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4.1 Introduction

4.1.1 Books

Allen Hatcher’s downloadable book Algebraic Topology

http : //www.math.cornell.edu/ hatcher/AT/ATpage.html

is an excellent introduction to algebraic topology. Whenever possible I have included a page reference to
the book, in the form [ATn].

My own book Algebraic and geometric surgery

http : //www.maths.ed.ac.uk/ aar/books/surgery.pdf

describes the application of algebraic topology to the classification of manifolds. The reviews of founda-
tional material it includes might be found useful.

Warning/promise: both books go far beyond the syllabus of the SMSTC course.

4.1.2 Topological invariants

How does one recognize topological spaces, and distinguish between them? In the first instance, it is not
even clear if the Euclidean spaces R,R2,R3, . . . are topologically distinct. Standard linear algebra shows
that they are all non-isomorphic as vector spaces: it follows that Rm is diffeomorphic to Rn if and only
if m = n, since the differential of a diffeomorphism is an isomorphism of vector spaces. In 1878 Cantor
constructed bijections R→ Rn for n > 2, which however were not continuous. In 1890 Peano constructed
continuous surjections R→ Rn for n > 2, the ‘space-filling curves’. Thus there might also be continuous
bijections with continuous inverses, i.e. homeomorphisms. It was only proved in 1910 by Brouwer that
Rm is homeomorphic to Rn if and only if m = n.

aa.ranicki@ed.ac.uk

4–1

www.smstc.ac.uk
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.maths.ed.ac.uk/~aar/books/surgery.pdf
a.ranicki@ed.ac.uk


SMST C: Geometry and Topology 4–2

Algebraic topology deals with topological invariants of spaces, that is functions I which associate to a
topological space X an object I(X) which may be either a number or an algebraic structure such as a
group. The essential requirement is that homeomorphic spacesX,Y have the same invariant I(X) = I(Y ),
where = means ‘isomorphic to’ for algebraic invariants. Thus if X,Y are such that I(X) 6= I(Y ) then
X,Y are not homeomorphic.
Here are some examples:

4–1. The dimension of a Euclidean space Rn, I(Rn) = n.

4–2. The genus of an orientable surface Σ. an integer g(Σ) > 0 (1850’s). [AT51]

4–3. The Betti numbers (1860’s). [AT130]

4–4. The fundamental group π1(X) (Poincaré. 1895). [AT26]

4–5. The homology groups H∗(X) (1920’s). [AT160]

4–6. The cohomology ring H∗(X) (1930’s). [AT191]

4–7. The higher homotopy groups π∗(X) (1930’s). [AT340]

Given a topological space X, the first thing one might ask about its topology is whether any two points
can be joined by a path: given x0, x1 ∈ X does there exist a continuous map α : I = [0, 1] → X from
α(0) = x0 ∈ X to α(1) = x1 ∈ X? Such a function is called a ‘path’ in X from x0 to x1. The relation
defined on X by x0 ∼ x1 if there exists a path from x0 to x1 is an equivalence relation. An equivalence
class is called a ‘path component’ of X, and the set of path components is denoted by π0(X). The number
of path-components in a space X

|π0(X)| ∈ {0, 1, 2, 3, . . . ,∞}

is perhaps the simplest topological invariant: if m 6= n a space with m path-components cannot be home-
omorphic to a space with n path-components. By definition, a space X is path-connected if |π0(X)| = 1,
i.e. if for any x0, x1 ∈ X there exists a path from x0 to x1.

More generally, given two continuous maps f0, f1 : X → Y one can ask if there is a continuous choice of
path from f0(x) ∈ Y to f1(x) ∈ Y for each x ∈ X. A ‘homotopy’ from f0 to f1 is a continuous family of
continuous maps

{ft : X → Y | 0 6 t 6 1}

sliding from f0 to f1. For any spaces X,Y homotopy is an equivalence relation on the set of continuous
maps X → Y , denoted by f0 ' f1. A continuous map f : X → Y is a ‘homotopy equivalence’ if there
exist a continuous map g : Y → X such that gf ' 1X : X → X and fg ' 1Y : Y → Y . In particular, a
homeomorphism is a homotopy equivalence.
Regard S1 as the unit circle in the complex plane C. A ‘loop’ in a space X at a point x ∈ X is a
continuous map ω : S1 → X such that ω(1) = x ∈ X. The fundamental group π1(X,x) of X at x ∈ X is
defined geometrically to be the set of homotopy classes of loops ω : S1 → X at x, with the homotopies
{ωt | 0 6 t 6 1} required to be such that ωt(1) = x.
If x0, x1 ∈ X are in the same path component (i.e. joined by a path) then π1(X,x0) and π1(X,x1) are
isomorphic. For a path-connected space X π1(X) denotes any one of the isomorphic groups π1(X,x)
(x ∈ X).
Here are the key properties of the fundamental group:

4–8. A continuous map f : X → Y induces a group morphism f∗ : π1(X)→ π1(Y ) which depends only
on the homotopy class of f .

