THE WORK OF C.T.C.WALL IN TOPOLOGY

ANDREW RANICKI

- 90+ papers, 2+ books
- Topics covered: cobordism groups, Steenrod algebra, homological algebra, manifolds of dimensions $3,4,\geq 5$, quadratic forms, finiteness obstruction, embeddings, bundles, Poincaré complexes, surgery obstruction theory, homology of groups, 2-dimensional complexes, topological space form problem, computations of K- and L-groups, ...
- MR 57Q12 <u>Wall finiteness obstruction for CW-complexes</u>
- MR 57R67 <u>Surgery obstructions</u>, <u>Wall groups</u>

Wall's manifold classifications

- 1. All manifolds at once
 - cobordism (1959-1961)
- 2. One manifold at a time
 - diffeomorphism (1962-1966)
- 3. Within a homotopy type
 - surgery (1967-1977)

Cobordism

• A <u>cobordism</u> between closed m-dimensional manifolds M,N is an (m+1)-dimensional manifold W with boundary $\partial W=M\cup N$

- \bullet Ω_m = abelian group of cobordism classes of oriented closed m-dimensional manifolds, addition by disjoint union
- $\Omega_* = \sum_{m=0}^{\infty} \Omega_m$ oriented cobordism ring, multiplication by cartesian product.

Computation of oriented cobordism

- Thom: expressed Ω_* as homotopy groups, computed $\Omega_* \otimes \mathbb{Q}$
 - no odd-primary torsion (Milnor).
- Wall: Determination of the cobordism ring Annals of Mathematics 72, 292–311 (1960)
- Calculation of 2-primary torsion.
- Theorem (Wall) Two oriented manifolds are cobordant if and only if they have the same Stiefel and Pontrjagin numbers
 - ultimate achievement of pioneering phase of cobordism theory.

Handles and surgery

 \bullet Given m-manifold M and $S^r\times D^{m-r}\subset M$ define elementary cobordism (W;M,N) by attaching an $(r+1)\text{-handle to }M\times I$

- $N=(M\backslash S^r\times D^{m-r})\cup D^{r+1}\times S^{m-r-1}$ manifold obtained from M by <u>surgery</u> on $S^r\times D^{m-r}\subset M$
- Handles are the building blocks of manifolds
 - need surgeries to attach handles

Structure of manifolds

- Every cobordism (W; M, N) is a union of elementary cobordisms.
- <u>h-cobordism</u> = cobordism (W; M, N) with $M \subset W$, $N \subset W$ homotopy equivalences
- <u>h-cobordism theorem</u> (Smale): every simply-connected h-cobordism with $\dim(W) \geq 6$ is diffeomorphic to $M \times (I; \{0\}, \{1\})$
 - needs Whitney trick for removing double points in dimensions > 4
 - <u>s-cobordism theorem</u> is non-simplyconnected version $\pi_1(W) \neq \{1\}$
 - possible rearrangements of handles governed by <u>algebraic K-theory</u>
 (Whitehead torsion)

Intersection form

- M = oriented 2n-dimensional manifold.
- ullet Intersection form: $(-)^n$ -symmetric pairing $H_n(M) imes H_n(M) o \mathbb{Z}$
- Isomorphism class of form is an oriented homotopy invariant.
- Signature defined for even n, an oriented cobordism invariant.
- The boundary of an (n-1)-connected 2n-dimensional manifold M with unimodular intersection form is a homotopy sphere $\partial M = \Sigma^{2n-1}$, with a potentially exotic differential structure for $n \geq 4$ (Milnor).

Classification of highly-connected manifolds

- Wall: Classification of (n-1)-connected 2n-manifolds Annals of Mathematics 75, 163-189 (1962)
- **Theorem** (Wall) For $n \geq 3$ the diffeomorphism classes of differentiable (n-1)-connected 2n-manifolds with boundary an exotic sphere = the isomorphism classes of \mathbb{Z} -valued $(-)^n$ -symmetric forms with a quadratic refinement in $\pi_n(BSO(n))$
- Classification of handlebodies by homotopy theory, subsequently generalized to other cases:
 - Wall: Classification problems in differential topology I–VI Topology, Inventiones Math. (1963–1967)

4-manifolds

- Simply-connected 4-manifolds are homotopy equivalent if and only if intersection forms are isomorphic (Milnor).
- Wall: On simply-connected 4-manifolds Journal LMS 39, 141–149 (1964)
- **Theorem** (Wall) Simply-connected 4-manifolds are *h*-cobordant if and only if intersection forms are isomorphic.
- **Theorem** (Wall) h-cobordant simply-connected 4-manifolds M,N are stably diffeomorphic

$$M \# \# S^2 \times S^2 \cong N \# \# S^2 \times S^2$$

for some $k \ge 0$. # = connected sum

CW complexes

- ullet X space, $f:S^r \to X$ map
- $X \cup_f D^{r+1} = \text{space obtained from } X \text{ by}$ attaching an (r+1)-cell

- \underline{CW} complex = space obtained from \emptyset by attaching cells
- When is a space homotopy equivalent to a finite CW complex?

