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James Joseph Sylvester (1814–1897)

Honorary Fellow of the RSE, 1874
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Sylvester’s 1852 paper

I Fundamental insight: the invariance of the numbers of positive and
negative eigenvalues of a quadratic polynomial under linear
substitutions.

I Impact statement: the Sylvester crater on the Moon
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Symmetric matrices

I An m × n matrix S = (sij ∈ R) corresponds to a bilinear pairing

S : Rm×Rn → R ; ((x1, x2, . . . , xm), (y1, y2, . . . , yn)) 7→
m∑
i=1

n∑
j=1

sijxiyj .

I The transpose of an m × n matrix S is the n ×m matrix S∗ = (s∗ji )

s∗ji = sij , S
∗(x , y) = S(y , x) .

I An n × n matrix S is symmetric if S∗ = S , i.e. S(x , y) = S(y , x).
I Quadratic polynomials Q(x) correspond to symmetric matrices S

Q(x) = S(x , x) , with S(x , y) = (Q(x + y)− Q(x)− Q(y))/2 .

I Spectral theorem (Cauchy, 1829) The eigenvalues of a symmetric
n × n matrix S are real: the characteristic polynomial of S

chz(S) = det(zIn − S) ∈ R[z ]

has real roots λ1, λ2, . . . , λn ∈ R ⊂ C.
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Linear and orthogonal congruence

I Two n × n matrices S ,T are linearly congruent if T = A∗SA for an
invertible n × n matrix A, i.e.

T (x , y) = S(Ax ,Ay) ∈ R (x , y ∈ Rn) .

I An n × n matrix A is orthogonal if it is invertible and A−1 = A∗.
I Two n× n matrices S ,T are orthogonally congruent if T = A∗SA for

an orthogonal n × n matrix A. Then T = A−1SA is conjugate to S .
I Diagonalization A symmetric n× n matrix S is orthogonally congruent

to a diagonal matrix

A∗SA = D(χ1, χ2, . . . , χn) =


χ1 0 . . . 0
0 χ2 . . . 0
...

...
. . .

...
0 0 . . . χn


with A = (b1 b2 . . . bn) the orthogonal n × n matrix with columns an
orthonormal basis of Rn of eigenvectors bk ∈ Rn, Abk = χkbk ∈ Rn.

I Proposition Symmetric n × n matrices S ,T are orthogonally
congruent if and only if they have the same eigenvalues.
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The indices of inertia and the signature

I The positive and negative index of inertia of a symmetric n × n
matrix S are

τ+(S) = (no. of eigenvalues λk > 0) ,

τ−(S) = (no. of eigenvalues λk < 0) ∈ {0, 1, 2, . . . , n} .
I τ+(S) = dim(V+) is the dimension of any maximal subspace V+ ⊆ Rn

with S(x , y) > 0 for all x , y ∈ V+\{0}. Similarly for τ−(S).
I The signature (= index of inertia) of S is the difference

τ(S) = τ+(S)− τ−(S) =
n∑

k=1

sign(λk) ∈ {−n, . . . ,−1, 0, 1, . . . , n} .

I The rank of S is the sum

dimR(S(Rn)) = τ+(S) + τ−(S) =
n∑

k=1

|sign(λk)| ∈ {0, 1, 2, . . . , n} .

S is invertible if and only if τ+(S) + τ−(S) = n.
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Sylvester’s Law of Inertia (1852)

I Law of Inertia Symmetric n× n matrices S ,T are linearly congruent if
and only if they have eigenvalues of the same signs, i.e. same indices

τ+(S) = τ+(T ) and τ−(S) = τ−(T ) ∈ {0, 1, . . . , n} .
I Proof (i) If x ∈ Rn is such that S(x , x) 6= 0 then S is linearly congruent

to

(
S(x , x) 0

0 S ′

)
with S ′ the (n − 1)× (n − 1)-matrix of S restricted

to the (n− 1)-dimensional subspace x⊥ = {y ∈ Rn | S(x , y) = 0} ⊂ Rn.
I (ii) A symmetric n× n matrix S with eigenvalues λ1 > λ2 > · · · > λn is

linearly congruent to the diagonal matrix

D(sign(λ1), sign(λ2), . . . , sign(λn)) =

Ip 0 0
0 0 0
0 0 −Iq


with τ+(S) = p, τ−(S) = q, τ(S) = p − q, rank(S) = p + q.

I Invertible symmetric n × n matrices S ,T are linearly congruent if and
only if they have the same signature τ(S) = τ(T ).
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Regular symmetric matrices

I The principal k × k minor of an n × n matrix S = (sij)16i ,j6n is

µk(S) = det(Sk) ∈ R

with Sk = (sij)16i ,j6k the principal k × k submatrix.

S =

(
Sk . . .
...

. . .

)
.

I An n × n matrix S is regular if

µk(S) 6= 0 ∈ R (1 6 k 6 n) ,

that is if each Sk is invertible.

I In particular, Sn = S is invertible, and the eigenvalues are λk 6= 0.
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The Sylvester-Gundelfinger-Frobenius theorem

I Theorem (Sylvester 1852, Gundelfinger 1881, Frobenius 1895)
The eigenvalues λk(S) of a regular symmetric n × n matrix S have the
signs of the successive minor quotients

sign(λk(S)) = sign(µk(S)/µk−1(S)) ∈ {−1, 1}
for k = 1, 2, . . . , n, with µ0(S) = 1. The signature is

τ(S) =
n∑

k=1

sign(µk(S)/µk−1(S)) ∈ {−n,−n + 1, . . . , n} .

