boroneme.pdf
http://www.maths.ed.ac.uk/~aar/papers/boroneme.pdf
http://www.maths.ed.ac.uk/~aar/books/knot.pdf
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Seifert forms

I For any link L2n−1 ⊂ S2n+1 and Seifert surface F 2n ⊂ S2n+1

the intersection form has a Seifert form refinement

S : Hn(F )× Hn(F )→ Z

such that

b(y , z) = S(y , z) + (−1)nS(z , y) ∈ Z .

I Seifert (for n = 1, 1934) and Kervaire (for n > 2, 1965)
defined S geometrically using the linking of n-cycles in
L, L′ ⊂ S2n+1, with L′ a copy of L pushed away.

I In terms of adjoints

b = S + (−1)nS∗ : Hn(F )→ Hn(F ) = Hn(F )∗ .
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The variation map of a fibred link

I The variation map of a fibred link L2n−1 ⊂ S2n+1 is an
isomorphism

V : Hn(F , ∂F )→ Hn(F )

satisfying the Picard-Lefschetz relation

h − id. = V ◦ b : Hn(F )→ Hn(F ) .

I The Seifert form of a fibred link L2n−1 ⊂ S2n+1 with respect
to the fibre Seifert surface F 2n ⊂ S2n+1 is an isomorphism

S = V−1 ◦ b : Hn(F )→ Hn(F ) ∼= Hn(F )∗ .
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The cobordism of links

I A cobordism of links is a codimension 2 submanifold

(K 2n; L0, L1) ⊂ S2n+1 × ([0, 1]; {0}, {1})

with trivial normal bundle K × D2 ⊂ S2n+1 × [0, 1].

I An h-cobordism of links is a cobordism such that the
inclusions L0, L1 ⊂ K are homotopy equivalences, e.g. if

(K ; L0, L1) ∼= L0 × ([0, 1]; {0}, {1}) .

I The h-cobordism theory of knots was initiated by Milnor (with
Fox) in the 1950’s. In the last 50 years the h-cobordism theory
of knots and links has been much studied by topologists, both
for its own sake and for the applications to singularity theory.
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The cobordism of links of singularities I.

I Suppose that f : (Cn+1, 0)→ (C, 0) has only isolated
singularities x1, x2, . . . , xk ∈ X = f −1(0) with ‖xj‖ < 1.
Let Bj ⊂ D2n+2 be small balls around the xj ’s, with links

L(xj) = X ∩ ∂Bj ⊂ ∂Bj
∼= S2n+1 .

I Assume that S = S2n+1 is transverse to X , with
L = X ∩ S ⊂ S the link at infinity.

I Choose disjoint ball B0 ⊂ B, and paths γj inside D2n+2 from
∂B0 to ∂Bj , with neighbourhoods Uj . The union

U = B0 ∪
k⋃

j=1

(Bj ∪ Uj)

is diffeomorphic to D2n+2. Will construct cobordism between
the links

L , L =
k∐

j=1

L(xj) ⊂ ∂U = S ∼= S2n+1 .
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The cobordism of links of singularities II.The boleadoras trickSEMICONTINUITY OF THE SPECTRUM 5

X

B1

B2

B3

B0

γ1

γ2

γ3

X

SS

Figure 1. The cobordism between local and global links

• U is diffeomorphic to a standard ball;
• S := ∂U (after possibly smoothing corners) is a sphere transverse to X;
• M := S ∩ X is a disjoint union Mx1 ⊔ · · · ⊔ Mxk

of the local links;

• Σ := Σ1 ⊔ · · · ⊔ Σk is a Seifert manifold for M .

In particular

σM (ξ) =
∑

j

σMxj
(ξ) and nM (ξ) =

∑

j

nMxj
(ξ).

Since B \ intU ≈ S2n+1 × [0, 1] with boundary S ⊔ S, by Theorem 2.1.8 we obtain∣∣∣σM (ξ) −
∑

j

σMxj
(ξ)
∣∣∣ 6 bn(Y ∪ Σ ∪ Σ) − bn(Σ) − bn(Σ) + nM (ξ) +

∑

j

nMxj
(ξ).

