SURGERY THEORY

ANDREW RANICKI (Edinburgh)

http://www.maths.ed.ac.uk/~aar

- Surgery on compact manifolds
 C.T.C. Wall, Academic Press, 1970, A.M.S. 1999
- Surgery on simply-connected manifolds
 W. Browder, Springer, 1972
- Characteristic classes
 - J. Milnor and J. Stasheff, Princeton, 1976
- Algebraic and geometric surgery A.R., Oxford, 2002
- Surgery for amateurs
 A.R. and J.Roe, to appear

Time scale

1885 Classification of surfaces, n = 21905 *n*-manifolds, duality (Poincaré) 1925 Morse theory 1940 Embeddings (Whitney) 1950 Transversality, cobordism (Thom) 1954 Signature theorem (Hirzebruch) 1956 Exotic spheres (Milnor) 1962 *h*-cobordism theorem for $n \ge 5$ (Smale) 1962–1970 Browder-Novikov-Sullivan-Wall surgery theory for $n \ge 5$ 1965 Topological invariance of rational Pontrjagin classes (Novikov) 1970 Kirby-Siebenmann topological manifold surgery theory for $n \ge 5$ 1970- Applications of surgery theory to *n*-manifold classifications for $n \ge 5$ 1980– Surgery theory for n = 3, 4: under construction

Manifolds and homotopy theory

• <u>Surgery theory</u> considers the following questions:

When is a space homotopy equivalent to a manifold?

When is a homotopy equivalence of manifolds homotopic to a diffeomorphism?

- Initially developed for differentiable manifolds, the theory also has PL (= piecewise linear) and topological versions.
- Surgery theory works best for $n \ge 5$, when "topology = algebra".

Much harder for n = 3, 4.

Much easier for n = 0, 1, 2.

Some results of surgery theory, and two conjectures

• (Milnor, 1956) S^7 has 28 differentiable structures.

• (Kervaire, 1960) There exists a topological 10-manifold without a differentiable structure.

• (Novikov, 1962) For $n \ge 5$ a topological *n*manifold *M* which is simply-connected ($\pi_1(M) = \{1\}$) has only a finite number of differentiable structures.

• Borel Rigidity Conjecture (1950's) Any homotopy equivalence $M' \simeq M$ of *n*-manifolds with $\pi_i(M) = 0$ for $i \ge 2$ is homotopic to a homeomorphism.

• <u>Novikov conjecture</u> (1969) Homotopy invariance of the higher signatures.

Surgery

• Given a differentiable *n*-manifold M^n and an embedding $S^i \times D^{n-i} \subset M$ $(-1 \leq i \leq n)$ define the *n*-manifold

 $M' = (M - S^i \times D^{n-i}) \cup D^{i+1} \times S^{n-i-1}$

obtained from M by surgery.

- Example Let K, L be disjoint *n*-manifolds, and let $D^n \subset K$, $D^n \subset L$. The effect of surgery on $S^0 \times D^n \subset M = K \sqcup L$ is the <u>connected sum</u> *n*-manifold M' = K # Ldefined by $K \# L = (K - D^n) \cup [0, 1] \times S^{n-1} \cup (L - D^n)$
- Given that surgery is such a drastic topological operation (e.g. effect on connectivity), it is surprising that it can be used to distinguish manifold structures within a homotopy type.

Attaching handles

• Let L be an (n + 1)-manifold with boundary ∂L . Given an embedding

 $S^i \times D^{n-i} \subset \partial L$

define the (n + 1)-manifold

$$L' = L \cup_{S^i \times D^{n-i}} h^{i+1}$$

obtained from L by <u>attaching an</u> (i+1)-handle

$$h^{i+1} = D^{i+1} \times D^{n-i}$$

- <u>Proposition</u> The boundary $\partial L'$ is obtained from ∂L by surgery on $S^i \times D^{n-i} \subset \partial L$.
- Proposition There is a homotopy equivalence $L' \simeq L \cup_{S^i} D^{i+1}$, i.e. the homotopy theoretic effect of attaching an (i + 1)-handle is to attach an (i + 1)-cell.

The trace

The <u>trace</u> of the surgery on Sⁱ × Dⁿ⁻ⁱ ⊂ Mⁿ is the elementary (n + 1)-dimensional cobordism (W; M, M') obtained from M × [0, 1] by attaching an (i + 1)-handle

$$W = (M \times [0, 1]) \cup_{S^{i} \times D^{n-i} \times \{1\}} h^{i+1}$$

- <u>Proposition</u> The trace cobordism admits a Morse function $(W; M, M') \rightarrow ([0, 1]; \{0\}, \{1\})$ with a single critical value of index i + 1.
- <u>Proposition</u> If an (n+1)-dimensional cobordism (W; M, M') admits a Morse function $(W; M, M') \rightarrow ([0, 1]; \{0\}, \{1\})$ with a single critical value of index i+1 then (W; M, M') is the trace of a surgery on an embedding $S^i \times D^{n-i} \subset M$.

Handle decomposition

• A handle decomposition of an (n+1)-dimensional cobordism (W; M, M') is an expression as a union of elementary cobordisms

(W; M, M') =

 $(W_0; M, M_1) \cup (W_1; M_1, M_2) \cup \dots \cup (W_k; M_k, M')$ such that

 $W_r = (M_r \times [0,1]) \cup h^{i_r+1}$ is the trace of a surgery on $S^{i_r} \times D^{n-i_r} \subset M_r$ with $-1 \leq i_0 \leq i_1 \leq \cdots \leq i_k \leq n$. Note that M or M' (or both) could be empty.

• Handle decompositions non-unique, e.g. handle cancellation

$$W \cup h^{i+1} \cup h^{i+2} = W$$

if one-point intersection

$$(\{0\} \times S^{m-i-1}) \cap (S^{i+1} \times \{0\}) = \{*\} \subset \partial (W \cup h^{i+1})$$

The standard handle decomposition of the 2-torus

Cobordism = sequence of surgeries

• <u>Theorem</u> (Thom, Milnor) Every (n + 1)dimensional cobordism (W; M, M') admits a handle decomposition,

$$W = (M \times [0, 1]) \cup \bigcup_{j=0}^{k} h^{i_j+1}$$

with $-1 \leq i_0 \leq i_1 \leq \cdots \leq i_k \leq n$.

• <u>Proof</u> For any cobordism (W; M, M') there exists a Morse function

 $(W; M, M') \rightarrow ([0, 1]; \{0\}, \{1\})$

with critical values $c_0 < c_1 < \cdots < c_k$ in (0,1): there is one (i + 1)-handle for each critical point of index i + 1.

• Corollary Manifolds M, M' are cobordant if and only if M' can be obtained from M by a sequence of surgeries.