I Proved by the ”algebraic plumbing” of matrices – the algebraic
analogue of the geometric plumbing of manifolds.

I Corollary If S is an invertible symmetric n × n matrix which is not
regular then for sufficiently small ε 6= 0 the symmetric n × n matrix
Sε = S + εIn is regular, with eigenvalues λk(Sε) = λk(S) + ε 6= 0, and

sign(λk(Sε)) = sign(λk(S)) ∈ {−1, 1} ,

τ(S) = τ(Sε) =
n∑

k=1

sign(µk(Sε)/µk−1(Sε)) ∈ Z .



10

Algebraic plumbing

I Definition The plumbing of a regular symmetric n × n matrix S with
respect to v ∈ Rn, w 6= vS−1v∗ ∈ R is the regular symmetric

(n + 1)× (n + 1) matrix S ′ =

(
S v∗

v w

)
.

I Proof of the Sylvester-Gundelfinger-Frobenius Theorem
It suffices to calculate the jump in signature under plumbing.
The matrix identity

S ′ =

(
1 0

vS−1 1

)(
S 0
0 w − vS−1v∗

)(
1 S−1v∗

0 1

)
shows that S ′ is linearly congruent to

(
S 0
0 w − vS−1v∗

)
.

By the Law of Inertia

τ(S ′) = τ(S) + sign(w − vS−1v∗) ∈ Z ,

so that τ(S ′)− τ(S) = sign(µn(S ′)/µn−1(S ′)).
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Tridiagonal matrices

I The tridiagonal symmetric n× n matrix of χ = (χ1, χ2, . . . , χn) ∈ Rn

Tri(χ) =



χ1 1 0 . . . 0 0
1 χ2 1 . . . 0 0
0 1 χ3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . χn−1 1
0 0 0 . . . 1 χn


I Jacobi Ein leichtes Verfahren, die in der Theorie der Säcularstörungen

vorkommenden Gleichungen numerisch aufzulösen (1846).
Tridiagonal matrices first used in the numerical solution of
simultaneous linear equations.

I Tridiagonal matrices and continued fractions feature in recurrences,
Sturm theory, numerical analysis, orthogonal polynomials, integrable
systems . . . and in the Hirzebruch-Jung resolution of singularities.
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Sylvester’s 1853 paper

I Sturm’s theorem gave a formula for the number of roots in an interval
of a generic real polynomial f (x) ∈ R[x ].

I The formula was in terms of the numbers of changes of signs at the
ends of the interval in the polynomials which occur as the successive
remainders in the Euclidean algorithm in the polynomial ring R[x ]
applied to f (x)/f ′(x).

I Sylvester recast the formula as a difference of signatures, using an
expression for the signature of a tridiagonal matrix in terms of
continued fractions.

I Barge and Lannes, Suites de Sturm, indice de Maslov et périodicité de
Bott (2008) gives a modern take on the algebraic connections between
Sturm sequences, the signatures of tridiagonal matrices and Bott
periodicity.
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Tridiagonal matrices and continued fractions

I A vector χ = (χ1, χ2, . . . , χn) ∈ Rn is regular if

χk 6= 0 , µk(Tri(χ)) 6= 0 (k = 1, 2, . . . , n)

so that the tridiagonal symmetric matrix Tri(χ) is regular.
I Theorem (Sylvester, 1853) A tridiagonal matrix Tri(χ) for a regular
χ ∈ Rn is linearly congruent to the diagonal matrix with entries the
continued fractions

λk(Tri(χ)) = µk(Tri(χ))/µk−1(Tri(χ)) = [χk , χk−1, . . . , χ1]

= χk −
1

χk−1 −
1

χk−2 −
. . .
− 1

χ1

I The signature of Tri(χ) is

τ(Tri(χ)) =
n∑

k=1

sign(λk(Tri(χ))) ∈ {−n,−n + 1, . . . , n} .
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”Aspiring to these wide generalizations, the analysis of quadratic
functions soars to a pitch from whence it may look proudly down on

the feeble and vain attempts of geometry proper to rise to its level or
to emulate it in its flights.” (1850)

Savilian Professor of Geometry, Oxford, 1883-1894
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Matrices and forms

I Let ε = 1 or −1. An ε-symmetric form (K , φ) is a finite-dimensional
real vector space K together with a bilinear pairing

φ : K × K → R ; (x , y) 7→ φ(x , y)

such that φ(y , x) = εφ(x , y) ∈ R for all x , y ∈ K .
I 1-symmetric = symmetric, −1-symmetric = symplectic.
I Linear congruence classes of ε-symmetric n × n matrices S = εS∗

⇐⇒ isomorphism classes of ε-symmetric forms (K , φ) with dim(K ) = n.
I A form (K , φ) is nonsingular if the adjoint linear map

φ : K → K ∗ = HomR(K ,R) ; x 7→ (y 7→ φ(x , y))

is an isomorphism. Nonsingular forms correspond to invertible matrices.
I The hyperbolic ε-symmetric form Hε(L) = (L⊕ L∗, φ) is nonsingular,

with

φ =

(
0 1
ε 0

)
: L⊕ L∗ → (L⊕ L∗)∗ = L∗ ⊕ L ,

φ((x , f ), (y , g)) = g(x) + εf (y) .
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From a 2`-manifold to a (−)`-symmetric form

I Will only consider oriented manifolds. The intersection form of a
2`-manifold with boundary (M, ∂M) is the (−)`-symmetric form

φM : H`(M;R)×H`(M;R)→ R ; (a[P], b[Q]) 7→ ab[P∩Q] (a, b ∈ R)

with [P ∩ Q] ∈ Z the intersection number of transverse closed
`-submanifolds P`,Q` ⊂ M.

