DOUBLE POINTS

Andrew Ranicki (Edinburgh)

Münster, 28th June, 2006

Grik Kjaer Redersen

Ian Hampleton

Homology classes

- ▶ Algebraic topologists have studied the homology classes represented by submanifolds $N^n \subset M^m$ and their intersections from the beginnings of the subject. So what is there to add?
- ► Theorem (Wall, 1966) The double points of an immersion $f: S^n \hookrightarrow M^{2n}$ are counted by an element

$$\mu(f) \in H_0(\mathbb{Z}_2; \mathbb{Z}[\pi_1(M)], (-)^n) = \frac{\mathbb{Z}[\pi_1(M)]}{\{g - (-)^n g^{-1} \mid g \in \pi_1(M)\}}$$

such that $\mu(f) = 0$ if (and for $n \ge 3$ only if) f is regular homotopic to an embedding.

Traditional algebraic topology methods do not deal with μ. So surgery theory requires a better understanding of the algebraic topology of self-intersections.

The double point set $D(f_1, f_2)$

▶ The double point set of maps $f_1: N_1 \to M$, $f_2: N_2 \to M$ is

 $D(f_1, f_2) = \{(x_1, x_2) \in N_1 \times N_2 \mid f_1(x_1) = f_2(x_2) \in M\}$, the pullback in the diagram

$$D(f_1, f_2) \xrightarrow{h} N_1 \times N_2$$

$$g \downarrow \qquad \qquad \downarrow f_1 \times f_2$$

$$M \xrightarrow{\Delta} M \times M$$

with

$$\Delta : M \hookrightarrow M \times M ; x \mapsto (x, x) ,$$
 $g : D(f_1, f_2) \to M ; (x_1, x_2) \mapsto f_1(x_1) = f_2(x_2) ,$
 $h : D(f_1, f_2) \hookrightarrow N_1 \times N_2 ; (x_1, x_2) \mapsto (x_1, x_2) .$

• $f_1(N_1), f_2(N_2) \subseteq M$ are disjoint if and only if $D(f_1, f_2) = \emptyset$.

The double point classes of immersions

- Manifolds are assumed to be oriented, unless specified otherwise!
- ▶ An *m*-dimensional manifold M has a fundamental class $[M] \in H_m(M)$, and Poincaré duality isomorphisms

$$[M] \cap - : H^{m-*}(M) \xrightarrow{\cong} H_*(M) ; x \mapsto [M] \cap x .$$

- ▶ A map of manifolds $f: \mathbb{N}^n \to \mathbb{M}^m$ represents a homology class $f[\mathbb{N}] \in H_n(\mathbb{M})$, with Poincaré dual $f[\mathbb{N}]^* \in H^{m-n}(\mathbb{M})$.
- ▶ If $f_1: (N_1)^{n_1} \hookrightarrow M^m$, $f_2: (N_2)^{n_2} \hookrightarrow M^m$ are transverse immersions the double point set $D(f_1, f_2)$ is an oriented $(n_1 + n_2 m)$ -dimensional submanifold of $N_1 \times N_2$.
- ► The immersion and embedding

$$g: D(f_1, f_2)^{n_1+n_2-m} \hookrightarrow M$$
, $h: D(f_1, f_2)^{n_1+n_2-m} \hookrightarrow N_1 \times N_2$ represent the double point classes

$$g[D(f_1, f_2)] \in H_{n_1+n_2-m}(M), h[D(f_1, f_2)] \in H_{n_1+n_2-m}(N_1 \times N_2).$$

The Thom space

▶ An oriented k-plane bundle $\nu: X \to BSO(k)$ has a (D^k, S^{k-1}) -bundle

$$(D^k, S^{k-1}) \rightarrow (B(\nu), S(\nu)) \rightarrow X$$
.

 \blacktriangleright The Thom space of ν is the pointed space

$$T(\nu) = B(\nu)/S(\nu)$$
.

Cap product with the Thom class $U_{\nu} \in \dot{H}^k(T(\nu))$ defines a chain equivalence

$$U_{\nu} \cap - : \dot{C}(T(\nu)) \simeq C(X)_{*-k}$$
.

