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Sylvester’s Law of Inertia

I A demonstration of the theorem that every homogeneous quadratic
polynomial is reducible by real orthogonal substitutions to the form of a
sum of positive and negative squares.
Philosophical Magazine IV, 138–142 (1852)

I

http://www.maths.ed.ac.uk/~aar/sylv/inertia.pdf
http://www.maths.ed.ac.uk/~aar/sylv/inertia.pdf
http://www.maths.ed.ac.uk/~aar/sylv/inertia.pdf
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Symmetric and symplectic forms over R

I Let ε = +1 or −1.
I An ε-symmetric form (K , φ) is a finite dimensional real vector space

K together with a bilinear pairing

φ : K × K → R ; (x , y) 7→ φ(x , y)

such that
φ(x , y) = εφ(y , x) ∈ R .

I The pairing φ can be identified with the adjoint linear map to the dual
vector space

φ : K → K ∗ = HomR(K ,R) ; x 7→ (y 7→ φ(x , y))

such that φ∗ = εφ.
I The form (K , φ) is nonsingular if φ : K → K ∗ is an isomorphism.
I A 1-symmetric form is called symmetric.
I A (−1)-symmetric form is called symplectic.
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Lagrangians and hyperbolic forms I.

I Definition A lagrangian of a nonsingular form (K , φ) is a subspace
L ⊂ K such that L = L⊥, that is

L = {x ∈ K |φ(x , y) = 0 for all y ∈ L} .

I Definition The hyperbolic ε-symmetric form is defined for any
finite-dimensional real vector space L by

Hε(L) = (L⊕ L∗, φ =

(
0 1
ε 0

)
) ,

φ : L⊕ L∗ × L⊕ L∗ → R ; ((x , f ), (y , g)) 7→ g(x) + εf (y)

with lagrangian L.

I The graph of a (−ε)-symmetric form (L, λ) is the lagrangian of Hε(L)

Γ(L,λ) = {(x , λ(x)) | x ∈ L} ⊂ L⊕ L∗ .
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Lagrangians and hyperbolic forms II.

I Proposition The inclusion L→ K of a lagrangian in a nonsingular
ε-symmetric form (K , φ) extends to an isomorphism

Hε(L)
∼= // (K , φ) .

I Example For any nonsingular ε-symmetric form (K , φ) the inclusion of
the diagonal lagrangian in (K , φ)⊕ (K ,−φ)

∆ : K → K ⊕ K ; x 7→ (x , x)

extends to the isomorphism1
−φ−1

2

1
φ−1

2

 : Hε(K )
∼= // (K , φ)⊕ (K ,−φ) .
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The classification of symmetric forms over R

I Proposition Every symmetric form (K , φ) is isomorphic to⊕
p

(R, 1)⊕
⊕
q

(R,−1)⊕
⊕
r

(R, 0)

with p + q + r = dimR(K ). Nonsingular if and only if r = 0.

I Two forms are isomorphic if and only if they have the same p, q, r .

I Definition The signature (or the index of inertia) of (K , φ) is

σ(K , φ) = p − q ∈ Z .

I Proposition The following conditions on a nonsingular form (K , φ) are
equivalent:

I σ(K , φ) = 0, that is p = q,
I (K , φ) admits a lagrangian L,
I (K , φ) is isomorphic to

⊕
p

(R, 1)⊕
⊕
p

(R,−1) ∼= H+(Rp).
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The classification of symplectic forms over R

I Theorem Every symplectic form (K , φ) is isomorphic to

H−(Rp)⊕
⊕
r

(R, 0)

with 2p + r = dimR(K ). Nonsingular if and only if r = 0.
I Two forms are isomorphic if and only if they have the same p, r .
I Proposition Every nonsingular symplectic form (K , φ) admits a

lagrangian.
I Proof By induction on dimR(K ).

For every x ∈ K have φ(x , x) = 0. If x 6= 0 ∈ K the linear map

K → R ; y 7→ φ(x , y)

is onto, so there exists y ∈ K with φ(x , y) = 1 ∈ R. The subform
(Rx ⊕ Ry , φ|) is isomorphic to H−(R), and

(K , φ) ∼= H−(R)⊕ (K ′, φ′)

with dimR(K ′) = dimR(K )− 2.
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Poincaré duality

I H.P. Analysis Situs and its Five Supplements (1892–1904)
(English translation by John Stillwell, 2009)

I

http://www.maths.ed.ac.uk/~aar/papers/poincare2009.pdf
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The (−)n-symmetric form of a 2n-dimensional manifold

I Manifolds will be oriented.
I Homology and cohomology will be with R-coefficients.
I The intersection form of a 2n-dimensional manifold with boundary

(M, ∂M) is the (−)n-symmetric form given by the evaluation of the cup
product on the fundamental class [M] ∈ H2n(M, ∂M)

(Hn(M, ∂M) , φM : (x , y) 7→ 〈x ∪ y , [M]〉 ) .

