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Luitzen Egbertus Jan Brouwer, 1881-1966

I The stamp was issued by the Dutch Post Office in 2007 to celebrate
the 100th anniversary of Brouwer’s Ph.D. thesis. You can read the
story of the stamp here.

I The MacTutor entry for Brouwer is here.

I There is a crater on the Moon named after Brouwer.

http://old.lms.ac.uk/newsletter/368/368_02.html
http://www-history.mcs.st-and.ac.uk
http://www-history.mcs.st-and.ac.uk/Biographies/Brouwer.html
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Topology from the differentiable viewpoint

I Brouwer proved the fixed point theorem and defined degree using
simplicial complexes.

I Milnor’s 1965 book is an excellent introduction to both differentiable
and algebraic topology.

I From the introduction:
We present some topics from the beginnings of topology, centering
about L. E. J. Brouwer’s definition, in 1912, of the degree of a mapping.
The methods used, however, are those of differential topology, rather
than the combinatorial methods of Brouwer. The concept of regular
value and the theorem of Sard and Brown, which asserts that every
smooth mapping has regular values, play a central role.

I Will freely use text from the Milnor book!

http://www.maths.ed.ac.uk/~aar/papers/milnortop.pdf
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The Brouwer Fixed Point Theorem

I Theorem Every continuous function g : Dn → Dn has a fixed point,
x ∈ Dn such that g(x) = x .

I Will only give proof for smooth g , although the Milnor book explains
how to extend this case to continuous g .

I Original statement:

Abbildung v~*n Mannigfal~gke'~. 115- 

DaB Transformat ionen-  i m Grades ffir gerades n, und Transfor- 
mationen -t- 1 ~ Grades fiir ungerades n nwht not~endig einen Fixpun_~ 
aufweisen, erhe]l~ am einfachsten aus der Beh~hhmg  der Rotationen un~ 
Spiegelungen eines EuklidJschen ~ + x  um einen festen Pun]~ 

Wit be~rach~en nnnmehr eine eindeutige und st~i~ge Transformation ~: 
eines n-dimensionalen Elementes • in sich. Wlr brmgen E in eine eino 
eindeutige und ste~ige Beziehung zu einer Kugelt~lf+~e H1, welche in einer 
n-dimensionalen Kugel K yon einer (n --1)-  dimensionalen GroBkugel z 
bestimmt wird. Dabei en~spric.h~ der eindeutigen und stetigen Transfor- 
mation yon E in sich eine eindeutige und s~et~ge Transfo~anation ~ yon 
in sich. Erweitern wit nun die Transformation P~ in solcher Weise auf 
die andere H ~ e  ~ yon K, dab je zwei Punk~e yon K, welche die 
Spiegelbilder voneinander in Bezug auf ~ sind, ~'tir ~ in denselben Pnnl~ 
yon ~ transformier~ werden, so lieg~ eine solche eindeutige und stefige 
Transformation yon :K in slch vor, bei welcher die Bildmenge nich~ fiberall 
dicht in K is~, f'dr welche also sicher ein, no~wendig in H 1 liegender, 
Fixpunkt existier~ Diesem Fixpnn]~te mu5 abet ein Fixpunk~ der Trans- 
formation ~ yon ~ in sich entsprechen~ sodaB wit bewiesen haben: 

Satz  4: ~ eindeutige ~ d  sterile Transfar~ion eines 
nalen ~te~ne~tes in sieh besitzt sicher dnen Fixpunkt. 

Am st e r dam ,  Juli 1910. 

I This is the last sentence of Über Abbildung von Mannigfaltigkeiten,
Mathematische Annalen 171, 97-115 (1912)

I The Wikipedia article on the Brouwer fixed point theorem is very
informative!

I The theorem has applications in algebraic topology, differential
equations, functional analysis, game theory, economics, . . .

I There are 139,000 results on Google for “Brouwer fixed point theorem”.

http://www.maths.ed.ac.uk/~aar/papers/brouwer2.pdf
http://en.wikipedia/org/wiki/Brouwer_fixed_point_theorem
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The natural degree

I Let f : M → N be a smooth map of compact n-dimensional manifolds.
If y ∈ N is a regular value of f , the set f −1(y) ⊂ N is a compact
0-dimensional manifold, i.e. a finite set of points, possibly empty.

