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“Signatures, braids and Seifert surfaces”

I A collection of old and new papers to appear later in 2016 in
a volume edited by Étienne Ghys and myself of the Brazilian
online journal Ensaios Matemáticos:

I Étienne Ghys and Andrew Ranicki
Signatures in algebra, topology and dynamics

I Jean-Marc Gambaudo and Étienne Ghys
Braids and signatures

I Arjeh Cohen and Jack van Wijk
Visualization of Seifert Surfaces

I Julia Collins
An algorithm for computing the Seifert matrix of a link
from a braid representation

I Maxime Bourrigan
Quasimorphismes sur les groupes de tresses et forme de
Blanchfield

I Chris Palmer
Seifert matrices of braids with applications to isotopy and
signatures

http://www.emis.de/journals/em/
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In the beginning

I Major problem from early 19th century
How many real roots does a degree n real polynomial
P(X ) ∈ R[X ] have in an interval [a, b] ⊂ R?
That is, calculate

#R-roots(P(X ); [a, b]) = |{x ∈ [a, b] |P(x) = 0}|
∈ {0, 1 . . . , n}

I In 1829 Sturm solved the problem algorithmically, using the
Euclidean algorithm in R[X ] for the greatest common divisor
of P(X ) and P ′(X ) and counting sign changes.

I In 1853 Sylvester interpreted Sturm’s theorem using the
continued fraction expansion of P(X )/P ′(X ) and the
signatures of symmetric matrices. This was the first ever
application of the signature!

I There have been very many applications of the signatures
since then, particularly in the topology of manifolds.
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Plan for today

1. The Sturm algorithm for #R-roots(P(X ); [a, b]) for a degree
n real polynomial P(X ) ∈ R[X ].

2. The Sylvester expression for #R-roots(P(X ); [a, b]) as a
difference of Witt classes(

(Rn,Tri(b))− (Rn,Tri(a))
)
/2 ∈ W (R) = Z (signature)

of tridiagonal symmetric matrices (= forms) over R.
3. The Ghys-R. expression for #R-roots(P(X ); [a, b]) in terms of

the Witt class

(R(X ),P(X )) ∈ W (R(X )) =
⊕
∞

Z⊕
⊕
∞

Z2 (multisignature)

with R(X ) the field of fractions of the polynomial ring R[X ].

4. Tridiagonal symmetric matrices in the Milnor-Hirzebruch
plumbing of sphere bundles, and the work of Barge-Lannes on
the Maslov index and Bott periodicity.
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Jacques Charles François Sturm (1803-1855)
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The Sturm sequences

I Sturm’s 1829 algorithmic formula for the number of real roots
involved the Sturm sequences of P(X ) ∈ R[X ]: the
remainders Pk(X ) and quotients Qk(X ) in the Euclidean
algorithm (with sign change) in R[X ] for finding the greatest
common divisor of P0(X ) = P(X ) and P1(X ) = P ′(X )

P∗(X ) = (P0(X ), . . . ,Pn(X )) , Q∗(X ) = (Q1(X ), . . . ,Qn(X ))

with deg(Pk+1(X )) < deg(Pk(X )) 6 n − k and

Pk−1(X ) + Pk+1(X ) = Pk(X )Qk(X ) (1 6 k 6 n) .

I Simplifying assumption P(X ) is generic: the roots of P0(X ),
P1(X ), . . . ,Pn(X ) are distinct, so that deg(Pk(X )) = n − k ,
Pn(X ) is a non-zero constant, and deg(Qk(X )) = 1.
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Variation

I The variation var(p) of p = (p0, p1, . . . , pn) ∈ (R\{0})n+1 is
the number of sign changes p0 → p1 → · · · → pn.

I The variation is expressed in terms of the sign changes
pk−1 → pk by

var(p) = (n −
n∑

k=1

sign(pk/pk−1))/2 ∈ {0, 1, . . . , n} .

I Sturm’s root-counting formula involved the variations of the
Sturm remainders Pk(X ) evaluated at ‘regular’ x ∈ R.

I Call x ∈ R regular if Pk(x) ̸= 0 (0 6 k 6 n − 1), so that the
variation in the values of the Sturm remainders

var(P∗(x)) = var(P0(x),P1(x), . . . ,Pn(x)) ∈ {0, 1, . . . , n}

is defined.
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Sturm’s Theorem I.

