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The BNR project

I Since 2011 have joined András Némethi (Budapest) and
Maciej Borodzik (Warsaw) in a project on the algebraic
invariants of the links of complex hypersurface singularities,
using algebraic surgery as an organizing principle.

I Morse theory decomposes cobordisms of manifolds into
elementary operations called surgeries.

I Algebraic surgery does the same for cobordisms of chain
complexes with Poincaré duality – generalized quadratic forms.

I High-dimensional knot theory. Algebraic surgery in
codimension 2 (Springer, 1998) Book described algebraic and
geometric surgery for high-dimensional knots and links.

I The spectrum of a singularity is an analytic invariant, defined
using Hodge theory. In the first instance the project deals
with the topological parts of the spectrum for isolated
singularities, and the relationship between the local
singularities and the singularity at infinity.

http://www.maths.ed.ac.uk/~aar/books/knot.pdf
http://www.maths.ed.ac.uk/~aar/books/knot.pdf
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Links

I An m-dimensional link is a codimension 2 submanifold

Lm ⊂ Sm+2

with trivial normal bundle L× D2 ⊂ Sm+2.
I The link is spherical if

L = Sm ∪ Sm ∪ · · · ∪ Sm .

I An m-dimensional knot is a spherical link with

L = Sm ⊂ Sm+2 .

I Classical knots and links are the case m = 1

L1 = S1 ∪ S1 ∪ · · · ∪ S1 ⊂ S3 .

I Of course, from the point of view of the rest of mathematics,
knots in higher-dimensional space deserve just as much
attention as knots in 3-space (Frank Adams, 1976).
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Some of what Milnor did in the 1950’s and 1960’s

I (1956) Paper On manifolds homeomorphic to the
7-sphere. Exotic spheres: differentiable manifolds
homeomorphic but not diffeomorphic to S7.

I (1961) Paper A procedure for killing the homotopy groups
of differentiable manifolds initiated the systematic study of
manifolds M using surgery theory

I (1963) Paper Groups of homotopy spheres I. (with
Kervaire). Surgery classification of exotic spheres in
dimensions > 5.

I (1965) Book Morse theory The systematic study of
manifolds M using Morse functions f : M → R.

I (1966) Paper Singularities of 2-spheres in 4-space and
cobordism of knots (with Fox) Cobordism extended to knots.

I (1968) Book Singular points of complex hypersurfaces.
Motivated by the Brieskorn construction of certain exotic
spheres as links of isolated hypersurface singularities.
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The link of an isolated hypersurface singularity

I Let f : (Cn+1, 0) → (C, 0) be the germ of an analytic function
such that the complex hypersurface

X = f −1(0) ⊂ Cn+1

has an isolated singularity at x ∈ X , with

∂f

∂zk
(x) = 0 for k = 1, 2, . . . , n + 1 .

I For ϵ > 0 let

Dϵ(x) = {y ∈ Cn+1 | ∥y − x∥ 6 ϵ} ∼= D2n+2 ,

Sϵ(x) = {y ∈ Cn+1 | ∥y − x∥ = ϵ} ∼= S2n+1 .

I For ϵ > 0 sufficiently small, the subset

L(x)2n−1 = X ∩ Sϵ(x) ⊂ Sϵ(x)
2n+1

is a closed (2n − 1)-dimensional submanifold, the link of the
singularity of f at x .
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2 historical references

I Brauner (1928) Die Verzweigungsstellen einer algebraischen
Funktion. For coprime integers p, q > 2 define

f : (C2, 0) → (C, 0) ; (z1, z2) 7→ zp1 − zq2 .

The link of the singularity at 0 is the (p, q)-torus knot

L(0) = S1 ⊂ S1 × S1 ⊂ S3

with
S1 → S1 × S1 ; z 7→ (zq, zp) .

I Example For (p, q) = (2, 3) this is the trefoil knot.

I Epple (1995) Branch points of algebraic functions and the
beginnings of modern knot theory. From 19th century to
mid-20th.

http://www.maths.ed.ac.uk/~aar/papers/brauner.pdf
http://www.maths.ed.ac.uk/~aar/papers/brauner.pdf
http://www.maths.ed.ac.uk/~aar/papers/epple6.pdf
http://www.maths.ed.ac.uk/~aar/papers/epple6.pdf
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Seifert surfaces

I A Seifert surface for a link Lm ⊂ Sm+2 is a codimension 1
submanifold Fm+1 ⊂ Sm+2 such that

∂F = L ⊂ Sm+2

with a trivial normal bundle F × D1 ⊂ Sm+2.

