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Sociology and topology

It is a fact of sociology that topologists are interested in
quadratic forms (Serge Lang)

The 8 in the title refers to the applications in topology of the
mod 8 properties of the signatures of integral symmetric
matrices, such as the celebrated 8 x 8 matrix Eg with

signature(Eg) = 8€Z.

A compact oriented 4k-manifold with boundary has an
integral symmetric matrix of intersection numbers. The
signature of the manifold is defined by

signature(manifold) = signature(matrix) € Z .

Manifolds with intersection matrix Eg have been used to
distinguish the categories of differentiable, PL and topological
manifolds, and so are of particular interest to topologists!



Quadratic forms and manifolds

» The algebraic properties of quadratic forms were already
studied in the 19th century: Sylvester, H.J.S. Smith, ...

» Similarly, the study of the topological properties of manifolds
reaches back to the 19th century: Riemann, Poincaré, ...

» The combination of algebra and topology is very much a 20th
century story. But in 1923 when Weyl first proposed the
definition of the signature of a manifold, topology was so
dangerous that he thought it wiser to write the paper in
Spanish and publish it in Spain. And this is his signature :

WA/W
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Symmetric matrices

R = commutative ring. Main examples today: Z, R, Zg4, Z>.
The transpose of an m x n matrix ® = (®;) with ®;; € R is
the n x m matrix &7 with

(®7)i = ¢ (1<i<m, 1<j<n).
Let Sym,(R) be the set of n x n matrices ® which are
symmetric 7 = .
®,®’ € Sym,(R) are conjugate if &’ = AT®A for an
invertible n x n matrix A € GL,(R).

Can also view ® as a symmetric bilinear pairing on the
n-dimensional f.g. free R-module R"

¢ : R"'XR"— R; ((Xl,...,x,,),(yl,...,yn))r—)ZZCDUX,-yj.
i—1 j—1

® € Sym,(R) is unimodular if it is invertible, or equivalently
if det(®) € R is a unit.



The signature

The signature of ® € Sym,(R) is
o(®) = pr—p-€Z

with p; the number of eigenvalues > 0 and p_ the number of
eigenvalues < 0.
Law of Inertia (Sylvester 1853)
Symmetric matrices ®, ®’ € Sym,(R) are conjugate if and
only if

pr = Py, p- = p.
The signature of ® € Sym (Z)

o(®) = o(R®z ®) € Z.

is an integral conjugacy invariant.

The conjugacy classification of symmetric matrices is much
harder for Z than R. For example, can diagonalize over R but
not over Z.
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Type | and type II

® € Sym,(Z) is of type | if at least one of the diagonal
entries ®;; € Z is odd.

® is of type Il if each ®; € Z is even.

Type | cannot be conjugate to type Il. So unimodular type I
cannot be diagonalized, i.e. not conjugate to @ +1.

n

o is positive definite if n = p,, or equivalently if o(®) = n.
Choosing an orthonormal basis for R @7 (Z", ®) defines an
embedding as a lattice (Z",®) C (R”, dot product). Lattices
(including Eg) much used in coding theory.
Examples

(i) ® = (1) € Sym;(Z) is unimodular, positive definite, type |,

signature 1.
(i) ® =(2) € Symy(Z) is positive definite, type Il, signature 1.
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(iv) &= <(1) é) € Symy(Z) is unimodular, type Il, signature 0.

(i) ¢ = <0 1) € Sym,(Z) is unimodular, type |, signature 0.



Characteristic elements and the signature mod 8

An element u € R" is characteristic for $ € Sym,(R) if

d(x,u) — P(x,x) €2RC R for all x € R" .

Every unimodular ® admits characteristic elements u € R"
which constitute a coset of 2R" C R".

Theorem (van der Blij, 1958) The mod 8 signature of a
unimodular ® € Sym(Z) is such that

o(®) = d(u,u) mod 8

for any characteristic element v € Z".

Corollary A unimodular ® € Sym,(Z) is of type Il if and only
if u =0 € Z" is characteristic, in which case

o(®) = O0mod 8.



The Eg-form |I.

» Theorem (H.J.S. Smith 1867, Korkine and Zolotareff 1873)
There exists an 8-dimensional unimodular positive definite
type Il symmetric matrix

21 000000
12100000
01210000

& = 0001210 1]cSm®:
00001210
000O0O0OT120
0 00O01O0O02

» Eg has signature
O’(Eg) =8¢cZ.