4–9. For any space X the identity function 1X : X → X induces the identity morphism

(1X)∗ = 1π1(X) : π1(X)→ π1(X) .

4–10. For any continuous maps f : X → Y , g : Y → Z

(gf)∗ = g∗f∗ : π1(X)→ π1(Z) .
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4–11. If f is a homotopy equivalence then f∗ is an isomorphism. Thus spaces with non-isomorphic
fundamental groups cannot be homotopy equivalent, and a fortiori cannot be homeomorphic.

The isomorphism class of π1(X) is a topological invariant of X. A space X is ‘simply-connected’ if it is
path-connected and π1(X) = {1}, i.e. every loop is homotopic to a constant loop.
In many cases it is possible to actually compute π1(X), and to use the fundamental group to make
interesting statements about topological spaces. Here are some examples:

4–12. The Euclidean spaces Rn (n > 1) are all simply-connected, with π1(Rn) = {1}.

4–13. The fundamental group of the circle S1 is the infinite cyclic group

π1(S1) = Z .

Every loop ω : S1 → S1 is homotopic to the standard loop going round S1 n times

ωn : S1 → S1 ; z 7→ zn (complex multiplication)

for a unique n ∈ Z called the degree of ω. The function π1(S1) → Z;ω 7→ degree(ω) is an
isomorphism. [AT29]

4–14. Every loop ω : S1 → C\{0} is homotopic to ωn : S1 → S1 ⊂ C\{0} for a unique n ∈ Z called the
winding number of ω. Cauchy’s theorem computes the winding number as a closed contour integral

1
2πi

∮
ω

dz

z
= n .

4–15. The n-sphere Sn has π1(Sn) = {1} for n > 2. [AT35]

4–16. The n-dimensional projective space RPn has π1(RPn) = Z2 for n > 2. [AT74]

4–17. The fundamental group of the closed orientable surface Mg of genus g > 0 has 2g generators and 1
relation

π1(Mg) = {a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg]}

with [a, b] = a−1b−1ab the commutator of a, b. In particular, M0 = S2 is the sphere, with π1(M0) =
{1}, and M1 = S1 × S1 is the torus with π1(M1) = Z⊕ Z, the free abelian group on 2 generators.
Since the groups π1(Mg) (g > 0) are all non-isomorphic, the surfaces Mg are non-homeomorphic.

[AT51]

4–18. If K : S1 ⊂ S3 is a knot then π1(S3\K(S1)) is a topological invariant of the knot. For example, if
K0 : S1 ⊂ S3 is the trivial knot and K1 : S1 ⊂ S3 is the trefoil knot then

π1(S3\K0(S1)) = Z , π1(S3\K1(S1)) = {a, b | aba = bab} [AT55]

These groups are not isomorphic (since one is abelian and the other one is not abelian), so that
K0,K1 are essentially distinct knots. In particular, this algebra shows that the trefoil cannot be
unknotted.

4–19. If L = S1 ∪ · · · ∪ S1 ⊂ S3 is a link (= knot in the case of a single S1) then π1(S3\L(S1 ∪ · · · ∪ S1))
is a topological invariant of the link. For example, if L0 : S1 ∪ S1 ⊂ S3 is the trivial link then
π1(S3\L0(S1 ∪S1)) = Z ∗Z is the free nonabelian group on 2 generators, while if L1 : S1 ∪S1 ⊂ S3

is the simplest non-trivial link then π1(S3\L1(S1 ∪ S1)) = Z⊕ Z. [AT24,47]

The Seifert-van Kampen Theorem states that the fundamental group of a union X = X1 ∪X2 of path-
connected spaces X1, X2 with the intersection Y = X1 ∩ X2 path-connected is the amalgamated free
product π1(X) = π1(X1) ∗π1(Y ) π1(X2). [AT43]