I Every link L ⊂ Sm+2 admits a Seifert surface F : extend the
projection ∂C = L× S1 → S1 to a map

p : C = cl.(Sm+2\L× D2) → S1

and let F = p−1(∗) ⊂ Sm+2 be the transverse inverse image.

I In general, Seifert surfaces are not canonical.

I A fibre of a fibred link L ⊂ Sm+2 is a Seifert surface F .
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Fibred links

I The complement of a link Lm ⊂ Sm+2 is the
(m + 2)-dimensional manifold with boundary

(C , ∂C ) = (cl.(Sm+2\L× D2), L× S1)

such that
Sm+2 = L× D2 ∪L×S1 C .

I The link is fibred if the projection ∂C = L× S1 → S1 can be
extended to the projection of a fibre bundle p : C → S1, and
there is given a particular choice of extension.

I A fibred link with fibre F has a monodromy automorphism
(h, ∂h) : (F , ∂F ) → (F , ∂F ) with ∂h = id. : ∂F = L → L and

C = T (h) = F × [0, 1]/{(y , 0) ∼ (h(y), 1) | y ∈ F} .
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The Milnor fibration

I Proposition (M, 1968) The link of an isolated hypersurface
singularity is fibred.

I The complement C (x) of L(x) ⊂ Sϵ(x)
2n+1 is such that

p : C (x) → S1 ; y 7→ f (y)

|f (y)|
is the projection of a fibre bundle.

I The Milnor fibre is a canonical Seifert surface

(F (x), ∂F (x)) = (p, ∂p)−1(∗) ⊂ (C (x), ∂C (x))

with
∂F (x) = L(x) ⊂ S(x)2n+1 .

I The fibre F (x) is (n − 1)-connected, and

F (x) ≃
∨
µ

Sn , Hn(F (x)) = Zµ

with µ = bn(F (x)) > 0 the Milnor number.
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Pushing the Seifert surface from S2n+1 into D2n+2

I For any link L2n−1 ⊂ S2n+1 and Seifert surface F 2n ⊂ S2n+1

can push F rel ∂ into a codimension 2 submanifold
F ′ ⊂ D2n+2 with

F ′ ∩ S2n+1 = ∂F ′ = ∂F = L ⊂ S2n+1 .

I Push-in of the Milnor fibre F (x) of the link L(x) ⊂ Sϵ(x)
2n+1

of a hypersurface singularity can be realized analytically.

I For c ̸= 0 ∈ C with |c | > 0 sufficiently small the smoothing

X ′ = f −1(c) ⊂ Cn+1

is a variety with no singularities in Dϵ(x), and

X ′ ∩ (Dϵ(x), Sϵ(x)) ∼= (F (x), ∂F (x)) .
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The intersection form

I Let (F , ∂F ) be a 2n-dimensional manifold with boundary,
such as a Seifert surface. Denote Hn(F )/torsion by Hn(F ).

I The intersection form is the (−1)n-symmetric bilinear pairing

b : Hn(F )× Hn(F ) → Z ; (y , z) 7→ ⟨y∗ ∪ z∗, [F ]⟩

with y∗, z∗ ∈ Hn(F , ∂F ) the Poincaré-Lefschetz duals of
y , z ∈ Hn(F ) and [F ] ∈ H2n(F , ∂F ) the fundamental class.

I The intersection pairing is (−1)n-symmetric

b(y , z) = (−1)nb(z , y) ∈ Z .

I The adjoint Z-module morphism

b = (−1)nb∗ : Hn(F ) → Hn(F )
∗ = HomZ(Hn(F ),Z) ;

y 7→ (z 7→ b(y , z)) .

is an isomorphism if ∂F and F have the same number of
components.
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The monodromy theorem

I The monodromy induces an automorphism of the intersection
form

h∗ : (Hn(F ), b) → (Hn(F ), b) ,

or equivalently h∗ : (Hn(F ), b−1) → (Hn(F ), b−1).
I Monodromy theorem (Brieskorn, 1970)

For the fibred link L ⊂ S2n+1 of an isolated hypersurface the
µ = bn(F ) eigenvalues of the monodromy automorphism

h∗ : Hn(F ;C) = Cµ → Hn(F ;C) = Cµ

are roots of 1

λk = e2πiαk ∈ S1 ⊂ C (1 6 k 6 µ)

for some {α1, α2, . . . , αµ} ∈ Q/Z ⊂ R/Z. Furthermore, h∗ is
such that for some N > 1

((h∗)N − id.)n+1 = 0 : Hn(F ;C) → Hn(F ;C) .
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Spectral pairs I.