▶ Example For the trivial k-plane bundle $\epsilon^k: X \to BSO(k)$

$$T(\epsilon^k) = (D^k \times X)/(S^{k-1} \times X) = \Sigma^k X^+$$
 with $X^+ = X \cup \{+\}$.

Normal bundles

▶ An immersion $f: N^n \hookrightarrow M^m$ has a normal bundle $\nu_f: N \to BSO(m-n)$ such that

$$f^*\tau_M = \tau_N \oplus \nu_f : N \to BSO(m)$$
,

with a codimension 0 immersion $B(\nu_f) \hookrightarrow M$ extending f.

▶ For transverse $f_1: (N_1)^{n_1} \hookrightarrow M^m$, $f_2: (N_2)^{n_2} \hookrightarrow M^m$ the normal bundle of $g: D(f_1, f_2)^{n_1+n_2-m} \hookrightarrow M$ is

$$\nu_g = h^*(\nu_{f_1} \times \nu_{f_2}) : D(f_1, f_2) \xrightarrow{h}$$

$$N_1 \times N_2 \xrightarrow{\nu_{f_1} \times \nu_{f_2}} BSO(2m - n_1 - n_2) .$$

▶ The normal bundle of $h: D(f_1, f_2) \hookrightarrow N_1 \times N_2$ is

$$\nu_h = g^* \tau_M : D(f_1, f_2) \xrightarrow{g} M \xrightarrow{\tau_M} BSO(m) .$$

The Umkehr map I.

▶ The Umkehr of a map $f: N^n \to M^m$ is the chain map

$$f^!: C(M) \simeq C(M)^{m-*} \xrightarrow{f^*} C(N)^{m-*} \simeq C(N)_{*-m+n}$$

such that

$$(f^!)^*(1_N) = f[N]^* \in H^{m-n}(M), f^![M] = [N] \in H_n(N).$$

▶ Given an embedding $f: N^n \hookrightarrow M^m$ use the tubular neighbourhood $B(\nu_f) \hookrightarrow M$ and the Pontrjagin-Thom construction to define the geometric Umkehr map

$$F: M^+ \to M/(M-B(\nu_f)) = B(\nu_f)/S(\nu_f) = T(\nu_f)$$
 inducing the Umkehr chain map

$$f^!$$
 : $\dot{C}(M^+) = C(M) \rightarrow \dot{C}(T(\nu_f)) \simeq C(N)_{*-m+n}$.

The Umkehr map II.

▶ Every immersion $f: N^n \hookrightarrow M^m$ can be approximated by an embedding

$$(e, f) : N \hookrightarrow D^k \times M ; x \mapsto (e(x), f(x))$$

for some $k \ge 2n - m + 1$, $e: N \to D^k$, with

$$u_{(e,f)} = \nu_f \oplus \epsilon^k : N \to BSO(m-n+k).$$

The embedding (e, f) is regular homotopic to (0, f).

▶ The geometric Umkehr of f is the geometric Umkehr of (e, f)

$$F \ : \ (D^k \times M)/(S^{k-1} \times M) = \Sigma^k M^+ \to T(\nu_{(e,f)}) = \Sigma^k T(\nu_f) \,,$$

a stable map inducing the Umkehr chain map

$$F = f^! : \dot{C}(\Sigma^k M^+) \simeq C(M)_{*-k} \to \dot{C}(\Sigma^k T(\nu_f)) \simeq C(N)_{*-m+n-k} .$$

Capturing $[D(f_1, f_2)]$ by homology I.

- Proposition (Modern version of Lefschetz, 1930) The double point classes of transverse immersions $f_i: (N_i)^{n_i} \hookrightarrow M^m \ (i=1,2)$ are given by $g[D(f_1,f_2)] = (f_1[N_1]^* \cup f_2[N_2]^*) \cap [M] \in H_{n_1+n_2-m}(M)$, $h[D(f_1,f_2)] = (f_1 \times f_2)^! \Delta[M] \in H_{n_1+n_2-m}(N_1 \times N_2)$.
- ► Proof Approximate $f_i: N_i \hookrightarrow M$ by an embedding $(e_i, f_i): N_i \hookrightarrow D^{k_i} \times M$ with geometric Umkehr map $F_i: \Sigma^{k_i} M^+ \to \Sigma^{k_i} T(\nu_f)$.