4–20. Example: The figure 8 has π1(8) = Z ∗ Z. [AT40,77]
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Every group G is the fundamental group G = π1(X) of some path-connected space X, and every group
morphism φ : G→ H is the induced morphism φ = f∗ of a continuous map f : X → Y with π1(X) = G,
π1(Y ) = H. [AT89]

Every set has the ‘discrete’ topology, in which every subset is open (Example 2.2.3). A ‘covering’ of a
space X with ‘fibre’ a discrete space F is a continuous map p : X̃ → X such that for each x ∈ X there
exists an open subset U ⊆ X with x ∈ U , and with a homeomorphism φ : F × U → p−1(U) such that
pφ(a, u) = u ∈ U ⊆ X for all a ∈ F , u ∈ U . As a set X̃ = X × F , but it is the topology on X̃ which
makes the covering interesting.

Let us informally call a space ‘reasonable’ if it is a simplicial complex (e.g. a manifold) or more generally
a ‘∆-complex’ in the sense of [AT102]. A reasonable space X which is path-connected has a ‘universal
covering’ p : X̃ → X, which is a covering with X̃ simply-connected. [AT64]

There are two key results for universal covers:

4–21. The fibre of a universal covering p : X̃ → X is the fundamental group π1(X), and there is defined
an isomorphism of groups

π1(X) ∼= Homeop(X̃)

with Homeop(X̃) the group of homeomorphisms h : X̃ → X̃ such that ph = p : X̃ → X, called the
‘covering translations’.

4–22. For a path-connected space X with a universal covering p : X̃ → X every subgroup G ⊆ π1(X)
determines a covering projection

pG : X̃/G = X̃/{x ∼ y if y = xg for some g ∈ G} → X ; x 7→ p(x) .

The fibre of pG is the set [π1(X);G] of left G-cosets xG ⊆ π1(X) (x ∈ π1(X)), and

(pG)∗ = inclusion : π1(X̃/G) = G→ π1(X) .

Moreover, if q : Y → X is an arbitrary covering of X with Y path-connected, then there exists
a subgroup G ⊆ π1(X) such that q = pH , Y = X̃H , and the fibre is F = [π1(X);G]. There is a
one-one correspondence between coverings q : Y → X with Y path-connected and the conjugacy
classes of subgroups G ⊆ π1(X). By definition, two subgroups G,G′ ⊆ π1(X) are conjugate if
G′ = xGx−1 for some x ∈ π1(X). [AT67]

The simplest non-trivial example of a covering is:

4–23. The real line R is simply-connected and the function p : R→ S1; t 7→ e2πit is a universal covering,
with Homeop(R) = Z the infinite cyclic group generated by R→ R;x 7→ x+ 1. [AT56]

Note how much easier it is easier to compute Homeop(R) = Z than π1(S1) = Z directly from the definition!

The ‘nth homotopy group’ πn(X,x) is defined geometrically to be the set of homotopy classes of con-
tinuous maps ω : Sn → X such that ω(1) = x ∈ X, just like π1(X,x) but for all n > 1. As for n = 1,
if x0, x1 ∈ X are in the same path component then πn(X,x0) and πn(X,x1) are isomorphic. For a
path-connected space X πn(X) denotes any one of the isomorphic groups πn(X,x) (x ∈ X).

Here are some facts about the higher homotopy groups π∗(X):

4–24. For n > 2 πn(X) is abelian with a π1(X)-action. [AT340]

4–25. If X is contractible (= homotopy equivalent to a point) then π∗(X) = 0, e.g. π∗(Rm) = 0.

4–26. πn(Rm+1\{0}) = πn(Sm) =

{
Z if n = m

0 if n < m.
[AT349,361]

4–27. π3(S2) = Z (Hopf, 1926) [AT474]
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4–28. Although the homotopy groups πn(Sm) for n > m have been studied intensively for the last 70
years, they are still largely unknown!

4–29. πn(X) = πn−1(ΩX) with ΩX = (X,x)S
1

the space of loops in X at x ∈ X, so that for n > 2

πn(X) = π1(Ωn−1X)

with Ωn−1X = ΩΩ . . .ΩX. [AT395]

4–30. A continuous map f : X → Y induces group morphisms f∗ : π∗(X)→ π∗(Y ) such that

(1X)∗ = 1π∗(X) : π∗(X)→ π∗(X) , (gf)∗ = g∗f∗ : π∗(X)→ π∗(Z)

with g : Y → Z. If f is a homotopy equivalence then the f∗ are isomorphisms.