The Eg-form Il.

» Eg € Symg(Z) is determined by the Dynkin diagram of the
simple Lie algebra Eg

2 2 2 2 2 2 2

weighted by x(S5?) = 2 at each vertex, with
1 if ith vertex is adjacent to jth vertex
O = {2 ifi=j

0 otherwise .

» Theorem (Mordell, 1938) Any unimodular positive definite
type Il symmetric matrix ® € Symg(Z) is conjugate to Eg.
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The intersection matrix of a 4k-manifold
» The intersection matrix of a 4k-manifold with boundary

(M, 0M) with respect to a basis (b1, b2, ..., by) for
Ho (M) /torsion =2 7" is the symmetric matrix

O(M) = (bi N bj)iij<n € Sym,(Z)

with b; N b; € Z the homological intersection number.

» If bj, b; are represented by disjoint closed 2k-submanifolds
N;, N; C M which intersect transversely then b; N b; € Z is
the number of points in the actual intersection N; N N; C M,
counted algebraically.

N;
7< v

> A different basis gives a conjugate intersection matrix.
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(2k — 1)-connected 4k-manifolds

A space M is 0-connected if it is connected.

For j > 1 a space M is j-connected if it is connected, and
mi(M) = {1} for 1 < i < j or equivalently if M is
simply-connected (71(M) = {1}) and H;(M) = 0 for
1<i<.
An m-manifold with boundary (M,dM) is j-connected if M
is j-connected and OM is (j — 1)-connected.
Proposition If (M,9M) is a (2k — 1)-connected 4k-manifold
with boundary then

> Hy (M) is f.g. free,

> there is an exact sequence

(M)
0— sz(a/\/l) — sz(M) e sz(M)* — sz_l(al\/,) —0

with Ha(M)* = Homgz(Hax (M), Z).



Homology spheres

» A homology /-sphere ¥ is a closed /-manifold such that
H.(X) = H.(S59.

» An m-manifold with boundary (M, 9M) is almost closed if
either M is closed, i.e. OM = (),
or OM is a homology (m — 1)-sphere
H.(OM) = H,(S™1).

» Proposition The intersection matrix ®(M) € Sym,(Z) of a
(2k — 1)-connected 4k-dimensional manifold with boundary
(M, 0OM) with Hp,(M) = Z" is unimodular if and only if
(M,0M) is almost closed.

12
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The 2k Wu class of an almost closed (M*<, OM)

» Proposition For an almost closed (2k — 1)-connected
4k-manifold with boundary (M**  OM) and intersection
matrix ®(M) € Sym,,(Z) the Poincaré dual of the 2k Wu
characteristic class of the normal bundle vy

Vzk(V/\/[) € H2k(M;Z2) = sz(M;Zz)

is characteristic for 1 ® ®(M) € Sym,(Z3). An element
u € Hpi(M) is characteristic for ®(M) if and only if

[u] = vak(vm) € Hox(M)/2Hok (M) = Hok(M; Zs) .
> CD(M) is of type Il if and only if vax(vym) = 0.
» By van der Blij's theorem, for any lift u € Hox(M) of var(vum).
o(M) = ®(u,u) mod8 .
> If (M* OM) is framed, i.e. vy is trivial, then
vok(vm) = 0, u =0and o(M) = 0(mod8) .
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The Poincaré homology 3-sphere and Eg
Poincaré (1904) constructed a differentiable homology
3-sphere
¥3 = dodecahedron /opposite faces

with 71(X3) = binary icosahedral group of order 120 # {1}.
This disproved the naive Poincaré conjecture that every
homology 3-sphere is homeomorphic to S3.

Modern construction: ¥3 = OM is the boundary of the
1-connected framed differentiable 4-manifold with boundary
(M#*, OM) with intersection matrix ®(M) = Eg obtained by
the “geometric plumbing” of 8 copies of 752 using the Eg tree.
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Exotic spheres and Eg

An exotic (-sphere Y/ is a differentiable /-manifold which is
homeomorphic but not diffeomorphic to S*.

Milnor (1956) constructed the first exotic spheres, ¥', using
the Hirzebruch signature theorem (1953) to detect
non-standard differentiable structure.