I Let f : (Cn+1, 0) → (C, 0) have an isolated singularity at
x ∈ f −1(0), with Milnor fibre F 2n = F (x). If F were a
complex nonsingular projective variety then Hn(F ;C) would
carry a pure Hodge structure, with only one filtration.

I Steenbrink (1976) used analysis to construct a mixed Hodge
structure on Hn(F ;C), with both a Hodge and a weight
filtration. Invariant under h∗ and polarized by b.

I The Hodge numbers are the dimensions of the generalized
eigenspaces of h∗, with λ = e2πiα ∈ S1 (α ∈ Q) the
eigenvalues,

hp,qλ =

dimC(ker((h
∗ − λ id.)∞ : Hp,q(F ;C) → Hp,q(F ;C))) ∈ N

with weight

w =

{
p + q if λ ̸= 1,

p + q − 1 if λ = 1 .
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Spectral pairs II.

I The Hodge numbers encoded in the spectral pairs of f at x

Spp(f ) =

µ∑
k=1

(αk ,wk) ∈ N[Q× N]

with α1 6 α2 6 · · · 6 αµ such that {λk = e2πiαk ∈ S1} are
the eigenvalues of h∗, [αk ] = n − p, and wk ∈ N the weights.

I A spectral pair (α,w) includes a lift to α ∈ Q of the
eigenvalue λ = e2πiα ∈ S1 of the monodromy automorphism

h∗ : Hn(F ;C) → Hn(F ;C) .

I w is determined by the unipotent part of the monodromy
(upper-triangular with respect to some basis), giving
information about the size of the Jordan blocks of

( ker((h∗ − λ id.)∞ : Hn(F ;C) → Hn(F ;C)) , h∗| ).
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The semicontinuity of the singularity spectrum

I The spectrum of f at an isolated hypersurface singularity x is

Sp(f ) =

µ∑
j=1

αj ∈ N[Q]

with µ = bn(F ) the Milnor number.

I Arnold semicontinuity conjecture (1981)
The spectrum is semicontinuous in the following sense: if
(f , x) is adjacent to (f ′, x ′) with µ′ < µ then αk 6 α′

k for
k = 1, 2, . . . , µ′.

I Varchenko (1983) and Steenbrink (1985) proved a
reformulation of the conjecture in terms of semicontinuity
domains, using Hodge theoretic methods.
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The mod 2 spectral pairs and the mod 2 spectrum

I The real Seifert form and the spectral pairs of isolated
hypersurface singularities (Némethi, Comp. Math. 1995)
Introduced the mod 2 spectral pairs and mod 2 spectrum
of f at an isolated hypersurface singularity

Spp2(f ) =
µ∑

k=1

(αk ,wk) ∈ N[Q/2Z× N] ,

Sp2(f ) =
µ∑

k=1

αk ∈ N[Q/2Z] .

I The spectrum is an analytic invariant, and the semicontinuity
is analytic. How much of it is purely topological?

http://www.maths.ed.ac.uk/~aar/papers/nemethi5.pdf
http://www.maths.ed.ac.uk/~aar/papers/nemethi5.pdf
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The BNR programme

I Borodzik+Némethi The spectrum of plane curves via knot
theory (2011, to appear in J. LMS) applied the cobordism
theory of links, Murasugi-type inequalities for the
Tristram-Levine signatures to give a topological proof of
the semicontinuity of the mod 2 spectrum of the links of
isolated singularities of f : (C2, 0) → (C, 0).

I BNR (2012) 3 papers in preparation, including the use of
algebraic surgery to prove more general Murasugi-type
inequalities, giving a topological proof for semicontinuity of
the mod 2 spectrum of the links of isolated singularities of
f : (Cn+1, 0) → (C, 0) for all n > 1.

http://www.maths.ed.ac.uk/~aar/papers/boroneme.pdf
http://www.maths.ed.ac.uk/~aar/papers/boroneme.pdf
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Seifert forms

I For any link L2n−1 ⊂ S2n+1 and Seifert surface F 2n ⊂ S2n+1

the intersection form has a Seifert form refinement

S : Hn(F )× Hn(F ) → Z

such that

b(y , z) = S(y , z) + (−1)nS(z , y) ∈ Z .