I The adjoint linear map

φM : H`(M;R)→ H`(M;R)∗ ; x 7→ (y 7→ φM(x , y))

has
ker(φM) = im(H`(∂M;R)) ⊆ H`(M;R) .

I If ∂M = ∅ or S2`−1 then φM is the Poincaré duality isomorphism,
noting that H`(M;R)∗ ∼= H`(M;R) by the universal coefficient
theorem.
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The signature

I An intersection matrix for a 2`-manifold with boundary (M, ∂M) is
the (−)`-symmetric n × n matrix

SM =
(
φM([Pi ], [Pj ]) ∈ Z

)
for a basis {[P1], [P2], . . . , [Pn]} ⊂ H`(M;R) of `-submanifolds P`i ⊂ M.

I Weyl (1923) The signature of a 4k-manifold with boundary (M, ∂M)
is the signature of the intersection symmetric n × n matrix SM

τ(M) = τ(SM) ∈ Z .

I Standard examples

τ(S2k × S2k) = 0 , τ(CP2k) = 1 .
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Cobordism

I An m-dimensional cobordism (M;N,N ′;P) is an m-manifold M with
the boundary decomposed as ∂M = N ∪P −N ′ for (m − 1)-manifolds
N, N ′ with the same boundary ∂N = ∂N ′ = P, and −N ′ = N ′ with the
opposite orientation. In the diagram P = P+ t P−.

M

�

�

N �N
0

P+

P�

1

I Proposition (Thom 1952 for P = ∅, Novikov 1967 in general)
For m = 4k + 1 the signature is an cobordism invariant:

τ(N)− τ(N ′) = τ(∂M) = 0 ∈ Z

with L = ker(H2k(∂M;R)→ H2k(M;R)) a lagrangian of the
intersection symmetric form (H2k(∂M;R), φ∂M).
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The signature theorem

I Hirzebruch, On Steenrod’s reduced powers, the index of inertia and the
Todd genus (1953). The signature of a closed 4k-manifold M is
expressed in terms of characteristic classes by

τ(M) =

∫
M
L(M) = 〈Lk(p1, p2, . . . , pk), [M]〉 ∈ Z ⊂ R

with L(M) ∈ H4k(M;Q) the L-genus, a rational polynomial in the
Pontrjagin classes pj = pj(τM) ∈ H4j(M;Z) of the tangent bundle τM .

I Ida’s Hirzebruch signature dish:
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The index theorem

I Atiyah and Singer, The index of elliptic operators (1968)
Index theorem expressing the analytic index of an elliptic operator on a
closed manifold in terms of characteristic classes.

I The signature is the index of the signature operator: the Atiyah-Singer
index theorem in this case recovers the Hirzebruch signature theorem.

I The proof of the index theorem is a piece of cake:
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The signature defect

I The signature defect of a 4k-manifold with boundary (M, ∂M)
measures the extent to which the Hirzebruch signature theorem holds

def(M) =

∫
M
L(M)− τ(M) ∈ R ,

defined whenever there is given L(M) ∈ H4k(M, ∂M;R) with image
L(M) ∈ H4k(M;R).

I Exotic spheres of Milnor (1956) detected by signature defect.
I Computed by Hirzebruch and Zagier in particular cases (60’s,70’s).
I Atiyah, Patodi and Singer, Spectral asymmetry and Riemannian

geometry (1974). Index theorem identifying def(M) = η(∂M) with a
spectral invariant depending on the Riemannian structure of ∂M.
Generalization of the Hirzebruch signature theorem for closed manifolds.

I Atiyah, Donnelly and Singer, η-invariants, signature defects of cusps,
and values of L-functions (1983) Topological proof of Hirzebruch’s
conjecture on the values of L-functions of totally real number fields.
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Geometric plumbing: from a (−)`-symmetric form to a 2`-manifold

I SO(`) = {orthogonal `× ` matrices A with det(A) = 1}.
I Input (i) An 2`-manifold with boundary (M, ∂M),

(ii) an embedding v : (D` × D`,S`−1 × D`) ⊆ (M, ∂M),
(iii) a map w : S`−1 → SO(`), the clutching map of the `-plane bundle
over S` classified by w ∈ π`−1(SO(`)) = π`(BSO(`))

R` → E (w)→ S` = D` ∪S`−1 D` .

I Output The plumbed 2`-manifold with boundary

(M ′, ∂M ′) = (M ∪f (w) D
` × D`, cl.(∂M\S`−1 × D`) ∪ D` × S`−1) ,

f (w) : S`−1 × D` → S`−1 × D` ; (x , y) 7→ (x ,w(x)(y))

M0 = cl.(MnM1) M1 = v(D` �D`) M2 = D` �D`

M = M0 [M1

M 0 = M0 [M1 [f (w) M2

M1 [f (w) M2 = D`-bundle of w over S`

1
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The algebraic effect of geometric plumbing

I Proposition If (M, ∂M) has (−)`-symmetric intersection matrix S the
geometric plumbing (M ′, ∂M ′) has the (−)`-symmetric intersection
matrix given by algebraic plumbing

S ′ =

(
S v∗

v χ(w)

)
with

v = v [D` × D`] ∈ H`(M, ∂M;R) = H`(M;R)∗ ,

χ(w) = degree(S`−1 →w SO(`)→ S`−1) ∈ Z ,

SO(`)→ S`−1 ; A 7→ A(0, . . . , 0, 1) .