I By Poincaré duality and universal coefficient isomorphisms

Hn(M, ∂M) ∼= Hn(M) , Hn(M, ∂M) ∼= Hn(M, ∂M)∗

the adjoint linear map φM fits into an exact sequence

. . . // Hn(∂M) // Hn(M)
φM // Hn(M, ∂M) // Hn−1(∂M) // . . . .

I The isomorphism class of the form is a homotopy invariant of (M, ∂M).
I If M is closed, ∂M = ∅, then (Hn(M, ∂M), φM) is nonsingular.
I The intersection form of Sn × Sn is H(−)n(R).
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The lagrangian of a (2n + 1)-dimensional manifold with boundary

I Proposition If (N2n+1,M2n) is a (2n + 1)-dimensional manifold with
boundary then

L = ker(Hn(M)→ Hn(N)) = im(Hn(N)→ Hn(M)) ⊂ Hn(M)

is a lagrangian of the (−)n-symmetric intersection form (Hn(M), φM).

I Proof Consider the commutative diagram

Hn(N) //

∼=
��

Hn(M) //

∼=φM
��

Hn+1(N,M)

∼=
��

Hn+1(N,M) // Hn(M) // Hn(N)

with Hn(N) ∼= Hn+1(N,M), Hn+1(N,M) ∼= Hn(N) the
Poincaré-Lefschetz duality isomorphisms.
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The signature of a manifold I.

I Analisis situs combinatorio
H.Weyl, Rev. Mat. Hispano-Americana 5, 390–432 (1923)

I

I Published in Spanish in South America to spare the author
the shame of being regarded as a topologist.

http://www.maths.ed.ac.uk/~aar/papers/weyl.pdf
http://www.maths.ed.ac.uk/~aar/papers/beno.pdf
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The signature of a manifold II.

I The signature of a 4k-dimensional manifold with boundary (M, ∂M) is

σ(M) = σ(H2k(M, ∂M), φM) ∈ Z .

I Theorem (Thom, 1954) If a 4k-dimensional manifold M is the
boundary M = ∂N of a (4k + 1)-dimensional manifold N then

σ(M) = σ(H2k(M), φM) = 0 ∈ Z .

Cobordant manifolds have the same signature.

I The signature map σ : Ω4k → Z is onto for k > 1, with
σ(CP2k) = 1 ∈ Z. Isomorphism for k = 1.
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Novikov additivity of the signature

I Let M4k be a closed 4k-dimensional manifold which is a union of
4k-dimensional manifolds with boundary M1,M2

M4k = M1 ∪M2

with intersection a separating hypersurface

(M1 ∩M2)4k−1 = ∂M1 = ∂M2 ⊂ M .

M1 \M2

M1 M2

1

I Theorem (N., 1967) The union has signature

σ(M) = σ(M1) + σ(M2) ∈ Z .
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Formations

I Definition An ε-symmetric formation (K , φ; L1, L2) is a nonsingular
ε-symmetric form (K , φ) with an ordered pair of lagrangians L1, L2.

I Example The boundary of a (−ε)-symmetric form (L, λ) is the
ε-symmetric formation

∂(L, λ) = (Hε(L); L, Γ(L,λ))

with Γ(L,λ) = {(x , λ(x)) | x ∈ L} the graph lagrangian of Hε(L).
I Definition (i) An isomorphism of ε-symmetric formations

f : (K , φ; L1, L2)→ (K ′, φ′; L′1, L
′
2) is an isomorphism of forms

f : (K , φ)→ (K ′, φ′) such that f (L1) = L′1, f (L2) = L′2.
I (ii) A stable isomorphism of ε-symmetric formations

[f ] : (K , φ; L1, L2)→ (K ′, φ′; L′1, L
′
2) is an isomorphism of the type

f : (K , φ; L1, L2)⊕ (Hε(L); L, L∗)→ (K ′, φ′; L′1, L
′
2)⊕ (Hε(L

′); L′, L′
∗
) .