Kervaire and Milnor (1963) classified exotic -spheres ¥* for
all £ > 7, involving the finite abelian groups ©, of
differentiable structures on S*.

The subgroup bP4i C ©4k_1 consists of the exotic

(4k — 1)-spheres ¥*~1 = 9M which are the boundary of a
framed (2k — 1)-connected 4k-manifold (M** OM) obtained
by geometric plumbing, with ®(M) = @ Es.

In particular, the Brieskorn (1965) exotic spheres arising in
algebraic geometry are such boundaries, including the
Poincaré homology 3-sphere Y3 as a special case.
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bPyy

» The subgroup bPs, C ©4_1 of diffeomorphism classes of the
bounding exotic spheres ¥4~ = 9M is a finite cyclic group
ZLppy,» With an isomorphism

bPy —> Zpp,, ; T = OM s o(M)/8 .

» The order |bPsk| = bpay is related to the numerators of the
Bernoulli numbers.

» The group
bPg = ©7 = Zog

of 28 differentiable structures on S’ is generated by ¥/ = OM
with ®(M) = Eg.
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PL manifolds without differentiable structure I.

» Cairns (1935) proved that a differentiable manifold has a
canonical PL structure.

» If (L™, OL) is a differentiable m-manifold with boundary
OL =¥™1 an exotic (m — 1)-sphere then

K™ = L™ Uy cone(X)

is a closed PL m-manifold without a differentiable structure.

oL = Z cone(X)
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PL manifolds without differentiable structure Il.

» The first PL manifold without a differentiable structure was
the closed 4-connected PL 10-manifold constructed by
Kervaire (1960)

K = [0y cOL

using a framed differentiable 4-connected 10-manifold
(L1°, L) with boundary an exotic 9-sphere dL, obtained by
plumbing two Tgs's. The corresponding Z»-valued quadratic
form on H5(K;Zy) = 7 ® 7 has Arf invariant 1 € Z;.

» The Eg-plumbing (M8 OM) gives a closed 3-connected PL
8-manifold M8 Ugps cOM without a differentiable structure.

» In fact, there is a close connection between the Zg-valued
signature mod 8 and the Zy-valued Arf invariant, which is
best understood using symmetric matrices in Zg.
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The classification of 1-connected 4-manifolds

Milnor (1958) proved that M* — ®(M) defines a bijection
{homotopy equivalence classes of closed
1-connected differentiable 4-manifolds M4} =

{conjugacy classes of unimodular integral symmetric matrices ®} .

Diagonalisation Theorem (Donaldson 1982) If M* is a
closed 1-connected differentiable 4-manifold and ®(M) is
positive definite then ®(M) is diagonalizable over Z.
Non-diagonalisation Theorem (Freedman 1982) Every
unimodular matrix ® € Sym,(Z) is realized as ¢ = ®(M) for
a closed 1-connected topological 4-manifold M*. If ® is of
type Il and M has a PL structure then o(M) = 0(mod16)
(Rochlin 1952).

Nontriangulable manifolds Casson (1990) : M* with
®(M) = Eg is nontriangulable. Manolescu (2013) : there are
nontriangulable topological m-manifolds M™ for all m > 4.
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Which integral symmetric matrices are realized as
intersection matrices of manifolds? I.

» Adams (1962) proved that there exists a map S*<—1 — §2k of
Hopf invariant 1 if and only if k = 1,2,4. It followed that
there exists a closed differentiable (2k — 1)-connected
4k-manifold M*k with intersection matrix ®(M) of type | if
and only if k =1,2,4.

» The standard examples of (2k — 1)-connected M** with
(H (M), ®(M)) = (Z,1)

of type | :

(i) k = 1 : the complex projective plane CP?,

(ii) kK =2 : the quaternionic projective plane HP (Hamilton),
(iii) kK =4 : the octonionic projective plane QP (Cayley).
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Which integral symmetric matrices are realized as
intersection matrices of manifolds? II.

» Theorem (Milnor, Hirzebruch 1962) For every symmetric
matrix ® € Sym,(Z) of type Il and every k > 1 there exists a
differentiable (2k — 1)-connected 4k-manifold (M, 9M) with
intersection matrix ®(M) = o.