The immersion $g: D(f_1, f_2) \hookrightarrow M$ is approximated by the embedding

$$(e_1,e_2,g): D(f_1,f_2) \hookrightarrow D^{k_1} \times D^{k_2} \times M = D^{k_1+k_2} \times M$$
 with a geometric Umkehr map

$$G: \Sigma^{k_1+k_2}M^+ \rightarrow \Sigma^{k_1+k_2}T(\nu_g)$$
.

Capturing $[D(f_1, f_2)]$ by homology II.

► The formulae for the double point classes follow from the commutative diagrams

$$\Sigma^{k_1+k_2}T(\nu_f) \xrightarrow{T(h)} \Sigma^{k_1}T(\nu_{f_1}) \wedge \Sigma^{k_2}T(\nu_{f_2})$$

$$G \uparrow \qquad \qquad \uparrow F_1 \wedge F_2$$

$$\Sigma^{k_1+k_2}M^+ \xrightarrow{\Delta_M} \Sigma^{k_1}M^+ \wedge \Sigma^{k_2}M^+$$

$$C(D(f_1, f_2))_{*-2m+n_1+n_2} \xrightarrow{h} C(N_1 \times N_2)_{*-2m+n_1+n_2}$$

$$g^! \uparrow \qquad \qquad \uparrow (f_1 \times f_2)^!$$

$$C(M) \xrightarrow{\Delta_M} C(M \times M)$$

$$g[D(f_1, f_2)]^* = (hg^!)^*(1_{N_1 \times N_2}) = ((f_1 \times f_2)^! \Delta_M)^*(1_{N_1 \times N_2}).$$

►
$$h[D(f_1, f_2)] = hg^![M] = (f_1 \times f_2)^! \Delta_M[M].$$

The double point sets $\overline{D}(f)$, D(f)

▶ For any map $f: N \to M$ there is defined a \mathbb{Z}_2 -equivariant map

$$f \times f : N \times N \to M \times M ; (x,y) \mapsto (f(x), f(y))$$

with the generator $T \in \mathbb{Z}_2$ acting by T(x,y) = (y,x). D(f,f) is \mathbb{Z}_2 -invariant, with fixed points $D(f,f)^{\mathbb{Z}_2} = \Delta_N$.

▶ The ordered double point set of f is the free \mathbb{Z}_2 -set

$$\overline{D}(f) = D(f,f) - D(f,f)^{\mathbb{Z}_2}$$

$$= \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid x \neq y \in \mathbb{N}, f(x) = f(y) \in M\}.$$

The \mathbb{Z}_2 -set $D(f, f) \subseteq N \times N$ is the union $D(f, f) = D(f, f)^{\mathbb{Z}_2} \cup (D(f, f) - D(f, f)^{\mathbb{Z}_2})$

$$=\mathbb{Z}_2$$
-fixed points \cup free \mathbb{Z}_2 -set $=\Delta_N \cup \overline{D}(f)$.

▶ The unordered double point set of $f: N \rightarrow M$ is

$$D(f) = \overline{D}(f)/\mathbb{Z}_2$$
.

▶ $f: N \to M$ is an embedding if and only if $D(f) = \emptyset$.

The ordered double point classes of an immersion

► The double point set of a self-transverse immersion $f: N^n \hookrightarrow M^m$ with n < m is a stratified set

$$D(f,f) = \Delta_N \cup \overline{D}(f) \cup (\leqslant 3n-2m)$$
-dimensional strata with Δ_N *n*-dimensional and $\overline{D}(f)$ $(2n-m)$ -dimensional.

 $ightharpoonup \overline{D}(f)$ is oriented, with a fundamental class

$$[\overline{D}(f)] \in H_{2n-m}(\overline{D}(f))$$
.

▶ The ordered double point classes are the images

$$g[\overline{D}(f)] \in H_{2n-m}(M) , h[\overline{D}(f)] \in H_{2n-m}(N \times N)$$

with $g: \overline{D}(f) \hookrightarrow M$, $h: \overline{D}(f) \hookrightarrow N \times N$ as before.

