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Cobordism

• There is a cobordism equivalence relation
on each of the following 6 classes of mathe-
matical structures, which come in 3 match-
ing pairs of topological and algebraic types:

– (manifolds, quadratic forms)

– (knots, Seifert forms)

– (boundary links, partitioned Seifert forms)

• The cobordism groups are the abelian groups
of equivalence classes, with forgetful mor-
phisms

{topological cobordism} → {algebraic cobordism}

• How large are these groups? To what ex-
tent are these morphisms isomorphisms?
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Matrices and forms

• An r×r matrix A = (aij) has entries aij ∈ Z
with 1 6 i, j 6 r.

• The direct sum of A and an s × s matrix
B = (bk`) is the (r + s)× (r + s) matrix

A⊕B =

(
A 0
0 B

)
.

• The transpose of A is the r × r matrix

AT = (aji) .

• A quadratic form is an r×r matrix A which
is symmetric and invertible

AT = A , det(A) = ±1 .

A symplectic form is an r×r matrix A which
is (−1)-symmetric and invertible

AT = −A , det(A) = ±1 .
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Cobordism of quadratic forms

• Quadratic forms A, A′ are congruent if

A′ = UTAU for an invertible matrix U .

• A quadratic form A is null-cobordant if it is

congruent to

(
0 P

PT Q

)
with P an invertible

s×s matrix, and Q a symmetric s×s matrix.

• Example H =

(
0 1
1 0

)
is null-cobordant.

• Quadratic forms A, A′ (which may be of dif-

ferent sizes) are cobordant if A⊕B is con-

gruent to A′ ⊕B′ for null-cobordant B, B′.

• Similarly for symplectic forms.
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Calculation of the cobordism group of
quadratic forms

• The Witt group W (Z) is the abelian group
of cobordism classes of quadratic forms,
with addition by direct sum A⊕A′.

• Definition (Sylvester, 1852) The signature
of a quadratic form A is

σ(A) = r+ − r− ∈ Z
with r+ the number of positive eigenvalues
of A, r− the number of negative eigenval-
ues of A.

• σ(1) = 1, σ(−1) = −1, σ(H) = 0.

• Theorem Signature defines isomorphism

σ : W (Z) → Z ; A 7→ σ(A) .

• The Witt group of symplectic forms = 0.
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Manifolds

• An n-manifold M is a topological space
such that each x ∈ M has a neighbourhood
U ⊂ M which is homeomorphic to Euclid-
ean n-space Rn. Will assume differentiable
structure.

• The solution set M = f−1(0) of equation
f(x) = 0 ∈ Rm for function f : Rm+n → Rm

is generically an n-manifold.

• The n-sphere Sn = {x ∈ Rn+1 | ‖x‖ = 1} is
an n-manifold.

• A surface is a 2-manifold, e.g. sphere S2,
torus S1 × S1.

• Will only consider oriented manifolds: no
Möbius bands, Klein bottles etc.
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Cobordism of manifolds

• An (n + 1)-manifold with boundary
(W, ∂W ⊂ W ) has W\∂W an (n+1)-manifold
and ∂W an n-manifold.

• Will only consider compact oriented mani-
folds with boundary (which may be empty).

• Example (Dn+1, Sn) is a compact oriented
(n + 1)-manifold with boundary, where
Dn+1 = {x ∈ Rn+1 | ‖x‖ 6 1}.

• Two n-manifolds M0, M1 are cobordant if
the disjoint union M0t−M1 is the boundary
∂W of an (n +1)-manifold W , where −M1
is M1 with reverse orientation.

• Every surface M is the boundary M = ∂W
of a 3-manifold W , so any two surfaces
M, M ′ are cobordant.
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The cobordism groups of manifolds

• The cobordism group Ωn of cobordism classes
of n-manifolds, with addition by disjoint
union M tM ′.
The cobordism ring Ω∗ =

⊕
n

Ωn with mul-

tiplication by cartesian product M ×N .