I Theorem (1829) The number of real roots of a generic
P(X ) ∈ R[X ] in [a, b] ⊂ R for regular a < b is

|{x ∈ [a, b] |P(x) = 0 ∈ R}| = var(P∗(a))− var(P∗(b)) .

I Idea of proof The function

f : [a, b] → {0, 1, . . . , n} ; x 7→ var(P∗(a))− var(P∗(x))

jumps by

{
1

0
at root x of Pk(X ) if k =

{
0

1, 2, . . . , n.
I For k = 0 the jump in f at a root x of P0(x) is 1, since for y

close to x

P0(y)P1(y) = d/dy(P(y)2)/2 =

{
< 0 if y < x

> 0 if y > x ,

var(P0(y),P1(y)) =

{
var(+,−) = var(−,+) = 1 if y < x

var(+,+) = var(−,−) = 0 if y > x .
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Sturm’s Theorem II.

I For k = 1, 2, . . . , n the jump in f at a root x of Pk(x) is 0.
I k = n trivial, since Pn(X ) is non-zero constant.
I For k = 1, 2, . . . , n − 1 the numbers Pk−1(x),

Pk+1(x) ̸= 0 ∈ R have opposite signs since

Pk−1(x) + Pk+1(x) = Pk(x)Qk(x) = 0 .

I For y , z close to x with y < x < z

sign(Pk−1(y)) = −sign(Pk+1(y))

= sign(Pk−1(z)) = −sign(Pk+1(z)) ,

var(Pk−1(y),Pk(y),Pk+1(y))

= var(Pk−1(z),Pk(z),Pk+1(z)) = 1 ,

that is

var(+,+,−) = var(+,−,−) = var(−,+,+) = var(−,−,+) = 1.
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Sturm’s theorem III.
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James Joseph Sylvester (1814-1897)
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Sylvester’s 4 papers related to Sturm’s theorem

I On the relation of Sturm’s auxiliary functions to the roots of
an algebraic equation. (1841)

I A demonstration of the theorem that every homogeneous
quadratic polynomial is reducible by real orthogonal
substitutions to the form of a sum of positive and negative
squares. (1852)

I On a remarkable modification of Sturm’s Theorem (1853)

I On a theory of the syzygetic relations of two rational integral
functions, comprising an application to the theory of Sturm’s
functions, and that of the greatest algebraical common
measure. (1853)
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The signature

I The transpose of an n × n matrix A = (aij) is A
∗ = (aji ).

I Spectral Theorem (Cauchy, 1829) For any symmetric n × n
matrix S = S∗ in R there exists an orthogonal A = A∗−1 with

A∗SA = diag(λ1, . . . , λn) =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


I The signature of a symmetric n × n matrix S is

τ(S) = τ(A∗SA) =
n∑

i=1

sign(λi )

I If S is invertible τ(S) = n − 2 var(1, λ1, . . . , λn) ≡ n mod 2.
I Law of Inertia (Sylvester, 1853) For any invertible n × n

matrix A in R
τ(S) = τ(A∗SA) .
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Tridiagonal symmetric matrices (Jacobi)

I Definition The tridiagonal symmetric matrix of
q = (q1, q2, . . . , qn) ∈ Rn is

Tri(q) =


q1 1 0 . . . 0
1 q2 1 . . . 0
0 1 q3 . . . 0
...

...
...

. . .
...

0 0 0 . . . qn


I The principal minors of Tri(q)

µk = det(Tri(q1, q2, . . . , qk)) (1 6 k 6 n)

satisfy the recurrence of the Euclidean algorithm

µk = qkµk−1 − µk−2 (µ0 = 1, µ−1 = 0) .
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The signature of a tridiagonal matrix

I Theorem (Sylvester, 1853) Assume the principal minors

µk = µk(Tri(q)) = det(Tri(q1, q2, . . . , qk)) (1 6 k 6 n)

are non-zero. The invertible n × n matrix

A =


1 −µ0/µ1 µ0/µ2 . . . (−1)n−1µ0/µn−1

0 1 −µ1/µ2 . . . (−1)n−2µ1/µn−1

0 0 1 . . . (−1)n−3µ2/µn−1
...

...
...

. . .
...

0 0 0 . . . 1


is such that

A∗Tri(q)A = diag(µ1/µ0, µ2/µ1, . . . , µn/µn−1)

so that

τ(Tri(q)) =
n∑

k=1

sign(µk/µk−1) = n − 2 var(µ) .
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Continued fractions and the Sturm sequences

I The improper continued fraction of (q1, q2, . . . , qn) is

[q1, q2, . . . , qn] = q1 −
1

q2 −
. . .

