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Manifold transversality

I Let X be a manifold and let Y ⊂ X a codimension k
submanifold, with a normal k-plane bundle

νY⊂X : Y → BO(k) .

I Transversality theorem Every map f : M → X from a
manifold is homotopic to a map which is transverse regular at
Y ⊂ X , so that

N = f −1(Y ) ⊂ M

is a codimension k submanifold with normal bundle

νN⊂M : N
g = f |

// Y
νY⊂X // BO(k) .
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Splitting homotopy equivalences

I In general, the restrictions of homotopy equivalences are
not homotopy equivalences.

I Definition A homotopy equivalence f : M → X of
m-dimensional manifolds splits at a submanifold Y ⊂ X if f is
homotopic to a map (also denoted by f ) with the restrictions

g = f | : N = f −1(Y )→ Y , h = f | : M\N → X\Y
also homotopy equivalences.

I Example If f is homotopic to a diffeomorphism then f splits
at every submanifold Y ⊂ X .

I Borel rigidity conjecture If X is aspherical then every
homotopy equivalence is homotopic to a homeomorphism, and
splits at every submanifold Y ⊂ X . Verified in many cases,
starting with m = 2.

I Contrapositive If a homotopy equivalence f does not split at
a submanifold Y ⊂ X then f is not homotopic to a
diffeomorphism.
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Surgery obstruction theory

I The Browder-Novikov-Sullivan-Wall surgery theory was
developed in the 1960’s to study the homotopy types of
manifolds. It builds on the h- and s-cobordism theorems, and
like them only works for dimensions > 5.

I Main theorem of surgery (1970) An n-dimensional normal
map g : N → Y has a surgery obstruction

σ∗(g) ∈ Ln(Z[π1(Y )])

such that σ∗(g) = 0 if (and for n > 5 only if) g is normal
bordant to a homotopy equivalence rel ∂N. Moreover, every
element x ∈ Ln(Z[π]) is such a rel ∂N surgery obstruction for
some g : N → Y with π1(Y ) = π.
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Three ways of defining the Wall groups L∗

I 1. Geometry. For a finitely presented group π Ln(Z[π]) is a
bordism group of normal maps g : N → Y of n-dimensional
manifolds with boundary with π1(Y ) = π and ∂g : ∂N → ∂Y
a homotopy equivalence.

I 2. Forms. For a ring with involution A L2i (A) is the Witt
group of (−)i -quadratic forms on f.g. free A-modules.
L2i+1(A) the stable automorphism group of such forms, or
equivalently formations. 4-periodic: L∗ = L∗+4.

I 3. Chain complexes. Ln(A) is the cobordism group of chain
complexes C of f.g. free A-modules with an n-dimensional
quadratic Poincaré structure.

I Definition 2 = Definition 3 always.

I Definition 1 = Definition 2 for n > 5, with A = Z[π].
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The codimension k splitting obstruction groups

I For a morphism of rings with involution A→ B there are
relative L-groups L∗(A→ B), defined to fit into an exact
sequence

· · · → Ln(A)→ Ln(B)→ Ln(A→ B)→ Ln−1(A)→ . . . .

I Definition (Wall, 1970) The codimension k splitting
obstruction groups LS∗(X ,Y ) are defined geometrically for
any manifold X and codimension k submanifold Y ⊂ X , to fit
into the exact sequence

· · · → Ln+k+1(Z[π1(X\Y )]→ Z[π1(X )])→ LSn(X ,Y )

→ Ln(Z[π1(Y )])→ Ln+k(Z[π1(X\Y )]→ Z[π1(X )])→ . . .

I Can also be defined algebraically (R.) but using horribly big
objects.
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The codimension k splitting obstruction theorem

I Theorem (Wall, 1970) Given a homotopy equivalence
f : M → X of m-dimensional manifolds and a codimension k
submanifold Y ⊂ X there is defined a splitting obstruction

s(f ) ∈ LSm−k(X ,Y )

such that f splits at Y ⊂ X if (and for m − k > 5 only if)
s(f ) = 0.