▶ The covering translation $T : \overline{D}(f) \to \overline{D}(f)$ is orientation-preserving if and only if m-n is even. Thus D(f) only has a twisted fundamental class $[D(f)] \in H_{2n-m}(D(f); \mathbb{Z}^{(-)^{m-n}})$.

Capturing $[\overline{D}(f)]$ by homology I.

Proposition (Modern version of Whitney, 1940) The ordered double point classes of $f: N^n \hookrightarrow M^m$ are

$$g[\overline{D}(f)] = (f[N]^* \cup f[N]^* - f^*e(\nu_f)) \cap [M] \in H_{2n-m}(M) ,$$

$$h[\overline{D}(f)] = ((f \times f)^! \Delta_M - \Delta_{T(\nu_f)} f^!)[M] \in H_{2n-m}(N \times N)$$

with $e(\nu_f) \in H^{m-n}(N)$ the Euler class.

Proof The immersion

$$g : \overline{D}(f) \hookrightarrow M ; (x,y) \mapsto f(x) = f(y)$$

has normal bundle

$$\nu_g = h^*(\nu_f \times \nu_f) : \overline{D}(f) \to BSO(2(m-n))$$

with $h: \overline{D}(f) \hookrightarrow N \times N$ the inclusion. If f is approximated by an embedding $(e,f): N \hookrightarrow D^k \times M$ then f and g have geometric Umkehr maps

$$F: \Sigma^k M^+ \to \Sigma^k T(\nu_f) \ , \ G: \Sigma^{2k} M^+ \to \Sigma^{2k} T(\nu_g) \ .$$

Capturing $[\overline{D}(f)]$ by homology II.

► The formulae for the ordered double point classes follow from the commutative diagrams

$$\Sigma^{2k} T(\nu_f) \vee \Sigma^{2k} T(\nu_g) \xrightarrow{\Delta_{T(\nu_f)}} \vee T(h) \\ F \vee G \uparrow \qquad \qquad \uparrow F \wedge F \\ \Sigma^{2k} M^+ \xrightarrow{\Delta_M} \Sigma^k M^+ \wedge \Sigma^k M^+ \\ C(N)_{*-m+n} \oplus C(\overline{D}(f))_{*-2m+2n} \xrightarrow{\Delta_N e(\nu_f)} \bigoplus^h C(N \times N)_{*-2m+2n} \\ f^! \oplus g^! \uparrow \qquad \qquad \uparrow (f \times f)^! \\ C(M) \xrightarrow{\Delta_M} C(M \times M)$$

The quadratic construction

- ▶ In order to capture D(f) by homology need to take account of the \mathbb{Z}_2 -action on $\overline{D}(f)$.
- ▶ The quadratic construction on a space *X* is

$$Q(X) = S^{\infty} \times_{\mathbb{Z}_2} (X \times X)$$

with T(x, y) = (y, x) on $X \times X$ and

$$T: S^{\infty} = \varinjlim_{k} S^{k} \to S^{\infty}; s \mapsto -s.$$

The projection $Q(X) \to \mathbb{R} \, \mathbb{P}^{\infty}$ classifies the double cover

$$\overline{Q(X)} = S^{\infty} \times (X \times X) \rightarrow Q(X)$$
.

▶ The reduced quadratic construction on a pointed space Y is

$$\dot{Q}(Y) = (S^{\infty})^+ \wedge_{\mathbb{Z}_2} (Y \wedge Y)$$
.

In particular, for an unpointed space X

$$\dot{Q}(X^+) = Q(X)^+.$$

The unordered double point class of an immersion I.

▶ Approximate the immersion $f: N^n \hookrightarrow M^m$ by an embedding $(e, f): N \hookrightarrow D^k \times M$. The \mathbb{Z}_2 -equivariant map

$$\overline{d}: \overline{D}(f) \to S^{k-1} \times (N \times N); (x,y) \mapsto \left(\frac{e(x) - e(y)}{\|e(x) - e(y)\|}, x, y\right)$$

induces a map

$$d: D(f) \to S^{k-1} \times_{\mathbb{Z}_2} (N \times N) \subset Q(N)$$
.