Poincaré duality

• <u>Theorem</u> For any oriented (n+1)-dimensional cobordism (W; M, M') cap product with the fundamental class $[W] \in H_{n+1}(W, M \cup -M')$ is a chain equivalence

 $[W] \cap - : C(W, M)^{n+1-*} \cong C(W, M')$ inducing isomorphisms

$$H^{n+1-*}(W,M) \xrightarrow{\cong} H_*(W,M')$$

• <u>Proof</u> Compare the handle decompositions given by any Morse function

 $f: (W; M, M') \to ([0, 1]; \{0\}, \{1\})$

and the dual Morse function

$$1 - f: (W; M', M) \to ([0, 1]; \{0\}, \{1\})$$

• For $M = M' = \emptyset$ have $H^{n+1-*}(W) \cong H_*(W)$

The algebraic effect of a surgery

• Proposition If (W; M, M') is the trace of a surgery on $S^i \times D^{n-i} \subset M$ there are homotopy equivalences

 $M \cup D^{i+1} \simeq W \simeq M' \cup D^{n-i}$.

Thus M' is obtained from M by first attaching an (i + 1)-cell and then detaching an (n - i)-cell, to restore Poincaré duality.

• Corollary The cellular chain complex C(M') is such that $C(M')_r =$

 $\begin{cases} C(M)_r \oplus \mathbb{Z} & \text{for } r = i+1, n-i-1 \text{ distinct }, \\ C(M)_r \oplus \mathbb{Z} \oplus \mathbb{Z} & \text{for } r = i+1 = n-i-1 \\ C(M)_r & \text{otherwise} \end{cases}$

with differentials determined by the *i*-cycle $[S^i] \in C(M)_i = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, C(M)_i)$ and the Poincaré dual (n-i)-cocycle $[S^i]^* \in C(M)^{n-i} = \operatorname{Hom}_{\mathbb{Z}}(C(M)_{n-i}, \mathbb{Z}).$

Change of framing example

• There are two ways of extending $S^0 \subset S^1$ to an embedding $S^0 \times D^1 \subset S^1$, i.e. of trivializing the normal bundle $\nu_{S^0 \subset S^1}$, with correspondingly different surgeries.

Vector bundles over spheres I.

• O(k) = space of orthogonal $k \times k$ matrices. Every map $\omega : S^i \to O(k)$ is the clutching function of a k-plane bundle over S^{i+1}

$$\mathbb{R}^{k} \to E(\omega) = (D^{i+1} \times \mathbb{R}^{k}) \cup_{\omega} (D^{i+1} \times \mathbb{R}^{k})$$
$$\to S^{i+1} = D^{i+1} \cup_{S^{i}} D^{i+1}.$$

Classification The function

$$\pi_i(O(k)) \to \operatorname{Vect}_k(S^{i+1}); \omega \mapsto E(\omega)$$

is a bijection. Oriented version

$$\pi_i(SO(k)) = SVect_k(S^{i+1})$$
.

 For any k-plane bundle ℝ^k → E(η) → X it may be assumed that the transition functions are orthogonal, so that there is defined a fibre bundle

$$(D^k, S^{k-1}) \to (D(\eta), S(\eta)) \to X$$
.

14

Vector bundles over spheres II.

• For any
$$\omega : S^i \to O(n-i)$$
 surgery on
 $M^n = \partial (D^{i+1} \times D^{n-i}) = S^n$
using the embedding
 $S^i \times D^{n-i} \hookrightarrow M = S^i \times D^{n-i} \cup D^{i+1} \times S^{n-i-1};$
 $(x, y) \mapsto (x, \omega(x)(y)).$
results in the $(n - i - 1)$ -sphere bundle
 $M' = S(\omega)^n = D^{i+1} \times S^{n-i-1} \cup_{\omega} D^{i+1} \times S^{n-i-1}$
of the $(n - i)$ -plane bundle
 $\mathbb{R}^{n-i} \to E(\omega) \to S^{i+1} = D^{i+1} \cup_{S^i} D^{i+1}$
with clutching function ω .

• The trace of the surgery is $(W; M, M') = (cl.(D(\omega) - D^{n+1}); S^n, S(\omega))$ with $D(\omega)^{n+1}$ the (n - i)-disk bundle.

Classification of vector bundles

• Grassmann manifold $G_k(\mathbb{R}^n)$ of k-dimensional subspaces $V \subseteq \mathbb{R}^n$. Canonical k-plane bundle $\gamma_{k,n}$ over $G_k(\mathbb{R}^n)$ has total space

 $E(\gamma_{k,n}) = \{(V,x) | V \subseteq \mathbb{R}^n, x \in V\} .$ Universal *k*-plane bundle $\gamma_k = \varinjlim_n \gamma_{k,n}$ over $BO(k) = \varinjlim_n G_k(\mathbb{R}^n).$

- <u>Classification</u> Bijection $[X, BO(k)] \xrightarrow{\cong} \operatorname{Vect}_k(X); f \mapsto f^* \gamma_k .$
- $H^*(BO(k); \mathbb{Q}) = \mathbb{Q}[p_1, p_2, ..., p_{|k/2|}]$ with

 $p_i = (-)^i c_{2i}(\mathbb{C} \otimes \gamma_k) \in H^{4i}(BO(k))$ the universal Pontrjagin classes. Oriented case: $[X, BSO(k)] \cong SVect_k(X)$. Euler class $e \in H^{2k}(BSO(2k))$.

Transversality

• The Thom space of a k-plane bundle

$$\eta : \mathbb{R}^k \to E(\eta) \to X$$
 is
 $T(\eta) = D(\eta)/S(\eta)$
(= the 1-point compactification of $E(\eta)$ for
compact X). For oriented η have Thom
isomorphism $\widetilde{H}_*(T(\eta)) \cong H_{*-k}(X)$.

• A map $g: L^{n+k} \to T(\eta)$ from an (n+k)manifold is <u>transverse</u> at the zero-section $X \subset T(\eta)$ if the inverse image

$$M^n = g^{-1}(X) \subset L$$

is a codimension k submanifold with normal k-plane bundle $\nu_{M \subset L} = f^* \eta$ the pullback of η along $f = g | : L \to X$, with bundle map $b : \nu_{M \subset L} \to \eta$.

• <u>Theorem</u> (Sard-Thom) Every map $g: L^{n+k} \to T(\eta)$ is homotopic to one which is transverse at $X \subset T(\eta)$.

Cobordism I.

- <u>Theorem</u> (Pontrjagin-Thom) For any k-plane bundle $\mathbb{R}^k \to E(\eta) \to X$ the homotopy group $\pi_{n+k}(T(\eta))$ is isomorphic to the bordism group $\Omega_n(X,\eta)$ of n-dimensional submanifolds $M^n \subset S^{n+k}$ with a bundle map $(f: M \to X, b: \nu_{M \subset S^{n+k}} \to \eta).$
- <u>Proof</u> Define an isomorphism

$$\pi_{n+k}(T(\eta)) \xrightarrow{\cong} \Omega_n(X,\eta);$$

$$(g: S^{n+k} \to T(\eta)) \mapsto (g|: M^n = g^{-1}(X) \to X)$$
taking g to be transverse at $X \subset T(\eta).$

• Let $MSO(k) = T(\gamma_k)$ be the Thom space of universal oriented k-plane bundle γ_k over BSO(k). Oriented cobordism = stable homotopy of the Thom spectrum:

$$\Omega_n = \varinjlim_k \pi_{n+k}(MSO(k)) .$$

Cobordism II.