4–31. A map of reasonable path-connected spaces f : X → Y is a homotopy equivalence if and only if the
morphisms f∗ : π∗(X)→ π∗(Y ) are isomorphisms. [AT346]

Here is a consequence of 4–26: if m 6= n then the Euclidean spaces Rm,Rn cannot be homeomorphic.
For if there existed a homeomorphism then Rm\{0} would be homeomorphic to Rn\{0} and

πm−1(Rm\{0}) = Z = πm−1(Rn\{0}) = 0 ,

a contradiction.

4.2 The fundamental group π1(X)

As already indicated in the Introduction, the construction of the fundamental group uses paths and
homotopies, which we now define.

Definition 4.2.1 (i) A path in a space X is a continuous map α : I = [0, 1]→ X, with starting and end
points α(0), α(1) ∈ X.

X • •α(0) α(1)
α(t)

(ii) A homotopy between continuous maps f0, f1 : X → Y is a continuous map

f : X × I → Y ; (x, t) 7→ f(x, t) = ft(x) .

�

Think of a homotopy as a single ‘take’ in a film, with ft the position of the actors at time t, starting at
f0 and ending at f1.

Y • •f0(x) f1(x)
ft(x)

Example 4.2.2 If X = {x} is a space with one element x, a continuous map f : X → Y is the same as
an element f(x) ∈ Y . A homotopy h : f ' g : X → Y is the same as a path h : I → Y with initial point
h(0) = f(x) ∈ Y and terminal point h(1) = g(x) ∈ Y . A homotopy h : f ' f : X → Y is the same as a
closed path h : I → Y . � �

Proposition 4.2.3 For fixed X,Y the notion of homotopy is an equivalence relation on the set of con-
tinuous maps f : X → Y .
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Proof (i) For every continuous map f : X → Y define the constant homotopy h : f ' f : X → Y by

h : X × I → Y ; (x, t) 7→ f(x)

(ii) Given a homotopy h : f ' g : X → Y define the reverse homotopy −h : g ' f : X → Y by

−h : X × I → Y ; (x, t) 7→ h(x, 1− t) .

(iii) Given homotopies h1 : f1 ' f2 : X → Y and h2 : f2 ' f3 : X → Y define the concatenation
homotopy h1 • h2 : f1 ' f3 : X → Y

h1 • h2 : X × I → Y ; (x, t) 7→

{
h1(x, 2t) if 0 6 t 6 1/2
h2(x, 2t− 1) if 1/2 6 t 6 1 .

•
h1 • h2(x, 0) = f1(x)

h1(x,−) at twice the speed
•

h1 • h2(x, 1/2) = f2(x)

h2(x,−) at twice the speed
•

h1 • h2(x, 1) = f3(x)

�

In general, geometry is used to construct homotopies, and algebra is used to show that homotopies with
certain properties cannot exist.

Definition 4.2.4 Two spaces X,Y are homotopy equivalent if there exist continuous maps f : X → Y ,
g : Y → X and homotopies

h : gf ' 1X : X → X , k : fg ' 1Y : Y → Y .

A continuous map f : X → Y is a homotopy equivalence if there exist such g, h, k. The continuous maps
f, g are inverse homotopy equivalences. �

Example 4.2.5 The inclusion f : Sn → Rn+1\{0} is a homotopy equivalence, with homotopy inverse

g : Rn+1\{0} → Sn ; x 7→ x

‖x‖
.

�

The relation defined on the set of topological spaces by

X ' Y if X is homotopy equivalent to Y

is an equivalence relation.

Definition 4.2.6 A space X is contractible if it is homotopy equivalent to {pt.}. �

Example 4.2.7 (i) A subset X ⊆ Rn is convex if for any x, y ∈ X the line segment

[x, y] = {(1− t)x+ ty |, 0 6 t 6 1}

is contained in X. Then X is contractible.
(ii) The n-dimensional Euclidean space Rn is contractible, by (i).
(iii) The unit n-ball Dn = {x ∈ Rn | ‖x‖ 6 1} is contractible, by (i). �

Definition 4.2.8 (i) A closed path at x ∈ X is a path α : I → X such that α(0) = α(1) = x ∈ X.
(ii) A loop at x ∈ X is a continuous map ω : S1 → X such that ω(1) = x ∈ X. �

Use the homeomorphism
[0, 1]/(0 ∼ 1)→ S1 ; [t] 7→ e2πit .

