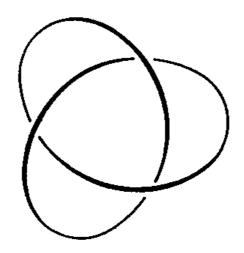
COBORDISM IN ALGEBRA AND TOPOLOGY

ANDREW RANICKI (Edinburgh)

http://www.maths.ed.ac.uk/~aar



Dedicated to Robert Switzer and Desmond Sheiham

Göttingen, 13th May, 2005

Cobordism

- There is a cobordism equivalence relation on each of the following 6 classes of mathematical structures, which come in 3 matching pairs of topological and algebraic types:
 - (manifolds, quadratic forms)
 - (knots, Seifert forms)
 - (boundary links, partitioned Seifert forms)
- The <u>cobordism groups</u> are the abelian groups of equivalence classes, with forgetful morphisms

 $\{topological \ cobordism\} \rightarrow \{algebraic \ cobordism\}$

• How large are these groups? To what extent are these morphisms isomorphisms?

Matrices and forms

- An $r \times r$ matrix $A = (a_{ij})$ has entries $a_{ij} \in \mathbb{Z}$ with $1 \leq i, j \leq r$.
- The direct sum of A and an $s \times s$ matrix $B = (b_{k\ell})$ is the $(r+s) \times (r+s)$ matrix

$$A \oplus B = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$

- The <u>transpose</u> of A is the $r \times r$ matrix $A^T = (a_{ji})$.
- A <u>quadratic form</u> is an $r \times r$ matrix A which is symmetric and invertible

$$A^T = A$$
, $\det(A) = \pm 1$.

A symplectic form is an $r \times r$ matrix A which is (-1)-symmetric and invertible

$$A^T = -A$$
, $\det(A) = \pm 1$.

Cobordism of quadratic forms

- Quadratic forms A, A' are <u>congruent</u> if $A' = U^T A U$ for an invertible matrix U.
- A quadratic form A is <u>null-cobordant</u> if it is congruent to $\begin{pmatrix} 0 & P \\ P^T & Q \end{pmatrix}$ with P an invertible $s \times s$ matrix, and Q a symmetric $s \times s$ matrix.

• Example
$$H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 is null-cobordant.

- Quadratic forms A, A' (which may be of different sizes) are <u>cobordant</u> if $A \oplus B$ is congruent to $A' \oplus B'$ for null-cobordant B, B'.
- Similarly for symplectic forms.

Calculation of the cobordism group of quadratic forms

- The Witt group $W(\mathbb{Z})$ is the abelian group of cobordism classes of quadratic forms, with addition by direct sum $A \oplus A'$.
- <u>Definition</u> (Sylvester, 1852) The <u>signature</u> of a quadratic form A is

 $\sigma(A) = r_+ - r_- \in \mathbb{Z}$

with r_+ the number of positive eigenvalues of A, r_- the number of negative eigenvalues of A.

- $\sigma(1) = 1$, $\sigma(-1) = -1$, $\sigma(H) = 0$.
- <u>Theorem</u> Signature defines isomorphism $\sigma: W(\mathbb{Z}) \to \mathbb{Z} ; A \mapsto \sigma(A) .$
- The Witt group of symplectic forms = 0.

Manifolds

- An <u>n-manifold</u> M is a topological space such that each x ∈ M has a neighbourhood U ⊂ M which is homeomorphic to Euclidean n-space ℝⁿ. Will assume differentiable structure.
- The solution set $M = f^{-1}(0)$ of equation $f(x) = 0 \in \mathbb{R}^m$ for function $f : \mathbb{R}^{m+n} \to \mathbb{R}^m$ is generically an *n*-manifold.
- The *n*-sphere $S^n = \{x \in \mathbb{R}^{n+1} | ||x|| = 1\}$ is an *n*-manifold.
- A surface is a 2-manifold, e.g. sphere S^2 , torus $S^1 \times S^1$.
- Will only consider oriented manifolds: no Möbius bands, Klein bottles etc.

Cobordism of manifolds

- An (n + 1)-manifold with boundary $(W, \partial W \subset W)$ has $W \setminus \partial W$ an (n+1)-manifold and ∂W an *n*-manifold.
- Will only consider compact oriented manifolds with boundary (which may be empty).
- Example (D^{n+1}, S^n) is a compact oriented (n+1)-manifold with boundary, where $D^{n+1} = \{x \in \mathbb{R}^{n+1} | ||x|| \leq 1\}.$
- Two *n*-manifolds M_0, M_1 are <u>cobordant</u> if the disjoint union $M_0 \sqcup -M_1$ is the boundary ∂W of an (n + 1)-manifold W, where $-M_1$ is M_1 with reverse orientation.
- Every surface M is the boundary $M = \partial W$ of a 3-manifold W, so any two surfaces M, M' are cobordant.