I Seifert (for n = 1, 1934) and Kervaire (for n > 2, 1965)
defined S geometrically using the linking of n-cycles in
L, L′ ⊂ S2n+1, with L′ a copy of L pushed away.

I In terms of adjoints

b = S + (−1)nS∗ : Hn(F ) → Hn(F ) = Hn(F )
∗ .
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The variation map of a fibred link

I The variation map of a fibred link L2n−1 ⊂ S2n+1 is an
isomorphism

V : Hn(F , ∂F ) → Hn(F )

satisfying the Picard-Lefschetz relation

h − id. = V ◦ b : Hn(F ) → Hn(F ) .

I The Seifert form of a fibred link L2n−1 ⊂ S2n+1 with respect
to the fibre Seifert surface F 2n ⊂ S2n+1 is an isomorphism

S = V−1 ◦ b : Hn(F ) → Hn(F ) ∼= Hn(F )
∗ .
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Hermitian variation structures

I Use the conjugation involution

C → C ; z = x + iy 7→ z̄ = x − iy

to define the dual vector space of a finite-dimensional
complex vector space U

U∗ = HomC(U,C) , (z , f )(y) = f (y)z̄ .

Identify U∗∗ = U using the isomorphism

U → U∗∗ ; y 7→ (f 7→ f (y)) .

I For ϵ = ±1 an ϵ-hermitian variation structure (U; b, h,V )
consists of
1. an isomorphism b : U → U∗ with b(y , z) = ϵb(z , y) ∈ C, so

that (U, b = ϵb∗) is a nonsingular ϵ-hermitian form,
2. an automorphism h : (U, b) → (U, b), with h∗bh = b,
3. an isomorphism V : U∗ → U such that

V ∗ = − ϵV ◦ h∗ , V ◦ b = h − I .
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What does the hermitian variation structure
of an isolated hypersurface singularity tell us?

I Theorem (Némethi, 1995) The mod 2 spectral pairs of an
isolated hypersurface singularity

Spp2(f ) =

µ∑
k=1

(αk ,wk) ∈ N[(Q/2Z)× N]

carry exactly as much information as the real Seifert form

1⊗ S : Hn(F ;R) → Hn(F ;R)∗ = Hn(F , ∂F ;R) .
I 1⊗ S induces a (−1)n-hermitian variation structure over C.
I The mod 2 spectrum Sp2(f ) is determined by the

(−1)n-hermitian variation structure (Hn(F ;C); b, h∗,V )

Sp2(f ) =
∑

α∈(0,2]

s(α)α ∈ N[Q/2Z]

I The multiplicity s(α) is determined by h polarized by b for
λ ̸= 1, and by S for λ = 1, with λ = e2πiα ∈ S1.

http://www.maths.ed.ac.uk/~aar/papers/nemethi5.pdf
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The automorphism multisignature

I The automorphism multisignature (40.16 of
High-dimensional knot theory) of a (−1)n-hermitian variation
structure (U; b, h,V ) is

σAut
∗ (U; b, h,V ) =

∑
β∈(0,1]

t(β)β ∈ Z[Q/Z]

with λ = e2πiβ ∈ S1 the eigenvalues of h on S1 ⊂ C and

t(β) = signature(ker((h − λ id.)∞ : U → U),−inb|) ∈ Z .

I The mod 2 spectrum and the automorphism multisignature
determine each other: the morphism

N[Q/2Z] → Z[Q/Z] ; α 7→ (−1)⌊α⌋β , β = α− ⌊α⌋ .

sends Sp2(f ) to σAut
∗ (Hn(F ;C); b, h∗,V ).

http://www.maths.ed.ac.uk/~aar/books/knot.pdf
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The cobordism of links

I A cobordism of links is a codimension 2 submanifold

(K 2n; L0, L1) ⊂ S2n+1 × ([0, 1]; {0}, {1})

with trivial normal bundle K × D2 ⊂ S2n+1 × [0, 1].

I An h-cobordism of links is a cobordism such that the
inclusions L0, L1 ⊂ K are homotopy equivalences, e.g. if

(K ; L0, L1) ∼= L0 × ([0, 1]; {0}, {1}) .

I The h-cobordism theory of knots was initiated by Milnor (with
Fox) in the 1950’s. In the last 50 years the h-cobordism theory
of knots and links has been much studied by topologists, both
for its own sake and for the applications to singularity theory.
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The cobordism of singularities of links I.