▶ The unordered double point class of *f* is

$$[D(f)] \equiv d[D(f)] \in H_{2n-m}(Q(N); \mathbb{Z}^{(-)^{m-n}}).$$

▶ The composite $D(f) \to \mathbb{R} \mathbb{P}^{k-1} \subset \mathbb{R} \mathbb{P}^{\infty}$ classifies the double cover $p : \overline{D}(f) \to D(f)$. The transfer of p sends [D(f)] to the ordered double point class

$$p^{!}[D(f)] = h[\overline{D}(f)] \in H_{2n-m}(\overline{Q(N)}) = H_{2n-m}(N \times N)$$
.

The unordered double point class of an immersion II.

► For $\pi_1(M) = \{1\}$ Wall's self-intersection invariant for $f: N^n \hookrightarrow M^{2n}$ is the unordered double point class

$$\mu(f) = [D(f)] \in H_0(Q(N); \mathbb{Z}^{(-)^n}) = H_0(\mathbb{Z}_2; \mathbb{Z}, (-)^n)$$

▶ The algebraic theory of surgery (R., 1980) identified

$$[D(f:N^n \hookrightarrow M^m)] \in H_{2n-m}(Q(N);\mathbb{Z}^{(-)^{m-n}})$$

for any f with a chain level desuspension obstruction for a geometric Umkehr $F: \Sigma^k M^+ \to \Sigma^k T(\nu_f)$, including a $\pi_1(M)$ -equivariant version.

▶ Joint project with Michael Crabb: apply \mathbb{Z}_2 -equivariant stable homotopy theory and the 'geometric Hopf invariant' to provide a homotopy theoretic treatment of [D(f)].

The geometric Hopf invariant h(F) I.

- ▶ When is a k-stable map $F: \Sigma^k X \to \Sigma^k Y$ homotopic to the k-fold suspension $\Sigma^k F_0$ of an unstable map $F_0: X \to Y$?
- ▶ The geometric Hopf invariant of F is the stable \mathbb{Z}_2 -equivariant map

$$h(F) = (F \wedge F)\Delta_X - \Delta_Y F : X \to Y \wedge Y$$
.

- ▶ If $F \simeq \Sigma^k F_0$ for an unstable map $F_0 : X \to Y$ then $h(F) \simeq *$.
- ▶ The stable \mathbb{Z}_2 -equivariant homotopy class of h(F) depends only on the homotopy class of F, and is the primary obstruction to the k-fold desuspension of F.
- ▶ For the geometric Umkehr map $F: \Sigma^k M^+ \to \Sigma^k T(\nu_f)$ of an immersion $f: N^n \hookrightarrow M^m$ the stable \mathbb{Z}_2 -equivariant homotopy class of h(F) factors through the ordered double point \mathbb{Z}_2 -set $\overline{D}(f)$.

The stable \mathbb{Z}_2 -equivariant homotopy groups

- ▶ Given pointed \mathbb{Z}_2 -spaces X, Y let $[X, Y]_{\mathbb{Z}_2}$ be the set of \mathbb{Z}_2 -equivariant homotopy classes of \mathbb{Z}_2 -equivariant maps $X \to Y$.
- ▶ The stable \mathbb{Z}_2 -equivariant homotopy group is

$$\{X;Y\}_{\mathbb{Z}_2} = \lim_{\stackrel{\longleftarrow}{k}} [\Sigma^{k,k}X,\Sigma^{k,k}Y]_{\mathbb{Z}_2}$$

where

$$T: \Sigma^{k,k}X = S^k \wedge S^k \wedge X \to \Sigma^{k,k}X; (s,t,x) \mapsto (t,s,T(x)).$$