Since Σj ≈ X ′ ∩ Bj by [Miln68], hence Y ∪ Σ ≈ X ′, the statement follows. �
Remark 2.2.2. The above inequality is the main tool in the proof of the semicontinuity
of the mod 2 spectrum, cf. Section 4. If n = 1 then the proof of the theorem together with
the original Kawauchi–Murasugi inequality, allows to prove semicontinuity of the spectrum
without referring to [Boro11] and [BNR12]. (The article [BoNe12] uses [Boro11].)

3. Hermitian Variation Structures and Mixed Hodge Structures

3.1. Generalities about hermitian variation structures. Variation structures were
introduced in [Nem95]. As it was shown in [BoNe11] and [BoNe12] they form a bridge
between knot theory and Hodge theory. Let us recall shortly the definition, referring to
[Nem95] or [BoNe11, Section 2] for all details and further references.

Definition 3.1.1. Fix a sign ε = ±1. An ε–hermitian variation structure (in short: HVS)
consist of the quadruple (U ; b, h, V ), where U is a complex linear space, b : U → U∗ is
an ε–hermitian endomorphism (it can be regarded as a ε–symmetric pairing on U × U),
h : U → U is an automorphism preserving b, and V : U∗ → U is an endomorphism such that

V ◦ b = h − I and V
∗

= −εV ◦ h
∗
.

Here · denotes the complex conjugate and ∗ the duality.

We shall call a HVS simple if V is an isomorphism. In this case V determines b and

h completely by the formulae h = −εV (V
∗
)−1 and b = −V −1 − εV

∗−1
. It was proved

in [Nem95] that each simple variation structure is a direct sum of indecomposable ones,
moreover the decomposable ones can be completely classified. More precisely, for any k > 1
and any λ ∈ C with |λ| = 1, there are two structures Wk

λ(±1) (up to an isomorphism). In
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The cobordism of links of singularities III.

I The 2n-dimensional submanifold

K 2n = X ∩ cl.(D2n+2\
k⋃

j=1
Bj)

⊂ cl.(D2n+2\U) ∼= S2n+1 × [0, 1]

defines a cobordism of links

(K ; L, L) ⊂ S2n+1 × ([0, 1]; {0}, {1}) .

I The Milnor fibres F ,F for the links L, L are such that

F ∪L K ∪L F ∼= F ∪L X ′

with X ′ ⊂ D2n the smoothing of X inside D2n+2 such that
X ′ ∩ Bj = F (xj) is a push-in of the Milnor fibre of L(xj), and
F = F (x1) ∪ · · · ∪ F (xk).

I (K ; L, L) is not an h-cobordism of links in general.
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The Tristram-Levine signatures σξ(F )

I Definition (1969) The Tristram-Levine signatures of a link
L2n−1 ⊂ S2n+1 with respect to a Seifert surface F and ξ ∈ S1

σξ(F ) = signature(Hn(F ;C), (1−ξ)S+(−1)n+1(1−ξ̄)S∗) ∈ Z .

I The (−1)n+1-hermitian form related to the complement
cl.(D2n+2\F ′ × D2) of push-in F ′ ⊂ D2n+2.

I Tristram and Levine studied how σξ(F ) behave under
1. change of Seifert surface,
2. change of ξ,
3. the h-cobordism of links.

I Theorem (Levine, 1970) For n > 1 the signatures σξ(F ) ∈ Z
determine the h-cobordism class of a knot S2n−1 ⊂ S2n+1

modulo torsion.
I For the BNR project need to also consider how σξ(F ) behaves

under
4. the cobordism of links.
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The relation between Sp2(f ) and σξ(F (x))

I Borodzik+Némethi Hodge-type structures as link invariants
(2012, Ann. Inst. Fourier).