» (M,0M) is constructed by the “geometric plumbing” of a
sequence of n oriented 2k-plane bundles over S

R?* — E(w;) — S (1 <i < n)
classified by w; € mk(BSO(2k)), with Euler numbers
X(W,') =®; € 2Z C 7.
> The geometry reflects the way in which ® is built up from 0
by the “algebraic plumbing” of its n principal minors
b1 P Py3

0] ()
(®11) , <¢; ¢Z> ;| P21 P Pz, ..., @
®31 3 P33
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Algebraic plumbing

» Definition The algebraic plumbing of a symmetric n x n

matrix ¢ € Sym,(Z) with respect to v € Z", w € Z is the
symmetric (n + 1) x (n+ 1) matrix
) T
P = < ‘;‘/) € Sym, . 1(Z) .

v

Let & = (M) € Sym,(Z) is the intersection matrix of a

(2k — 1)-connected 4k-manifold with boundary (M, 9OM),
taken to be (D*, S* =1} if n = 0. It is frequently possible to
realize the algebraic plumbing ® — &’ by a geometric
plumbing

(M, 0M) = (M, 0M") , (M) = @' € Sym, (Z)

and (M';0M’) also (2k — 1)-connected.

Need k = 1,2,4 for type I. All k > 1 possible for type II.
For k = 1 have to distinguish differentiable and topological
categories.
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Geometric plumbing I.

Input (i) A 4k-manifold with boundary (M, 0M),
(ii) an embedding v : (D?% x D%k S2k=1 x D2k) C (M, 0M)

M oM

\ 2k—1 2k
S x D
Vs

(iii) a map w : S?k=1 — SO(2k), the clutching map of the
oriented 2k-plane bundle over S = D2 Uga—1 D?* classified
by w € 7T2k,1(50(2k)) = 71’2;((550(2/())

R?* — E(w) = D* x R?, Ug(,,) D¢ x R?k — §2
f(W) . 52k—1 % RQk BN S2k—1 % R2k : (va) — (X, W(X)(y)) .

« Dk
g2k—1 pok  FW)  cok—1 pok / 5
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Geometric plumbing II.
» Output The plumbed 4k-manifold with boundary

(M, M)
= (M Ug(yy D2 x D%, cl.(OM\S?=1 x D2K) U D2 x §2k~1) .

» M’ is obtained from M by attaching a 2k-handle D%k x D2k
at S2k=1 % D2k c oM.

» OM' is obtained from OM by surgery on S%~1 x D2k c oM.
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The algebraic effect of geometric plumbing

» Proposition If (M*k 9M) has symmetric intersection matrix
®(M) € Sym,(Z) the geometric plumbing (M’,OM’) has the
symmetric intersection matrix given by algebraic plumbing

o(M) vl

v X(W)> € Symn+1(Z)

(M) = <

with
v = v[D* x D] € Hy(M,0M) = Hoy(M)* = Z"
x(w) = degree(S?—1 =W SO(2k) — S* 1) c 7,
SO(2k) — S?~1; A A(0,...,0,1) .
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Graph manifolds

» A graph manifold is a differentiable 4k-manifold with
boundary constructed from (D*<, S#~1) by the geometric
plumbing of n oriented 2k-plane bundles w; € 1o, (BSO(2k))
over S%¢ using a graph with vertices i = 1,2,...,n and
weights x; = x(w;) € Z.

» Theorem (Milnor 1959, Hirzebruch 1961) Let ® € Sym,(Z).
If ® is of type | assume k = 1,2 or 4.

If ® is of type Il take any k > 1.
Then @ is the intersection matrix of a graph 4k-manifold with
boundary (M, M) such that

(Hok (M), ®(M)) = (Z",®) .

» If the graph is a tree then (M,9M) is (2k — 1)-connected,
and if ® is unimodular then (M,9M) is almost closed.
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The A, graph manifold

The Dynkin diagram of the simple Lie algebra A is the tree
2 2

r——e

which is here weighted by x(S?) = 2 at each vertex.
The corresponding symmetric matrix of type Il

2 1
A = (1 2) € Symy(Z)

is the intersection matrix (M) of the graph 1-connected
4-manifold with boundary (M, 9M) obtained by plumbing two
copies of Ts2, with OM = S3/Z3 = L(3,2) a lens space.