The cobordism groups of manifolds

- The cobordism group Ω_n of cobordism classes of n-manifolds, with addition by disjoint union M ⊔ M'.
 The cobordism ring Ω_{*} = ⊕ Ω_n ω_n with multiplication by cartesian product M × N.
- <u>Theorem</u> (Thom, 1952) Each cobordism group Ω_n is finitely generated with 2-torsion only. The cobordism ring is

$$\Omega_* = \mathbb{Z}[x_4, x_8, \dots] \oplus \bigoplus_{\infty} \mathbb{Z}_2 .$$

 $\mathbb{Z}[x_4, x_8, \dots]$ is the polynomial algebra with one generator x_{4k} in each dimension 4k. Note that Ω_n grows in size as n increases.

 Nice account of manifold cobordism in Switzer's book Algebraic Topology – Homotopy and Homology (Springer, 1975)

The signature of a 4k-manifold

• (Poincaré, 1895) The <u>intersection</u> matrix $A = (a_{ij})$ of a 2q-manifold M defined by intersection numbers $a_{ij} = z_i \cap z_j \in \mathbb{Z}$ for a basis z_1, z_2, \ldots, z_r of the homology group $H_q(M) = \mathbb{Z}^r \oplus \text{torsion}$, with

$$A^T = (-1)^q A$$
, $\det(A) = \pm 1$.

A is a quadratic form if q is even.

A is a symplectic form if q is odd.

• If
$$M = S^q \times S^q$$
 then $A = \begin{pmatrix} 0 & 1 \\ (-1)^q & 0 \end{pmatrix}$.

• The signature of a 4k-manifold M^{4k} is $\sigma(M) = \sigma(A) \in \mathbb{Z}$.

•
$$\sigma(S^{4k}) = \sigma(S^{2k} \times S^{2k}) = 0, \ \sigma(x_{4k}) = 1$$

The signature morphism $\sigma : \Omega_{4k} \to W(\mathbb{Z})$

- Let M, M' be 4k-manifolds with intersection matrices A, A'. If M and M' are cobordant dant then A and A' are cobordant, and $\sigma(M) = \sigma(A) = \sigma(A') = \sigma(M') \in \mathbb{Z}$. However, a cobordism of A and A' may not come from a cobordism of M and M'.
- Signature defines surjective ring morphism $\sigma : \Omega_{4k} \to W(\mathbb{Z}) = \mathbb{Z}$; $M \mapsto \sigma(M)$ with $x_{4k} \mapsto 1$. Isomorphism for k = 1.
- Example The 8-manifolds $(x_4)^2$, x_8 have same signature $\sigma = 1$, but are not cobordant, $(x_4)^2 - x_8 \neq 0 \in \ker(\sigma : \Omega_8 \to \mathbb{Z})$.
- Can determine class of 4k-manifold M in Ω_{4k} /torsion = $\mathbb{Z}[x_4, x_8, ...]$ from signatures $\sigma(N)$ of submanifolds $N^{4\ell} \subseteq M$ ($\ell \leq k$).

Cobordism of knots

• A <u>n-knot</u> is an embedding

$$\mathcal{K}: S^n \subset S^{n+2}$$

Traditional knots are 1-knots.

• Two *n*-knots $\mathcal{K}_0, \mathcal{K}_1 : S^n \subset S^{n+2}$ are <u>cobordant</u> if there exists an embedding $\mathcal{J} : S^n \times [0, 1] \subset S^{n+2} \times [0, 1]$

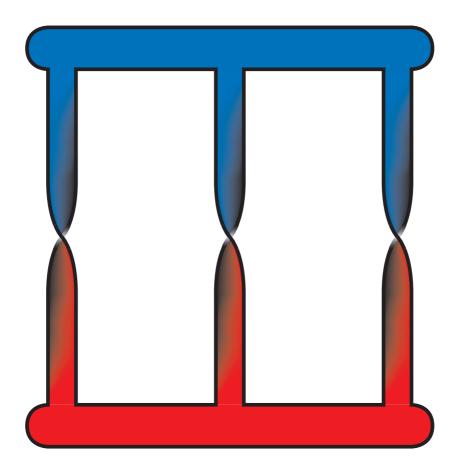
such that $\mathcal{J}(x,i) = \mathcal{K}_i(x)$ $(x \in S^n, i = 0, 1)$.