− 1

qn

assuming there are no divisions by 0.
I The continued fraction expansion of P(X )/P ′(X ) is

P(X )/P ′(X ) = [Q1(X ),Q2(X ), . . . ,Qn(X )] ∈ R(X )

with Q1(X ),Q2(X ), . . . ,Qn(X ) the Sturm quotients.
I The Sturm remainders (P0(X ),P1(X ), . . . ,Pn(X )) are the

numerators in the reverse convergents (0 6 k 6 n)

[Qk+1(X ),Qk+2(X ), . . . ,Qn(X )] = Pk(X )/Pk+1(X ) ∈ R(X ) .

I Pk(X )/Pn(X ) = det(Tri(Qk+1(X ),Qk+2(X ), . . . ,Qn(X )))
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Convergents

I The convergents of [Q1(X ),Q2(X ), . . . ,Qn(X )] ∈ R(X ) are

[Q1(X ),Q2(X ), . . . ,Qk(X )]

=
P∗
k (X )

det(Tri(Q2(X ),Q3(X ), . . . ,Qk(X )))

with numerators

P∗
k (X ) = µk(Tri(Q1(X ),Q2(X ), . . . ,Qn(X )))

= det(Tri(Q1(X ),Q2(X ), . . . ,Qk(X ))) ∈ R[X ]

the principal minors of Tri(Q1(X ),Q2(X ), . . . ,Qn(X )).
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Sylvester’s reformulation of Sturm’s Theorem

I Duality Theorem Let x ∈ R be regular for a degree n
P(X ) ∈ R[X ]. The variations of the sequences of the
numerators of the convergents and reverse convergents are
equal

var(P0(x),P1(x), . . . ,Pn(x))

= var(P∗
0 (x),P

∗
1 (x), . . . ,P

∗
n(x)) .

I Roots and signatures The number of real roots of
P(X ) ∈ R[X ] in an interval [a, b] ⊂ R is

#R-roots(P(X ); [a, b])

= var(P0(a),P1(a), . . . ,Pn(a))− var(P0(b),P1(b), . . . ,Pn(b))

= var(P∗
0 (a),P

∗
1 (a), . . . ,P

∗
n(a))− var(P∗

0 (b),P
∗
1 (b), . . . ,P

∗
n(b))

= (τ(Tri(Q∗(b)))− τ(Tri(Q∗(a)))
)
/2 ∈ {0, 1, 2, . . . , n} .
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Sylvester’s musical inspiration for the Duality Theorem616 On a remarkahle Modification oj Sturm's Theorem. [61 

As an artist delights in recalling the particular time and atmospheric 
effects under which he has composed a favourite sketch, so I hope to be 
excused putting upon record that it was in listening to one of the magnificent 
choruses in the' Israel in Egypt' that, unsought and unsolicited, like a ray 
of light, silently stole into my mind the idea (simple, but previously un-
perceived) of the equivalence of the Sturmian residues to the denominator 
series formed by the reverse convergents. The idea was just what was 
wanting,-the key-note to the due and perfect evolution of the theory. 

Postscript. 

Immediately after leaving the foregoing matter in the hands of the printer, 
a most simple and complete proof has occurred to me of the theorem left 
undemonstrated in the text Cp. 610]. 

Suppose that we have any series of terms u" U z, U 3 ... Un, where 

ｾ＠ = A" U z= A,Az -1, U3 = A,AzA3 - A, - A3, &c. 

and in general 

then u" uz, u3 ... Un will be the successive principal coaxal determinants 
of a symmetrical matrix. Thus suppose n = 5; if we write down the matrix 

A" 1, 0, 0, 0, 

1, A2 , 1, 0, 0, 

0, 1, 11.3, 1, 0, 

0, 0, 1, A4, 1, 

0, 0, 0, 1, A5, 

(the mode of formation of which is self-apparent), these succeSSIve coaxal 
determinants will be 

1 1 A, 1\ A" 1 I A" 1, ° A" 1, 0, ° A" 1, 0, 0, ° 1, .A z 1, 11.2 , 1 1, Az, 1, ° 1, A 2 , 1, 0, ° 0, 1, 11.3 0, 1, A3, 1 0, 1, A3, 1, ° 0, 0, 1, A4 0, 0, 1, A4, 1 

0, 0, 
that is 

0, 1, 11.5 

1, A" A,A2 -1, 11.,11.211.3 - A, - 11.3, A,AzA3A4 - A,Az - 11.,11.4 - AaA4 + 1, 

A,A2AaA4A5 - A,AzA5 - 11.111.411.5 - A3A4A5 - A,AzA3 + 11.5 + A3 + A,. 