Example The \mathbb{Z}_2 -equivariant Pontrjagin-Thom isomorphism identifies $\{S^0; S^0\}_{\mathbb{Z}_2}$ with the cobordism group of 0-dimensional framed \mathbb{Z}_2 -manifolds (= finite \mathbb{Z}_2 -sets). The decomposition of finite \mathbb{Z}_2 -sets as fixed $\cup \mathbb{Z}_2$ -free determines an isomorphism

$$\{S^0;S^0\}_{\mathbb{Z}_2}\cong\mathbb{Z}\oplus\mathbb{Z}\;;\;A=A^{\mathbb{Z}_2}\cup(A-A^{\mathbb{Z}_2})\mapsto\left(|A^{\mathbb{Z}_2}|,\frac{|A|-|A^{\mathbb{Z}_2}|}{2}\right).$$

\mathbb{Z}_2 -equivariant stable homotopy theory = fixed-points + fixed-point-free

► Theorem (Crabb, 1980) For any pointed spaces *X*, *Y* there is a split exact sequence of abelian groups

$$0 \to \{X; \dot{Q}(Y)\} \longrightarrow \{X; Y \land Y\}_{\mathbb{Z}_2} \xrightarrow{\rho} \{X; Y\} \to 0$$

with the injection induced by the projection $\mathcal{S}^\infty \to \{*\}$

$$\{X;\dot{Q}(Y)\} = \{X;(S^{\infty})^+ \wedge (Y \wedge Y)\}_{\mathbb{Z}_2} \rightarrow \{X;Y \wedge Y\}_{\mathbb{Z}_2}.$$

ightharpoonup
ho is given by the \mathbb{Z}_2 -fixed points, split by

$$\sigma : \{X; Y\} \to \{X; Y \land Y\}_{\mathbb{Z}_2} ; F \mapsto \Delta_Y F$$
.

The geometric Hopf invariant h(F) II.

▶ The geometric Hopf invariant of $F: \Sigma^k X \to \Sigma^k Y$

$$h(F) = (F \wedge F)\Delta_X - \Delta_Y F$$

$$\in \ker(\rho : \{X; Y \wedge Y\}_{\mathbb{Z}_2} \to \{X; Y\})$$

$$= \operatorname{im}(\{X; \dot{Q}(Y)\} \hookrightarrow \{X; Y \wedge Y\}_{\mathbb{Z}_2})$$

has the following properties:

(i) The function

$$h: \{X;Y\} \rightarrow \{X;\dot{Q}(Y)\}; F \mapsto h(F)$$

is nonadditive, being quadratic in nature:

$$h(F+G) = h(F) + h(G) + (F \wedge G)\Delta_X.$$

(ii) If
$$F \in \operatorname{im}([X, Y] \to \{X; Y\})$$
 then $h(F) = 0$.

The \mathbb{Z}_2 -equivariant Umkehr map

▶ An immersion $f: N^n \hookrightarrow M^m$ determines a commutative square of \mathbb{Z}_2 -equivariant immersions and embeddings

$$\begin{array}{c}
N \cup \overline{D}(f) \xrightarrow{\Delta_N \cup h} N \times N \\
f \cup g \downarrow & \downarrow f \times f \\
M \xrightarrow{\Delta_M} M \times M
\end{array}$$

$$g(x,y) = f(x) = f(y)$$
, $h(x,y) = (x,y)$, $\nu_g = h^*(\nu_f \times \nu_f)$.

▶ An approximating embedding (e, f): $N \hookrightarrow D^k \times M$ determines \mathbb{Z}_2 -equivariant embeddings

$$(e \times e, f \times f) : N \times N \hookrightarrow D^k \times D^k \times M \times M ,$$

$$(e \times e|, g) : \overline{D}(f) \hookrightarrow D^k \times D^k \times M .$$

The Umkehr of (e imes e|,g) is a \mathbb{Z}_2 -equivariant Umkehr map $G: \Sigma^{k,k}M^+ o \Sigma^{k,k}T(
u_\sigma)$.

Capturing [D(f)] by homology I.