D
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The Eg graph manifold

Geometric plumbing using ® = Eg € Symg(Z) and the Dynkin
diagram of Eg gives for each k > 1 a (2k — 1)-connected
graph 4k-manifold (M,0M) with

(Hak(M), ®(M)) = (Z° Eg) .

The boundary OM = ¥4~ is one of the interesting homology
(4k — 1)-spheres discussed already!

QQQ%Q



A doughnut of genus 2
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The multiplicativity mod 8 signature of fibre bundles

» Convention: (M) =0 € Z for a (4j + 2)-manifold M.

» What is the relationship between the signatures

o(E),o(B),o(F) € Z of the manifolds in a fibre bundle
F?m — E* — B ?

Theorem (Chern, Hirzebruch, Serre 1956)
If 71(B) acts trivially on H,(F;R) then

o(E) = o(B)o(F) € Z.

30

Kodaira, Atiyah and Hirzebruch (1970) constructed examples

with o(E) # o(B)o(F) € Z.

Theorem (Meyer 1972 for k = 1 using the first Chern class,

Hambleton, Korzeniewski, Ranicki 2004 for all k > 1)
o(E) = o(B)o(F) mod 4 .

What about mod 8?7 What is (¢(E) — o(B)o(F))/4 mod 2 ?
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Symmetric forms over Z;

A symmetric form over Z, (V, \) is a finite-dimensional
vector space V over Z, together with bilinear pairing

A VXV =Za; (xy) = AMx,y) .
The form is nonsingular if the adjoint Zy-linear map
A V= V" = Homg,(V,Z)

is an isomorphism.

A nonsingular (V,\) has a unique characteristic element
v € V such that

A(x,x) = AMx,v) €Zy (xe V).

(V, A) is isotropic if v =0, and anisotropic if v # 0.

31
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Z4-quadratic enhancements

Let (V,\) be a nonsingular symmetric form over Zj.

A Zs-quadratic enhancement of (V/, ) is a function
q: V — Zg4 such that for all x,y € V

a(x+y)—a(x) —aly) = 2\(x,y) € Za ,
[q(x)] = Ax,x) € Zy .

Every (V, \) admits Zs-quadratic enhancements g.
Example (V,\) = (Z2,1) has two Zs-quadratic
enhancements

g+(1) = 1€Zy and q_(1) = —1€Zs.

32
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The Brown-Kervaire invariant

» The Brown-Kervaire invariant (1972) of a nonsingular
symmetric form (V, \) over Z;, with a Z4-quadratic
enhancement q is the Gauss sum

1 .
mialx)/2
vV ‘V x%:V

€ Zg = {eighth roots of unity} C C .

BK(V,\,q) =

» The Brown-Kervaire invariant has mod 4 reduction
[BK(V, A, q)] = q(v) € Zs
where v € V is the characteristic element for (V, \).
» The exact sequence

0 7, -2 74 T 0

identifies a Brown-Kervaire invariant which has mod 4
reduction 0 € Z4 with a Zy-valued Arf invariant.
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The Brown-Kervaire invariant of a symmetric matrix over Z

» A unimodular symmetric matrix ® € Sym,(Z) determines
(Vv)‘) q) = ((Z2)n’ [cb]v [X] = [q)(XvX)]) :

» Any lift of the characteristic element v € (Z;)" for
[®] € Sym,(Z>) is a characteristic element u € Z" for ®.

» The Brown-Kervaire invariant is the mod 8 reduction of the
signature

BK(V, A, q) = [0(®)] = [®(u,u)] € Zs .

» Example The unimodular symmetric matrix
® =1 € Sym;(Z) determines

(V.\q) = (Z2,1,1), u = 1€Z,
BK(V,\,q) = 1€Zg.
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The Brown-Kervaire invariant of a symmetric matrix over Z,

» A unimodular symmetric matrix ¢ € Sym(Z4) with mod 2
reduction [®] € Sym(Z;) determines

(Vv)‘7 q) = ((Z2)n7 [(D]7 [X] = (D(X,X)) :

» Any lift of the characteristic element v € V for
[®] € Sym,(Z>) is a characteristic element u € (Z4)" for ®.
» The mod 4 reduction of the Brown-Kervaire invariant is
[BK(V. A, q)] = a(v) = ®(u,u) € Zs

for any characteristic element u € (Z4)" for ®.