I Definition The natural degree of f at a regular value y ∈ N is the
natural number of solutions x ∈ M of f (x) = y ∈ N

deg#(f ; y) = |f −1(y)| ∈ N = {0, 1, 2, . . . } .

I Key property The natural degree function

{regular values of f } = N\{critical values of f } → N; y 7→ deg#(f ; y)

is locally constant, meaning that for every regular value y ∈ N there
exists an open subset U ⊆ {regular values of f } with y ∈ U and

deg#(f ; y) = deg#(f ; z) ∈ N for all z ∈ U .

Proof in §1 of the Milnor book.
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The classification of 1-dimensional manifolds

I Theorem A compact 1-dimensional manifold X is a finite disjoint
unions of circles and segments. The boundary ∂X consists of an even
number of points

∂X = {1, 2, . . . , 2k}

with k > 0 the number of segments.

circle

segment

I Proof In the Appendix of the Milnor book.
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The boundary of a manifold is not a smooth retract

I Smooth Non-Retraction Lemma If (X , ∂X ) is a compact manifold
with non-empty boundary, there is no smooth map f : X → ∂X such
that

f (x) = x ∈ ∂X for all x ∈ ∂X .

I Proof (following M. Hirsch). Suppose there were such a map f . Let
y ∈ ∂X be a regular value for f . The inverse image Y = f −1(y) ⊂ X is
a smooth 1-dimensional manifold, with boundary ∂Y = {y} consisting
of the single point, contradicting the classification of 1-dimensional
manifolds.

I

∂X
X

Y
∂0Y ∂1Y ∂Y = ∂0Y ∪ ∂1Y

I There is also a continuous version, but rather harder to prove.
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Sn−1 is not a smooth retract of Dn.
{0} is a smooth retract of R+.

I Smooth Non-Retraction for (Dn, Sn−1). The application of the
Smooth Non-Retraction Lemma to the smooth compact n-dimensional
manifold with non-empty boundary

(X , ∂X ) = (Dn, Sn−1)

gives that the identity map I : Sn−1 → Sn−1 cannot be extended to a
smooth map Dn → Sn−1.

I In fact, there is no extension of I : Sn−1 → Sn−1 to a continuous map
Dn → Sn−1, but this is harder to prove.

I Continuous Non-Retraction for (D1, S0) is equivalent to D1 being
connected.

I {0} is a smooth retract of R+. The Smooth Non-Retraction Lemma
is false for non-compact (X , ∂X ), e.g. for

(X , ∂X ) = (R+, {0}) , with f : R+ = [0,∞)→ {0}; x 7→ 0 .
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The smooth Brouwer Fixed Point Theorem

I Theorem Every smooth map g : Dn → Dn has a fixed point.

I Proof Suppose g has no fixed point. For x ∈ Dn, let f (x) ∈ Sn−1 be
the point nearer x than g(x) on the line through x and g(x), as in the
figure

Brouwer fixed point theorem 15 

x g(x) 

Figure 4 

of Dn into points outside of Dn. To correct this we set 

P(x) = P, (x)/(l + €) . 

Then clearlyP maps Dn into Dn and I IP (x) - G(x)11 < 2€for x r Dn. 
Suppose that G(x) ,t: x for all x r Dn. Then the continuous function 

I IG(x) - xii must take on a minimum j.L > 0 on Dn. Choosing P : Dn ---'> Dn 
as above, with I IP (x) - G(x)11 < j.L for all x, we clearly have P (x) ,t: x.  
Thus P is a smooth map from Dn to itself without a fixed point . This 
contradicts Lemma 6, and completes the proof . 

The procedure employed here can frequently be applied in more 
general situations : to prove a proposition about continuous mappings, 
we first establish the result for smooth mappings and then try to use an 
approximation theorem to pass to the continuous case . (Compare §8, 
Problem 4 . )  

I Then f : Dn → Sn−1 is a smooth map with f (x) = x for x ∈ Sn−1 is
impossible by the Non-Retraction Lemma.
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Smooth homotopy

I Given X ⊂ Rk let

X × [0, 1] = {(x , t) ∈ Rk+1 | x ∈ X , 0 6 t 6 1} ⊂ Rk+1 .