• Framed cobordism $\Omega_n^{fr} =$ cobordism ring of closed framed *n*-manifolds. Pontrjagin-Thom isomorphism

$$\Omega_n^{fr} \cong \lim_k \pi_{n+k}(S^k) = \pi_n^S.$$

• <u>Oriented cobordism</u> $\Omega_n =$ cobordism ring of closed oriented *n*-manifolds. Pontrjagin-Thom isomorphism

 $\Omega_n \cong \lim_k \pi_{n+k}(MSO(k))$

with MSO(k) the Thom space of the universal oriented k-plane bundle over BSO(k).

• Low-dimensional computations $\Omega_0 = \Omega_0^{fr} = \mathbb{Z},$ $\Omega_1^{fr} = \Omega_2^{fr} = \mathbb{Z}_2, \ \Omega_3^{fr} = \mathbb{Z}_{24}, \ \Omega_4^{fr} = 0$ $\Omega_1 = \Omega_2 = \Omega_3 = 0, \ \Omega_4 = \mathbb{Z}.$

The intersection form

• The intersection form of an oriented 2i-manifold M is $(-)^i$ -symmetric bilinear form

$$\lambda : H^{i}(M, \partial M) \times H^{i}(M, \partial M) \to \mathbb{Z} ;$$
$$(x, y) \mapsto \langle x \cup y, [M] \rangle$$

with $[M] \in H_{2i}(M, \partial M)$ fundamental class.

• For homology classes $x, y \in H^i(M, \partial M) = H_i(M)$ represented by transverse immersions $x, y : S^i \to M$

$$\lambda(x,y) = \sum_{w \in x(S^i) \cap y(S^i)} \pm 1 \in \mathbb{Z}$$

is the geometric intersection number.

• If $\partial M = \emptyset$ or S^{2i-1} form is nonsingular: $H_i(M) \to H_i(M)^* = \operatorname{Hom}_{\mathbb{Z}}(H_i(M), \mathbb{Z});$ $x \mapsto (y \mapsto \lambda(x, y))$

is an isomorphism, modulo torsion.

The signature

- The signature of oriented 4k-manifold Mis the signature $\sigma(M) \in \mathbb{Z}$ of $(H^{2k}(M), \lambda)$. Product formula $\sigma(M \times N) = \sigma(M)\sigma(N)$.
- Example The intersection pairing of $M = S^{2k} \times S^{2k}$ is the hyperbolic form

$$(H^{2k}(M),\lambda) = (\mathbb{Z} \oplus \mathbb{Z}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix})$$

with signature $\sigma(M) = 0$.

• Example The complex projective space of lines in \mathbb{C}^{2k+1}

$$\mathbb{CP}^{2k} = (\mathbb{C}^{2k+1} - \{0\}) / \{z \sim wz \mid w \neq 0 \in \mathbb{C}\}$$

is an oriented 4k-manifold with

$$(H^{2k}(\mathbb{CP}^{2k}),\lambda) = (\mathbb{Z},1) , \ \sigma(\mathbb{CP}^{2k}) = 1$$

Signature is a cobordism invariant

• <u>Theorem</u> (Thom) The signature defines a surjective ring morphism

 $\sigma: \Omega_{4k} \to \mathbb{Z}$; $M \mapsto \sigma(M)$.

<u>Proof</u> If (W; M, M') is a (4k+1)-dimensional cobordism with c_i *i*-handles then $(H^{2k}(M'), \lambda')$ is obtained from $(H^{2k}(M), \lambda)$ by adding $c_{2k} - c_{2k+1}$ hyperbolic forms, each of which has signature 0.

• <u>Computations</u> (i) $\sigma : \Omega_4 \cong \mathbb{Z}$, generated by the complex projective plane \mathbb{CP}^2 .

(ii) Ω_* finitely generated.

(iii) $\Omega_* \otimes \mathbb{Q} = \mathbb{Q}[\mathbb{CP}^{2k} | k \ge 1]$ as ring, with $\sigma(\mathbb{CP}^{2k_1} \times \mathbb{CP}^{2k_2} \times \cdots \times \mathbb{CP}^{2k_r}) = 1$.

The signature theorem

- <u>Theorem</u> (Hirzebruch, 1954) The signature of a closed oriented 4k-manifold M is $\sigma(M) = \langle \mathcal{L}_k(p_1(M), p_2(M), \dots, p_k(M)), [M] \rangle \in \mathbb{Z}$ a characteristic number of the tangent bundle τ_M , with \mathcal{L}_k a polynomial with rational coefficients in the Pontrjagin classes $p_i(M) = (-)^i c_{2i}(\tau_M \otimes \mathbb{C}) \in H^{4i}(M)$. <u>Proof</u> The left and right hand sides are same morphism $\Omega_{4k} \to \mathbb{Z}$, since they agree on products $\mathbb{CP}^{2k_1} \times \mathbb{CP}^{2k_2} \times \cdots \times \mathbb{CP}^{2k_r}$.
- <u>Example</u> (i) $\mathcal{L}_1 = p_1/3$, $p_1(\mathbb{CP}^2) = 3$. (ii) $\mathcal{L}_2 = (7p_2 - (p_1)^2)/45$, $p_1(\mathbb{CP}^4) = 5$, $p_2(\mathbb{CP}^4) = 10$.
- Corollary If M is framed (= tangent bundle τ_M stably trivial) then $\sigma(M) = 0$.

Some (i-1)-connected 2*i*-manifolds

 For i ≥ 3 an (i − 1)-connected 2i-manifold has a handle decomposition

$$M^{2i} = h^0 \cup \bigcup_g h^i$$

with g i-handles $h^i = D^i \times D^i$ attached to the 0-handle $h^0 = D^{2i}$ at embeddings $S^{i-1} \times D^i \subset S^{2i-1}$. In oriented case have intersection form on

$$H^{i}(M,\partial M) = H_{i}(M) = \mathbb{Z}^{g}$$
.
If $\partial M = S^{2i-1}$ can close by $h^{2i} = D^{2i}$.

• The disk bundle of $\omega \in \pi_{i-1}(O(i)) = \operatorname{Vect}_i(S^i)$ is an (i-1)-connected 2*i*-manifold $D(\omega)$ with boundary $\partial D(\omega) = S(\omega)$

$$(D^i, S^{i-1}) \to (D(\omega), S(\omega)) \to S^i$$

with intersection form $(\mathbb{Z}, e(\omega))$ given by the Euler number. Important special case: $\omega = \tau_{S^i}$, with $e(\omega) = \chi(S^i) = 1 + (-1)^i$.

Plumbing

• Let Γ be a finite tree with vertices v_r $(1 \leq r \leq g)$, and $\omega_r \in \pi_{i-1}(SO(i)) = SVect_i(S^i)$. Define $(-)^i$ -symmetric form (\mathbb{Z}^g, λ) by

 $\lambda(e_r, e_s) = \begin{cases} e(\omega_r) & \text{if } r = s \\ 1 & \text{if } r < s \text{ and } v_r, v_s \text{ incident} \\ 0 & \text{otherwise} \end{cases}$

with $e_r = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{Z}^g$.