• Theorem (Thom, 1952) Each cobordism
group Ωn is finitely generated with 2-torsion
only. The cobordism ring is

Ω∗ = Z[x4, x8, . . . ]⊕
⊕
∞
Z2 .

Z[x4, x8, . . . ] is the polynomial algebra with
one generator x4k in each dimension 4k.
Note that Ωn grows in size as n increases.

• Nice account of manifold cobordism in Switzer’s
book Algebraic Topology – Homotopy and
Homology (Springer, 1975)
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The signature of a 4k-manifold

• (Poincaré, 1895) The intersection matrix
A = (aij) of a 2q-manifold M defined by
intersection numbers aij = zi ∩ zj ∈ Z for
a basis z1, z2, . . . , zr of the homology group
Hq(M) = Zr ⊕ torsion, with

AT = (−1)qA , det(A) = ± 1 .

A is a quadratic form if q is even.
A is a symplectic form if q is odd.

• If M = Sq × Sq then A =

(
0 1

(−1)q 0

)
.

• The signature of a 4k-manifold M4k is

σ(M) = σ(A) ∈ Z .

• σ(S4k) = σ(S2k × S2k) = 0, σ(x4k) = 1.
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The signature morphism σ : Ω4k → W (Z)

• Let M, M ′ be 4k-manifolds with intersec-
tion matrices A, A′. If M and M ′ are cobor-
dant then A and A′ are cobordant, and

σ(M) = σ(A) = σ(A′) = σ(M ′) ∈ Z .

However, a cobordism of A and A′ may not
come from a cobordism of M and M ′.

• Signature defines surjective ring morphism

σ : Ω4k → W (Z) = Z ; M 7→ σ(M)

with x4k 7→ 1. Isomorphism for k = 1.

• Example The 8-manifolds (x4)
2, x8 have

same signature σ = 1, but are not cobor-
dant, (x4)

2 − x8 6= 0 ∈ ker(σ : Ω8 → Z).

• Can determine class of 4k-manifold M in
Ω4k/torsion = Z[x4, x8, . . . ] from signatures
σ(N) of submanifolds N4` ⊆ M (` 6 k).
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Cobordism of knots

• A n-knot is an embedding

K : Sn ⊂ Sn+2 .

Traditional knots are 1-knots.

• Two n-knots K0,K1 : Sn ⊂ Sn+2 are

cobordant if there exists an embedding

J : Sn × [0,1] ⊂ Sn+2 × [0,1]

such that J (x, i) = Ki(x) (x ∈ Sn, i = 0,1).

• The n-knot cobordism group Cn is the abelian

group of cobordism classes of n-knots, with

addition by connected sum. First defined

for n = 1 by Fox and Milnor (1966).
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Cobordism of Seifert surfaces

• A Seifert surface for n-knot K : Sn ⊂ Sn+2

is a submanifold V n+1 ⊂ Sn+2 with bound-

ary ∂V = K(Sn) ⊂ Sn+2.

• Every n-knot K has Seifert surfaces V –

highly non-unique!

• If K0,K1 : Sn ⊂ Sn+2 are cobordant n-

knots, then for any Seifert surfaces V0, V1 ⊂
Sn+2 there exists a Seifert surface cobor-

dism Wn+2 ⊂ Sn+2 × [0,1] such that

W ∩ (Sn+2 × {i}) = Vi (i = 0,1).

• Theorem (Kervaire 1965) C2q = 0 (q > 1)

Proof: for every K : S2q ⊂ S2q+2 and Seifert

surface V 2q+1 ⊂ S2q+2 can construct null-

cobordism by ‘killing H∗(V ) by ambient surgery’.

12



The trefoil knot, with a Seifert surface

J.B.
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Seifert forms

• A Seifert (−1)q-form is an r × r matrix B

such that the (−1)q-symmetric matrix

A = B + (−1)qBT

is invertible.

• A (2q − 1)-knot K : S2q−1 ⊂ S2q+1 with

a Seifert surface V 2q ⊂ S2q+1 determine a

Seifert (−1)q-form B.