 The <u>n-knot cobordism group</u> C_n is the abelian group of cobordism classes of n-knots, with addition by connected sum. First defined for n = 1 by Fox and Milnor (1966).

Cobordism of Seifert surfaces

- A <u>Seifert surface</u> for *n*-knot $\mathcal{K} : S^n \subset S^{n+2}$ is a submanifold $V^{n+1} \subset S^{n+2}$ with boundary $\partial V = \mathcal{K}(S^n) \subset S^{n+2}$.
- Every *n*-knot \mathcal{K} has Seifert surfaces V highly non-unique!
- If $\mathcal{K}_0, \mathcal{K}_1 : S^n \subset S^{n+2}$ are cobordant *n*knots, then for any Seifert surfaces $V_0, V_1 \subset S^{n+2}$ there exists a Seifert surface cobordism $W^{n+2} \subset S^{n+2} \times [0,1]$ such that $W \cap (S^{n+2} \times \{i\}) = V_i \ (i = 0, 1).$
- <u>Theorem</u> (Kervaire 1965) $C_{2q} = 0$ $(q \ge 1)$ Proof: for every $\mathcal{K} : S^{2q} \subset S^{2q+2}$ and Seifert surface $V^{2q+1} \subset S^{2q+2}$ can construct nullcobordism by 'killing $H_*(V)$ by ambient surgery'.

The trefoil knot, with a Seifert surface



J.B.

Seifert forms

• A Seifert $(-1)^q$ -form is an $r \times r$ matrix B such that the $(-1)^q$ -symmetric matrix

$$A = B + (-1)^q B^T$$

is invertible.

- A (2q 1)-knot $\mathcal{K} : S^{2q-1} \subset S^{2q+1}$ with a Seifert surface $V^{2q} \subset S^{2q+1}$ determine a Seifert $(-1)^q$ -form B.
- *B* is the $r \times r$ matrix of linking numbers $b_{ij} = \ell(z_i, z'_j) \in \mathbb{Z}$, for any basis $z_1, z_2, \ldots, z_r \in H_q(V)$, with $z'_1, z'_2, \ldots, z'_r \in H_q(S^{2q+1} \setminus V)$ the images of the z_i 's under a map $V \rightarrow S^{2q+1} \setminus V$ pushing V off itself in S^{2q+1} . $A = B + (-1)^q B^T$ is the intersection matrix of V.

Cobordism of Seifert forms

- The <u>cobordism</u> of Seifert $(-1)^q$ -forms defined as for quadratic forms, with <u>cobordism</u> <u>group</u> $G_{(-1)^q}(\mathbb{Z})$.
- Depends only on $q \pmod{2}$.
- Theorem (Levine, 1969) The morphism

 $C_{2q-1} \rightarrow G_{(-1)^q}(\mathbb{Z})$; $\mathcal{K} \mapsto B$ (any V) is an isomorphism for $q \ge 2$ and surjective for q = 1. Thus for $q \ge 2$ knot cobordism C_{2q-1}

= algebraic cobordism $G_{(-1)^q}(\mathbb{Z})$.

 For q ≥ 2 can realize Seifert (-1)^q-form cobordisms by Seifert surface and (2q-1)knot cobordisms!

The calculation of the knot cobordism group C_{2q-1}

- <u>Theorem</u> (Levine 1969) For $q \ge 2$ $C_{2q-1} = G_{(-1)^q}(\mathbb{Z}) = \bigoplus_{\infty} \mathbb{Z} \oplus \bigoplus_{\infty} \mathbb{Z}_2 \oplus \bigoplus_{\infty} \mathbb{Z}_4$. Countably infinitely generated.
- The \mathbb{Z} 's are signatures, one for each algebraic integer $s \in \mathbb{C}$ (= root of monic integral polynomial) with $\operatorname{Re}(s) = 1/2$ and $\operatorname{Im}(s) > 0$, so that $s + \overline{s} = 1$.
- The \mathbb{Z}_2 's and \mathbb{Z}_4 's are Hasse-Minkowski invariants, as in the Witt group of rational quadratic forms

$$W(\mathbb{Q}) = \mathbb{Z} \oplus \bigoplus_{\infty} \mathbb{Z}_2 \oplus \bigoplus_{\infty} \mathbb{Z}_4$$
.

• Corollary For $q \ge 2$ an algorithm for deciding if two (2q - 1)-knots are cobordant.