» Example The unimodular symmetric matrix
® =1 € Sym;(Z4) has

(V,\q) = (Z2,1,1), u = 1,
BK(V,\,q) = 1€Zs.



The Brown-Kervaire invariant of A,

» The unimodular symmetric matrix over Zg4
2 1
Ay = (1 2) € Sym,(Za)

has characteristic element u = 0 € (Z4)? .

» A, determines

(V,\q)
2

1
— @z (3 5) (a0 22 4y

v =0eV,
BK(V,\,q) = 4€im(4:2Zy, — Zg) =

36

ker(Zg — Za) .
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Brown-Kervaire = signature mod 8

» Theorem (Morita 1974) A closed oriented 4k-manifold M
determines a nonsingular symmetric form (H?%(M; Z5), An)
over Z», with

Am(x,y) = (xUy,[M]) € Z

and characteristic element v = voi(vpy) € H?K(M; Zy).
The Pontrjagin square is a Z4-quadratic refinement

au = Pak @ H*(M;Z2) = H¥(M; Zs) = Zs

with Brown-Kervaire invariant = the mod 8 reduction of the
signature

BK(H*(M; Z2), \m, gm) = [0(M)] € Zg
and mod 4 reduction

am(v) = [[o(M)]] € Za .
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The Arf invariant 1.
Let (V, A) be a nonsingular symmetric form over Zj.

A Z,-quadratic enhancement of (V/, ) is a function
h:V — Z> such that

h(x +y) — h(x) = h(y) = Ax,y) €Z> (x,y € V).

(V, ) admits an h if and only if X is isotropic, in which case

there exists a basis (b1, by, ..., b,) for V with n even, such

that

Abi, by) — 1 if (i,j).: (1,2) or (2,1) or (3,4) or (4,3) ...
0 otherwise.

The Arf invariant of (V/, A, h) is defined using any such basis

n/2
Arf(V, X, h) Zhbz,l (b)) € Zo .
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The Arf invariant Il.

Let (V,\) be a nonsingular symmetric form over Zj.

» A Zy-quadratic enhancement h: V — Z; determines a

Z4-quadratic enhancement

g = 2h: V—Z4; x—q(x) = 2h(x)
such that

BK(V,A,q) = 4Arf(V,\ h) € 4Zy, C Zg .

A Z4-quadratic enhancement g : V' — Zg4 is such that
q(V) C 2Zy C Zs if and only if (V, A) is isotropic, and

h=4q/2:V—=>Zy; x— h(x) = q(x)/2

is a Zp-quadratic enhancement as above.
Example For the symmetric form Ay € Symy(Zs)

01
(V) = @202, (7 ) aley) =202+ 4 57)
BK(V,\,q) = 4€Zg, Af(V, )\ h) = 1€ 2.



40

Carmen Rovi’s Edinburgh thesis |.

» Theorem (CR 2015)
(i) Let (V, \) be a nonsingular symmetric form over Z; with a
Zs4-quadratic enhancement g : V — Z4, and characteristic
element v € V.
The Brown-Kervaire invariant BK(V/, A, q) € Zg has mod 4
reduction [BK(V/, X, q)] =0 € Z4 if and only if g(v) =0 € Za.
In this case A\(v, v) =0 € Z, and the maximal isotropic
nonsingular subquotient of (V/, A, q)

(V,X,d) = ({x € VIXx,v) =0¢€ Za}/{v},[Al, [q])
has Z,-quadratic enhancement h' = ¢’ /2 : V' — Z; such that

BK(V, )\, q) = BK(V/,X,q) = 4Arf(V', N, )
S im(4 2l — Zg) = ker(Zg — Z4) .
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Carmen Rovi’s Edinburgh thesis Il.

» (i) For any fibre bundle F?™ — E* — B2n
(0(E) —a(B)a(F))/4 = Af(V' . X, H) € Z»
with

(V,X\q)
= (H?(E;Z3),\e, qe) ® (H*(B x F;Z3), —AgxF, —GBxF) -

» (iii) If the action of m1(B) on (Hm(F;Z)/torsion) ® Za is
trivial then the Arf invariant in (ii) is 0 and

o(E) = o(B)o(F) mod 8.