I Two mappings f , g : X → Y are called smoothly homotopic
(abbreviated f ' g) if there exists a smooth map

F : X × [0, 1]→ Y

such that

F (x , 0) = f (x) , F (x , 1) = g(x) ∈ Y (x ∈ X ) .

I Smooth homotopy is an equivalence relation: see §4 of the Milnor book
for proof.
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The mod 2 degree is a smooth homotopy invariant

I A manifold is closed if it is compact and has empty boundary.

I Consider a smooth map f : Mn → Nn of closed n-dimensional
manifolds. If y ∈ N is a regular value and N is connected, we will prove
that the residue class modulo 2 of the natural degree

deg#(f ; y) = |{x ∈ M | f (x) = y}| ∈ Z2 = {0, 1}

only depends on the smooth homotopy class of f .

I In particular, the mod 2 degree does not depend on the choice of the
regular value y .
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The natural degree is a homotopy invariant mod 2

I Homotopy Lemma Let f , g : M → N be smoothly homotopic maps
between n-dimensional manifolds, with M closed. If y ∈ N is a regular
value for both f and g then

deg#(f ; y) ≡ deg#(g ; y) (mod2) .

I Proof Let F : M × [0, 1]→ N be a smooth homotopy. First suppose
that y is also a regular value of F . Then X = F−1(y) is a compact
1-manifold with boundary ∂X = f −1(y)× {0} ∪ g−1(y)× {1}

22 §4 . Degree modulo 2 

is a compact I-manifold, with boundary equal to 

rl(y) n (NI X 0 U M X 1) = rl(y) X 0 U g-I(y) X 1. 

Thus the total number of boundary points of rl(y) is equal to 

#rl(y) + #g-I(y). 

But we recall from §2 that a compact I-manifold always has an even 
number of boundary points . Thus #r\y) + #g-I(y) is even, and 
therefore 

(� 
MxO Mxl 

Figure 6. The number of boundary points on the left is congruent to the number on the 
right modulo 2 

Now suppose that y is not a regular value of F. Recall (from §I) 
that #rl(y') and #g-l(y') are locally constant functions of y' (as long 
as we stay away from critical values) . Thus there is a neighborhood 
VI C N of y, consisting of regular values of f, so that 

for all y' {: VI ; and there is an analogous neighborhood V2 C N so that 

for all y' {: V2• Choose a regular value z of F within VI n V2• Then 

which completes the proof. 
We will also need the following : 

Homogeneity Lemma. Let y and z be a rbit rary int erior points of the 
smooth, connected manifold N. Then there exist s a diffeomorphism h: N ----> N 
t hat is smoo th ly isot opic to the identity and carries y into z. 

I The total number of points in ∂X is deg#(f ; y) + deg#(g ; y), which is
even by the classification of 1-dimensional manifolds.

I See §4 of the Milnor book for proof in the case when y is not regular.
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Smooth isotopy and the Homogeneity Lemma

I Diffeomorphisms f , g : X → Y are smoothly isotopic if there exists a
smooth homotopy F : f ' g such that for each t ∈ [0, 1] the smooth
map

F (−, t) : X → Y ; x 7→ F (x , t)

is a diffeomorphism.

I Homogeneity Lemma Let y and z be arbitrary interior points of the
smooth, connected manifold N. Then there exists a diffeomorphism
h : N → N that is smoothly isotopic to the identity and such that
h(y) = z .

I Proof for N = Sn Choose h to be the rotation which carries y into z
and leaves fixed all vectors orthogonal to the plane through y and z .

I See §4 of the Milnor book for the proof in the general case.
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The mod 2 degree is independent of y

I Proposition Let f : Mn → Nn be a smooth map of n-dimensional
manifolds with M closed and N connected. If y , z ∈ N are regular
values of f then

deg#(f ; y) ≡ deg#(f ; z) (mod 2) .