The Milnor-Levine knot signatures

For an r×r Seifert (-1)^q-form B define the complex vector space K = C^r and the linear map J = A⁻¹B : K → K with A = B + (-1)^qB^T. The eigenvalues of J are algebraic integers, the roots s ∈ C of the characteristic monic integral polynomial det(sI - J) of J. K and A split as

$$K = \bigoplus_{s} K_s , A = \bigoplus_{s} A_s$$

with $K_s = \bigcup_{n=0}^{\infty} \ker(sI - J)^n$ the generalized eigenspace. For each s with $s + \overline{s} = 1$ (K_s, A_s) has signature $\sigma_s(B) = \sigma_{\overline{s}}(B) \in \mathbb{Z}$.

• The morphism

$$G_{(-1)^q}(\mathbb{Z}) \to \bigoplus_s \mathbb{Z} ; B \mapsto \bigoplus_s \sigma_s(B)$$

is an isomorphism modulo 4-torsion, with srunning over all the algebraic integers $s \in \mathbb{C}$ with $\operatorname{Re}(s) = 1/2$ and $\operatorname{Im}(s) > 0$.

The cobordism class of the trefoil knot

- The trefoil knot $\mathcal{K} : S^1 \subset S^3$ has a Seifert surface $V^2 = (S^1 \times S^1) \setminus D^2$, with $H_1(V) = \mathbb{Z} \oplus \mathbb{Z}$ and Seifert (-1)-form $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, with $J = (B - B^T)^{-1}B = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$
- The characteristic polynomial of J

$$det(sI - J) = s^2 - s + 1$$

has roots the algebraic integers

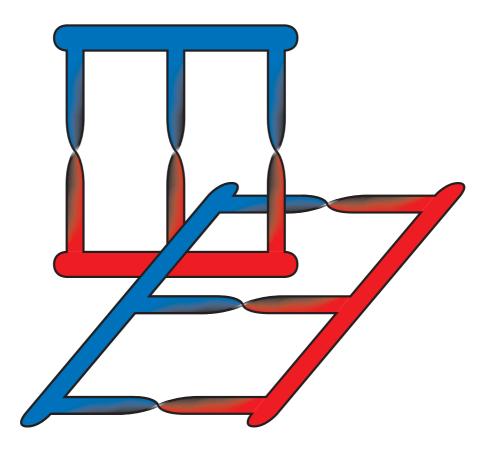
 $s_+ = (1 + \sqrt{3}i)/2$, $s_- = (1 - \sqrt{3}i)/2$. The Milnor-Levine signature is

 $\sigma_{s_+}(B) = 1 \in \mathbb{Z} \subset G_{-1}(\mathbb{Z})$ so that \mathcal{K} is not cobordant to the trivial knot, $\mathcal{K} \neq 0 \in C_1$.

Boundary links

- Fix $\mu \ge 1$. A μ -component *n*-link is an embedding $\mathcal{L} : \coprod_{\mu} S^n \subset S^{n+2}$. Traditional links are 1-links.
- A <u>Seifert surface</u> for \mathcal{L} is a submanifold $V^{n+1} \subset S^{n+2}$ with $\partial V = \mathcal{L}(\bigsqcup_{\mu} S^n) \subset S^{n+2}$. Every *n*-link has Seifert surfaces. \mathcal{L} is a <u>boundary link</u> if it admits a μ -component Seifert surface $V = V_1 \sqcup V_2 \sqcup \cdots \sqcup V_{\mu}$.
- <u>Theorem</u> (Smythe, Gutierrez 1972) \mathcal{L} is a boundary link if and only if there exists a surjection $\pi_1(S^{n+2} \setminus \mathcal{L}(\bigsqcup_{\mu} S^n)) \to F_{\mu}$ onto free group F_{μ} with μ generators.
- Trivial link is a boundary link: $\pi_1 = F_{\mu}$. The 2-component Hopf link is not a boundary link: $\pi_1 = \mathbb{Z} \oplus \mathbb{Z}$.

A 2-component boundary link with a 2-component Seifert surface



J.B.

μ -component Seifert forms

• A μ -component Seifert $(-1)^q$ -form is a Seifert $(-1)^q$ -form B with a partition into μ^2 blocks

$$B = \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1\mu} \\ B_{21} & B_{22} & \dots & B_{2\mu} \\ \vdots & \vdots & \ddots & \vdots \\ B_{\mu 1} & B_{\mu 2} & \dots & B_{\mu \mu} \end{pmatrix}$$

such that B_{ii} is a Seifert $(-1)^q$ -form and $B_{ij} = (-1)^{q+1} (B_{ji})^T$ for $i \neq j$.