I s(f ) has image σ(g) ∈ Lm−k(Z[π1(Y )]), the surgery
obstruction of the transverse normal map
g = f | : N = f −1(Y )→ Y .

I For k > 3 the splitting obstruction is just the surgery
obstruction

π1(X\Y ) = π1(X ) ,

s(f ) = σ(g) ∈ LSm−k(X ,Y ) = Lm−k(Z[π1(Y )]) .
I The LS-groups for k = 1, 2 differ from the L-groups, and are

harder to compute!
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Codimension 1 with trivial ν

I If (X ,Y ) is a codimension 1 pair with νY⊂X : Y → BO(1)
trivial and X ,Y connected there are two cases, depending on
how Y separates X .

I Case (A) X\Y is disconnected, in which case there are 2
components X1,X2 and

π1(X ) = π1(X1) ∗π1(Y ) π1(X2)

is an amalgamated free product.
I Case (B) X\Y is connected, so that

π1(X ) = π1(X\Y ) ∗π1(Y ) {t}

is an HNN extension.
I The codimension 1 splitting properties of 3-manifolds X at

surfaces Y ⊂ X with π1(Y )→ π1(X ) injective and ν trivial
were much studied by Grushko, Stallings, Haken, Waldhausen,
. . .
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The UNil-groups: the good, the bad and the ugly I.

I In Splitting obstructions of hermitian forms and
manifolds with Z2 ⊂ π1 (Bull. A.M.S. 79, 1973) Cappell
used the algebraic and geometric properties of the Wall
L-groups to construct homotopy equivalences

f : M → X = R P4k+1#R P4k+1 (k > 1)

which do not split at Y = S4k ⊂ X .
I In Manifolds with fundamental group a generalized free

product and Unitary nilpotent groups and hermitian
K -theory I. (Bull. A.M.S. 80, 1974) Cappell defined UNil2∗
algebraically using forms, by hermitian analogy with the
Waldhausen Nil-groups. Stated many vanishing results. The
non-splitting examples interpreted as non-trivial UNil
elements. UNil2∗+1 defined geometrically, using the geometric
Shaneson splitting

Ls
∗(Z[π × Z]) = Ls

∗(Z[π])⊕ L∗−1(Z[π]) .
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The UNil-groups: the good, the bad and the ugly II.

I Theorem (C., 1974) The codimension 1 splitting groups
LS∗(X ,Y ) in the case of trivial νY⊂X : Y → BO(1) and
injective π1(Y )→ π1(X ) decompose as

LSm−1(X ,Y ) = Ĥm(Z2; I )⊕ UNilm+1

with I = ker(K̃0(Z[π1(Y )])→ K̃0(Z[π1(X\Y )])).
I The UNil-groups are the obstruction groups to a

Mayer-Vietoris exact sequence in L-theory, with

Lm+1(Z[π1(X )]) = LI
m+1(Z[π1(Y )]→ Z[π1(X\Y )])⊕UNilm+1

in the first instance geometrically.
I The splitting obstruction of a homotopy equivalence

f : M → X of m-dimensional manifolds at Y ⊂ X is

s(f ) = (τ(f ), unil(f )) ∈ LSm−1(X ,Y ) = Ĥm(Z2; I )⊕UNilm+1

with unil(f ) the surgery obstruction of the ‘unitary nilpotent’
bordism of f to a split homotopy equivalence.
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The UNil-groups since 1974

I Farrell (1979) UNil∗ has exponent 4.
I R. (1980, 1995) Chain complex definition of UNil∗.
I (Connolly-R., Connolly-Davis, Banagl-R., 2004-2006)

Computation of UNil∗ for the L-theory of the infinite dihedral
group π1(R Pn#R Pn) = Z2 ∗ Z2

Uniln =


0 if n ≡ 0, 1(mod 4)⊕
∞

Z2 if n ≡ 2(mod 4)⊕
∞

Z4 ⊕
⊕
∞

Z2 if n ≡ 3(mod 4)

with each ∞ countable.
I Brookman (Edinburgh Ph.D. thesis, 2004) Algebraic definition

of UNil2∗+1, using short odd-dimensional quadratic Poincaré
complexes (‘unil formations’)

I Davis-Khan-R. (2008?) Algebraic L-theory over the infinite
dihedral group.
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Algebraic and geometric transversality

I Cappell’s geometric proofs use geometric transversality:
algebraic proofs require algebraic transversality!

