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Cobordism

e [ here is a cobordism equivalence relation
on each of the following 6 classes of mathe-
matical structures, which come in 3 match-
ing pairs of topological and algebraic types:

— (manifolds, quadratic forms)

— (knots, Seifert forms)

— (boundary links, partitioned Seifert forms)

e [ he cobordism groups are the abelian groups
of equivalence classes, with forgetful mor-
phisms

{topological cobordism} — {algebraic cobordism}

e How large are these groups? To what ex-
tent are these morphisms isomorphisms?
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Matrices and forms

An rxr matrix A = (a;;) has entries a;; € Z
with 1 <4,5 <.

The direct sum of A and an s x s matrix
B = (byy) is the (r + s) x (r + s) matrix

(A0
A@B_<OB>

The transpose of A is the » x »r matrix
AT — (a,ﬂ) .

A quadratic form is an r xr matrix A which
IS symmetric and invertible

AT = A, det(A) = +1 .

A symplectic form is an rxr matrix A which
is (—1)-symmetric and invertible

AT = — A, det(A) = +1 .




Cobordism of quadratic forms

e Quadratic forms A, A’ are congruent if
A" = UT AU for an invertible matrix U.

e A quadratic form A is null-cobordant if it is

congruent to (;T g) with P an invertible

sx s matrix, and Q a symmetric sxs matrix.

e Example H = (Cl) é) iIs null-cobordant.

e Quadratic forms A, A’ (which may be of dif-
ferent sizes) are cobordant if A® B is con-
gruent to A’ @ B’ for null-cobordant B, B’.

e Similarly for symplectic forms.



Calculation of the cobordism group of
quadratic forms

e The Witt group W (Z) is the abelian group
of cobordism classes of quadratic forms,
with addition by direct sum A@ A’.

e Definition (Sylvester, 1852) The signature
of a quadratic form A is

O‘(A) = ?°_|_—7"_€Z

with r the number of positive eigenvalues
of A, r— the number of negative eigenval-
ues of A.

e 0(1)=1, 0(—-1)=-1, c(H) = 0.

e [ heorem Signature defines isomorphism
o W) —-7Z; A— c(A) .

e [ he Witt group of symplectic forms = O.
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Manifolds

e An n-manifold M is a topological space
such that each € M has a neighbourhood
U C M which is homeomorphic to Euclid-
ean n-space R"™. Will assume differentiable
structure.

e The solution set M = f~1(0) of equation
f(z) = 0 € R™ for function f : Rm+n _, R™
IS generically an n-manifold.

e The n-sphere " = {z ¢ R*" ™1 ||z = 1} is
an n-manifold.

e A surface is a 2-manifold, e.g. sphere S2,
torus St x St

e Will only consider oriented manifolds: no
Mobius bands, Klein bottles etc.



Cobordism of manifolds

An (n + 1)-manifold with boundary
(W, 0W C W) has W\OW an (n+1)-manifold
and dW an n-manifold.

Will only consider compact oriented mani-
folds with boundary (which may be empty).

Example (D"t1 S7) is a compact oriented
(n 4+ 1)-manifold with boundary, where
pntl — {x € Rn+1 |||x]| < 1}.

Two n-manifolds Mg, M1 are cobordant if
the disjoint union MglL—M; is the boundary
oW of an (n+ 1)-manifold W, where —M;
is My with reverse orientation.

Every surface M is the boundary M = oW
of a 3-manifold W, so any two surfaces
M, M’ are cobordant.



The cobordism groups of manifolds

T he cobordism group €2, of cobordism classes
of n-manifolds, with addition by disjoint
union M U M.

The cobordism ring Q2 = @ 2, with mul-

n
tiplication by cartesian product M x N.

Theorem (Thom, 1952) Each cobordism
group 2, is finitely generated with 2-torsion
only. The cobordism ring is

Qi = Z[:B4,QE&...]EB€BZQ .
o0

Zlxa,xg,...] is the polynomial algebra with
one generator x4 in each dimension 4k.
Note that €2,, grows in size as n increases.

Nice account of manifold cobordism in Switzer's
book Algebraic Topology — Homotopy and
Homology (Springer, 1975)



T he signature of a 4k-manifold

e (Poincaré, 1895) The intersection matrix
A = (a;;) of a 2¢-manifold M defined by
intersection numbers a;; = 2; N z; € Z for
a basis zq, zo,..., zr Of the homology group
Hy(M) = 7" @ torsion, with

AT = (=1)94 | det(A) = +1 .

A is a quadratic form if ¢ is even.
A is a symplectic form if ¢ is odd.