• <u>Theorem</u> For $i \ge 3$ can realize (\mathbb{Z}^g, λ) as the intersection form of an (i-1)-connected 2i-manifold M with $H^i(M) = H_i(M) = \mathbb{Z}^g$,

 $H_i(\partial M) = \ker(\lambda : \mathbb{Z}^g \to \mathbb{Z}^g)$,

 $H_{i-1}(\partial M) = \operatorname{coker}(\lambda : \mathbb{Z}^g \to \mathbb{Z}^g)$.

<u>Proof</u> Splice together the disc bundles $D(\omega_r)$ $(1 \leq r \leq g)$ according to Γ .

• $(\mathbb{Z}^{g}, \lambda)$ unimodular iff $\partial M \simeq S^{2i-1}$.

An example of plumbing

• The plumbing of two trivial 1-plane bundles $\omega_1 = \omega_2 \in \operatorname{Vect}_1(S^1)$ along the tree

 $\Gamma: v_1 - v_2$

is $M = T^2 - D^2 =$ punctured torus, with boundary $\partial M = S^1$ and intersection form

$$(H^1(M),\lambda) = (\mathbb{Z} \oplus \mathbb{Z}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix})$$

•
$$D(\omega_1) = D(\omega_2) = S^1 \times D^1$$

The Milnor E_8 -plumbing I.

• Plumb 8 copies of

 $\tau_{S^{2k}} \in \pi_{2k}(BSO(2k)) = SVect_{2k}(S^{2k})$ along the Dynkin diagram of Lie group E_8

• The symmetric integral matrix

$$E_{8} = \begin{pmatrix} 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

is unimodular, with signature 8. For $k \ge 2$ intersection form of (2k-1)-connected 4k-manifold M with $\partial M = \Sigma^{4k-1} \simeq S^{4k-1}$.

27

An exotic 7-sphere

• <u>Theorem</u> (Milnor, 1956) There exists a 7manifold Σ^7 which is homeomorphic but not diffeomorphic to S^7 .

<u>Proof</u> The E_8 -plumbing of 8 copies of τ_{S^4} is a framed 3-connected 8-manifold M with intersection form (\mathbb{Z}^8, E_8). As $\partial M = \Sigma^7$ admits a Morse function with two critical points, it is homeomorphic to S^7 . If Σ^7 were diffeomorphic to S^7 then

 $N = M \cup_{\Sigma^7} D^8$

would be a framed-except-at-a-point closed 8-manifold. By cobordism theory $\sigma(N)$ must be a multiple of 224. But

 $\sigma(N) = \sigma(M) = 8 \neq 0 \pmod{224}$ so Σ^7 is not diffeomorphic to S^7 .

• Failure of Hirzebruch signature theorem for manifolds with boundary, such as (M, Σ^7) $\sigma(M) \neq \langle \mathcal{L}_2(p_1(M), p_2(M)), [M] \rangle = 0 \in \mathbb{Z}.$

Poincaré complexes: definition

An <u>n-dimensional Poincaré complex</u> X is a finite CW complex with a homology class
 [X] ∈ H_n(X) such that there are Poincaré duality isomorphisms

 $[X] \cap - : H^{n-*}(X) \cong H_*(X)$ with arbitrary coefficients.

- Similarly for an <u>n</u>-dimensional Poincaré pair (X, ∂X), with $[X] \in H_n(X, \partial X)$ and $[X] \cap - : H^{n-*}(X) \cong H_*(X, \partial X).$
- If X is simply-connected, i.e. $\pi_1(X) = \{1\}$, it is enough to just use \mathbb{Z} -coefficients.
- For non-oriented X need twisted coefficients.

Poincaré complexes: examples

- A closed *n*-manifold is an *n*-dimensional Poincaré complex.
- A finite *CW* complex homotopy equivalent to an *n*-dimensional Poincaré complex is an *n*-dimensional Poincaré complex.
- If M_1, M_2 are *n*-manifolds with boundary and $h : \partial M_1 \simeq \partial M_2$ is a homotopy equivalence then $X = M_1 \cup_h M_2$ is an *n*-dimensional Poincaré complex.

If h is homotopic to a diffeomorphism then X is homotopy equivalent to an n-manifold. Conversely, if X is not homotopy equivalent to an n-manifold then h is not homotopic to a diffeomorphism.

Poincaré complexes vs. manifolds

• Theorem Let n = 0, 1 or 2.

(i) Every *n*-dimensional Poincaré complex X is homotopy equivalent to an *n*-manifold. (Non-trivial for n = 2). (ii) Every homotopy equivalence $M \to M'$ of *n*-manifolds is homotopic to a diffeomorphism.

- Theorem is false for $n \ge 3$.
- (Reidemeister, 1930) Homotopy equivalences $L \simeq L'$ of 3-dimensional lens spaces $L = S^3/\mathbb{Z}_p$ which are not homotopic to diffeomorphisms. (Lens spaces classified by Whitehead torsion).

Homotopy types of manifolds

- The manifold structure set S(X) of an n-dimensional Poincaré complex X is the set of equivalence classes of pairs (M, h) with M an n-manifold and h : M → X a homotopy equivalence, subject to
 (M, h) ~ (M', h') if h⁻¹h' : M' → M
 is homotopic to a diffeomorphism.
- Existence Problem Is $\mathcal{S}(X)$ non-empty?
- Uniqueness Problem If S(X) is non-empty, compute it by algebraic topology.
- Example If $\pi_1(X) = \{1\}$ and $H_*(X) = H_*(S^n)$ then X is homotopy equivalent to S^n and

$$\mathcal{S}(X) = \mathcal{S}(S^n) \neq \emptyset$$
.

The *h*-cobordism theorem

• <u>Theorem</u> (Smale, 1962) Let (W; M, M') be an (n+1)-dimensional h-cobordism, so that the inclusions $i : M \subset W$, $i' : M' \subset W$ are homotopy equivalences. If $n \ge 5$ and Wis simply-connected then (W; M, M') is diffeomorphic to $M \times ([0, 1]; \{0\}, \{1\})$ with the identity on M. In particular, the homotopy equivalence $h = i^{-1}i' : M' \to M$ is homotopic to diffeomorphism, and

$$(M',h) = (M,1) \in \mathcal{S}(M).$$

- Need $n \ge 5$ for 'Whitney trick' realizing algebraic moves by handle cancellations.
- The non-simply-connected version is called the <u>s-cobordism theorem</u> (Barden, Mazur and Stallings, 1964), and requires the Whitehead torsion condition

$$\tau(i) = \tau(i') = 0 \in Wh(\pi_1(M)) .$$

A converse of the Hirzebruch signature theorem

• <u>Theorem</u> (Browder, 1962) For $k \ge 2$ a simply-connected 4k-dimensional Poincaré complex X is homotopy equivalent to a manifold if and only if there exists a vector bundle $E \in \operatorname{Vect}_j(X)$ with a map ρ : $S^{j+4k} \to T(E)$ with Hurewicz image

 $[\rho] = [X] \in \widetilde{H}_{j+4k}(T(E)) = H_{4k}(X)$ such that

 $\sigma(X) = \langle \mathcal{L}_k(p_1(-E), \dots, p_k(-E)), [X] \rangle \in \mathbb{Z}$ with $\sigma(X)$ the signature of the intersection form $(H^{2k}(X), \lambda)$ and -E any vector bundle over X such that $E \oplus -E$ is trivial.