I Two formations are stably isomorphic if and only if

dimR(L1 ∩ L2) = dimR(L′1 ∩ L′2) .
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Formations and automorphisms of forms

I Proposition Given a nonsingular ε-symmetric form (K , φ), a lagrangian
L, and an automorphism α : (K , φ)→ (K , φ) there is defined an
ε-symmetric formation (K , φ; L, α(L)).

I Proposition For any formation (K , φ; L1, L2) there exists an
automorphism α : (K , φ)→ (K , φ) such that α(L1) = L2.

I Proof The inclusions (Li , 0)→ (K , φ) (i = 1, 2) extend to
isomorphisms fi : Hε(Li ) ∼= (K , φ). Since

dimR(L1) = dimR(H)/2 = dimR(L2)

there exists an isomorphism g : L1 ∼= L2. The composite automorphism

α : (K , φ) ∼=
f −11 // Hε(L1) ∼=

h // Hε(L2) ∼=
f2 // (K , φ)

is such that α(L1) = L2, where

h =

(
g 0
0 (g∗)−1

)
: Hε(L1)

∼= // Hε(L2) .



16

The (−)n-symmetric formation of a (2n + 1)-dimensional manifold

I Proposition Let N2n+1 be a closed (2n + 1)-dimensional manifold.

M

N1 N2

1

A separating hypersurface M2n ⊂ N = N1 ∪M N2 determines a
(−)n-symmetric formation

(K , φ; L1, L2)=(Hn(M), φM ; im(Hn(N1)→Hn(M)), im(Hn(N2)→Hn(M)))

If Hr (M)→ Hr (N1)⊕ Hr (N2) is onto for r = n + 1 and one-one for
r = n − 1 then

L1∩L2 = Hn(N) = Hn+1(N) , H/(L1+L2) = Hn+1(N) = Hn(N) .

I The stable isomorphism class of the formation is a homotopy invariant
of N. If N = ∂P for some P2n+2 the class includes ∂(Hn+1(P), φP).
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The triple signature

I Definition (Wall 1969) The triple signature of lagrangians L1, L2, L3
in a nonsingular symplectic form (K , φ) is

σ(L1, L2, L3) = σ(L123, λ123) ∈ Z

with (L123, λ123) the symmetric form defined by

L123 = ker(L1 ⊕ L2 ⊕ L3 // K ) ,

λ123 = λ∗123 =

 0 λ12 λ13
λ21 0 λ23
λ31 λ32 0

 : K // K ∗ ,

λij = λ∗ji : Lj // K
φ // K ∗ // L∗i .

I Motivation A stable isomorphism of formations

[f ] : (K , φ; L1, L2)⊕ (K , φ; L2, L3)⊕ (K , φ; L3, L1)→ ∂(L123, λ123)
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Wall non-additivity for M4k = M1 ∪M2 ∪M3 I.

I Let M4k be a closed 4k-dimensional manifold which is a triple union

M4k = M1 ∪M2 ∪M3

of 4k-dimensional manifolds with boundary M1,M2,M3 such that the
double intersections M4k−1

ij = Mi ∩Mj (1 6 i < j 6 3) are codimension

1 submanifolds of M. The triple intersection M4k−2
123 = M1 ∩M2 ∩M3 is

required to be a codimension 2 submanifold of M, with

∂M1 = ∂(M2 ∪M23 M3) = M12 ∪M123 M13 etc.

;

;;

M2M1

M3

M123

M12

M23M13

M = M1 [M2 [M3

1
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Wall non-additivity for M4k = M1 ∪M2 ∪M3 II.

I Theorem (W. Non-additivity of the signature, Invent. Math. 7,
269–274 (1969))
The signature of a triple union M = M1 ∪M2 ∪M3 of 4k-dimensional
manifolds with boundary is

σ(M) = σ(M1) + σ(M2) + σ(M3) + σ(L1, L2, L3) ∈ Z

with σ(L1, L2, L3) the triple signature of the three lagrangians

Li = im(H2k(Mjk ,M123)→ K ) ⊂ K = H2k−1(M123)

in the symplectic intersection form of M123

(K , φ) = (H2k−1(M123), φM123) .

http://www.maths.ed.ac.uk/~aar/papers/wall6.pdf
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Wall non-additivity for M4k = M1 ∪M2 ∪M3 III.

I Idea of proof σ(L1, L2, L3) = σ(N) ∈ Z is the signature of a manifold
neighbourhood (N4k , ∂N) of M12 ∪M13 ∪M13 ⊂ M

N = (M12 ∪M23 ∪M13)× D1 ∪ (M123 × D2) .