I Proof Given regular values y and z , let h be a diffeomorphism from N
to N which is isotopic to the identity and which carries y to z . Then z
is a regular value of the composition h ◦ f . Since h ◦ f is homotopic to
f , the Homotopy Lemma asserts that

deg#(h ◦ f ; z) = deg#(f ; z) (mod 2) .

But
(h ◦ f )−1(z) = f −1 ◦ h−1(z) = f −1(y) ,

so that deg#(h ◦ f ; z) = deg#(f ; y) and

deg#(f ; y) = deg#(f ; z) (mod 2) .
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The mod 2 degree is a homotopy invariant

I Definition The mod 2 degree of a smooth map f : Mn → Nn is

deg2(f ) = [deg#(f ; y)] ∈ Z2

for any regular value y ∈ N of f .

I Theorem The mod 2 degree of a smooth map of closed manifolds
f : Mn → Nn with N connected is a homotopy invariant.

I Proof Suppose that f is smoothly homotopic to g . By Sard’s theorem,
the regular values of f and g are both dense in N, so there exists an
element y ∈ N which is a regular value for both f and g . The
congruence

deg2(f ) ≡ deg#(f ; y) ≡ deg#(g ; y) ≡ deg2(g) (mod 2)

now shows that deg2f is a smooth homotopy invariant, and completes
the proof.
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An application of the homotopy invariance of the mod 2 degree

I Example A constant map c : M → M has even mod 2 degree. The
identity map I : M → M has odd degree. Hence the identity map of a
closed manifold M is not homotopic to a constant map.

I Non-retraction of Sn−1 ⊂ Dn (again) For M = Sn−1 this result
implies the assertion that no smooth map f : Dn → Sn−1 such that

f (x) = x for all x ∈ Sn−1 .

Such a map f would give rise to a smooth homotopy

F : Sn−1 × [0, 1]→ Sn−1 ; (x , t) 7→ f (tx)

between a constant map and the identity.
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Oriented vector spaces

I In order to define the degree as an integer (rather than an integer
modulo 2) we must introduce orientations, first for vector spaces and
then for manifolds.

I Definition An orientation for a finite dimensional real vector space is
an equivalence class of ordered bases as follows : the ordered basis
(b1, . . . , bn) determines the same orientation as the basis (b′1, . . . , b

′
n) if

b′i =
∑
j

aijbj with det(aij) > 0 .

It determines the opposite orientation if det(aij) < 0. Thus each
positive dimensional vector space has precisely two orientations.

I The vector space Rn has a standard orientation corresponding to the
basis

(1, 0, . . . , 0) , (0, 1, 0, . . . ., 0) , . . . , (0, . . . , 0, 1) .

I In the case of the zero dimensional vector space it is convenient to
define an ”orientation” as the symbol + 1 or −1.
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Oriented manifolds I.

I Definition An oriented smooth manifold consists of an
m-dimensional manifold M together with a choice of orientation for
each tangent space TMx (x ∈ M). If m > 1 these are required to fit
together as follows :

I For each point in M there should exist a neighborhood U ⊂ M and a
diffeomorphism h mapping U onto an open subset of Rm or Hm (closed
upper half-space) which is orientation preserving, in the sense that for
each x ∈ U the isomorphism dhx carries the specified orientation for
TMx into the standard orientation for Rm.

I If M is connected and orientable, then it has precisely two orientations.
I If M has a boundary, we can distinguish three kinds of vectors in the

tangent space TMx at a boundary point :
I (i) there are the vectors tangent to the boundary, forming an (m − 1)

dimensional subspace T (∂M)x ⊂ TMx ,
I (ii) there are the ”outward” vectors, forming an open half space bounded

by T (∂M)x
I (iii) there are the ”inward” vectors forming a complementary half space.
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Oriented manifolds II.

I Each orientation for M determines an orientation for ∂M as follows :

I For x ∈ ∂M choose a positively oriented basis (v1, v2, . . . , vm) for TMx

in such a way that v2, . . . , vm are tangent to the boundary (assuming
that m > 2) and that v1 is an ”outward” vector.

I Then (v2, . . . , vm) determines the required orientation for ∂M at x .