I χ(w) ∈ Z is the Euler number (= 0 for ` odd) of the `-plane vector
bundle w ∈ π`−1(SO(`)) = π`(BSO(`)) over S`.

I If S is invertible the signatures of (M, ∂M), (M ′, ∂M ′) are related by

τ(M ′) = τ(M) + sign(χ(w)− vS−1v∗) ∈ Z .
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Graph manifolds

I A graph manifold is a 2`-manifold with boundary constructed from
D` ×D` by the geometric plumbing of n `-plane bundles over S`, using
a graph with vertices j = 1, 2, . . . , n and weights χj ∈ π`−1(SO(`)).
The weights are `-plane bundles χj over S`.

I (Milnor 1959, Hirzebruch 1961) For ` > 2 every (−)`-symmetric n × n
matrix S = (sij ∈ Z) is realized by a graph 2`-manifold with boundary
(M, ∂M) such that

(H`(M;R), φM) = (Rn, S) .

For ` = 2k and k 6= 1, 2, 4 need the diagonal entries sjj ∈ Z to be even,
since the Hopf invariant of any S4k−1 → S2k is even (Adams).

I If the graph is a tree then for ` > 2 M is (`− 1)-connected, and for
` > 3 M and ∂M are both (`− 1)-connected.

I Rabo von Randow, Zur Topologie von dreidimensionalen
Baummannigfaltigkeiten (1962) and Alois Scharf, Zur Faserung von
Graphenmannigfaltigkeiten (1975)
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From a (2`+ 1)-manifold with boundary to a lagrangian

I A lagrangian of an ε-symmetric form (K , φ) is a subspace L ⊆ K such
that L = L⊥, i.e.

φ(L, L) = {0} and L = {x ∈ K |φ(x , y) = 0 ∈ R for all y ∈ L} .

I A nonsingular ε-symmetric form (K , φ) is isomorphic to the hyperbolic
form Hε(L) if and only if it admits a lagrangian L.

I A nonsingular symmetric form (K , φ) admits a lagrangian if and only if
it has signature τ(K , φ) = 0 ∈ Z, if and only if it is isomorphic to

H+(Rn) = (Rn ⊕ Rn,

(
0 In
In 0

)
) with n = dimR(K )/2.

I Every nonsingular symplectic form (K , φ) admits a lagrangian, and is

isomorphic to H−(Rn) = (Rn ⊕ Rn,

(
0 In
−In 0

)
) with n = dimR(K )/2.

I A (2`+ 1)-manifold with boundary (M, ∂M) determines a lagrangian
L = ker(H`(∂M;R)→ H`(M;R)) of the (−)`-symmetric intersection
form (H`(∂M;R), φ∂M).
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From a closed (2`+ 1)-manifold to a formation

I An ε-symmetric formation (K , φ; L1, L2) is a nonsingular ε-symmetric
form (K , φ) together with an ordered pair of lagrangians L1, L2

I For any formation (K , φ; L1, L2) there exists an automorphism
A : (K , φ)→ (K , φ) such that A(L1) = L2.

I A decomposition of a closed (2`+ 1)-manifold M

M2`+1
= M1 [N M2 N2`

= M1 \M2 = @M1 = @M2NM1 M2

1

determines a (−)`-symmetric formation (H`(N;R), φN ; L1, L2) with
lagrangians

Lj = ker(H`(N;R)→ H`(Mj ;R)) (j = 1, 2) .

If H`(Mj ,N;R) = 0 and H`+1(Mj ;R) = 0 then

L1 ∩ L2 = H`+1(M;R) , H`(N;R)/(L1 + L2) = H`(M;R) .
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The symplectic group Sp(2n) and automorphisms of the surfaces Σn

I The symplectic group Sp(2n) = Aut(H−(Rn)) (n > 1) consists of the

invertible 2n × 2n matrices A such that A∗
(

0 In
−In 0

)
A =

(
0 In
−In 0

)
.

Similarly for Sp(2n;Z) ⊂ Sp(2n).
I The surface of genus n is Σn = #

n
S1 × S1.

Σ1
Σ2

Σ3

I The mapping class group Γn = π0(Aut(Σn)) is the group of
automorphisms of Σn, modulo isotopy. Canonical group morphism

γn : Γn → Sp(2n;Z) ; (A : Σn → Σn) 7→ (A∗ : H1(Σn)→ H1(Σn)) .

Isomorphism for n = 1. Surjection for n > 2.
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Twisted doubles

I A twisted double of an m-manifold with boundary (M, ∂M) with
respect to an automorphism A : ∂M → ∂M is the closed m-manifold
D(M,A) = M ∪A −M.

M �M@M
A // @M

1

I Every closed (2`+ 1)-manifold is a twisted double D(M,A)
(non-uniquely), with an induced automorphism A : (K , φ)→ (K , φ) of
the nonsingular (−)`-symmetric form (K , φ) = (H`(∂M;R), φ∂M).
The corresponding (−)`-symmetric formation is (K , φ; L,A(L)) with

L = ker(K → H`(∂M;R)) ⊂ K .



29

The Heegaard decompositions of a 3-manifold

I Heegaard (1898) Every closed 3-manifold M is a twisted double

M = D(#
n
S1 × D2,A)

for some automorphism A : Σn → Σn. Non-unique.