M
0

2
M

0

1

M
0

3

M123 �D
2

M12 �D
1

M23 �D
1

M13 �D
1

1
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The space of lagrangians Λ(n)

I Definition For n > 1 let Λ(n) be the spaces of lagrangians
L ⊂ H−(Rn).

I Use the complex structure on H−(Rn)

J : Rn ⊕ Rn → Rn ⊕ Rn ; (x , y) 7→ (−y , x)

to associate to every lagrangian L ∈ Λ(n) a canonical complement
JL ∈ Λ(n) with L⊕ JL = Rn ⊕ Rn.

I For every L ∈ Λ(n) there exists a unitary matrix A ∈ U(n) such that

A(Rn ⊕ {0}) = L ∈ Λ(n) .

If A′ ∈ U(n) is another such unitary matrix then

(A′)−1A =

(
B 0
0 Bt

)
(B ∈ O(n))

with (bjk)t = (bkj) the transpose.
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Maslov index : π1(Λ(n)) ∼= Z

I Proposition (Arnold, 1967) (i) The function

U(n)/O(n)→ Λ(n) : A 7→ A(Rn ⊕ {0})

is a diffeomorphism. Λ(n) is a compact manifold of dimension

dim Λ(n) = dimU(n)− dimO(n) = n2 − n(n − 1)

2
=

n(n + 1)

2
.

The graphs {Γ(Rn,φ) |φ∗ = φ} ⊂ Λ(n) define a chart at Rn ∈ Λ(n).
I (ii) The square of the determinant function

det2 : Λ(n)→ S1 ; L = A(Rn ⊕ {0}) 7→ det(A)2

induces the Maslov index isomorphism

det2 : π1(Λ(n))
∼= // π1(S1) = Z .

I Proposition (Kashiwara and Schapira, 1992) The triple signature
σ(L1, L2, L3) ∈ Z of L1, L2, L3 ∈ Λ(n) is the Maslov index of a loop
S1 → Λ(n) passing through L1, L2, L3.
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The algebraic η-invariant

I Definition/Proposition (Atiyah-Patodi-Singer 1974,
Cappell-Lee-Miller 1994, Bunke 1995)
(i) The algebraic η-invariant of L1, L2 ∈ Λ(n) is

η(L1, L2) =
n∑

j=1,θj 6=0

(1− 2θj/π) ∈ R

with θ1, θ2, . . . , θn ∈ [0, π) such that ±e iθ1 ,±e iθ2 , . . . ,±e iθn are the
eigenvalues of any A ∈ U(n) with A(L1) = L2.

I (ii) The algebraic η-invariant is a cocycle for the triple index of
L1, L2, L3 ∈ Λ(n)

σ(L1, L2, L3) = η(L1, L2) + η(L2, L3) + η(L3, L1) ∈ Z ⊂ R .
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The real signature I.

I Let M be a 4k-dimensional manifold with a decomposed boundary
∂M = N1 ∪P N2, where P ⊂ ∂M is a separating codimension 1
submanifold. Let (H2k−1(P), φP) be the nonsingular symplectic
intersection form, and n = dimR(H2k−1(P))/2.

I Given a choice of isomorphism

J : (H2k−1(P), φP) ∼= H−(Rn)

(or just a complex structure on (H2k−1(P), φP)) define the real
signature

σJ(M,N1,N2,P) = σ(M) + η(L1, L2) ∈ R

using the lagrangians

Lj = ker(H2k−1(P)→ H2k−1(Nj)) ⊂ (H2k−1(P), φP) .

I Proposition The real signature is additive

σJ(M ∪N2 M
′;N1,N3,P) = σJ(M;N1,N2,P) + σJ(M ′;N2,N3,P) ∈ R .
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The real signature II.

I Proof Apply the Wall non-additivity formula to the union

M ∪M ′ ∪ −(M ∪N2 M
′) = ∂((M ∪N2 M

′)× I ) ,

which is an (un)twisted double with signature σ = 0.
;

;;

M
0M

M [N2
M

0

P

N2

N3N1

1

I Note Analogue of the additivity of
∫
M L-genus = σ(M) + η(∂M) ∈ R

in the Atiyah-Patodi-Singer signature theorem.
I Note In general σJ(M;N1,N2,P) ∈ R depends on the choice of

complex structure J on (H2k−1(P), φP).
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Real and complex vector bundles

I In view of the fibration

Λ(n) = U(n)/O(n)→ BO(n)→ BU(n)

Λ(n) classifies real n-plane bundles β with a trivialisation
δβ : C⊗ β ∼= εn of the complex n-plane bundle C⊗ β.