I Suppose that f : (Cn+1, 0) → (C, 0) has only isolated
singularities x1, x2, . . . , xk ∈ X = f −1(0) with ∥xj∥ < 1.
Let Bj ⊂ D2n+2 be small balls around the xj ’s, with links

L(xj) = X ∩ ∂Bj ⊂ ∂Bj
∼= S2n+1 .

I Assume that S = S2n+1 is transverse to X , with
L = X ∩ S ⊂ S the link at infinity.

I Choose disjoint ball B0 ⊂ B, and paths γj inside D2n+2 from
∂B0 to ∂Bj , with neighbourhoods Uj . The union

U = B0 ∪
k∪

j=1

(Bj ∪ Uj)

is diffeomorphic to D2n+2. Will construct cobordism between
the links

L , L =
k⨿

j=1

L(xj) ⊂ ∂U = S ∼= S2n+1 .
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The cobordism of links of singularities II.

X

B1

B2

B3

B0

γ1

γ2

γ3

X

SS
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The cobordism of links of singularities III.

I The 2n-dimensional submanifold

K 2n = X ∩ cl.(D2n+2\
k∪

j=1
Bj)

⊂ cl.(D2n+2\U) ∼= S2n+1 × [0, 1]

defines a cobordism of links

(K ; L, L) ⊂ S2n+1 × ([0, 1]; {0}, {1}) .

I The Milnor fibres F ,F for the links L, L are such that

F ∪L K ∪L F
∼= F ∪L X

′

with X ′ ⊂ D2n the smoothing of X inside D2n+2 such that
X ′ ∩ Bj = F (xj) is a push-in of the Milnor fibre of L(xj), and
F = F (x1) ∪ · · · ∪ F (xk).

I (K ; L, L) is not an h-cobordism of links in general.
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The Tristram-Levine signatures σξ(F )

I Definition (1969) The Tristram-Levine signatures of a link
L2n−1 ⊂ S2n+1 with respect to a Seifert surface F and ξ ∈ S1

σξ(F ) = signature(Hn(F ;C), (1−ξ)S+(−1)n+1(1−ξ̄)S∗) ∈ Z .

I The (−1)n+1-hermitian form related to the complement
cl.(D2n+2\F ′ × D2) of push-in F ′ ⊂ D2n+2.

I Tristram and Levine studied how σξ(F ) behave under
1. change of Seifert surface,
2. change of ξ,
3. the h-cobordism of links.

I Theorem (Levine, 1970) For n > 1 the signatures σξ(F ) ∈ Z
determine the h-cobordism class of a knot S2n−1 ⊂ S2n+1

modulo torsion.
I For the BNR project need to also consider how σξ(F ) behaves

under
4. the cobordism of links.



28

The relation between Sp2(f ) and σξ(F (x))

I Borodzik+Némethi (2010), Hodge-type structures as link
invariants (to appear in Ann. Inst. Fourier).

I Let f : (Cn+1, 0) → (C, 0) have isolated singularity at
x ∈ f −1(0) with link L(x) ⊂ S2n+1 and the mod 2 spectrum
Sp2(f ), where |Sp2(f )| = µ = bn(F (x)).

I If α ∈ [0, 1) is such that ξ = e2πiα is not an eigenvalue of the
monodromy

h∗ : Hn(F (x);C) = Cµ → Hn(F (x);C) = Cµ

then

|Sp2(f ) ∩ (α, α+ 1)| =
(
µ− σξ(F (x))

)
/2 ,

|Sp2(f )\(α, α+ 1)| =
(
µ+ σξ(F (x))

)
/2 .

http://www.maths.ed.ac.uk/~aar/papers/borodzik4.pdf
http://www.maths.ed.ac.uk/~aar/papers/borodzik4.pdf
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Surgery and Morse theory

I Surgery on an m-dimensional manifold F uses an embedding
Sn × Dm−n ⊂ F to construct a new manifold

F ′ = cl.(F\Sn × Dm−n) ∪ Dn+1 × Sm−n−1 .

I The trace of the surgery is the elementary cobordism
(E ;F ,F ′) defined by attaching a (n + 1)-handle

E = F × [0, 1] ∪ Dn+1 × Dm−n .