I A induces the symplectic automorphism

γn(A) = A∗ : (H1(Σn;R), φΣn) = H−(Rn)→ H−(Rn) .

I The symplectic formation of M with respect to the Heegaard
decomposition is

(H−(Rn) ; Rn ⊕ {0} , A∗(Rn ⊕ {0}) ) .
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The modular group SL2(Z)

I Introduced by Dedekind, Erläuterungen zu den vorstehenden
Fragmenten, 1876. Commentary on Riemann’s work on elliptic
functions.

I The modular group SL2(Z) = Sp(2;Z) is the group of 2× 2 integer
matrices

A =

(
a b
c d

)
such that

det(A) = ad − bc = 1 ∈ Z .

I Every element A ∈ SL2(Z) is induced by an automorphism of the torus

A : Σ1 = S1 × S1 → S1 × S1 ; (e ix , e iy ) 7→ (e i(ax+by), e i(cx+dy)) .

I SL2(Z) = Γ1 is the mapping class group of the torus Σ1.
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The lens spaces

I Tietze, Über die topologischen Invarianten mehrdimensionaler
Mannigfaltigkeiten (1908)
The lens space is the closed, parallelizable 3-manifold defined for
coprime a, c ∈ Z with c > 0 by

L(c , a) = S3/Zc

with S3 = {(u, v) ∈ C2 | |u|2 + |v |2 = 1} and

Zc × C2 → C2 ; (m, (u, v)) 7→ (ζamu, ζmv) with ζ = e2πi/c .

I π1(L(c , a)) = Zc , H∗(L(c, a);R) = H∗(S
3;R).

I The lens space has a genus 1 Heegaard decomposition

L(c , a) = S1 × D2 ∪A S1 × D2

for any A =

(
a b
c d

)
∈ SL2(Z), corresponding to the symplectic

formation (H−(R);R⊕ {0}, L) with

L = A(R⊕ {0}) = {(ax , cx) | x ∈ R} ⊂ R⊕ R .
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The Hirzebruch-Jung resolution of cyclic surface singularities I.

I For A ∈ SL2(Z) with c 6= 0 the Euclidean algorithm gives a regular
χ ∈ Zn with |χk | > 1, such that

A =

(
a b
c d

)
=

(
0 −1
1 0

)(
χ1 −1
1 0

)(
χ2 −1
1 0

)
. . .

(
χn −1
1 0

)
,

a/c = [χ1, χ2, . . . , χn] = χ1 −
1

χ2 −
1

χ3 −
. . .
− 1

χn

I The factorization is realized by a graph 4-manifold M(χ) with
∂M(χ) = L(c , a), intersection matrix Tri(χ). The plumbing tree is the
graph An weighted by χk ∈ π1(SO(2)) = π1(S1) = Z

An :
χ1
•

χ2
•

χ3
•

. . .

χn−1
•

χn
•

noting the diffeomorphism S1 → SO(2); e iθ 7→
(

cos θ −sin θ
sin θ cos θ

)
.
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The Hirzebruch-Jung resolution of cyclic surface singularities II.

I The 4-manifold M(χ) resolves the singularity at (0, 0, 0) of the
2-dimensional complex space

{(w , z1, z2) ∈ C3 |w c = z1(z2)c−a} .
I Jung, Darstellung der Funktionen eines algebraischen Körpers zweier

unabhängigen Veränderlichen x , y in der Umgebung x =a, y =b (1909)
I Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger

analytischer Funktionen von zwei komplexen Veränderlichen (1952).
I The signature of M(χ) is

τ(M(χ)) = τ(Tri(χ)) =
n∑

k=1

sign([χk , χk−1, . . . , χ1]) =
n∑

k=1

sign(χk) ∈ Z.

I Hirzebruch and Mayer, O(n)-Mannigfaltigkeiten, exotische Sphären und
Singularitäten (1968)

I Hirzebruch, Neumann and Koh, Differentiable manifolds and quadratic
forms (1971)
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The sawtooth function (( ))

I Used by Dedekind (1876) to count ±2π jumps in the complex logarithm

log(re iθ) = log(r) + i(θ + 2nπ) ∈ C (n ∈ Z) .

I The sawtooth function (( )) : R→ [−1/2, 0) is defined by

((x)) =

{
{x} − 1/2 if x ∈ R\Z
0 if x ∈ Z

with {x} ∈ [0, 1) the fractional part of x ∈ R. Nonadditive:

((x)) + ((y))− ((x +y)) =


−1/2 if 0 < {x}+ {y} < 1

1/2 if 1 < {x}+ {y} < 2

0 if x ∈ Z or y ∈ Z or x + y ∈ Z .

x�2 �1 0 1 2 3 4

0:5

�0:5

� �� � � ��

1
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Dedekind sums and signatures

I The Dedekind sum for a, c ∈ Z with c 6= 0 is

s(a, c) =

|c|−1∑
k=1

((k
c

))((ka
c

))
=

1

4|c |

|c|−1∑
k=1

cot
(kπ
c

)
cot
(kaπ

c

)
∈ Q .

I Hirzebruch, The signature theorem: reminiscences and recreations
(1971) and Hilbert modular surfaces (1973)

I Hirzebruch and Zagier, The Atiyah-Singer theorem and elementary
number theory (1974)

I Kirby and Melvin, Dedekind sums, µ-invariants and the signature
cocycle (1994) For any regular sequence χ = (χ1, χ2, . . . , χn) ∈ Zn the
signature defect of M(χ) is

τ(Tri(χ))− (
n∑

j=1

χj)/3 =

{
b/3d if c = 0

(a + d)/3− 4sign(c)s(a, c) if c 6= 0 .

with

(
a b
c d

)
=

(
0 −1
1 0

)(
χ1 −1
1 0

)
. . .