• For any *n*-manifold M the normal bundle ν_M of embedding $M \subset S^{j+n}$ (*j* large) have $\rho: S^{j+n} \to S^{j+n}/(S^{j+n} - D(\nu_M)) = T(\nu_M)$ (Pontrjagin-Thom map) such that $[\rho] = [M] \in \widetilde{H}_{j+n}(T(\nu_M)) = H_n(M).$

The *J*-homomorphism

•
$$J: \pi_m(O(k)) \to \pi_{m+k}(S^k)$$
 defined by
 $J(\omega): S^{m+k} = S^m \times D^k \cup D^{m+1} \times S^{k-1}$
 $\to S^k = D^k/S^{k-1}$;
 $(x,y) \mapsto \omega(x)(y) \ (x \in S^m, y \in D^k)$

• Stable spherical fibrations $S^{k-1} \to E \to X$ are classified by homotopy classes of maps $X \to BG$ to a space BG constructed using self-homotopy equivalences $S^{k-1} \to S^{k-1}$, with

$$\pi_{m+1}(BG) = \pi_m^S = \varinjlim_k \pi_{m+k}(S^k)$$

the stable homotopy groups of spheres. BO

and BG are related by a fibration sequence

$$G/O \longrightarrow BO \xrightarrow{J} BG \xrightarrow{t} B(G/O)$$

with J inducing the stable J-homomorphism

$$J: \pi_{m+1}(BO) = \varinjlim_k \pi_m(O(k)) \to \pi_{m+1}(BG) = \pi_m^S.$$

Normal maps

Let X be an n-dimensional Poincaré complex. A <u>normal map</u> (f,b) : M → X is a map f : M → X from an n-manifold M which is degree 1

$$f_*[M] = [X] \in H_n(X)$$

together with an embedding $M \subset S^{j+n}$, a vector bundle $\eta \in \operatorname{Vect}_j(X)$ and a bundle map $b : \nu_{M \subset S^{j+n}} \to \eta$ over f.

• A <u>normal bordism</u> of normal maps (f,b): $M \to X$, $(f',b') : M' \to X$ is a normal map of cobordisms

(F,B): $(W;M,M') \to X \times ([0,1];\{0\},\{1\})$. Let $\mathcal{N}(X)$ be the bordism group of normal maps (f,b): $M \to X$.

Knot theory examples of normal maps

• Every knot $k : \Sigma^n \subset S^{n+2}$ has a <u>Seifert surface</u>, a codimension 1 framed submanifold $M^{n+1} \subset S^{n+2}$ with $\partial M = k(\Sigma^n) \subset S^{n+2}$. The inclusion is a normal map

 $(f,b): (M,\partial M) \subset (D^{n+3},k(S^n))$ with $(D^{n+3},k(S^n))$ an (n+1)-dimensional Poincaré pair, and $\partial f = 1: \partial M \to k(S^n)$.

• Trefoil knot $S^1 \subset S^3$, $M^2 = T^2 - D^2$

High-dimensional knot theory (Springer, 1998)

The Spivak normal fibration

• <u>Proposition</u> An *n*-dimensional Poincaré complex X has a canonical map $\nu_X : X \to BG$, classifying the 'Spivak normal fibration'

 $(D^k, S^{k-1}) \to (W, \partial W) \to X$ (k large)

with a map $\rho: S^{n+k} \to W/\partial W$ representing the fundamental class

$$\rho[S^{n+k}] = [X] \in \widetilde{H}_{n+k}(W/\partial W) = H_n(X).$$

Proof For large j there exists an embedding X ⊂ S^{n+j} with regular neighbourhood a codimension 0 submanifold W ⊂ S^{n+j} such that (W,∂W) is a (D^k, S^{k-1})-fibration over X. Define

$$\rho: S^{n+j} \to S^{n+j}/(S^{n+j}-W) = W/\partial W$$

The transversality construction of normal maps

Proposition (Browder, Novikov, 1962)

 An *n*-dimensional geometric Poincaré complex X admits a normal map iff ν_X lifts to ν̃_X : X → BO, iff tν_X = 0 ∈ [X, B(G/O)]. (Key point: a purely homotopy theoretic condition).

(ii) For an *n*-manifold *M* bijection $\mathcal{N}(M) \cong [M, G/O].$

• Consider the 'Pontrjagin-Thom' map

 ρ : $S^{n+j} \to S^{n+j}/(S^{n+j}-W) = W/\partial W$ for the Spivak normal fibration. If $(W, \partial W) = (D(\eta), S(\eta))$ is the (disk,sphere)-fibration of a vector bundle η : $X \to BO(j)$ then $W/\partial W = T(\eta)$ is the Thom space, and ρ can be made transverse at the zero section $X \subset T(\eta)$, with $(f, b) = \rho | : M = \rho^{-1}(X) \to X$ a normal map.

The two obstructions

- When is a *n*-dimensional Poincaré complex homotopy equivalent to an *n*-manifold?
- <u>Proposition</u> For any $n \ge 0$, X is homotopy equivalent to an *n*-manifold if and only if
 - (i) there is a normal map $(f, b) : M \to X$,
 - (ii) there is an (f, b) which is normal bordant to a normal map $(f', b') : M' \to X$ with $f' : M' \to X$ is a homotopy equivalence.
- The obstruction to (i) is homotopy-theoretic, the homotopy class of tv_X : X → B(G/O), i.e. topological K-theory, with the bordism classes of (f, b)'s classified by X → G/O.
- For $n \ge 5$ and any particular choice of (f, b) the obstruction to (ii) is algebraic.

The algebraic *L*-theory obstruction

• Theorem (Wall, 1970)

(i) For any ring with involution A there are defined 4-periodic Grothendieck-Witt type surgery obstruction groups $L_n(A) = L_{n+4}(A)$ of quadratic forms on f.g. free A-modules and their automorphisms.

(Key point: purely algebraic)

(ii) An *n*-dimensional normal map (f, b): $M \to X$ with $f| : \partial M \to \partial X$ a homotopy equivalence determines a surgery obstruction

 $\sigma_*(f,b) \in L_n(\mathbb{Z}[\pi_1(X)])$.

If $n \ge 5$ (f, b) is normal bordant to a homotopy equivalence if and only if $\sigma_*(f, b) = 0$. Same dimension condition $n \ge 5$ as in hcobordism theorem.

• The extensive computations of $L_*(\mathbb{Z}[\pi])$ are by algebraic number theory for finite π , and by geometric topology for infinite π .

The surgery exact sequence

• Main Theorem (Browder-Novikov-Sullivan-Wall, 1962-1970). Let $n \ge 5$.