I If the dimension of M is 1, then each boundary point x is assigned the
orientation −1 or +1 according as a positively oriented vector at x
points inward or outward .

I Example The unit sphere Sm−1 ⊂ Rm can be oriented as the boundary
of the disk Dm.
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The degree at a regular value

I Now let M and N be closed oriented n-dimensional manifolds and let
f : M → N be a smooth map.

I Definition Let x ∈ M be a regular point of f , so dfx : TMx → TNf (x)

is a linear isomorphism between oriented vector spaces. The sign of dfx
is +1 or −1 according as dfx preserves or reverses orientation.

I Definition The degree of f at a regular value y ∈ N is

deg(f ; y) =
∑

x∈f −1(y)

sign dfx ∈ Z .

I Related to natural degree by

−deg#(f ; y) 6 deg(f ; y) 6 deg#(f ; y) .

I The degree function

{regular values of f } = N\{critical values of f } → Z; y 7→ deg(f ; y)

is locally constant, defined on a dense open subset of N.
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The Brouwer degree of a smooth map f : Mn → Nn

I Theorem A. For a smooth map f : Mn → Nn of closed manifolds with
N connected, the integer deg(f ; y) ∈ Z does not depend on the choice
of regular value y ∈ N.

I Definition The degree of f is

deg(f ) = deg(f ; y) ∈ Z for any regular y ∈ N .

I Theorem B. If f is smoothly homotopic to g , then

deg(f ) = deg(g) ∈ Z .

I The proofs of theorems A and B are essentially the same as the proofs
of the corresponding results for the natural degree. It is only necessary
to keep careful control of orientations and the signs.

I Composition property The composite of smooth maps f : Mn → Nn,
g : Mn → Pn is a smooth map g ◦ f : M → P with

deg(g ◦ f ) = deg(f )deg(g) ∈ Z .

I If either M or N is given the opposite orientation deg(f ) changes sign.
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The degree of a map f : S1 → S1

I Example For n ∈ Z the loop going around S1 ⊂ C n times

fn : S1 → S1 ; z 7→ zn .

has deg(fn; y) = n for each y ∈ S1, since y has n distinct nth roots
z ∈ S1

zn = y .

and fn is orientation-preserving if and only if n > 1.
I Every map f : S1 → S1 is homotopic to fn for a unique n ∈ Z, and the

degree function is an isomorphism

degree : π1(S1) = [S1,S1]
∼= // Z ; [f ] = [fn] 7→ n .

I By Cauchy’s theorem, for analytic f : S1 → S1

deg(f ) =
1

2πi

ffi
dz

z
∈ Z .
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Varying degrees

I Proposition 1 An orientation-reversing diffeomorphism of a closed
manifold is not smoothly homotopic to the identity.

I Proof A diffeomorphism f : M → N has

deg(f ) =

{
+1 if f is orientation-preserving

−1 if f is orientation-reversing .

I Proposition 2 The reflection

ri : Sn → Sn ; (x1, . . . , xn+1) 7→ (x1, . . . ,−xi , . . . , xn+1)

is an orientation-reversing diffeomorphism, with degree

deg(ri ) = − 1 ∈ Z .
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Varying degrees II.

I Proposition 3 The antipodal map

a : Sn → Sn ; x = (x1, . . . , xn+1) 7→ −x = (−x1, . . . ,−xn+1) .

has degree
deg(a) = (−1)n+1 ∈ Z .

I Proof Apply the logarithmic property to

a = r1 ◦ r2 · · · ◦ rn+1 : Sn → Sn .

I Proposition 4 If n is even a is not smoothly homotopic to the identity.

I Proof By
deg(a) = − 1 6= deg(I ) = 1 ∈ Z .

(Not detected by mod 2 degree).
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Vector fields I.

I As an application of the degree, following Brouwer, we show that Sn

admits a smooth field of nonzero tangent vectors if and only if n is odd.

I A nonzero vector field on S1

30 §5 . Oriented manifolds 

has degree zero. A diffeomorphism f : M ---7 N has degree + 1 or -1 
according as f preserves or reverses orientation. Thus an orienta tion 
reversing d�fJeomorphism of a compact boundary less manifold is not 
smoothly homotopic to the identity .  