0 1
p— q q p—
o If M S1 x SS9 then A <(_1)q O)'

e The signature of a 4k-manifold M%F is

o(M)=0(A) € Z.

o 5(S%%) = (5% x 52F) =0, o(a4y) = 1.
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The signature morphism o : Q4 — W(Z)

o Let M, M’ be 4k-manifolds with intersec-
tion matrices A, A’. If M and M’ are cobor-
dant then A and A’ are cobordant, and

o(M) = o(A) = o(A) = o(M)eZ.
However, a cobordism of A and A’ may not
come from a cobordism of M and M’.

e Signature defines surjective ring morphism
o Qu. —-W@Z)=7Z; Mw— o(M)
with x4 — 1. Isomorphism for £k = 1.

e Example The 8-manifolds (z4)2, zg have
same signature ¢ = 1, but are not cobor-
dant, (z4)2 —xzg # 0 € ker(o : Qg — 7).

e Can determine class of 4k-manifold M in
Qqp/torsion = Z|xg, xg, . ..] from signatures
o(N) of submanifolds N4 C M (¢ < k).
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Cobordism of knots

e A n-knot is an embedding
K:S"csnt? .

Traditional knots are 1-knots.

e Two n-knots Kg, K1 : S C S*12 are
cobordant if there exists an embedding

J:S"x[0,1] c S"T2 x [0, 1]
such that J(z,7) = K;(x) (x € S™,1=0,1).

e [ he n-knot cobordism group C,, is the abelian
group of cobordism classes of n-knots, with
addition by connected sum. First defined
for n =1 by Fox and Milnor (1966).

11



Cobordism of Seifert surfaces

A Seifert surface for n-knot K : 8™ C S7T2
is a submanifold V*»T1 ¢ §7T2 with bound-
ary 9V = K(S") c Snt2,

Every n-knot I has Seifert surfaces V —
highly non-unique!

If Ko,K1 : 8™ C S™T2 are cobordant n-
knots, then for any Seifert surfaces Vp, V1 C
S"t2 there exists a Seifert surface cobor-
dism Wnt2 ¢ §n+2 x [0, 1] such that
Wnsmt2 x4 =V, (i =0,1).

Theorem (Kervaire 1965) Co, =0 (¢ > 1)
Proof: for every K : S24 ¢ §24+2 and Seifert
surface V2411 < §24+2 can construct null-
cobordism by ‘killing H«(V) by ambient surgery’.
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The trefoil knot, with a Seifert surface

J.B.
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Seifert forms

e A Scifert (—1)%-form is an r x r matrix B
such that the (—1)%-symmetric matrix

A = B+ (-1)4BT

IS invertible.

e A (2¢ — 1)-knot K : §2¢-1 ¢ §2¢+1 ith
a Seifert surface V24 ¢ §24+1 determine a
Seifert (—1)%-form B.

e B is the r x r matrix of linking numbers
bij = E(zi,z;-) € Z, for any basis z1, 2o, ..., 2r €
Hq(V), with 2,25,...,2. € Hg(S?1T1\V)
the images of the z;’'s under a map V —
S29+1\V pushing V off itself in $24+1,

A = B+ (—1)4B" is the intersection matrix
of V.
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Cobordism of Seifert forms

e The cobordism of Seifert (—1)%9-forms de-
fined as for quadratic forms, with cobordism

group G(_1y¢(Z).
e Depends only on g(mod 2).

e Theorem (Levine, 1969) The morphism

Cog-1 — G1)a(Z) ; K— B (any V)

is an isomorphism for g > 2 and surjective
forg=1. Thus for g > 2

knot cobordism Cyp,_1

= algebraic cobordism G(_l)q(Z) .

e For ¢ > 2 can realize Seifert (—1)%-form
cobordisms by Seifert surface and (2¢g—1)-
knot cobordisms!
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The calculation of the knot cobordism
group Cp,_1

e Theorem (Levine 1969) For g > 2
CQq—l = G(_l)q(Z) = EBZEB@ZQ @@24 :
©.@) ©.@) @)

Countably infinitely generated.

e The Z's are signatures, one for each alge-
braic integer s € C (= root of monic in-
tegral polynomial) with Re(s) = 1/2 and
Im(s) >0, so that s+5=1.

e The Z>'s and Zg4's are Hasse-Minkowski in-
variants, as in the Witt group of rational
quadratic forms

W (Q) =Z€B%Z2@%Z4 .

e Corollary For ¢ > 2 an algorithm for decid-
ing if two (2¢ — 1)-knots are cobordant.
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T he Milnor-Levine knot signatures

e For an r xr Seifert (—1)%-form B define the
complex vector space K = C" and the
linear map J = A~1B: K — K with
A = B+ (-=1)BT. The eigenvalues of J
are algebraic integers, the roots s € C of
the characteristic monic integral polyno-
mial det(sl — J) of J. K and A split as

K= QK:, A = @A,
S S

with Ks = U2y ker(sI — J)™ the general-
ized eigenspace. For each s with s4+s=1
(Ks, As) has signature os(B) = 035(B) € Z.

e [ he morphism
G(_l)q(Z) — @Z . B— @OS(B)