(i) An *n*-dimensional Poincaré complex Xis homotopy equivalent to an *n*-manifold (i.e. S(X) is non-empty) if and only if there exists a normal map $(f,b) : M \to X$ with $\sigma_*(f,b) = 0 \in L_n(\mathbb{Z}[\pi_1(X)])$. (Topological K-theory + algebraic L-theory).

(ii) The structure set S(M) of an *n*-manifold M fits into exact sequence of pointed sets

$$[\Sigma M, G/O] \to L_{n+1}(\mathbb{Z}[\pi_1(M)]) \xrightarrow{r} \mathcal{S}(M)$$
$$\to [M, G/O] \xrightarrow{\sigma_*} L_n(\mathbb{Z}[\pi_1(M)])$$

with σ_* : $(f,b) \mapsto \sigma_*(f,b)$. The map r is a non-simply-connected generalization of plumbing.

Realization of groups and forms

- The fundamental group $\pi_1(M)$ of a closed manifold M is finitely presented.
- Let $n \ge 4$. Every finitely presented group π is the fundamental group $\pi = \pi_1(M)$ of a closed *n*-manifold *M*. For every $x \in L_{n+1}(\mathbb{Z}[\pi])$ there exists a normal bordism $(f,b): (W;M,M') \to M \times ([0,1];\{0\},\{1\})$ with $f| = 1 : M \to M$, $h = f| : M' \to M$ a homotopy equivalence, and surgery obstruction

 $\sigma_*(f,b) = x \in L_{n+1}(\mathbb{Z}[\pi]) .$ Define $r : L_{n+1}(\mathbb{Z}[\pi]) \to \mathcal{S}(M); x \mapsto (M',h).$

• The homotopy equivalence $h : M' \to M$ is *h*-cobordant to a diffeomorphism if and only if $x \in im([\Sigma M, G/O] \to L_{n+1}(\mathbb{Z}[\pi]))$. (Modulo Whitehead torsion can replace '*h*cobordant' by 'homotopic').

The simply-connected surgery obstruction groups

• Computation (Kervaire and Milnor, 1963)

$$L_n(\mathbb{Z}) = \begin{cases} \mathbb{Z} \ (\sigma/8) \\ 0 \\ \mathbb{Z}_2 \ (Arf) \\ 0 \end{cases} \quad \text{if } n \equiv \begin{cases} 0 \\ 1 \\ 2 \\ 3 \end{cases} \pmod{4}$$

• $L_{2i+1}(\mathbb{Z}) = 0$: for $i \ge 2$ every (f,b) : $M^{2i+1} \to X$ with $\pi_1(X) = \{1\}$ is normal bordant to a homotopy equivalence. A (2i + 1)-dimensional Poincaré complex Xwith $\pi_1(X) = \{1\}$ is homotopy equivalent to a manifold if and only if $t\nu_X = 0 \in [X, B(G/O)]$.

The kernel modules

• The kernel $\mathbb{Z}[\pi_1(X)]$ -modules of an *n*-dimensional normal map $(f,b) : M \to X$

 $K_i(M) = \ker(f_* : H_i(\widetilde{M}) \to H_i(\widetilde{X}))$ fit into direct sum system

 $H_i(\widetilde{M}) = K_i(M) \oplus H_i(\widetilde{X})$ with \widetilde{X} = universal cover of X, $\widetilde{M} = f^*\widetilde{X}$.

• <u>Proposition</u> (i) For i > 1 $(f,b) : M \to X$ is *i*-connected iff $f_* : \pi_1(M) \to \pi_1(X)$ is an isomorphism and $K_j(M) = 0$ for j < i, in which case $K_i(M) = \pi_{i+1}(f)$.

(ii) If n = 2i or 2i + 1 (f, b) is a homotopy equivalence iff (i + 1)-connected.

<u>Proof</u> The theorems of Hurewicz and Whitehead, the universal coefficient theorem and Poincaré duality.

Surgery on a normal map

• Suppose given an *n*-dimensional normal map $(f,b): M \to X$, and an element $x \in K_i(M)$ which is represented by an embedding $S^i \times D^{n-i} \subset M$ and a null-homotopy in X. Can extend (f,b) to a normal map on the trace $(F,B): (W;M,M') \to X \times ([0,1];\{0\},\{1\})$

with restriction $(F, B)| = (f', b') : M' \to X$.

• The effect on the kernel modules is to kill $x \in K_i(M)$

$$K_r(W) = \begin{cases} K_i(M)/\langle x \rangle & \text{if } r = i \\ K_r(M) & \text{if } r \neq i \end{cases}$$

with $\langle x \rangle \subseteq K_i(M)$ the $\mathbb{Z}[\pi_1(X)]$ -submodule generated by x.

Surgery below the middle dimension

Proposition Let (f,b) : M → X be an n-dimensional normal map, n ≥ 5.
(i) If (f,b) is i-connected and 2i < n then every element x ∈ K_i(M) can be killed by surgery on (f,b).
(ii) If n = 2i or 2i + 1 there exists a normal bordism of (f,b) to an i-connected normal map (f',b') : M' → X, with

 $K_j(M') = \pi_{j+1}(f') = 0$ for j < i.

•
$$L_{2i+1}(\mathbb{Z}) = 0$$
, so if $n = 2i + 1 \ge 5$ and $\pi_1(X) = \{1\}$ can go one connectivity further, and (f, b) is normal bordant to a homotopy equivalence. But in general there is a middle-dimensional obstruction.

Quadratic forms I.

• An <u>involution</u> on a ring A is a function $A \rightarrow A$; $a \mapsto \overline{a}$ such that :

 $\overline{a+b} = \overline{a} + \overline{b} , \ \overline{ab} = \overline{b}.\overline{a} \in A \quad (a,b \in A) .$ $\underbrace{\text{Examples:}}_{\text{(ii)} A = \mathbb{Z}[\pi]} \text{ group ring, } \overline{g} = g^{-1} \quad (g \in \pi).$

• A $(-)^{i}$ -quadratic form over A (K, λ, μ) is a f.g. free A-module K together with a sesquilinear $(-)^{i}$ -symmetric pairing $\lambda : K \times K \to A$ and a $(-)^{i}$ -quadratic function $\mu : K \to Q_{(-)^{i}}(A) = A/\{a - (-)^{i}\overline{a} \mid a \in A\}$ such that for all $x, y \in K, b \in A$

$$\lambda(x,y) = (-)^{i}\overline{\lambda(y,x)}, \ \lambda(x,by) = b\lambda(x,y) \in A,$$

$$\lambda(x,x) = \mu(x) + (-)^{i}\overline{\mu(x)} \in A,$$

$$\lambda(x,y) = \mu(x+y) - \mu(x) - \mu(y) \in Q_{(-)^{i}}(A),$$

$$\mu(bx) = b\mu(x)\overline{b} \in Q_{(-)^{i}}(A).$$

Example: For $A = \mathbb{Z}$

$$Q_{+}(\mathbb{Z}) = \mathbb{Z}, \ Q_{-}(\mathbb{Z}) = \mathbb{Z}_{2}.$$

Quadratic forms II.