• A $\mu\text{-component}$ Seifert surface V for

$$\mathcal{L} = \bigsqcup_{i=1}^{\mu} \mathcal{L}_i : \bigsqcup_{i=1}^{\mu} S^{2q-1} \subset S^{2q+1}$$

determines a μ -component Seifert $(-1)^q$ form B with B_{ii} the Seifert $(-1)^q$ -form of $\mathcal{L}_i : S^{2q-1} \subset S^{2q+1}$.

• <u>Cobordism</u> as for $\mu = 1$, with group $G_{(-1)^q,\mu}(\mathbb{Z})$.

The cobordism of boundary links

- Let C_n(F_μ) be the set of cobordism classes of boundary links L : µ Sⁿ ⊂ Sⁿ⁺² with a choice of surjection π₁(Sⁿ⁺²\L) → F_μ. Abelian group for n ≥ 2, with addition by connected sum. For knots μ = 1, C_n(F₁) = C_n.
- <u>Theorem</u> (Cappell-Shaneson 1980)

 $C_{2q}(F_{\mu}) = 0 \ (q \ge 1)$.

 Theorem (Ko, Mio 1989) For q ≥ 2 boundary link cobordism C_{2q-1}(F_μ) = algebraic cobordism G_{(-1)^q,μ}(ℤ).
 Proof: Can realize μ-component Seifert (-1)^q-form cobordisms by Seifert surface and bound-

ary link cobordisms, just like in the knot case $\mu = 1!$

The calculation of the cobordism of boundary links

• Theorem (Sheiham, 2001) For $q \ge 2$

 $C_{2q-1}(F_{\mu}) = G_{(-1)^{q},\mu}(\mathbb{Z})$ = $\bigoplus_{\infty} \mathbb{Z} \oplus \bigoplus_{\infty} \mathbb{Z}_{2} \oplus \bigoplus_{\infty} \mathbb{Z}_{4} \oplus \bigoplus_{\infty} \mathbb{Z}_{8}$. The \mathbb{Z} 's are signatures, the \mathbb{Z}_{2} 's, \mathbb{Z}_{4} 's and \mathbb{Z}_{8} 's are generalized Hasse-Minkowski invariants.

- Depends only on q(mod 2).
 Countably infinitely generated.
- <u>Corollary</u> For $q \ge 2$ an algorithm for deciding if two boundary (2q - 1)-links are cobordant.

The Sheiham boundary link signatures

• Ring with involution $P_{\mu} = \mathbb{Z}[s, \pi_1, \pi_2, \dots, \pi_{\mu}]$

 $\sum_{i=1}^{\mu} \pi_i = 1 , \ \pi_i \pi_j = \delta_{ij} , \ \bar{s} = 1 - s , \ \bar{\pi}_i = \pi_i$ (Farber, 1991).

• An $r \times r \mu$ -component Seifert $(-1)^q$ -form *B* is a self-dual representation of P_{μ} on \mathbb{Z}^r , a morphism of rings with involution

 $\rho: P_{\mu} \to R = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^{r}, \mathbb{Z}^{r}) .$ Use $A = B + (-1)^{q} B^{T} \in R$ to define $R \to R; D \mapsto A^{-1} D^{T} A$, with $\rho(\pi_{i}) \in R$ the idempotent of the *i*th block in Band $\rho(s) = A^{-1} B \in R$.

• There is one Sheiham signature for each 'algebraic integer' in the moduli space of self-dual representations of P_{μ} on finite-dimensional complex vector spaces.

The low-dimensional case n = 1

- For $n \ge 2$ every μ -component boundary nlink $\mathcal{L} : \bigsqcup_{\mu} S^n \subset S^{n+2}$ is cobordant to one with Seifert surface $V = \bigsqcup_{i=1}^{\mu} V_i$ such that $\pi_1(S^{n+2} \setminus \mathcal{L}(\bigsqcup_{\mu} S^n)) = F_{\mu}, \ \pi_1(V_i) = \{1\}$ This is not possible for n = 1.
- For knots $\mathcal{K}: S^1 \subset S^3$ Casson and Gordon (1975) and Cochran, Teichner, Orr (1999) used the special low-dimensional properties of the fundamental group $\pi_1(S^3 \setminus \mathcal{K}(S^1))$ and L^2 -cohomology to obtain many more signatures for $C_1 = C_1(F_1)$, almost calculating the torsion-free part completely.
- Next step: compute the cobordism set $C_1(F_\mu)$ of boundary links $\mathcal{L}: \bigsqcup_{\mu} S^1 \subset S^3$ for $\mu \ge 2$!