• B is the r × r matrix of linking numbers

bij = `(zi, z
′
j) ∈ Z, for any basis z1, z2, . . . , zr ∈

Hq(V ), with z′1, z′2, . . . , z′r ∈ Hq(S2q+1\V )

the images of the zi’s under a map V →
S2q+1\V pushing V off itself in S2q+1.

A = B+(−1)qBT is the intersection matrix

of V .

14



Cobordism of Seifert forms

• The cobordism of Seifert (−1)q-forms de-
fined as for quadratic forms, with cobordism
group G(−1)q(Z).

• Depends only on q(mod 2).

• Theorem (Levine, 1969) The morphism

C2q−1 → G(−1)q(Z) ; K 7→ B (any V )

is an isomorphism for q > 2 and surjective
for q = 1. Thus for q > 2

knot cobordism C2q−1

= algebraic cobordism G(−1)q(Z) .

• For q > 2 can realize Seifert (−1)q-form
cobordisms by Seifert surface and (2q−1)-
knot cobordisms!
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The calculation of the knot cobordism
group C2q−1

• Theorem (Levine 1969) For q > 2

C2q−1 = G(−1)q(Z) =
⊕
∞
Z⊕

⊕
∞
Z2⊕

⊕
∞
Z4 .

Countably infinitely generated.

• The Z’s are signatures, one for each alge-
braic integer s ∈ C (= root of monic in-
tegral polynomial) with Re(s) = 1/2 and
Im(s) > 0, so that s + s̄ = 1.

• The Z2’s and Z4’s are Hasse-Minkowski in-
variants, as in the Witt group of rational
quadratic forms

W (Q) = Z⊕⊕
∞ Z2 ⊕

⊕
∞ Z4 .

• Corollary For q > 2 an algorithm for decid-
ing if two (2q − 1)-knots are cobordant.
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The Milnor-Levine knot signatures

• For an r×r Seifert (−1)q-form B define the
complex vector space K = Cr and the
linear map J = A−1B : K → K with
A = B + (−1)qBT . The eigenvalues of J

are algebraic integers, the roots s ∈ C of
the characteristic monic integral polyno-
mial det(sI − J) of J. K and A split as

K =
⊕
s

Ks , A =
⊕
s

As

with Ks =
⋃∞

n=0 ker(sI − J)n the general-
ized eigenspace. For each s with s + s̄ = 1
(Ks, As) has signature σs(B) = σs̄(B) ∈ Z.

• The morphism

G(−1)q(Z) →
⊕
s
Z ; B 7→

⊕
s

σs(B)

is an isomorphism modulo 4-torsion, with s

running over all the algebraic integers s ∈ C
with Re(s) = 1/2 and Im(s) > 0.
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The cobordism class of the trefoil knot

• The trefoil knot K : S1 ⊂ S3 has a Seifert
surface V 2 = (S1 × S1)\D2, with

H1(V ) = Z⊕ Z

and Seifert (−1)-form B =

(
1 1
0 1

)
, with

J = (B −BT )−1B =

(
0 −1
1 1

)

• The characteristic polynomial of J

det(sI − J) = s2 − s + 1

has roots the algebraic integers

s+ = (1 +
√

3i)/2 , s− = (1−
√

3i)/2 .

The Milnor-Levine signature is

σs+(B) = 1 ∈ Z ⊂ G−1(Z)
so that K is not cobordant to the trivial
knot, K 6= 0 ∈ C1.
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Boundary links

• Fix µ > 1. A µ-component n-link is an em-
bedding L :

⊔
µ

Sn ⊂ Sn+2. Traditional links

are 1-links.

• A Seifert surface for L is a submanifold
V n+1 ⊂ Sn+2 with ∂V = L(

⊔
µ

Sn) ⊂ Sn+2.

Every n-link has Seifert surfaces.
L is a boundary link if it admits a µ-component
Seifert surface V = V1 t V2 t · · · t Vµ.

• Theorem (Smythe, Gutierrez 1972) L is
a boundary link if and only if there exists
a surjection π1(S

n+2\L(
⊔
µ

Sn)) → Fµ onto

free group Fµ with µ generators.