I Let f : (Cn+1, 0)→ (C, 0) have isolated singularity at
x ∈ f −1(0) with link L(x) ⊂ S2n+1 and the mod 2 spectrum
Sp2(f ), where |Sp2(f )| = µ = bn(F (x)).

I If α ∈ [0, 1) is such that ξ = e2πiα is not an eigenvalue of the
monodromy

h∗ : Hn(F (x);C) = Cµ → Hn(F (x);C) = Cµ

then

|Sp2(f ) ∩ (α, α + 1)| =
(
µ− σξ(F (x))

)
/2 ,

|Sp2(f )\(α, α + 1)| =
(
µ+ σξ(F (x))

)
/2 .

http://www.maths.ed.ac.uk/~aar/papers/borodzik4.pdf
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The relative cobordism of Seifert forms

I For every cobordism of links

(Km+1; L0, L1) ⊂ Sm+2 × ([0, 1]; {0}, {1})
there exists a relative cobordism of the Seifert surfaces

(Em+2;F0,F1;K ; L0, L1) ⊂ Sm+2 × ([0, 1]; {0}, {1}) .
I Definition An enlargement of a Seifert form (H,S) is a

Seifert form of the type

(H ′,S ′) = (H ⊕ A⊕ B,



S 0 T
0 0 U
V W X


)

I Theorem 2 (BNR2) If m = 2n − 1 the Seifert form
(Hn(F1), S1) is obtained from the Seifert form (Hn(F0),S0) by
a sequence of enlargements and their formal inverses.

I Proved by Levine (1970) for h-cobordisms of knots
S2n−1 ⊂ S2n+1, with S + (−)nS∗ and U + (−)nW ∗ invertible.
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The behaviour of the Tristram-Levine signatures under
relative cobordism

I Conventional surgery and Morse theory used to describe the
behaviour of the signature under cobordism.

I The BNR project required the further development of surgery
and Morse theory for manifolds with boundary, in order to
describe the behaviour of the Tristram-Levine signatures
under the relative cobordism of Seifert surfaces of links.
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The Murasugi-type inequality

I Theorem 3 (BNR2, BNR3) Suppose given a cobordism of
(2n − 1)-dimensional links

(K ; L0, L1) ⊂ S2n+1 × ([0, 1]; {0}, {1})
and Seifert surfaces F0,F1 ⊂ S2n+1 for L0, L1 ⊂ S2n+1. Then
for any ξ 6= 1 ∈ S1

|σξ(L0)− σξ(L1)|
6 bn(F0 ∪L0 K ∪L1 F1)− bn(F0)− bn(F1) + n0(ξ) + n1(ξ)

with bn the nth Betti number and

nj(ξ) = nullity((1− ξ)Sj + (−1)n+1(1− ξ̄)S∗j ) (j = 0, 1) .

I Proved by applying Theorem 1 to express the relative
cobordism as a union of elementary right and left product
cobordisms, and working out the effect on σξ.
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The semicontinuity of the mod 2 spectrum

I Theorem 4 (BNR3) Let ft : (Cn+1, 0)→ (C, 0) (t ∈ C) be a
family of germs of analytic maps such that x0 ∈ (f0)−1(0) is
an isolated singularity. For a small ε > 0, ‖t‖ > 0 let
x1, x2, . . . , xk ∈ (ft)

−1(0) ∩ Bε(0) be all the singularities of ft
in Bε(0). Let α ∈ [0, 1] be such that ξ = e2πiα is not an
eigenvalue of the monodromy h0 of x0. Then

|Sp2,0(f0) ∩ (α, α + 1)| >
k∑

j=1
|Sp2,j(ft) ∩ (α, α + 1)| ,

|Sp2,0(f0)\[α, α + 1]| >
k∑

j=1
|Sp2,j(ft)\[α, α + 1]|

where Sp2,0(f0), Sp2,j(ft) are the mod 2 spectra of x0, xj .
I Proved topologically using Theorems 2 and 3. Apply the

Murasugi-type inequality to the singularity construction of the
relative cobordism of Seifert surfaces between F (x0) and

F =
k∐

j=1
F (xj).