One example of an orientation reversing diffeomorphism is provided 
by the reflection r i : sn ---7 sn, where 

The antipodal map of sn has degree (-If+'' as we can see by noting 
that the antipodal map is the composition of n + 1 reflections : 

Thus if n is even, the antipoda l  map of sn is not smoothly homotopic to 
the identity, a fact not detected by the degree modulo 2 .  

A s  an application, following Brouwer, w e  show that sn admits a 
smooth field of nonzero tangent vectors if and only if n is odd. (Compare 
Figures 10 and 11.) 

o 
Figure 10 (above). A nonzero vector field on the I-sphere 

Figure 11 (below). Attempts for n = 2 

DEFIN ITION.  A smooth tangent vector field on M C Rk is a smooth 
map v : M ---7 Rk such that v (x) 1: TMx for each x 1: M. In the case of 
the sphere sn C Rn+1 this is clearly equivalent to the condition 

1) v(x) · x  = 0 for all x 1: W, 

I Attempts for S2

30 §5 . Oriented manifolds 

has degree zero. A diffeomorphism f : M ---7 N has degree + 1 or -1 
according as f preserves or reverses orientation. Thus an orienta tion 
reversing d�fJeomorphism of a compact boundary less manifold is not 
smoothly homotopic to the identity .  

One example of an orientation reversing diffeomorphism is provided 
by the reflection r i : sn ---7 sn, where 

The antipodal map of sn has degree (-If+'' as we can see by noting 
that the antipodal map is the composition of n + 1 reflections : 

Thus if n is even, the antipoda l  map of sn is not smoothly homotopic to 
the identity, a fact not detected by the degree modulo 2 .  

A s  an application, following Brouwer, w e  show that sn admits a 
smooth field of nonzero tangent vectors if and only if n is odd. (Compare 
Figures 10 and 11.) 

o 
Figure 10 (above). A nonzero vector field on the I-sphere 

Figure 11 (below). Attempts for n = 2 

DEFIN ITION.  A smooth tangent vector field on M C Rk is a smooth 
map v : M ---7 Rk such that v (x) 1: TMx for each x 1: M. In the case of 
the sphere sn C Rn+1 this is clearly equivalent to the condition 

1) v(x) · x  = 0 for all x 1: W, 
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Vector fields II.

I Definition A smooth tangent vector field on a manifold M ⊂ Rk is
a smooth map v : M → Rk such that v(x) ∈ TMx for each x ∈ M.

I In the case of the sphere M = Sn ⊂ Rn+1 this is equivalent to the dot
product condition

v(x) • x = 0 ∈ R for all x ∈ Sn .

If v(x) 6= 0 for all x ∈ Sn the map

v : Sn → Sn ; x 7→ v(x)

‖v(x)‖

is smooth. Now define a smooth homotopy

F : Sn × [0, π]→ Sn ; (x , θ) 7→ x cos θ + v(x) sin θ .



27

Vector fields III.

I Computation shows that

F (x , θ) • F (x , θ) = 1 ,

F (x , 0) = x , F (x , 1) = − x .

Thus the antipodal map a : Sn → Sn is homotopic to the identity. But
for n even we have seen that this is impossible.

I On the other hand, if n = 2k − 1, the explicit formula

v : S2k−1 → S2k−1; (x1, . . . , x2k) 7→ (x2,−x1, . . . , x2k ,−x2k−1)

defines a non-zero tangent vector field on S2k−1.

I The antipodal map a : S2k−1 → S2k−1 is homotopic to the identity.
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The Hairy Ball Theorem

I Hairy Ball Theorem Every vector field v : S2 → R3 has at least one
zero.

I Proof There is no non-zero vector field on S2.
I Comment A manifold M admits a non-zero vector field (i.e. can be

combed) if and only if the Euler characteristic χ(M) ∈ Z is 0. Since
χ(Sn) = 1 + (−1)n can comb S2k−1 and cannot comb S2k . The torus
T 2 = S1 × S1 has χ(T 2) = 0, so can be combed.