It is proper to introduce the unit because it is, in fact, the value of a deter-
minant of zero places, as I have observed elsewhere. Now I have demon-
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The Witt group W (R)

I Let R be a commutative ring. For simplicity assume 1/2 ∈ R.
I A symmetric form (F , ϕ) over R is a f.g. free R-module F

with a symmetric pairing

ϕ = ϕ∗ : F × F → R ; (x , y) 7→ ϕ(x , y) = ϕ(y , x).

I The form is nonsingular if the adjoint R-module morphism

ϕ : F → F ∗ = HomR(F ,R) ; x 7→ (y 7→ ϕ(x , y))

is an isomorphism, or equivalently det(ϕ) ∈ R•.
I A lagrangian of (F , ϕ) is a direct summand L ⊂ F such that

L⊥ = L, with L⊥ := ker(ϕ| : F → L∗). The hyperbolic form

H(L) = (L⊕ L∗,

(
0 1
1 0

)
) is nonsingular, with L a lagrangian.

I The Witt group W (R) is the abelian group of equivalence
classes of nonsingular symmetric forms (F , ϕ) over R, with
(F , ϕ) ∼ (F ′, ϕ′) if there exists an isomorphism

(F , ϕ)⊕ H(L) ∼= (F ′, ϕ′)⊕ H(L′) .



22

The linking Witt group W (R,S)

I Let R be a commutative ring, and S ⊂ R a multiplicative
subset of non-zero divisors with 1 ∈ S . The localization of R
inverting S is the ring of fractions

S−1R = {r/s | r ∈ R, s ∈ S} .

I A symmetric linking form (T , λ) over (R, S) is an h.d. 1
R-module T = coker(d : Rn → Rn) with det(d) ∈ S , and
with a symmetric pairing

λ = λ̂ : T × T → S−1R/R ; (x , y) 7→ λ(x , y) = λ(y , x)

I The linking form is nonsingular if the adjoint R-module
morphism

λ : T → T̂ = HomR(T ,S−1R/R) ; x 7→ (y 7→ λ(x , y))

is an isomorphism.
I The linking Witt group W (R, S) is defined by analogy with

W (R), but using exact sequences rather than direct sums.
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The localization exact sequence of Witt groups

I A symmetric form (F , ϕ) over R is S-nonsingular if
S−1(F , ϕ) is a nonsingular symmetric form over K .
Equivalently det(ϕ) ∈ R•S , and ϕ : F → F ∗ is injective.

I The boundary of (F , ϕ) is the nonsingular symmetric linking
form over (R, S)

∂(F , ϕ) = (coker(ϕ : F → F ∗), (f , g) 7→ f (ϕ−1(g)))

= (F#/F , (v/s,w/t) 7→ ϕ(v ,w)/st)

with F# = {v/s ∈ S−1F |ϕ(v) ∈ sF ∗ ⊂ F ∗}.
I Theorem (Milnor, Karoubi, Pardon, R. 1970’s) The Witt

groups of R and S−1R are related by an exact sequence

. . . // W (R) // W (S−1R)
∂ // W (R, S) // . . .

with ∂ : S−1(F , ϕ) 7→ ∂(F , ϕ). If R is a principal ideal domain
this is a split short exact sequence.
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The Witt group localization exact sequence for R = R[X ]

I Theorem (Milnor, 1970) The localization exact sequence for
the principal ideal domain R = R[X ] with fraction field
S−1R[X ] = R(X ) is

0 // W (R[X ]) = W (R) = Z // W (R(X )) = Z⊕ Z[R]⊕ Z2[H]

∂ // W (R[X ], S) =
⊕

P▹R[X ] prime

W (R[X ]/P) = Z[R]⊕ Z2[H] // 0

with H = {u + iv ∈ C |v > 0} the complex upper half plane.
I Isomorphism

Z⊕ Z[R]⊕ Z2[H]
∼= // W (R(X )) ;

(1, 0, 0) 7→ (R(X ), 1),

(0, x , 0) 7→ (R(X ),X − x),

(0, 0, u + iv) 7→ (R(X ), (X − u)2 + v2) .
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Signature differences