We have that a closed path α : I → X at x ∈ X is essentially the same as a loop ω : S1 → X at x ∈ X,
with

α(t) = ω(e2πit) ∈ X .
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Definition 4.2.9 (i) A based space (X,x) is a space with a base point x ∈ X.
(ii) A based continuous map f : (X,x)→ (Y, y) is a continuous map f : X → Y such that f(x) = y ∈ Y .
(iii) A based homotopy h : f ' g : (X,x) → (Y, y) is a homotopy h : f ' g : X → Y such that
h(x, t) = y ∈ Y (t ∈ I). �

For any based spaces (X,x), (Y, y) based homotopy is an equivalence relation on the set of based contin-
uous maps f : (X,x)→ (Y, y).

Definition 4.2.10 A based loop is a based continuous map ω : (S1, 1)→ (X,x) where 1 = (1, 0) ∈ S1.

ω(1) = x•X ω(S1)

�

Homotopy theory uses the topological properties of closed paths I → X and loops S1 → X and the
algebraic properties of groups to decide whether topological spaces are homotopy equivalent. Since I is
contractible any two paths I → X are homotopic. It is necessary to keep the endpoints fixed!
The fundamental group π1(X,x) will be defined, for any space X and point x ∈ X, to be the set of ‘rel
{0, 1} homotopy classes’ of closed paths α : [0, 1]→ X such that

α(0) = α(1) = x ∈ X ,

with appropriate group law and inversion. What does ‘rel {0, 1}’ mean?

Definition 4.2.11 If f, g : X → Y are continuous maps and A ⊆ X is a subspace such that

f(a) = g(a) ∈ Y (a ∈ A)

then a homotopy rel A (or relative to A) is a homotopy h : f ' g : X → Y such that

h(a, t) = f(a) = g(a) ∈ Y (a ∈ A, t ∈ I) .

�

The rel {0, 1} homotopy classes of closed paths α : I → X such that α(0) = α(1) = x ∈ X are in one-one
correspondence with the rel {1} homotopy classes of loops ω : S1 → X with ω(1) = x ∈ X.

Definition 4.2.12 The concatenation of paths α : I → X, β : I → X with α(1) = β(0) ∈ X is the path

α • β : I → X ; t 7→

{
α(2t) if 0 6 t 6 1/2
β(2t− 1) if 1/2 6 t 6 1

which starts at α(0), follows along α at twice the speed in the first half, switching at α(1) = β(0) (at
half-time) to follow β at twice the speed in the second half.

•
α • β(0) = α(0) α

•
α(1) = β(0) β

•
β(1) = α • β(1)

�

Definition 4.2.13 The reverse of a path α : I → X is the path

α : I → X ; t 7→ α(1− t)

retracing α, with

•
α(0) = α(1) α

•
α(1) = α(0)

�
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Definition 4.2.14 The fundamental group π1(X,x) is the set of rel {0, 1} homotopy classes [α] of closed
paths α : I → X such that

α(0) = α(1) = x ∈ X

with group law
π1(X,x)× π1(X,x)→ π1(X,x) ; ([α], [β]) 7→ [α][β] = [α • β] ,

inversion by
π1(X,x)→ π1(X,x) ; [α] 7→ [α]−1 = [α]

and neutral element [ex] ∈ π1(X,x) the class of the constant path

ex : I → X ; t 7→ x .

�

It is of course also possible to regard π1(X,x) as the set of rel {1} homotopy classes [ω] of loops ω : S1 → X
such that ω(1) = x ∈ X. The path formulation is more convenient for algebra, while the loops are more
geometric.

Theorem 4.2.15 The fundamental group π1(X,x) is a group.

Proof that [α][ex] = [α] ∈ π1(X,x).
Define a rel {0, 1} homotopy

h : α • ex ' α : I → X

by

h : I × I → X ; (s, t) 7→

{
α(2s/(1 + t)) if s 6 (1 + t)/2
p if s > (1 + t)/2 .