I Theorem (Thom, Milnor 1960) Every cobordism (E ;F0,F1)
admits a Morse function (E ;F0,F1) → ([0, 1]; {0}, {1}). The
closed manifold F1 is obtained from F0 by a sequence of
surgeries, and (E ;F0,F1) is a union of their traces.
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The effect of surgery on the intersection form

I For a (4k + 1)-dimensional cobordism (E ;F ,F ′) the
intersection form (H2k(F1), b1) is obtained from (H2k(F0), b0)
by adding and subtracting forms of the type

(Z⊕ Z,
(
0 1
1 c

)
)

for c ∈ Z.
I In particular

signature(H2k(F0), b0) = signature(H2k(F1), b1) ∈ Z .
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Relative cobordisms

I An (m + 2)-dimensional relative cobordism

(E ;F0,F1;K ; L0, L1)

is an (m + 2)-dimensional manifold E with boundary

∂E = F0 ∪L0 K ∪L1 F1

with F0,F1,K (m + 1)-dimensional manifolds with boundaries

∂F0 = L0 , ∂F1 = L1 , ∂K = L0 ⊔ L1 .

I Absolute example An absolute cobordism (E ;F0,F1) with
K = L0 = L1 = ∅.

I Singularity example For every cobordism of links

(Km+1; L0, L1) ⊂ Sm+2 × ([0, 1]; {0}, {1})
there exists a relative cobordism of the Seifert surfaces

(Em+2;F0,F1;K ; L0, L1) ⊂ Sm+2 × ([0, 1]; {0}, {1})
of Seifert surfaces.



32

The behaviour of the Tristram-Levine signatures under
relative cobordism

I Conventional surgery and Morse theory used to describe the
behaviour of the signature under cobordism.

I The BNR project requires a further development of surgery
and Morse theory for manifolds with boundary, in order to
describe the behaviour of the Tristram-Levine signatures
under the relative cobordism of Seifert surfaces of links.

I In fact, only the algebraic surgery version is required for the
project.
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Relative Morse theory

I Given an (m + 1)-dimensional manifold with boundary (F , L)
and an embedding

(Dn+1 × Dm−n, Sn × Dm−n) ⊂ (F , L)

define the elementary right product relative cobordism
(E ;F ,F ′;K ; L, L′) by

E = F × [0, 1] , F ′ = cl.(F\Dn+1 × Dm−n) ,

K = L× [0, 1] ∪ Dn+1 × Dm−n ,

L′ = cl.(L\Sn × Dm−n) ∪ Dn+1 × Sm−n−1 .

I Reversing the ends defines an elementary left product
relative cobordism (E ;F ′,F ;K ; L′, L).

I Theorem (BNR, 2012) Every non-empty relative cobordism
(E ;F0,F1;K ; L0, L1) is a union of elementary left and right
product cobordisms.
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The Murasugi-type inequality

I Theorem (BNR, 2012) Suppose given a cobordism of
(2n − 1)-dimensional links

(K ; L0, L1) ⊂ S2n+1 × ([0, 1]; {0}, {1})

and Seifert surfaces F0,F1 ⊂ S2n+1 for L0, L1 ⊂ S2n+1. Then
for any ξ ̸= 1 ∈ S1

|σξ(L0)− σξ(L1)|
6 bn(F0 ∪L0 K ∪L1 F1)− bn(F0)− bn(F1) + n0(ξ) + n1(ξ)

with bn the nth Betti number and

nj(ξ) = nullity((1− ξ)Sj + (−1)n+1(1− ξ̄)S∗
j ) (j = 0, 1) .

I Proved by applying previous Theorem to express the relative
cobordism as a union of elementary right and left product
cobordisms, and working out the effect on σξ.
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The semicontinuity of the mod 2 spectrum

I Theorem (BNR, 2012) Let ft : (Cn+1, 0) → (C, 0) (t ∈ C) be
a family of germs of analytic maps such that x0 ∈ (f0)

−1(0) is
an isolated singularity. For a small ϵ > 0, ∥t∥ > 0 let
x1, x2, . . . , xk ∈ (ft)

−1(0) ∩ Bϵ(0) be all the singularities of ft
in Bϵ(0). Let α ∈ [0, 1] be such that ξ = e2πiα is not an
eigenvalue of the monodromy h0 of x0. Then

|Sp2,0(f0) ∩ (α, α+ 1)| >
k∑

j=1
|Sp2,j(ft) ∩ (α, α+ 1)| ,

|Sp2,0(f0)\[α, α+ 1]| >
k∑

j=1
|Sp2,j(ft)\[α, α+ 1]|

where Sp2,0(f0), Sp2,j(ft) are the mod 2 spectra of x0, xj .
I Proved topologically by applying the Murasugi-type inequality

to the singularity construction of the relative cobordism of

Seifert surfaces between F (x0) and F =
k⨿

j=1
F (xj).