• Trivial link is a boundary link: π1 = Fµ.
The 2-component Hopf link is not a bound-
ary link: π1 = Z⊕ Z.
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A 2-component boundary link with a
2-component Seifert surface

J.B.
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µ-component Seifert forms

• A µ-component Seifert (−1)q-form is a Seifert
(−1)q-form B with a partition into µ2 blocks

B =




B11 B12 . . . B1µ
B21 B22 . . . B2µ
... ... . . . ...

Bµ1 Bµ2 . . . Bµµ




such that Bii is a Seifert (−1)q-form and
Bij = (−1)q+1(Bji)

T for i 6= j.

• A µ-component Seifert surface V for

L =
µ⊔

i=1

Li :
µ⊔

i=1

S2q−1 ⊂ S2q+1

determines a µ-component Seifert (−1)q-
form B with Bii the Seifert (−1)q-form of
Li : S2q−1 ⊂ S2q+1.

• Cobordism as for µ = 1, with group G(−1)q,µ(Z).
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The cobordism of boundary links

• Let Cn(Fµ) be the set of cobordism classes
of boundary links L :

⊔
µ

Sn ⊂ Sn+2 with

a choice of surjection π1(S
n+2\L) → Fµ.

Abelian group for n > 2, with addition by
connected sum.
For knots µ = 1, Cn(F1) = Cn.

• Theorem (Cappell-Shaneson 1980)

C2q(Fµ) = 0 (q > 1) .

• Theorem (Ko, Mio 1989) For q > 2

boundary link cobordism C2q−1(Fµ)

= algebraic cobordism G(−1)q,µ(Z) .

Proof: Can realize µ-component Seifert (−1)q-
form cobordisms by Seifert surface and bound-
ary link cobordisms, just like in the knot
case µ = 1!
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The calculation of the cobordism of

boundary links

• Theorem (Sheiham, 2001) For q > 2

C2q−1(Fµ) = G(−1)q,µ(Z)
=

⊕
∞ Z⊕

⊕
∞ Z2 ⊕

⊕
∞ Z4 ⊕

⊕
∞ Z8 .

The Z’s are signatures, the Z2’s, Z4’s and

Z8’s are generalized Hasse-Minkowski in-

variants.

• Depends only on q(mod 2).

Countably infinitely generated.

• Corollary For q > 2 an algorithm for de-

ciding if two boundary (2q − 1)-links are

cobordant.
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The Sheiham boundary link signatures

• Ring with involution Pµ = Z[s, π1, π2, . . . , πµ]

µ∑

i=1

πi = 1 , πiπj = δij , s̄ = 1− s , π̄i = πi

(Farber, 1991).

• An r × r µ-component Seifert (−1)q-form
B is a self-dual representation of Pµ on Zr,
a morphism of rings with involution

ρ : Pµ → R = HomZ(Zr,Zr) .

Use A = B + (−1)qBT ∈ R to define
R → R;D 7→ A−1DTA, with ρ(πi) ∈ R
the idempotent of the ith block in B
and ρ(s) = A−1B ∈ R.

• There is one Sheiham signature for each
‘algebraic integer’ in the moduli space of
self-dual representations of Pµ on finite-
dimensional complex vector spaces.
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The low-dimensional case n = 1

• For n > 2 every µ-component boundary n-
link L :

⊔
µ

Sn ⊂ Sn+2 is cobordant to one

with Seifert surface V =
µ⊔

i=1
Vi such that

π1(S
n+2\L(

⊔
µ

Sn)) = Fµ , π1(Vi) = {1}

This is not possible for n = 1.

• For knots K : S1 ⊂ S3 Casson and Gordon
(1975) and Cochran, Teichner, Orr (1999)
used the special low-dimensional properties
of the fundamental group π1(S

3\K(S1)) and
L2-cohomology to obtain many more sig-
natures for C1 = C1(F1), almost calculat-
ing the torsion-free part completely.

• Next step: compute the cobordism set C1(Fµ)
of boundary links L :

⊔
µ

S1 ⊂ S3 for µ > 2 !
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