To make sense of this formula draw the unit square in the (s, t)-plane and join the point (1/2, 0) to the
point (1, 1) by the line s = (1 + t)/2. Think what happens at each time t ∈ I: the continuous map

ht : I → X ; s 7→ ht(s) = h(s, t)

starts by going along α at 2/(1 + t) the speed on [0, (1 + t)/2], and then stays put at x on [(1 + t)/2, 1].
The homotopy h starts at h0 = α • ex and ends at h1 = α.

s = (1 + t)/2

α

α ex
t = 0

t = 1

s = 0 s = 1/2 s = 1

(Work out the corresponding formula for [ex][α] = [α] ∈ π1(X,x).)
Proof that [α][α] = [ex] ∈ π1(X,x)
Define a rel {0, 1} homotopy

h : α • α ' ex : I → X

by

h : I × I → X ; (s, t) 7→


x if 0 6 s 6 t/2
α(2s− t) if t/2 6 s 6 1/2
α(2− 2s− t) if 1/2 6 s 6 1− t/2
x if 1− t/2 6 s 6 1 .
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s = t/2 s = 1− t/2

αα

ex

t = 0

t = 1

s = 0 s = 1/2 s = 1
Again, think what happens at each time t ∈ I: the path

ht : I → X ; s 7→ ht(s) = h(s, t)

is constant on [0, t/2], goes along the restriction α| : [0, 1− t]→ X (i.e. using only a part of α) at twice
the speed on [t/2, 1/2], then along the restriction α| : [t, 1]→ X at twice the speed on [1/2, 1− t/2], and
stays constant on [1− t/2, 1]. Note that α(1− t) = α(t) is essential for continuity. The homotopy h starts
at h0 = α • α and ends at h1 = ex. (Work out the corresponding formula for [α][α] = [ex].)
Proof that ([α][β])[γ] = [α]([β][γ]) ∈ π1(X,x) (associativity of multiplication)
Let α, β, γ : I → X be paths which send each endpoint to x ∈ X. For 0 < λ < µ < 1 let c(λ, µ) : I → X
be the path defined by

c(λ, µ) : I → X ; s 7→


α(s/λ) if 0 6 s 6 λ
β((s− λ)/(µ− λ)) if λ 6 s 6 µ
γ((s− µ)/(1− µ)) if µ 6 s 6 1 .

• • • •
0 α λ β µ γ 1

The path starts by going along α at 1/λ the speed on [0, λ], followed by going along β at 1/(µ− λ) the
speed on [λ, µ], and finish by going along γ at 1/(1− µ) the speed on [µ, 1]. From the definitions

([α][β])[γ] = c(1/4, 1/2) : I → X ; s 7→


α(4s) if 0 6 s 6 1/4
β(4s− 1) if 1/4 6 s 6 1/2
γ(2s− 1) if 1/2 6 s 6 1

and

[α]([β][γ]) = c(1/2, 3/4) : I → X ; s 7→


α(2s) if 0 6 s 6 1/2
β(4s− 2) if 1/2 6 s 6 3/4
γ(4s− 3) if 3/4 6 s 6 1 .

α

α

β

β

γ

γ
t = 0

t = 1

s = 0 s = 1/4 s = 1/2

s = 1/2 s = 3/4

s = 1

α β γ

s = (1 + t)/4

s = (2 + t)/4
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Finally, construct a homotopy rel {0, 1}

h : ([α][β])[γ] ' [α]([β][γ]) : I → X

by
ht = c((1− t)/4 + t/2, (1− t)/2 + t(3/4))

= c((1 + t)/4, (2 + t)/4) : I → X

with h0 = c(1/4, 1/2), h1 = c(1/2, 3/4). End of proof of 4.2.15.

The fundamental group π1(X,x) of a space X at a point x ∈ X is defined geometrically, in terms of
paths α : I → X such that α(0) = α(1) = x, or equivalently in terms of loops ω : S1 → X such that
ω(1) = x ∈ X. A calculation of π1(X,x) is an algebraic description. In general, it is quite difficult to
compute π1(X,x), unless there is a geometric reason for it to be the trivial group {1}.

A space determines a group. A continuous map f : X → Y induces a group morphism

f∗ : π1(X,x)→ π1(Y, f(x)) ; [α] 7→ [fα]

for any x ∈ X.

Definition 4.2.16 Let X be a space, and x ∈ X. A continuous map f : X → Y is a homotopy
equivalence rel {x} if there exists a continuous map g : Y → X such that g(f(x)) = x, a homotopy rel
{x} h : gf ' 1X : X → X (with h(x, t) = f(x) for t ∈ I) and a homotopy rel {f(x)} k : fg ' 1Y : Y → Y .
�

Proposition 4.2.17 (i) If f, g : X → Y are continuous maps which are related by a rel {x} homotopy
h : f ' g : X → Y then

f∗ = g∗ : π1(X,x)→ π1(Y, f(x)) .