Proposition (Crabb+R.) If $f: N^n \hookrightarrow M^m$ is an immersion with Umkehr map $F: \Sigma^k M^+ \to \Sigma^k T(\nu_f)$ the geometric Hopf invariant h(F) factors through $T(\nu_g)$

$$h(F) = T(h)G$$

$$\in \ker(\rho : \{M^+; T(\nu_f) \land T(\nu_f)\}_{\mathbb{Z}_2} \to \{M^+; T(\nu_f)\})$$

$$= \operatorname{im}(\{M^+; \dot{Q}(T(\nu_f))\} \hookrightarrow \{M^+; T(\nu_f) \land T(\nu_f)\}_{\mathbb{Z}_2})$$

with $h: D(f) \hookrightarrow N \times N$ the inclusion, i.e.

$$h(F) : M^+ \xrightarrow{G} T(\nu_g) \xrightarrow{T(h)} T(\nu_f \times \nu_f) = T(\nu_f) \wedge T(\nu_f) .$$

Capturing [D(f)] by homology II.

▶ The formula for the unordered double point classes follows from the commutative diagrams of \mathbb{Z}_2 -equivariant maps

$$\Sigma^{k,k} T(\nu_f) \vee \Sigma^{k,k} T(\nu_g) \xrightarrow{\Delta_{T(\nu_f)} \vee T(h)} \Sigma^k T(\nu_f) \wedge \Sigma^k T(\nu_f)$$

$$F \vee G \uparrow \qquad \qquad \uparrow F \wedge F$$

$$\Sigma^{k,k} M^+ \xrightarrow{\Delta_M} \Sigma^k M^+ \wedge \Sigma^k M^+$$

▶ Corollary The unordered double point class of $f: N^n \hookrightarrow M^m$ is

$$[D(f)] = h(F)[M] \in \dot{H}_m(\dot{Q}(T(\nu_f))) = H_{2n-m}(Q(N); \mathbb{Z}^{(-)^{m-n}}),$$
regarding $h(F)$ as a stable map $M^+ \to \dot{Q}(T(\nu_f)).$

The π -equivariant geometric Hopf

▶ Let π be a group, and let X be a pointed π -space. The diagonal map $\Delta: X \to X \land X$ is π -equivariant, so induces

$$\Delta/\pi$$
 : $X/\pi \to X \wedge_{\pi} X$; $[x] \mapsto [x,x]$.

▶ Let X, Y be pointed π -spaces. The geometric Hopf invariant of a π -equivariant stable map $F: \Sigma^k X \to \Sigma^k Y$ is the stable \mathbb{Z}_2 -equivariant map

$$h_{\pi}(F) = ((F \wedge F)\Delta_X - \Delta_Y F)/\pi : X/\pi \to Y \wedge_{\pi} Y$$

which can be regarded as a stable map

$$h_{\pi}(F) : X/\pi \rightarrow \dot{Q}_{\pi}(Y) = (S^{\infty})^{+} \wedge_{\mathbb{Z}_{2}} (Y \wedge_{\pi} Y).$$

The π -equivariant unordered double point class

- An immersion $f: N^n \hookrightarrow M^m$ lifts to a π -equivariant immersion $\widetilde{f}: \widetilde{N} \hookrightarrow \widetilde{M}$, with $\pi = \pi_1(M)$, \widetilde{M} the universal cover of M and $\widetilde{N} = f^*\widetilde{M}$
- Proposition (C.+R.) The π -equivariant unordered double point class of \widetilde{f} is the evaluation on $[M] \in H_m(M)$ of the π -equivariant geometric Hopf invariant of a π -equivariant geometric Umkehr $F: \Sigma^k \widetilde{M}^+ \to \Sigma^k T(\nu_{\widetilde{f}})$ for \widetilde{f} , that is

$$[D(\widetilde{f})/\pi] = h_{\pi}(F)[M]$$

$$\in \dot{H}_{m}(\dot{Q}_{\pi}(T(\nu_{\widetilde{f}}))) = H_{2n-m}(Q_{\pi}(\widetilde{N}); \mathbb{Z}^{(-)^{m-n}}).$$

For $f: S^n \hookrightarrow M^{2n}$ this is Wall's self-intersection invariant $\mu(f) = [D(\widetilde{f})/\pi] = h_{\pi}(F)[M]$ $\in \dot{H}_{2n}(\dot{Q}_{\pi}(T(\nu_{\widetilde{f}}))) = H_0(Q_{\pi}(\widetilde{N}); \mathbb{Z}^{(-)^n}) = H_0(\mathbb{Z}_2; \mathbb{Z}[\pi], (-)^n).$