(
χn −1
1 0

)
∈ SL2(Z).
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The tailoring of topological pants I.

I Input: Three n-manifolds N0,N1,N2 with the same boundary

∂N0 = ∂N1 = ∂N2 = P .

The diffeomorphisms fj : ∂Nj → ∂Nj−1 (j(mod 3)) satisfy f1f2f3 = Id.
I Output: The pair of pants (n + 1)-manifold

Q = Q(P,N0,N1,N2) = (N0 × I t N1 × I t N2 × I )/ ∼ ,

(aj , bj) ∼ (fj(aj), 1− bj) (aj ∈ ∂Nj , bj ∈ [0, 1/2])

with boundary ∂Q = (N0 ∪P N1) t (N1 ∪P N2) t (N2 ∪P N0).
I Ordinary pair of 2-dimensional pants is the special case n = 1, Nj = D1,

P = S0 used in Atiyah, Topological quantum field theory (1988).
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The tailoring of topological pants II.

P = P+ [ P
�

= @N0 = @N1 = @N2

Tailor's dummy = N = (N0 t N1 t N2)=�

N0 N1

P+

P
�

N2

�

�

N0 � I N1 � I N2 � I

Pair of pants Q = ((N0 � I) t (N1 � I) t (N2 � I))=�

@Q = (N0 [P N1) t (N1 [P N2) t (N2 [P N0) in blue

1
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The Wall non-additivity of the signature I.

I Wall The non-additivity of the signature (1969).
The signature of the union M = M0 ∪M1 of 4k-dimensional
cobordisms (M0;N0,N1;P), (M1;N1,N2;P) is

τ(M) = τ(M0) + τ(M1) + τ(P;N0,N1,N2) ∈ Z .

M0 M1N1 N2N0

�

P+

�

P�

M 0

1M 0

0 Q

M = M0 [M1 = M
0

0 [Q [M 0

1

1

I M is a manifold. The union N = N0 ∪ N1 ∪ N2 ⊂ M is a stratified set,
not a manifold. The non-additivity term is the signature

τ(P;N0,N1,N2) = τ(Q) ∈ Z

of the pair of pants Q = Q(P;N0,N1,N2), a neighbourhood of N ⊂ M.
The complement cl.(M\Q) = M ′0 ∪M ′1 is the union of disjoint copies
M ′0,M

′
1 of M0,M1.
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The Wall non-additivity of the signature II.

I τ(P;N0,N1,N2) = τ(Q) is the triple signature τ(K , φ; L0by , L1, L2) of
the nonsingular symplectic form (K , φ) = (H2k−1(P;R), φP) with
respect to the three lagrangians

Lj = ker(K → H2k−1(Nj ;R)) (j = 0, 1, 2) .

I The triple signature τ(K , φ; L0, L1, L2) = τ(V , ψ) ∈ Z is the signature
of the nonsingular symmetric form (V , ψ) defined by

V =
{(x , y , z) ∈ L0 ⊕ L1 ⊕ L2 | x + y + z = 0 ∈ K}

{(a− b, b − c , c − a) | a ∈ L2 ∩ L0, b ∈ L0 ∩ L1, c ∈ L1 ∩ L2}
,

ψ(x , y , z)(x ′, y ′, z ′) = φ(x , y ′) ∈ R .

I Example The lagrangians of H−(R) are the 1-dimensional subspaces

L(θ) = {(r cos θ, r sin θ) | r ∈ R} ⊂ R2 (θ ∈ [0, π)) .

The triple signature jumps by ±1 at θj − θj+1 ∈ πZ, for j(mod 3)

τ(H−(R); L(θ0), L(θ1), L(θ2)) = sign(sin(θ0−θ1)sin(θ1−θ2)sin(θ2−θ0)).
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The Maslov index

I The Wall non-additivity invariant has been identified with the universal
jump-counting invariant

Maslov index ∈ Z

of quantum mechanics, symplectic geometry, dynamical systems and
knot theory. Related to spectral flow.

I Arnold On a characteristic class entering into conditions of quantization
(1969)

I Leray Lagrangian analysis and quantum mechanics (1981)

I Arnold Sturm theorems and symplectic geometry (1985)

I Kashiwara and Schapira Sheaves on manifolds (1994)

I The Maslov index website

http://www.maths.ed.ac.uk/̃ aar/maslov.htm

has many more references.

http://www.maths.ed.ac.uk/~aar/maslov.htm
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The multiplicativity of the signature

I The tensor product S ⊗ T = (sij tk`) of symmetric matrices S = (sij),
T = (tk`) has signature

τ(S ⊗ T ) = τ(S)τ(T ) ∈ Z .

I The signature of a product of closed manifolds is

τ(X × F ) = τ(X )τ(F ) ∈ Z

with τ = 0 if dim 6≡ 0 (mod 4).
I Since τ(M) ≡ χ(M)(mod 2), for any fibre bundle F → M4k → X

τ(M) ≡ τ(X )τ(F ) (mod 2) .

I Chern, Hirzebruch and Serre, On the index of a fibered manifold (1957).
If π1(X ) acts trivially on H∗(F ;R) then τ(M) = τ(X )τ(F ) ∈ Z.