I The first step in getting to the splitting obstruction
unil(f ) ∈ UNilm+1 of a homotopy equivalence f : M → X of
m-dimensional manifolds at a codimension 1 submanifold
Y ⊂ X is to prove that f can be made transverse in such a
way that the restrictions

g = f | : N = f −1(Y )→ Y , h = f | : M\N → X\Y
are connected below the middle dimension(s).

I The split surjection

Lm+1(Z[π1(X )])→ UNilm+1 ; x 7→ ∂x

is defined geometrically by the Wall realization x = σ(F ) with
F : V →W an (m + 1)-dimensional normal map with
f = ∂F : M = ∂V → X = ∂W a homotopy equivalence, and
setting ∂x = unil(f ).



14

Induction and restriction

I Given a ring morphism i : A→ B define the induction functor

i! : {A-modules} → {B-modules} ; M 7→ i!M = B ⊗A M

and the adjoint restriction functor

i ! : {B-modules} → {A-modules} ; N 7→ i !N = N

I Frobenius reciprocity

HomA(M, i !N) = HomB(i!M,N) ,

M ⊗A i !N = i!M ⊗B N .
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Amalgamated free products

I Let A = A1 ∗B A2 be an amalgamated free product of rings, a
pushout square

B
i1 //

i2
��

A1

j1
��

A2
j2 // A

and let k = j1i1 = j2i2 : B → A.

I Will only consider A = A1 ∗B A2 with A1 = B ⊕ A′1,
A2 = B ⊕ A′2 for (B,B)-bimodules A′1,A

′
2, so that

A = B ⊕ A′1 ⊕ A′2 ⊕ A′1 ⊗B A′2 ⊕ A′2 ⊗B A′1 ⊕ . . . .

Always assume A′1,A
′
2 are free as right B-modules.

I Example If π = π1 ∗ρ π2 then Z[π] = Z[π1] ∗Z[ρ] Z[π2].

I Similarly for HNN extensions.
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Mayer Vietoris presentations

I An MV presentation of an A-module chain complex C is an
exact sequence

0→ k!E → (j1)!D1 ⊕ (j2)!D2 → C → 0

with Dr a Z[Ar ]-module chain complex (r = 1, 2) and E a
Z[B]-module chain complex.

I Definition An A-module chain complex C is finite if it is
bounded f.g. free. An MV presentation is finite if every chain
complex in it is finite.

I Proposition (Waldhausen 1974, R.) For every finite A-module
chain complex C there exist finite Ar -module subcomplexes
Dr ⊂ i !rC (r = 1, 2) such that E = D1 ∩ D2 ⊂ k !C is a finite
B-module subcomplex, with a finite MV presentation

0→ k!E → (j1)!D1 ⊕ (j2)!D2 → C → 0
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Algebraic transversality for chain complexes

I Idea of proof The ring A = A1 ∗B A2 has a universal infinite
MV presentation

0→ k!k
!A→ (j1)!j

!
1A⊕ (j2)!j

!
2A→ A→ 0

so that any A-module chain complex C has a universal infinite
MV presentation

0→ k!k
!C → (j1)!j

!
1C ⊕ (j2)!j

!
2C → C → 0 .