• A form (K, λ, μ) over A is <u>nonsingular</u> if the A-module morphism

 $K \to K^* = \operatorname{Hom}_A(K, A); x \mapsto (y \mapsto \lambda(x, y))$

is an isomorphism.

• The <u>hyperbolic</u> nonsingular $(-)^i$ -quadratic form over A

$$H_{(-)i}(F) = (F \oplus F^*, \lambda, \mu)$$

is defined for any f.g. free A-module F, with

$$\lambda : F \oplus F^* \times F \oplus F^* \to A;$$

((x, f), (y, g)) $\mapsto f(y) + (-)^i \overline{g(x)},$
 $\mu : F \oplus F^* \to Q_{(-)^i}(A); (x, f) \mapsto f(x)$

The even-dimensional *L*-group $L_{2i}(A)$

• A stable isomorphism of nonsingular $(-)^{i}$ quadratic forms (K, λ, μ) (K', λ', μ') over Ais an isomorphism

 $(K, \lambda, \mu) \oplus H_{(-)i}(F) \cong (K', \lambda', \mu) \oplus H_{(-)i}(F')$ for some f.g. free *A*-modules *F*, *F'*.

<u>Definition</u> L_{2i}(A) = the abelian group of stable isomorphism classes of nonsingular (-)ⁱ-quadratic forms over A, with addition by

$$(K, \lambda, \mu) + (K', \lambda', \mu') = (K \oplus K', \lambda \oplus \lambda', \mu \oplus \mu')$$

and inverses by

$$-(K,\lambda,\mu) = (K,-\lambda,-\mu)$$
.

The even-dimensional surgery obstruction

- The kernel form of an *i*-connected 2*i*-dimensional normal map $(f,b) : M \to X$ is the nonsingular $(-)^i$ -quadratic form $(K_i(M), \lambda, \mu)$ over $\mathbb{Z}[\pi_1(X)]$ defined by geometric intersection and self-intersection numbers of immersions $S^i \to M$. For $i \ge 3$ can kill $x \in K_i(M) = \pi_{i+1}(f)$ by surgery on $S^i \times D^i \subset M$ if and only if $\mu(x) = 0 \in Q_{(-)i}(\mathbb{Z}[\pi_1(X)])$.
- For j = i-1 (resp. i) the effect on the kernel form of a surgery on S^j × D^{2i-j} ⊂ M is to add (resp. subtract) H₍₋₎i(ℤ[π₁(X)]).
- The surgery obstruction of *i*-connected 2i-dimensional normal map $(f, b) : M \to X$ is

 $\sigma_*(f,b) = (K_i(M), \lambda, \mu) \in L_{2i}(\mathbb{Z}[\pi_1(X)]) .$

The surgery obstruction of any 2i-dimensional normal map is the surgery obstruction of any bordant *i*-connected normal map.

The odd-dimensional surgery obstruction

- (Heegaard, 1898) Every closed connected 3-manifold M^3 has a handle decomposition of the type $M = h^0 \bigcup_r h^1 \cup \bigcup_r h^2 \cup h^3$, so M = $N \cup_{\alpha} N$ with $N^3 = \#_r (S^1 \times D^2)$ a solid torus and $\alpha : \partial N \to \partial N$ a self-diffeomorphism of $\partial N = \#_r T^2$ inducing an automorphism of the intersection form $H^1(\partial N) = H_-(\mathbb{Z}^r)$.
- <u>Definition</u> (Wall, 1970)

(i) $L_{2i+1}(A) = \lim_{r} \operatorname{Aut}(H_{(-)^{i}}(A^{r}))^{ab} / \{ \begin{pmatrix} 0 & 1 \\ (-)^{i} & 0 \end{pmatrix} \}$ the abelian group of automorphisms of $(-)^{i}$ hyperbolic forms $H_{(-)^{i}}(A^{r})$. (ii) The surgery obstruction of an *i*-connected

(2i + 1)-dimensional normal map (f, b) : $M \rightarrow X$ is the class

 $\sigma_*(f,b) = \alpha \in L_{2i+1}(\mathbb{Z}[\pi_1(X)])$ of the automorphism α of $H_{(-)^i}(\mathbb{Z}[\pi_1(X)]^r)$ in a Heegaard-type decomposition of (f,b).

The signature/8

- A quadratic form (K, λ, μ) over Z is essentially the same as a symmetric form (K, λ) with each λ(x, x) ∈ Z (x ∈ K) even.
- The signature of a nonsingular quadratic form (K, λ, μ) is divisible by 8, with isomorphism

$$\sigma/8: L_{4k}(\mathbb{Z}) \xrightarrow{\cong} \mathbb{Z}; (K\lambda, \mu) \mapsto \sigma(K, \lambda)/8$$

• The surgery obstruction of $(f, b) : M^{4k} \rightarrow X$ with $\pi_1(X) = \{1\}$ is $\sigma_*(f, b) = (\sigma(M) - \sigma(X))/8 \in L_{4k}(\mathbb{Z}) = \mathbb{Z}.$

The Arf invariant

• The <u>Arf invariant</u> of a nonsingular (-1)quadratic form (K, λ, μ) over \mathbb{Z} is

$$A(K,\lambda,\mu) = \sum_{j=1}^{2g} \mu(x_j) \in \mathbb{Z}_2$$

for any basis $x_1, x_2, \dots, x_{2g} \in K$ such that $\lambda(x_i, x_j) = \begin{cases} \pm 1 & \text{if } j - i = \pm g \\ 0 & \text{otherwise} \end{cases}$

- The Arf invariant defines an isomorphism $A: L_{4k+2}(\mathbb{Z}) \xrightarrow{\cong} \mathbb{Z}_2; (K, \lambda, \mu) \mapsto A(K, \lambda, \mu)$ The surgery obstruction of (2k+1)-connected $(f,b): M^{4k+2} \to X$ with $\pi_1(X) = \{1\}$ is $\sigma_*(f,b) = A(K_{2k+1}(M), \lambda, \mu) \in \mathbb{Z}_2.$
- Example $\Omega_2^{fr} = \pi_2^S = \mathbb{Z}_2$, generated by T^2 with exotic framing of Arf invariant 1.

Framed plumbing

• Let Γ be a finite tree with vertices v_r ($1 \leq r \leq g$), and stably trivialized *i*-plane bundles over S^i

 $\begin{aligned} \mu_r \in \pi_{i+1}(BSO,BSO(i)) &= Q_{(-)^i}(\mathbb{Z}) \\ (\text{generated by } \tau_{S^i}). \text{ Define } (-)^i \text{-quadratic} \\ \text{form } (\mathbb{Z}^g,\lambda,\mu) \text{ by} \end{aligned}$

$$\lambda(e_r, e_s) = \begin{cases} e(\omega_r) & \text{if } r = s \\ 1 & \text{if } r < s \text{ and } v_r, v_s \text{ incident} \\ 0 & \text{otherwise} \end{cases}$$

and $\mu(e_r) = \mu_r$. Assume nonsingular.

