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Local to global and, if possible, global to local

I There are many theorems in TOPOLOGY of the type

local input =⇒ global output

I Theorems of the type

global input =⇒ local output

are even more interesting, and correspondingly harder to
prove! This frequently requires ALGEBRA.

I Algebra is a pact one makes with the devil!
(Sir Michael Atiyah)

I I rather think that algebra is the song that the angels sing!
(Barry Mazur)

I One thing I’ve learned about algebra ... don’t take it too
seriously (Peanuts cartoon)

http://www.maths.ed.ac.uk/~aar/eleven.pdf
http://www.maths.ed.ac.uk/~aar/eleven.pdf
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Poincaré duality and its converse

I The Poincaré duality of an n-dimensional topological manifold
M

H∗(M) ∼= Hn−∗(M)

is a local =⇒ global theorem.

I Theorem Let n > 5. A space X with n-dimensional Poincaré
duality H∗(X ) ∼= Hn−∗(X ) is homotopy equivalent to an
n-dimensional topological manifold if and only if X has
sufficient local Poincaré duality.

I Modern take on central result of the
Browder-Novikov-Sullivan-Wall high-dimensional surgery
theory for differentiable and PL manifolds, and its
Kirby-Siebenmann extension to topological manifolds
(1962-1970)

I Will explain ”sufficient” over the course of the lectures!
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The Seifert-van Kampen Theorem and its converse

I Local =⇒ global. The fundamental group of a union

X = X1 ∪Y X2 , Y = X1 ∩ X2

is an amalgamated free product

π1(X ) = π1(X1) ∗π1(Y ) π1(X2) .

I Global =⇒ local. Let n > 6. If X is an n-dimensional
manifold such that π1(X ) = G1 ∗H G2 then X = X1 ∪Y X2 for
codimension 0 submanifolds X1,X2 ⊂ X with

∂X1 = ∂X2 = Y = (n − 1)-dimensional manifold ,

π1(X1) = G1 , π1(X2) = G2 , π1(Y ) = H .
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The Vietoris Theorem and its converses

I Theorem If f : X → Y is a surjection of compact metric
spaces such that for each y ∈ Y the restriction

f | : f −1(y)→ {y}

induces an isomorphisms in homology

H∗(f
−1(y)) ∼= H∗({y})

then f induces isomorphisms in homology

f∗ : H∗(X ) ∼= H∗(Y ) .

I Local input: each f −1(y) (y ∈ Y ) is acyclic

H̃∗(f
−1(y)) = 0 .

I Global output: f∗ is an isomorphism.
I Would like to have converses of the Vietoris theorem! For

example, under what conditions is a homotopy equivalence
homotopic to a homeomorphism?
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Manifolds and homology manifolds

I An n-dimensional topological manifold is a topological
space M such that each x ∈ M has an open neighbourhood
homeomorphic to Rn.

I An n-dimensional homology manifold is a topological space
M such that the local homology groups of M at each x ∈ M
are isomorphic to the local homology groups of Rn at 0

H∗(M,M\{x}) ∼= H∗(Rn,Rn\{0}) =

{
Z if ∗ = n

0 if ∗ ̸= n

I A topological manifold is a homology manifold.

I A homology manifold need not be a topological manifold.

I Will only consider compact M which can be realized as a
subspace M ⊂ Rn+k for some large k > 0, i.e. a compact
ENR. This is automatically the case for topological manifolds.
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The triangulation of manifolds

I A triangulation of a space X is a simplicial complex K
together with a homeomorphism

X ∼= |K |

with |K | the polyhedron of K .

I X is compact if and only if K is finite.
I Triangulation of n-dimensional topological manifolds:

I Exists and is unique for n 6 3
I Known: may not exist for n = 4
I Unknown: if exists for n > 5
I Differentiable and PL manifolds are triangulated for
all n > 0

I Triangulation of n-dimensional homology manifolds:
I Exists and is unique for n 6 3
I Known: may not exist for n > 4.
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The naked homeomorphism

I Poincaré, for one, was emphatic about the importance of the
naked homeomorphism - when writing philosophically - yet his
memoirs treat DIFF or PL manifolds only.
in L. Siebenmann’s 1970 ICM lecture on topological
manifolds.