(ii) If f : X → Y is a homotopy equivalence rel {x} then f∗ is an isomorphism, with inverse

(f∗)−1 = g∗ : π1(Y, f(x))→ π1(X,x) .

Remark 4.2.18 If f : X → Y is a homotopy equivalence (not just rel {x}) then f∗ : π1(X,x) →
π1(Y, f(x)) is an isomorphism. �

4.3 Covering spaces

Definition 4.3.1 A covering space of a space X with fibre the discrete space F is a space X̃ with a
covering projection continuous map p : X̃ → X such that for each x ∈ X there exists an open subset
U ⊆ X with x ∈ U , and with a homeomorphism φ : F × U → p−1(U) such that

pφ(a, u) = u ∈ U ⊆ X (a ∈ F, u ∈ U) .

In particular, for each x ∈ X p−1(x) is homeomorphic to F . [AT56]�

A covering projection p : X̃ → X is a ‘local homeomorphism’: for each x̃ ∈ X̃ there exists an open subset
U ⊆ X̃ such that x̃ ∈ U and U → p(U);u 7→ p(u) is a homeomorphism, with p(U) ⊆ X an open subset.

Definition 4.3.2 Given a covering projection p : X̃ → X let Homeop(X̃) be the subgroup of Homeo(X̃)
consisting of the homeomorphisms h : X̃ → X̃ such that ph = p : X̃ → X, i.e. such that the diagram

X̃

p ��@
@@

@@
@@

h // X̃

p��~~
~~

~~
~

X

is commutative. Such h are called covering translations. �
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Definition 4.3.3 A covering projection p : X̃ → X with fibre F is trivial if there exists a homeomor-
phism φ : F ×X → X̃ such that

pφ(a, x) = x ∈ X (a ∈ F, x ∈ X) .

A particular choice of φ is a trivialisation of p. �

Example 4.3.4 (i) For any space X and discrete space F the covering projection

p : X̃ = F ×X → X ; (a, x) 7→ x

is trivial, with the identity trivialization φ = 1 : F ×X → X̃.
(ii) The continuous map

p : R→ S1 ; x 7→ e2πix

is a covering projection with fibre Z. Note that p is not trivial, since R is not homeomorphic to Z× S1

(although there does exist a bijection φ : Z× S1 ∼= R such that pφ : Z× S1 → S1 is the projection). The
group of covering translations is the infinite cyclic group Z. �

Definition 4.3.5 Let p : X̃ → X be a covering projection. A lift of a continuous map f : Y → X is a
continuous map f̃ : Y → X̃ such that

p(f̃(y)) = f(y) ∈ X (y ∈ Y )

so that there is defined a commutative diagram

X̃

p
��

Y

f̃
??������� f // X

�

Example 4.3.6 For the trivial covering projection p : X̃ = F ×X → X of Example 4.3.3 define a lift of
any continuous map f : Y → X by choosing a point a ∈ F and setting

f̃a : Y → X̃ = F ×X ; y 7→ (a, f(y)) .

If Y is path-connected every lift of f is of this type, and the function a 7→ f̃a defines a one-one corre-
spondence between the points a ∈ F and the lifts f̃ of f . �

Theorem 4.3.7 (Path lifting property) Let p : X̃ → X be a covering projection with fibre F . Let
x0 ∈ X, x̃0 ∈ X̃ be such that p(x̃0) = x0 ∈ X.
(i) Every path α : I → X with α(0) = x0 ∈ X has a unique lift to a path α̃ : I → X̃ such that
α̃(0) = x̃0 ∈ X̃.
(ii) Let α, β : I → X be paths with α(0) = β(0) = x0 ∈ X, and let α̃, β̃ : I → X̃ be the lifts with
α̃(0) = β̃(0) = x̃0 ∈ X̃ given by (i). Every rel {0, 1} homotopy

h : α ' β : I → X

has a unique lift to a rel {0, 1} homotopy

h̃ : α̃ ' β̃ : I → X̃

and in particular
α̃(1) = h̃(1, t) = β̃(1) ∈ X̃ (t ∈ I) . [AT60]

Definition 4.3.8 Given a covering projection p : X̃ → X and a path α : I → X use the path lifting
property (4.3.7) to define the fibre transport bijection

α# : p−1(α(0))→ p−1(α(1)) ; x̃ 7→ α̃x̃(1)

where α̃x̃ : I → X̃ is the unique lift of α with

α̃x̃(0) = x̃ ∈ X̃ . �
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Example 4.3.9 (i) For any discrete space F and permutation (= self-bijection) σ : F → F define a
covering p : S̃1 → S1 with fibre F by

p : S̃1 = F × I/{(x, 0) ∼ (σ(x), 1)} → S1 = I/{0 ∼ 1} ; [x, t] 7→ [t] .