I The canonical real n-plane bundle γ over Λ(n) is

E (γ) = {(L, x) | L ∈ Λ(n), x ∈ L} .

The complex n-plane bundle C⊗ γ

E (C⊗ γ) = {(L, z) | L ∈ Λ(n), z ∈ C⊗R L}

is equipped with the canonical trivialisation δγ : C⊗ γ ∼= εn defined by

δγ : E (C⊗ γ)
∼= // E (εn) = Λ(n)× Cn ;

(L, z) 7→ (L, (x , y)) if z = (x , y) = x + iy ∈ C⊗R L = L⊕ JL = Cn .
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The Maslov index, whichever way you slice it! I.

I The lagrangians L ∈ Λ(1) are parametrized by θ ∈ R

L(θ) = {(rcos θ, rsin θ) | r ∈ R} ⊂ R⊕ R

with indeterminacy L(θ) = L(θ + π). The map

det2 : Λ(1) = U(1)/O(1)→ S1 ; L(θ) 7→ e2iθ

is a diffeomorphism.
I The canonical R-bundle γ over Λ(1)

E (γ) = {(L, x) | L ∈ Λ(1) , x ∈ L}
is nontrivial = infinite Möbius band. The induced C-bundle over Λ(1)

E (C⊗R γ) = {(L, z) | L ∈ Λ(1) , z ∈ C⊗R L}
is equipped with the canonical trivialisation δγ : C⊗R γ ∼= ε defined by

δγ : E (C⊗R γ)
∼= // E (ε) = Λ(1)× C ;

(L, z) = (L(θ), (x + iy)(cos θ, sin θ)) 7→ (L(θ), (x + iy)e iθ) .
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The Maslov index, whichever way you slice it! II.

I Given a bagel B = S1 × D2 ⊂ R3 and a map λ : S1 → Λ(1) = S1 slice
B along

C = {(x , y) ∈ B | y ∈ λ(x)} .
I The slicing line (x , λ(x)) ⊂ B is the fibre over x ∈ S1 of the pullback

[−1, 1]-bundle
[−1, 1]→ C = D(λ∗γ)→ S1

with boundary (where the knife goes in and out of the bagel)

∂C = {(x , y) ∈ C | y ∈ ∂λ(x)}
a double cover of S1. There are two cases:

I C is a trivial [−1, 1]-bundle over S1 (i.e. an annulus), with ∂C two
disjoint circles, which are linked in R3. The complement B\C has two
components, with the same linking number.

I C is a non trivial [−1, 1]-bundle over S1 (i.e. a Möbius band), with ∂C a
single circle, which is self-linked in R3. The complement B\C is
connected, with the same self-linking number (= linking of ∂C and
S1 × {(0, 0)} ⊂ C ⊂ R3).
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The Maslov index, whichever way you slice it! III.

I By definition, Maslov index(λ) = degree(λ) ∈ Z.
I degree : π1(S1)→ Z is an isomorphism, so it may be assumed that

λ : S1 → Λ(1) ; e2iθ 7→ L(nθ)

with Maslov index = n > 0. The knife is turned through a total angle
nπ as it goes round B. It may also be assumed that the bagel B is
horizontal. The projection of ∂C onto the horizontal cross-section of B
consists of n = |λ−1(L(0))| points. For n > 0 this corresponds to the
angles θ = jπ/n ∈ [0, π) (0 6 j 6 n − 1) where L(nθ) = L(0), i.e.
sin nθ = 0.

I The two cases are distinguished by:
I If n = 2k then ∂C is a union of two disjoint linked circles in R3. Each

successive pair of points in the projection contributes 1 to the linking
number n/2 = k.

I If n = 2k + 1 then ∂C is a single self-linked circle in R3. Each point in
the projection contributes 1 to the self-linking number n = 2k + 1.
(Thanks to Laurent Bartholdi for explaining this case to me.)
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Maslov index = 0 , C = annulus , linking number = 0

λ : S1 → S1 ; z 7→ 1 .
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Maslov index = 1 , C = Möbius band , self-linking number = 1

(Clara Löh (05/2009) clara.loeh@uni-muenster.de)
λ : S1 → S1 ; z 7→ z .

Thanks to Clara Löh for this picture.
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Maslov index = 2 , C = annulus , linking number = 1

λ : S1 → S1 ; z 7→ z2 .

http://www.georgehart.com/bagel/bagel.html

http://www.georgehart.com/bagel/bagel.html