I Hambleton, Korzeniewski and Ranicki, The signature of a fibre bundle
is multiplicative mod 4 (2007) For any fibre bundle F → M4k → X

τ(M) ≡ τ(X )τ(F ) (mod 4) .
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The non-multiplicativity of the signature for fibre bundles

I Kodaira, A certain type of irregular algebraic surfaces (1967)
Fibre bundles F 2 → M4 → X 2 with

τ(M)− τ(X )τ(F ) 6= 0 ∈ 4Z ⊂ Z .

I Hirzebruch, The signature of ramified coverings (1969)
Analysis of non-multiplicativity using the signature of branched covers,
and the Atiyah-Singer index theorem.

I Atiyah, The signature of fibre-bundles (1969) A characteristic class
formula for the signature of a fibre bundle F 2` → M4k → X

τ(M) = 〈ch(Sign) ∪ L̃(X ), [X ]〉 ∈ Z ⊂ R

with Sign = {τK (H`(Fx ;C), φFx ) | x ∈ X} the virtual bundle of the
topological K -theory signatures of hermitian forms, such that
(H∗(M;C), φM) = (H∗(X ; Sign), φX ) with ch(Sign) ∈ H2∗(X ;C) the
Chern character, and L̃(X ) ∈ H4∗(X ;Q) a modified L-genus.
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Central extensions

I A central extension of a group E is an exact sequence

{1} → C → D → E → {1}

with cd = dc ∈ D for all c ∈ C , d ∈ D. In particular, C is abelian.
I Central extensions with prescribed C ,E are classified by the

cohomology group

H2(E ;C ) = Z 2(E ;C )/B2(E ;C ) .

I A cocycle f ∈ Z 2(E ;C ) is a function f : E × E → C such that

f (x , y)− f (y , z) = f (xy , z)− f (x , yz) ∈ C (x , y , z ∈ E )

classifying D = C ×f E , (a, x)(b, y) = (a + b + f (x , y), xy).
I The coboundary δg ∈ B2(E ;C ) of a function g : E → C is the cocycle

δg : E → C ; x 7→ g(x) + g(y)− g(xy) .

I Central extensions with C = Z are of central importance in both the
algebraic and geometric aspects of the signature.
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Infinite cyclic covers

I 1 ∈ H1(S1;Z) = Z classifies the central extension Z→ R→ S1 with
p : R→ S1; x 7→ e2πix the universal infinite cyclic cover,

I Let f : G → S1 be a morphism of topological groups. The pullback is
the central extension Z→ G → G classified by f ∗(1) ∈ H2(G ;Z) with

q : G = f ∗R = {(x , y) ∈ R×G | p(x) = f (y) ∈ S1} → G ; (x , y) 7→ y

with G also a topological group. A section s : G → G of q gives a
cocycle for f ∗(1) ∈ H2(G ;Z)

cs : G × G → Z ; (x , y) 7→ s(x)s(y)s(xy)−1 .

I The section of p

s : S1 → R ; e2πix 7→ log(e2πix)/2πi = {x}
determines the cocycle cs : S1 × S1 → Z for 1 ∈ H2(S1;Z) = Z with

cs(e2πix , e2πiy ) = {x}+ {y} − {x + y} =

{
0 if 0 6 {x}+ {y} < 1

1 if 1 6 {x}+ {y} < 2 .
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The Meyer signature cocycle

I Let (K , φ) = H−(Rn). For A,B ∈ Aut(K , φ) = Sp(2n) let

τ(A,B) = τ(K⊕K , φ⊕−φ; (1⊕A)∆K , (1⊕B)∆K , (1⊕AB)∆K ) ∈ Z .

I W.Meyer Die Signatur von lokalen Koeffizientensystem und
Faserbündeln (1972) The triple signature function

cn : Sp(2n)× Sp(2n)→ Z ; (A,B) 7→ τ(A,B)

is a cocycle cn ∈ Z 2(Sp(2n);Z).
I The signature of the total space of a surface bundle Σn → M4 → X 2

with (H1(Σn;R), φΣn) = H−(Rn) is

τ(M) = − 〈Γ∗[cn], [X ]〉 ∈ Z

with [cn] ∈ H2(Sp(2n);Z) the signature class, and Γ : π1(X )→ Sp(2n)
the characteristic map.

I The pullback of cn generates H2(mapping class group of Σn;Q) = Q.
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The Atiyah signature cocycle I.

I Atiyah, The logarithm of the Dedekind η-function (1987).
I The Lie group defined for p, q > 0 by

U(p, q) = {automorphisms of the hermitian form (Cp, Ip)⊕(Cq,−Iq)}
consists of the invertible (p + q)× (p + q) matrices A = (ajk ∈ C) such
that A∗(Ip ⊕−Iq)A = Ip ⊕−Iq, with A∗ = (akj).

I Given a surface with boundary (X ,Y ) and a group morphism
Γ : π1(X )→ U(p, q) there is a signature (Lusztig)

τ(X , Γ) = τ(H1(X ; Γ), φX ) ∈ Z .

I Let (X2,Y2) = (cl.(S2\(
⊔
3
D2)),

⊔
3
S1) be the pair of pants, with

π1(X2) = Z ∗ Z. The cocycle cp,q ∈ Z 2(U(p, q);Z) defined by

cp,q : U(p, q)× U(p, q)→ Z ; (A,B) 7→ τ(H1(X2; (A,B)), φX2)

is such that τ(X , Γ) = −〈Γ∗(cp,q), [X ]〉 ∈ Z for any (X ,Y ), Γ.
I cn,n restricts on Sp(2n) ⊂ U(n, n) to the Meyer cocycle

cn ∈ Z 2(Sp(2n);Z).
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The Atiyah signature cocycle II.