I . . . topological manifolds bear the simplest possible relation
to their underlying homotopy types. This is a broad statement
worth testing. (ibid.)

I Will describe how surgery theory manufactures the homotopy
theory of topological manifolds of dimension > 4 from
Poincaré duality spaces and chain complexes.

I Poincaré duality is the most important property of the
algebraic topology of manifolds.

http://www.maths.ed.ac.uk/~aar/papers/siebenicm.pdf
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The original statement of Poincaré duality

I Analysis Situs and its Five Supplements (1892–1904)
I

I Originally proved for a differentiable manifold M, but long
since established for topological and homology manifolds.

I h = n, the dimension of M.
I Pp = dimZHp(M), the pth Betti number of M.
I Happy birthday! 2011 is the 100th anniversary of Brouwer’s

proof that homeomorphic manifolds have the same dimension.
Also true for homology manifolds.

http://www.maths.ed.ac.uk/~aar/papers/poincare2009.pdf
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Orientation

I A local fundamental class of an n-dimensional homology
manifold M at x ∈ M is a choice of generator

[M]x ∈ {1,−1} ⊂ Hn(M,M\{x}) = Z .

I The local Poincaré duality isomorphisms are defined by

[M]x ∩ − : H∗({x}) ∼= Hn−∗(M,M\{x}) .

I An n-dimensional homology manifold M is orientable if there
exists a fundamental homology class [M] ∈ Hn(M) such that
for each x ∈ M the image

[M]x ∈ Hn(M,M\{x}) = Z

is a local fundamental class.
I We shall only consider manifolds which are orientable,

together with a choice of fundamental class [M] ∈ Hn(M).
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Poincaré duality in modern terminology

I Theorem For an n-dimensional manifold M the cap products
with the orientation [M] ∈ Hn(M) are Poincaré duality
isomorphisms

[M] ∩ − : H∗(M) ∼= Hn−∗(M) .

I Idea of proof Glue together the local Poincaré duality
isomorphisms

[M]x ∩ − : H∗({x}) ∼= Hn−∗(M,M\{x}) (x ∈ M)

to obtain the global Poincaré duality isomorphisms

[M] ∩ − = lim←−
x∈M

[M]x ∩ − :

H∗(M) = lim←−
x∈M

H∗({x}) ∼= Hn−∗(M) = lim←−
x∈M

Hn−∗(M,M\{x})

I Need to work on the chain level, rather than directly with
homology.
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Poincaré duality spaces

I Definition An n-dimensional Poincaré duality space X is a
finite CW complex X with a homology class [X ] ∈ Hn(X )
such that cap product with [X ] defines Poincaré duality
isomorphism

[X ] ∩ − : H∗(X ;Z[π1(X )]) ∼= Hn−∗(X ;Z[π1(X )]) .

I In the simply-connected case π1(X ) = {1} just
[X ] ∩ − : H∗(X ) ∼= Hn−∗(X ) .

I Homotopy invariant: any finite CW complex homotopy
equivalent to an n-dimensional Poincaré duality space is an
n-dimensional Poincaré duality space.

I A triangulable n-dimensional homology manifold is an
n-dimensional Poincaré duality space.

I A nontriangulable n-dimensional homology manifold is
homotopy equivalent to an n-dimensional Poincaré duality
space.
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Floer’s Diplom thesis

I Floer’s 1982 Bochum Diplom thesis (under the supervision of
Ralph Stöcker) was on the homotopy-theoretic classification
of (n − 1)-connected (2n + 1)-dimensional Poincaré duality
spaces for n > 1.

I http://www.maths.ed.ac.uk/̃ aar/papers/floer.pdf

http://www.maths.ed.ac.uk/~aar/papers/floer.pdf
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Manifold structures in the homotopy type
of a Poincaré duality space

I (Existence) When is an n-dimensional Poincaré duality space
homotopy equivalent to an n-dimensional topological
manifold?

I (Uniqueness) When is a homotopy equivalence of
n-dimensional topological manifolds homotopic to a
homeomorphism?