I Let P(X ) ∈ R[X ] be generic of degree n, with Sturm
sequences P∗(X ), Q∗(X ). For regular a ∈ R the composite

ϵ(a) : W (R(X ))
∂ // W (R[X ], S)

proj. // Z[R] eval. at a // Z

sends (R(X )n,Tri(Q∗(X ))) ∼=
n⊕

k=1

(R(X ),Pk−1(X )/Pk(X )) to
n∑

k=1

(τ(R,Pk−1(a)/Pk(a))

− lim
x→∞

(
τ(R,Pk−1(x)/Pk(x)) + τ(R,Pk−1(−x)/Pk(−x))

)
/2) ∈ Z .

I For any regular a < b ∈ R the morphism

ϵ(b)− ϵ(a) : W (R(X )) → Z

sends (R(X )n,Tri(Q∗(X ))) to
n∑

k=1

(τ(R,Pk−1(b)/Pk(b))− τ(R,Pk−1(a)/Pk(a))) ∈ Z .
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The Sturm-Sylvester Theorem via the Witt group

I A polynomial P(X ) ∈ R[X ] is a unit in R(X ), so Witt class
(R[X ],P(X )) ∈ W (R(X )) defined.

I Assume P(X ) is monic of degree n = 2r + s with r distinct
real roots and 2s distinct complex roots

P(X ) = (X − x1)(X − x2) . . . (X − xr )

((X − u1)
2 + v21 ) . . . ((X − us)

2 + v2s ) ∈ R[X ]

with Sturm sequences P∗(X ), Q∗(X ).
I The Ghys-R. paper gives detailed proofs that

(R(X )n,Tri(Q∗(X ))) = (−s,
r∑

j=1
1.xj ,

s∑
k=1

1.(uk + ivk))

∈ W (R(X )) = Z⊕ Z[R]⊕ Z2[H]

I For regular a < b ∈ R ϵ(b)− ϵ(a) : W (R(X )) → Z has image

(ϵ(b)− ϵ(a))(R(X )n,Tri(Q∗(X ))) = τ(Tri(Q∗(b)))− τ(Tri(Q∗(a)))

= 2#R-roots(P(X ); [a, b]) = 2 |{j | a < xj < b}| ∈ {0, 1, . . . , r} .
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Manifolds, intersections and linking

I An oriented 4-dimensional manifold with boundary (M, ∂M)
has an intersection symmetric form (F2(M), ϕ) over Z, with
F2(M) = H2(M)/torsion and

ϕ(N2
1 ⊂ M,N2

2 ⊂ M) = N1 ∩ N2 ∈ Z .

Nonsingular if H∗(∂M;Q) = H∗(S
3;Q).

I An oriented closed 3-dimensional manifold L has a symmetric
linking form (T1(L), λ) over (Z,Z\{0}), with
T1(L) = torsion(H1(L)) and

λ(K 1
1 ⊂ L,K 1

2 ⊂ L) = (δK1 ∩ K2)/s ∈ Q/Z

if δK 2
1 ⊂ L extends ∂δK1 =

∪
s
K1 ⊂ L for some s > 1.

I Linking (geometric ∂)= algebraic ∂ (intersection)
If L = ∂M then (T1(L), λ) = ∂(F2(M), ϕ) corresponding to
the exact sequence

0 // F2(M)
ϕ // F2(M)∗ // T1(L) // 0
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Why is ∂ : W (S−1R) → W (R, S) onto
for a principal ideal domain R?

I Every nonsingular symmetric linking form over (R,S) is a
direct sum of (R/(p1), p0/p1)’s, with p0, p1 ∈ R coprime.

I The Euclidean algorithm in R gives Sturm sequences
p = (p0, p1, . . . , pn) ∈ Sn+1, q = (q1, q2, . . . , qn) ∈ Rn

pkqk = pk−1 + pk+1 (1 6 k 6 n)

with pn = g.c.d.(p0, p1) ∈ R•, pn+1 = 0.
I Proposition (Wall 1964 for R = Z, Ghys-R. 2016) The Sturm

sequences lift (R/(p1), p0/p1) to S−1(Rn,Tri(q)), with

∂S−1(Rn,Tri(q)) = ∂(S−1R, p0/p1) = (R/(p1), p0/p1) ∈ W (R, S)

I Illustrated by the Hirzebruch-Milnor plumbing construction of
a 4-dimensional manifold M with boundary ∂M = L(c , a) a
lens space in the case R = Z, S−1R = Q – a topological proof
of the Sylvester Duality Theorem for integral symmetric forms.
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The lens spaces

I For any coprime a, c ∈ Z define the lens space

L(c, a) = S1 × D2 ∪A S1 × D2

using any b, d ∈ Z such that ad − bc = 1. Heegaard

decomposition, with A =

(
a b
c d

)
∈ SL2(Z) realized by

A : S1 × S1 → S1 × S1 ; (z ,w) 7→ (zawb, zcwd) .