I The signature class [cp,q] ∈ H2(U(p, q);Z) = Hom(π1(U(p, q)),Z)
is given by

π1(U(p, q)) = π1(U(p))×π1(U(q)) = Z⊕Z→ Z ; (x , y) 7→ 2x−2y .

I c1,0 ∈ Z 2(S1;Z) is the cocycle on U(1, 0) = U(1) = S1

c1,0 : S1 × S1 → Z ; (e2πix , e2πiy ) 7→ 2(((x)) + ((y))− ((x + y)))

classifying the central extension Z→ R× Z2 → S1 with

Z→ R× Z2 ; m 7→ (m/2,m(mod 2)) ,

R× Z2 → S1 ; (x , r) 7→ e2πi(x−r/2) (r = 0, 1) .

I With real coefficients −c1,0 = dη ∈ B2(S1;R) is the coboundary of

η : S1 → R ; e2πix 7→ −2((x)) =

{
1− 2{x} if x /∈ Z
0 if x ∈ Z .

The simplest evaluation of the Atiyah-Patodi-Singer η-invariant.
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The signature extension

I The pullback γ∗n(cn,n) ∈ H2(Γn;Z) classifies the signature extension

Z→ Γ̂n → Γn

of the mapping class group Γn.

I Atiyah, On framings of 3-manifolds (1990)
Every 3-manifold N has a canonical 2-framing α, i.e. a trivialization of
τN ⊕ τN , characterized by the property that for any 4-manifold M with
∂M = N the signature defect is

def(M) = 0 .

I Interpretation of Γ̂n in terms of the canonical 2-framing.

I The case n = 1, Γ1 = SL2(Z) of particular importance in string theory
and Jones-Witten theory.
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Complex structures

I The unitary group is

U(n) = U(n, 0) = {automorphisms of the hermitian form (Cn, In)} .
I A complex structure on a nonsingular symplectic form (K , φ) is an

automorphism J : K → K such that
(i) J2 = −I : K → K ,
(ii) the symmetric form

φJ : K × K → R ; (x , y) 7→ φ(x , Jy)

is positive definite.
I A choice of orthonormal basis gives isomorphism (K , φ, J) ∼= (Cn, In, i).
I Example The hyperbolic symplectic form H−(Rn) has the standard

complex structure Jn =

(
0 −In
In 0

)
: Rn ⊕ Rn → Rn ⊕ Rn.

The vector space isomorphism

Rn ⊕ Rn → Cn ; (x , y) 7→ x + iy

defines an isomorphism (H−(Rn), Jn) ∼= (Cn, In).



50

The space of lagrangians in H−(Rn)

I Let Λ(n) be the space of lagrangians L in H−(Rn).
I Arnold, On a characteristic class entering into conditions of

quantization (1967). The function

U(n)/O(n)→ Λ(n) ; A 7→ A(Rn ⊕ 0)

is diffeomorphism, identifying

O(n) = {A ∈ U(n) |A(Rn ⊕ {0}) = Rn ⊕ {0}} .
I The square of the determinant

det2 : Λ(n) = U(n)/O(n)→ S1 ; A 7→ det(A)2

induces an isomorphism of groups

π1(Λ(n))
∼= // π1(S1) = Z; (ω : S1 → Λ(n)) 7→ degree(det2◦ω : S1 → S1)

given geometrically by the Maslov index.
I The triple signature τ(H−(Rn); L0, L1, L2) ∈ Z is the Maslov index of a

loop S1 → Λ(n) passing through L0, L1, L2 ∈ Λ(n).
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The Maslov index (again)

I Cappell, Lee and Miller, On the Maslov index (1994)
(i) For any nonsingular symplectic form (K , φ) with complex structure
J and lagrangians L0, L1 there exists an automorphism
A : (K , φ)→ (K , φ) such that AJ = JA and A(L0) = L1 ⊂ K , with
eigenvalues e iθ1 , e iθ2 , . . . , e iθn ∈ S1 (0 6 θj < π). The Maslov index

ηJ(K , φ, L0, L1) =
n∑

j=1

η(e2iθj ) =
n∑

j=1,θj 6=0

(1− 2{θj/π}) ∈ R

is the η-invariant of the first order elliptic operator −J d

dt
on the

functions f : [0, 1]→ K such that f (0) ∈ L0, f (1) ∈ L1.
I (ii) The Maslov index is a real coboundary for the triple signature

τ(K , φ; L0, L1, L2)

= ηJ(K , φ; L0, L1) + ηJ(K , φ; L1, L2) + ηJ(K , φ; L2, L0) ∈ Z ⊂ R

for any complex structure J on (K , φ).
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The real signature

I Definition The real signature of a 4k-dimensional relative cobordism
(M4k ;N0,N1;P) with respect to a complex structure J on
(H2k−1(P;R), φP) is

τJ(M;N0,N1;P)

= τ(H2k(M;R), φM) + τJ(H2k−1(P;R), φP); L0, L1) ∈ R

with Lj = ker(H2k−1(P;R)→ H2k−1(Nj ;R)).

I Proposition The real signature of the union of 4k-dimensional relative
cobordisms (M0;N0,N1;P), (M1;N1,N2;P) is the sum of the real
signatures

τJ(M0∪N1M1;N0,N2;P) = τJ(M0;N0,N1;P)+τJ(M1;N1,N2;P) ∈ R .