• <u>Theorem</u> Framed plumbing gives an *i*-connected 2*i*-dimensional normal map

$$(f,b)$$
: $(M,\partial M) \rightarrow (D^{2i}, S^{2i-1})$

with $\partial f: \partial M \to S^{2i-1}$ a homotopy equivalence, and surgery obstruction

$$\sigma_*(f,b) = (\mathbb{Z}^g, \lambda, \mu) \in L_{2i}(\mathbb{Z})$$

Homotopy spheres

- Generalized Poincaré conjecture (Smale, 1962): for $n \ge 5$ an *n*-manifold Σ^n is homeomorphic to S^n if and only if Σ^n is homotopy equivalent to S^n . (Proved by Morse theory and *h*-cobordism theorem).
- Exact sequence of abelian groups $\dots \to \pi_{n+1}(G/O) \xrightarrow{\sigma_*} L_{n+1}(\mathbb{Z}) \xrightarrow{r} S(S^n)$ $\to \pi_n(G/O) \to L_n(\mathbb{Z}) \to \dots$

with $r : L_{2i}(\mathbb{Z}) \to \mathcal{S}(S^{2i-1})$ the framed plumbing realization map.

• Example

 $\pi_8(G/O) = \mathbb{Z} \oplus \mathbb{Z}_2 \stackrel{(28\ 0)}{\longrightarrow} L_8(\mathbb{Z}) = \mathbb{Z} \stackrel{r}{\longrightarrow} \mathcal{S}(S^7)$ $\to \pi_7(G/O) = 0 \to L_7(\mathbb{Z}) = 0$

and $\mathcal{S}(S^7) \xrightarrow{\cong} \mathbb{Z}_{28}; \Sigma^7 \mapsto \sigma(N)/8$ with N^8 any framed 8-manifold such that $\partial N = \Sigma^7$.

56

The Milnor E_8 -plumbing II.

• The plumbing of 8 copies of $\tau_{S^{2k}} \in \text{Vect}_{2k}(S^{2k})$ $(k \ge 2)$ along the E_8 -tree

$$v_1$$

|
 $v_2 - v_3 - v_4 - v_5 - v_6 - v_7 - v_8$

with $\mu_r = 1 \in \pi_{2k+1}(BSO, BSO(2k)) = \mathbb{Z}$ is a 2*k*-connected 4*k*-dimensional normal map

$$(f,b): (M, \Sigma^{4k-1}) \to (D^{4k}, S^{4k-1})$$

with surgery obstruction given by the signature/8

 $\sigma_*(f,b) = (\mathbb{Z}^8, E_8) = 1 \in L_{4k}(\mathbb{Z}) = \mathbb{Z}.$ The boundary $\partial M = \Sigma^{4k-1}$ is an exotic sphere, which is homeomorphic to S^{4k-1} .

• Can embed $M \subset S^{4k+1}$, get knot $\partial M = \Sigma^{4k-1} \subset S^{4k+1} \ .$

57

The Kervaire-Arf plumbing

• The plumbing of two copies of $\tau_{S^{2k+1}} \in Vect_{2k+1}(S^{2k+1})$ along tree Γ : $v_1 - v_2$ with

 $\mu_1 = \mu_2 = 1 \in \pi_{2k+2}(BSO, BSO(2k+1)) = \mathbb{Z}_2$ is a (2k+1)-connected (4k+2)-dimensional normal map

 $(f,b): (M, \Sigma^{4k+1}) \to (D^{4k+2}, S^{4k+1})$

with surgery obstruction given by the Arf invariant

 $\sigma_*(f,b) = (\mathbb{Z} \oplus \mathbb{Z}, \lambda, \mu) = 1 \in L_{4k+2}(\mathbb{Z}) = \mathbb{Z}_2.$ For $k \ge 2$ boundary $\partial M = \Sigma^{4k+1}$ is an exotic sphere, homeomorphic to S^{4k+1} . Embed $M \subset S^{4k+3}$, knot $\Sigma^{4k+1} \subset S^{4k+3}$. (For k = 0 trefoil knot $\Sigma^1 = S^1 \subset S^3$).

• <u>Theorem</u> (Kervaire, 1960) The closed topological 10-manifold $N^{10} = M^{10} \cup_{\Sigma^9} D^{10}$ (k = 2 here) does not have a differentiable structure.

Homotopy types of topological manifolds

- The topological manifold structure set S^{TOP}(X) of an *n*-dimensional Poincaré complex X is the set of equivalence classes of pairs (M, h) with M a topological n-manifold and h: M → X a homotopy equivalence, subject to (M, h) ~ (M', h') if h⁻¹h': M' → M is homotopic to a homeomorphism.
- Example $S^{TOP}(S^n) = \{*\}$ for $n \ge 5$.
- <u>Theorem</u> (Ranicki, using Kirby-Siebenmann) The structure set $S^{TOP}(M)$ of a topological *n*-manifold *M* for $n \ge 5$ fits into exact sequence of abelian groups

 $[\Sigma M, G/TOP] \rightarrow L_{n+1}(\mathbb{Z}[\pi_1(M)]) \rightarrow S^{TOP}(M)$ $\rightarrow [M, G/TOP] \rightarrow L_n(\mathbb{Z}[\pi_1(M)])$ with $\pi_*(G/TOP) = L_*(\mathbb{Z})$. (See Algebraic *L*-theory and topological manifolds, Cambridge Tract, 1992)

Aspherical manifolds

- An <u>n-dimensional Poincaré duality group</u> G is a group with the Eilenberg-MacLane space K(G,1) an n-dimensional Poincaré complex. (G is infinite and torsion-free.) E.g. if G acts freely on ℝⁿ with ℝⁿ/G compact.
- Generalized Borel conjecture For any such G there exists an *n*-manifold M with $\pi_1(M) = G$, $\pi_i(M) = 0$ ($i \ge 2$), so that $M \simeq K(G, 1)$. Moreover, for any homotopy equivalences $h : M \to K(G, 1), h' : M' \to K(G, 1)$ the composite $h^{-1}h' : M' \to M$ is homotopic to a homeomorphism, $S^{TOP}(K(G, 1)) = \{*\}$. Many verifications, no counterexamples.
- Example The free abelian group \mathbb{Z}^n is an *n*-dimensional Poincaré duality group, with $K(\mathbb{Z}^n, 1) = T^n = S^1 \times S^1 \times \cdots \times S^1$ and $S^{TOP}(T^n) = \{*\}$ for $n \ge 5$.

Further reading

- Novikov Conjectures, Index theorems and Rigidity, Oberwolfach 1993, LMS Lecture Notes 226, 227, Cambridge (1995)
- Surveys on surgery theory, C.T.C. Wall 60th birthday Festschrift, Ann. of Maths. Studies 145, 149, Princeton (2000)
- Topology of high-dimensional manifolds, ICTP Trieste 2001, World Scientific (2003) Lecture notes from www.ictp.trieste.it/~pub_off/lectures/vol9.html
- The Novikov Conjecture, Oberwolfach 2004, Kreck & Lück, Birkhäuser (2004)
- www.maths.ed.ac.uk/~aar/surgery

"Nurse, get on the internet, go to SURGERY.COM, scroll down and click on the 'Are you totally lost?' icon."