I L(c, a) is a closed oriented 3-dimensional manifold with
symmetric linking form (H1(L(c , a)), λ) = (Zc , a/c).

I Surgery on S1 ×D2 ⊂ L(c , a) results in an oriented cobordism
(M(c , a); L(c, a), L(a, c)) with

M(c , a) = L(c, a)× I ∪ D2 × D2 ,

−L(a, c) = (L(c , a)\S1 × D2) ∪ D2 × S1 .

Symmetric intersection form (H2(M(c, a)), ϕ) = (Z, ac).
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Topological proof of the Sylvester Duality Theorem I.

I (Hirzebruch, 1962) For coprime c > a > 0 the Euclidean
algorithm for g.c.d.(a, c) = 1

p0 = c , p1 = a , . . . , pn = 1 , pn+1 = 0 ,

pkqk = pk−1 + pk+1 (1 6 k 6 n) .

determines an expression of the lens space L(c , a) = ∂M as
the boundary of an oriented 4-dimensional manifold M with
intersection form (H2(M), ϕ) = (Zn,Tri(q)).

I The continued fraction a/c = [q1, q2, . . . , qn] is realized
topologically by a sequence of oriented cobordisms

(M, ∂M) = (M1; L0, L1)∪(M2; L1, L2)∪· · ·∪(Mn∪D4; Ln−1, ∅)

with L0 = L(p0, p1) = L(c , a), Lk = L(pk , pk+1) = −L(pk , pk−1),

Ln = L(pn, pn+1) = L(1, 0) = S3 ,

Mk = trace of surgery on S1 × D2 ⊂ Lk−1 (1 6 k 6 n) .
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Topological proof of the Sylvester Duality Theorem II.

I

1

1

0

2

1 2 n -1 n
3

n

4

M

L L L L L = S

M M

U D

= L(c, a)

I M is obtained by glueing together the cobordisms
(Mk ; Lk−1, Lk) for k = 1, 2, . . . , n (An-plumbing) with

Lk−1 = L(pk−1, pk) , Mk = M(pk−1, pk)

(M, ∂M) = (M1; L0, L1) ∪ (M2; L1, L2) ∪ · · · ∪ (Mn ∪ D4; Ln−1, ∅) .

I Algebraic plumbing: construction of a tridiagonal symmetric
form (

⊕
n F ,Tri(q)) over a ring with involution R, using any

sequence {(F , qk) | 1 6 k 6 n} of symmetric forms over R.
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Topological proof of the Sylvester Duality Theorem III.

I The union Uk =
k∪

j=1
Mj has

(H2(Uk ;Q), ϕUk
) =

k⊕
j=1

(Q, pj−1pj) , τ(Uk) =
k∑

j=1

sign(pj/pj−1)

with pj = det(Tri(qj+1, . . . , qn)).

I The union Fk =
n∪

j=n−k+1

Mj has

(H2(Fk), ϕFk
) = (Zk ,Tri(q1, q2, . . . , qk)) ,

τ(Fk) =
k∑

j=1
sign(p∗j /p

∗
j−1) with p∗j = det(Tri(q1, q2, . . . , qj)) .

I It now follows from M = Un = Fn that

τ(M) = τ(Tri(q1, q2, . . . , qn))

=
n∑

j=1
sign(pj/pj−1) =

n∑
j=1

sign(p∗j /p
∗
j−1) .
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Generalized tridiagonal symmetric matrices I.

I Following book by J.Barge and J.Lannes “Suites de Sturm,
indice de Maslov et périodicité de Bott” (Birkhäuser, 2008)

I For a commutative ring R and k > 1 let Lagk(R) be the set
of f.g. free lagrangians L ⊂ Rk ⊕ Rk of the symplectic form

(Hk(R), Jk) = (Rk ⊕ Rk ,

(
0 Ik

−Ik 0

)
) .