IS an isomorphism modulo 4-torsion, with s
running over all the algebraic integers s € C
with Re(s) = 1/2 and Im(s) > 0.
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T he cobordism class of the trefoil knot

e The trefoil knot K : S ¢ S3 has a Seifert
surface V2 = (S1 x S1H\D?, with

Hi(V) = Z&Z

and Seifert (—1)-form B = <(1) i) with

_ 0 —1
J = (B-BOH™ B = (1 1)

e [ he characteristic polynomial of J
det(sI —J) = s°—s+1
has roots the algebraic integers
s =(14+V3i)/2, s =(1-V3i)/2.
The Milnor-Levine signature is
o0s,(B) = 1e€eZCG_1(Z)
so that K is not cobordant to the trivial

knot, X #0 € (.
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Boundary links

Fix u=>1. A u-component n-link is an em-
bedding £ :||S™ C S™*T<. Traditional links
o

are 1-links.

A Seifert surface for £ is a submanifold
yntl - g2 with 9V = £(|]S™) ¢ S*t2.
m

Every n-link has Seifert surfaces.
L is a boundary link if it admits a u-component
Seifert surface V.=V uVou---UV,.

Theorem (Smythe, Gutierrez 1972) L is

a boundary link if and only if there exists

a surjection w1 (S?T2\L(JS™)) — F, onto
7

free group Fj, with pu generators.

Trivial link is a boundary link: w1 = F,.
The 2-component Hopf link is not a bound-
ary link: mq =72 & 7.
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A 2-component boundary link with a
2-component Seifert surface

J.B.
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u-component Seifert forms

e A py-component Seifert (—1)9-form is a Seifert
(—1)4%-form B with a partition into u?2 blocks

such that B;; is a Seifert (—1)9-form and
Bzy = (—1)q+1(BjZ')T for ¢ 7+— 7.

e A u-component Seifert surface V for

T p
L= |]L;:|] 8%t cs?atl
i=1 i=1
determines a u-component Seifert (—1)9-
form B with B;; the Seifert (—1)%-form of
L;:824—1 c g29+1

e Cobordism as for u = 1, with group G(_l)qyu(Z).
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The cobordism of boundary links

o Let Cn(F)) be the set of cobordism classes
of boundary links £ : [|S® C S™T2 with
7

a choice of surjection m(S"T2\L) — F.
Abelian group for n > 2, with addition by
connected sum.

For knots =1, Cn(F71) = Cp.

e Theorem (Cappell-Shaneson 1980)
Cog(Fy) = 0 (¢g=1).

e Theorem (Ko, Mio 1989) For ¢ > 2
boundary link cobordism Cop,_1(F})

= algebraic cobordism G(_l)q,M(Z) .

Proof: Can realize u-component Seifert (—1)4-
form cobordisms by Seifert surface and bound-
ary link cobordisms, just like in the knot
case py = 1!

22



The calculation of the cobordism of
boundary links

e Theorem (Sheiham, 2001) For ¢ > 2
Cog-1(Fu) = G(_1yq,(Z)
— @Z@@ZQ@@Z4@@Z8.
O o oo oo

The Z's are signatures, the Z»'s, Z4's and
Z.g's are generalized Hasse-Minkowski in-
variants.

e Depends only on g(mod 2).
Countably infinitely generated.

e Corollary For g = 2 an algorithm for de-
ciding if two boundary (2¢g — 1)-links are
cobordant.
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The Sheiham boundary link signatures

e Ring with involution P, = Z[s, 71,7, ..., 7u]
v
ZT&'Z':]. y 7T7;7Tj:57;j, §:1—S, T, — Ty
1=1

(Farber, 1991).

e An r x r u-component Seifert (—1)%-form
B is a self-dual representation of P, on Z",
a morphism of rings with involution

p:P,— R=Homy(Z",Z") .
Use A= B+ (—1)4BY € R to define
R— R;Dw— A-1DT A, with p(x;) € R
the idempotent of the :th block in B
and p(s) = A"1B e R.

e [ here is one Sheiham signature for each
‘algebraic integer’ in the moduli space of
self-dual representations of P, on finite-
dimensional complex vector spaces.
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T he low-dimensional case n =1

e FOr n > 2 every u-component boundary n-
link £ :||S™ c S*t2 is cobordant to one
o

v
with Seifert surface V = || V, such that
i=1

1 (S"TAL(]S™Y) = Eu, m1(V;) = {1}
7!

This is not possible for n = 1.

e For knots K : S ¢ S3 Casson and Gordon
(1975) and Cochran, Teichner, Orr (1999)
used the special low-dimensional properties
of the fundamental group w1 (S3\KC(S1)) and
L2-cohomology to obtain many more sig-
natures for C1 = C1(F71), almost calculat-
ing the torsion-free part completely.

e Next step: compute the cobordism set Cy(F},)
of boundary links £: ]St c S3 for p>2!
7
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