I There are also versions of these questions for differentiable
and PL manifolds, and also for homology manifolds.

I But it is the topological manifold version which is the most
interesting! Both intrinsically, and because most susceptible
to algebra, at least for n > 4.
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Surfaces

I Surface = 2-dimensional topological manifold.

I Every orientable surface is homeomorphic to the standard
surface Σg of genus g > 0.

I Every 2-dimensional Poincaré duality space is homotopy
equivalent to a surface.

I A homotopy equivalence of surfaces is homotopic to a
homeomorphism.

I In general, the analogous statements for false for
n-dimensional manifolds with n > 2.
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Bundle theories

I
spaces bundles classifying

spaces
differentiable manifolds vector BO

bundles π∗(BO) infinite
topological manifolds topological BTOP

bundles π∗(BTOP) infinite
homotopy Poincaré spherical BG
theory duality spaces fibrations π∗(BG ) = πS

∗−1 finite

I Forgetful maps downwards. Difference between the first two
rows = finite (but non-zero) = exotic spheres (Milnor).

I An n-dimensional differentiable manifold M has a tangent
bundle τM : M → BO(n) and a stable normal bundle
νM : M → BO.

I Similarly for a topological manifold M, with BTOP(n).
I An n-dimensional Poincaré duality space X has a Spivak

normal fibration νX : X → BG .
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The Hirzebruch signature theorem

I The signature of a 4k-dimensional Poincaré duality space X is

σ(X ) = signature(H2k(X ), intersection form) ∈ Z

I The Hirzebruch L-genus of a vector bundle η over a space
X is a certain polynomial L(η) ∈ H4∗(X ;Q) in the Pontrjagin
classes p∗(η) ∈ H4∗(M).

I Signature Theorem (1953) If M is a 4k-dimensional
differentiable manifold then

σ(M) = ⟨L(τM), [M]⟩ ∈ Z

I There have been many extensions of the theorem since 1953!
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The Browder converse of the Hirzebruch signature theorem

I Theorem (Browder, 1962) For k > 1 a simply-connected
4k-dimensional Poincaré duality space X is homotopy
equivalent to a 4k-dimensional differentiable manifold M if
and only if νX : X → BG lifts to a vector bundle η : X → BO
such that

σ(X ) = ⟨L(−η), [X ]⟩ ∈ Z .

I Novikov (1962) initiated the complementary theory of
necessary and sufficient conditions for a homotopy equivalence
of simply-connected differentiable manifolds to be homotopic
to a diffeomorphism.

I Many developments in the last 50 years, including versions for
topological manifolds and homeomorphisms.
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The Browder-Novikov-Sullivan-Wall surgery theory I.

I Is an n-dimensional Poincaré duality space X homotopy
equivalent to an n-dimensional topological manifold?

I The surgery theory provides a 2-stage obstruction for n > 4,
working outside of X , involving normal maps (f , b) : M → X
from manifolds M, with b a bundle map.

I Primary obstruction in the topological K -theory of vector
bundles to the existence of a normal map (f , b) : M → X .

I Secondary obstruction σ(f , b) ∈ Ln(Z[π1(X )]) in the Wall
surgery obstruction group, depending on the choice of (f , b)
in resolving the primary obstruction. The algebraic L-groups
defined algebraically using quadratic forms over Z[π1(X )].

I The mixture of topological K -theory and algebraic L-theory
not very satisfactory!
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The Browder-Novikov-Sullivan-Wall surgery theory II.

I Is a homotopy equivalence f : M → N of n-dimensional
topological manifolds homotopic to a homeomorphism?

I For n > 4 similar 2-stage obstruction theory for deciding if f is
homotopic to a homeomorphism.

I The mapping cylinder of f

L = M × [0, 1] ∪(x ,1)∼f (x) N

defines an (n + 1)-dimensional Poincaré pair (L,M ⊔ N) with
manifold boundary. The 2-stage obstruction for uniqueness is
the 2-stage obstruction for relative existence.

I Again, the mixture of topological K -theory and algebraic
L-theory not very satisfactory!