Finite domination

- A space X is <u>finitely dominated</u> if it is a homotopy retract of a finite CW complex K, i.e. if there exist maps $f: X \to K$, $g: K \to X$ and a homotopy $gf \simeq 1: X \to X$.
- Is a finitely dominated space homotopy equivalent to a finite CW complex?
- Every compact ANR, e.g. a topological manifold, is finitely dominated (Borsuk).
- A finite group π with cohomology of period q acts freely on an infinite CW complex Y homotopy equivalent to S^{q-1} , with Y/π finitely dominated (Swan).

Finiteness obstruction

- Wall: **Finiteness conditions for** *CW***-complexes** Annals of Mathematics 81, 56–89 (1965)
- Wall finiteness obstruction $[X] \in \widetilde{K}_0(\mathbb{Z}[\pi_1(X)])$ of finitely dominated space X
 - fundamental algebraic invariant of noncompact topology.
- Theorem (Wall) X is homotopy equivalent to finite CW complex if and only if [X] = 0
- Many applications to topology of manifolds
 - Siebenmann end obstruction for closing tame ends of open manifolds
 - Topologically stratified sets

The surgery method

- Standard method for classifying manifolds within a homotopy type.
- An m-dimensional manifold M has Poincaré duality $H^{m-*}(M) \cong H_*(M)$.
- Is a space X with m-dimensional Poincaré duality $H^{m-*}(X) \cong H_*(X)$ homotopy equivalent to an m-dimensional manifold?
- Is a homotopy equivalence of manifolds homotopic to a diffeomorphism?
 - relative version of previous question
- Formulation by Browder, Novikov, Sullivan in terms of <u>normal maps</u> $(f,b): M \to X$ from manifolds to Poincaré duality spaces, with f degree 1 and b a bundle map.

Wall surgery theory

- Wall: Surgery on compact manifolds
 LMS Monograph 1, Academic Press (1970)
 - the surgeon's bible
 - <u>algebraic L-groups</u> $L_*(\mathbb{Z}[\pi])$ of group ring $\mathbb{Z}[\pi] =$ quadratic algebraic K-groups
 - surgery obstruction of normal map (f,b) : $M \to X$

$$\sigma_*(f,b) \in L_m(\mathbb{Z}[\pi_1(X)])$$

• **Theorem** (Wall) For $m \geq 5$ an m-dimensional Poincaré duality space X is homotopy equivalent to an m-dimensional manifold if and only if there exists a normal map (f, b): $M \rightarrow X$ with $\sigma_*(f, b) = 0$.

Properties of Wall groups $L_m(\mathbb{Z}[\pi])$

- ullet Quadratic forms over $\mathbb{Z}[\pi]$ for m even
- Automorphisms of forms for m odd
- \bullet Govern existence and effects of surgeries on m-dimensional manifolds with fundamental group π
- ullet Computations for <u>finite</u> π using algebra
 - Wall: Classification of Hermitian Forms
 I-VI, (Compositio Math., Inventiones
 Math., Annals of Maths. 1970–1976)
- Computations for <u>infinite</u> π using topology
- Many, many applications to both algebra and topology

The topological space form problem

- Wall: The topological space-form problem, pp 319-351 in Topology of manifolds, Markham, 1970
- Wall: Free actions of finite groups on spheres, pp 115-124 in Proc Symp in Pure Math 32, AMS 1978
- +3 further papers (with Madsen and Thomas)
- Complete classification of finite groups π which have a free topological action on S^m for $m \geq 5$, using:
 - group cohomology
 - homotopy theory
 - algebraic K- and L-theory of $\mathbb{Z}[\pi]$.

PL structures on tori

- Wall: On homotopy tori and the annulus theorem Bulletin LMS 1, 95–97 (1969)
- Uses geometric computation of $L_*(\mathbb{Z}[\mathbb{Z}^m])$ to classify PL manifolds homotopy equivalent to m-torus T^m for $m \geq 5$
- Applied by Kirby to prove the <u>annulus theorem</u> for $m \geq 5$: if $D^m \subset \operatorname{int}(D^m)$ is an embedding then $D^m \setminus \operatorname{int}(D^m)$ is homeomorphic to $S^{m-1} \times I$
- ullet Crucial ingredient of Kirby-Siebenmann handlebody theory of topological manifolds of dimension ≥ 5
- Now know as much about <u>topological</u> manifolds as about differentiable manifolds.