I If C is finite can use the expression

Bass-Serre tree = union of finite subtrees

to prove there exists a cofinal family of finite subcomplexes
D1 ⊂ j !1C , D2 ⊂ j !2C with E = D1 ∩ D2 ⊂ k !C finite.
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Quadratic Poincaré complexes

I An m-dimensional quadratic complex (C , ψ) over a ring
with an involution A is an m-dimensional A-module chain
complex C together with an element

ψ ∈ Qm(C ) = Hm(W ⊗Z[Z2] (C ⊗A C ))

where T (x ⊗ y) = ±y ⊗ x and W is the standard free
Z[Z2]-module resolution of Z.

I A quadratic complex (C , ψ) is finite if C is finite.
I A quadratic complex (C , ψ) is Poincaré if the A-module

chain map

(1 + T )ψ0 : Cm−∗ = HomA(C ,A)∗−m → C

is a chain equivalence.
I Definition/Theorem Lm(A) = the cobordism group of finite

quadratic Poincaré complexes (C , ψ) over A.
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Mayer-Vietoris presentations for quadratic complexes

I Definition (i) An MV presentation of an m-dimensional
quadratic complex (C , ψ) over A = A1 ∗B A2 is an expression

(C , ψ) = (j1)!(D1, δθ1) ∪k!(E ,θ) (j2)!(D2, δθ2)

with (E , θ) is an (m − 1)-dimensional quadratic complex over
B, and ((ir )!E → Dr , (δθr , θ)) (r = 1, 2) is an m-dimensional
quadratic pair over Ar .

I (ii) The MV presentation is finite if each chain complex is
bounded f.g. free.

I (iii) The MV presentation is Poincaré if each quadratic
complex/pair is Poincaré.
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Algebraic transversality for quadratic Poincaré complexes

I Proposition (i) Every finite quadratic complex (C , ψ) over
A = A1 ∗B A2 has a finite MV presentation.
(ii) A finite quadratic Poincaré complex (C , ψ) over A admits
a finite Poincaré MV presentation if and only if the algebraic
splitting obstruction unil(C , ψ) ∈ UNilm(B; A′1,A

′
2) is 0.

I Proof Start with the universal infinite MV presentation

0→ k!k
!C → (j1)!j

!
1C ⊕ (j2)!j

!
2C → C → 0 .

Apply C ⊗A − and Frobenius reciprocity

0→ k !C⊗B k !C → j !1C⊗A1 j !1C⊕ j !2C⊗A2 j !2C → C⊗AC → 0 .

Can choose finite subcomplexes D1 ⊂ j !1C , D2 ⊂ j !2C with
E = D1 ∩ D2 ⊂ k !C finite, with quadratic structures.



21

Algebraic L-theory of generalized free products

I The algebraic splitting obstruction theory can be used to
obtain Mayer-Vietoris decompositions of the algebraic L-theory
of injective amalgamated free products and HNN extensions.

I Theorem (Cappell 1974, R.) If A = A1 ∗B A2 then

L∗(A) = LI
∗(B → A1 × A2)⊕ UNil∗(B; A′1,A

′
2)

with I = ker(K̃0(B)→ K̃0(A1)⊕ K̃0(A2)).

I Proof Replace manifold transversality by MV presentations of
quadratic Poincaré complexes. The first summand is the
L-theory of quadratic Poincaré MV presentations. The second
summand is the L-theory of quadratic Poincaré MV
presentations of 0.
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Algebraic L-theory of a tensor algebra

I Definition Let A be a ring and B an (A,A)-bimodule. The
tensor algebra is the ring

T (B) = A⊕ B ⊕ (B ⊗A B)⊕ (B ⊗A B ⊗A B)⊕ . . .

I Theorem (2008) If A,B have involutions then T (B) has an
involution, and L∗(T (B)) is the quadratic L-theory of
B-nilpotent quadratic Poincaré complexes (C , ν, ψ) over A,
with C a f.g. free A-module chain complex, ν : C → B ⊗A C
chain homotopy nilpotent, with

L∗(T (B)) = L∗(A)⊕ UNil∗(A,A,B) .

I Example If B = A then T (B) = A[x ] with x̄ = x : in this case
L∗(A[x ]) = L∗(A)⊕ UNil∗(A,A,A) was first obtained in 1974.
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