I A hairy torus:

http://en.wikipedia.org/wiki/Hairy_ball_theorem
http://en.wikipedia.org/wiki/Euler_characteristic


29

The Brouwer degree of a smooth map f : Mn → Nn

I Theorems A and B imply that for closed oriented n-dimensional
manifolds M,N the function

degree : [M,N]→ Z ; [f ] 7→ deg(f )

is well-defined.

I The function is an isomorphism of abelian groups for N = Sn

(Hopf-Whitney theorem).

I Example For M = N = Sn degree defines an isomorphism

deg : πn(Sn) = [Sn,Sn]→ Z ; [f ] 7→ deg(f ) .

I Proofs in §7 of the Milnor book.
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The Brouwer third degree

I Brouwer officiating at a Ph.D. examination in Amsterdam in 1960
904 THE RESTLESS EMERITUS

Brouwer taking part in the examination at the Ph.D. ceremony of Jan Hilgevoort
(1960). (Courtesy Jan Hilgevoort).

that the affection was mutual, this was a case of two strong characters, who met in a
mixture of love and cherishment. Both were undoubtedly serious about their affec-
tions; there is a large number of letters and jottings, probably given to Emily by
Cor Jongejan after Brouwer’s death, and they show a picture of sincere interest and
affection. Emily travelled all over the world for her research, there are letters from
Lyons, Venice, Oxford, Stanford, . . . . In Oxford she met the ladies Deneke, who
were descendents of Maurice Philip Deneke, a musicologist, who left money for a
series of lectures, called the Deneke lectures. Staying with Margaret Deneke, she
found out that Brouwer had in 1949 given a lecture in the series, with the title: ‘The
influence of mathematics on logic’. A lecture that was not only appreciated by the
ladies Deneke, but also by the scholarly community. Emily wrote that she had been
in Lady Margaret Hall (in Oxford), where she was told of the impression Brouwer
made, ‘all the mathematicians’ faces in the audience lighted up, because they got
something worth their while.’67 Suddenly, in the middle of the correspondence,
there is a letter from Brouwer, mentioning an infarct, ‘My infarct a few times very
dangerous but already the awareness of a wide variety of indispensability keeps me
alive.’68

In 1966 Emily visited the United States for a lecture tour, combined with nego-
tiations with various publishers concerning her new book. The tour, from May till

67Haspels to Brouwer 25.VI.1964.
68Brouwer to Haspels 30.VIII.1965.

I Photo from Volume 2 of the biography Mystic, Geometer, and
Intuitionist: The Life of L.E.J. Brouwer by Dirk van Dalen, Oxford
University Press (Vol.1, 1999, Vol.2, 2005)

http://www.amazon.co.uk/exec/obidos/ASIN/0198516207/qid=1137318258/sr=8-1/ref=sr_8_xs_ap_i1_xgl/203-2080651-4876743
http://www.amazon.co.uk/Mystic-Geometer-Intuitionist-Brouwer-Revolution/dp/0198502974/ref=sr_1_1?ie=UTF8&s=books&qid=1297339646&sr=8-1
http://www.amazon.co.uk/Mystic-Geometer-Intuitionist-Brouwer-Revolution/dp/0198502974/ref=sr_1_1?ie=UTF8&s=books&qid=1297339646&sr=8-1
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And now for something completely different . . .

I The supporters of a Dutch Ph.D. candidate are called paranymphs.
In the Netherlands a pair of paranymphs (paranimfen) are present at
the doctoral thesis defence. This ritual originates from the ancient
concept where obtaining a doctorate was seen as a de facto marriage to
the university. Furthermore the paranymphs would also act as a
physical shield in case the debate became too heated, or as a backup
for the doctoral candidate to ask for advice when answering questions.
Today their role is symbolic and seen as a position of honor similar to a
best man at a wedding.

I 50 years on, Dutch Ph.D. defenses have become somewhat less formal,
and the paranymphs can be nymphs. Here is a YouTube film of a 2010
Amsterdam Ph.D. thesis defence of Roland van der Veen on knot
theory.

http://en.wikipedia.org/wiki/Paranymph
http://www.youtube.com/watch_popup?v=Q6zxKBUI3wY&vq=medium