I The symplectic group

Sp2k(R) = Aut(Hk(R), Jk) = {α ∈ GL2k(R) |α∗Jkα = Jk}
acts transitively on the lagrangians by

Sp2k(R)× Lagk(R) → Lagk(R) ; (α, L) 7→ α(L) .

I An algebraic path in Lagk(R) is an α ∈ Sp2k(R[X ]), starting
at α(0)(Rk ⊕ 0) and ending at α(1)(Rk ⊕ 0) ∈ Lagk(R).

I ΩLagk(R) ⊂ Sp2k(R[X ]) is the set of loops, the paths α with

α(0)(Rk ⊕ 0) = α(1)(Rk ⊕ 0) ∈ Lagk(R) .
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Generalized tridiagonal symmetric matrices II.

I A sequence q1, q2, . . . , qn of symmetric k × k matrices in
R[X ] determines an algebraic path in Lagk(R)

α = E (q1)E (q2) . . . ,E (qn) ∈ Sp2k(R[X ])

with each

E (qj) =

(
qj −Ik
Ik 0

)
an elementary symplectic matrix.

I The symmetric form (R[X ]nk ,Tri(q)) over R[X ] is defined by
the generalized tridiagonal symmetric matrix with

Tri(q) =


q1 Ik . . . 0
Ik q2 . . . 0
...

...
. . .

...
0 0 . . . qn

 .
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The Maslov index and Bott periodicity

I For any ℓ > 1 let Symℓ(R) be the pointed set of nonsingular
symmetric forms (Rℓ, ϕ) over R, based at (Rℓ, Iℓ).

I Theorem (Barge-Lannes, 2008) For a noetherian
commutative ring R with 1/2 ∈ R every algebraic loop
α ∈ ΩLagk(R) ⊂ Sp2k(R[X ]) is

α = E (q1)E (q2) . . .E (qn) ∈ Sp2k(R[X ]) (n large)

with (R[X ]nk ,Tri(q)) a symmetric form over R[X ] such that
the symmetric forms (Rnk ,Tri(q)(0)), (Rnk ,Tri(q)(1)) over R
are nonsingular. The Maslov index map

ΩLagk(R) → Sym2nk(R) ;

α 7→ Maslov(α) = (Rnk ,Tri(q)(1))⊕ (Rnk ,−Tri(q)(0))

induces the algebraic Bott periodicity isomorphism

lim−→
k

π1(Lagk(R))
∼= lim−→

ℓ

π0(Symℓ(R)) .
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The 1-dimensional case I.

I Every 1-dimensional subspace L ⊂ R⊕ R is a lagrangian in

H−(R) = (R⊕ R,
(

0 1
−1 0

)
) .

I The function

S1 → Lag1(R) = P(R2) = RP1 ; e2πix 7→ {(cosπx , sinπx)}

is a diffeomorphism, such that the image of S1\{1} ∼= R is
the contractible subspace

Lag1(R)0 = Lag1(R)\{R⊕ 0} ⊂ Lag1(R) .
I For generic P(X ) ∈ R[X ] with 0, 1 ∈ R regular the algebraic

path α = E (Q1(X ))E (Q2(X )) . . .E (Qn(X )) ∈ Sp2(R[X ])
given by the Sturm sequence corresponds to the actual path

α : [0, 1] → Lag1(R) ; x 7→ {(P(x),P ′(x))}

with α(0), α(1) ∈ Lag1(R)0,
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The 1-dimensional case II.

I For R = R signature gives a canonical surjection

lim−→
ℓ

π0(Symℓ(R)) → W (R) = Z ; S 7→ (τ(S)− ℓ)/2 .

I Theorem (Barge-Lannes, 2008) The degree of the topological
loop associated to P(X ) ∈ R[X ]

[α] : S1 = [0, 1]/{0, 1} → Lag1(R)/Lag1(R)0 ≃ S1 ;

e2πix 7→ {(P(x),P ′(x))} (0 6 x 6 1)

is the Maslov index of α.
I Proof

degree([α]) = |[α]−1{(0, 1)}| = #R-roots(P(X ); [0, 1])

= var(P0(0),P1(0), . . . ,Pn(0))− var(P0(1),P1(1), . . . ,Pn(1))

=
(
τ(Tri(Q)(1))− τ(Tri(Q)(0))

)
/2 = Maslov(α) ∈ W (R) = Z

(by Sturm and Sylvester).