In fact, every covering p : S̃1 → S1 arises in this way: define the closed path

α : I → S1 ; t 7→ e2πit

with α(0) = α(1) = 1 ∈ S1, and note that the fibre transport is a bijection

α# : F = p−1(1)→ F = p−1(1)

such that
p : S̃1 = F × I/{(x, 0) ∼ (α#(x), 1)} → S1 = I/{0 ∼ 1} ; [x, t] 7→ [t] .

(ii) Exercise: verify that the covering p : S̃1 → S1 corresponding to the cyclic permutation

σ : F = {1, 2, . . . , n} → F ; x 7→ (x+ 1)(mod n)

is just
p : S̃1 = S1 → S1 ; z 7→ zn . �

Proposition 4.3.10 A covering projection p : Y → X of path-connected spaces induces an injective
group morphism p∗ : π1(Y )→ π1(X).

Proof If ω : S1 → Y is a loop at y ∈ Y such that there exists a homotopy h : pω ' ep(y) : S1 → X rel
1, then h can be lifted to a homotopy h̃ : ω ' ey : S1 → Y rel 1, by the relative version of 4.3.7. �

Recall that a subgroup H ⊆ G is normal if xH = Hx for all x ∈ G, in which case there is defined a
quotient group G/H with a canonical surjection G→ G/H.

Definition 4.3.11 A covering projection p : Y → X of path-connected spaces is regular if p∗(π1(Y )) ⊆
π1(X) is a normal subgroup. �

Here is a very general construction of regular covering projections:

Theorem 4.3.12 Given a space Y and a subgroup G ⊆ Homeo(Y ) define an equivalence relation ∼ on
Y by

y1 ∼ y2 if there exists g ∈ G such that y2 = g(y1)

and write
p : Y → X = Y/∼ = Y/G ; y 7→ p(y) = equivalence class of y .

Suppose that for each y ∈ Y there exists an open subset U ⊆ Y such that y ∈ U and

g(U) ∩ U = ∅ for g 6= 1 ∈ G .

(Such an action of a group G on a space Y is called free and properly discontinuous, as in 2.4.6). Then
p : Y → X is a covering projection with fibre G. Furthermore, if Y is path-connected then so is X, p is a
regular covering and the group of covering translations of p is Homeop(Y ) = G ⊂ Homeo(Y ). [AT61,72]

Proof The subset p(U) ⊆ X is open, since

p−1p(U) = {gu | g ∈ G, u ∈ U} =
⋃
g∈G

g(U) ⊆ Y

is open, with an evident homeomorphism

φ : G× U → p−1p(U) ; (g, u) 7→ gu .

If h ∈ Homeop(Y ) then for any y ∈ Y there is a unique gy ∈ G such that h(y) = gy(y) ∈ Y (y ∈ Y ). If
Y is path-connected the continuous map Y → G; y 7→ gy is constant (since G is discrete), so gy = h ∈
Homeop(Y ) = G. �
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Remark 4.3.13 Every regular covering projection p : Y → X with X,Y path-connected arises as in
Theorem 4.3.12 from a free action of a group G = π1(X)/p∗(π1(Y )) on Y , or equivalently from a surjection
π1(X)→ G. �

Theorem 4.3.14 For a regular covering projection p : Y → X there is defined an isomorphism of groups

π1(X)/p∗(π1(Y )) ∼= Homeop(Y ) .

Proof Let x0 ∈ X, y0 ∈ Y be base points such that p(y0) = x0. Every closed path α : I → X with
α(0) = α(1) = x0 has a unique lift to a path α̃ : I → Y such that α̃(0) = y0. The function

π1(X,x0)/p∗π1(Y, y0)→ p−1(x0) ; α 7→ α̃(1)

is a bijection. For each y ∈ p−1(x0) there is a unique covering translation hy ∈ Homeop(Y ) such that

hy(y0) = y ∈ Y .

The function
p−1(x0)→ Homeop(Y ) ; y 7→ hy

is a bijection, with inverse h 7→ h(x̃0). The composite bijection

π1(X,x0)/p∗(π1(Y ))→ p−1(x0)→ Homeop(Y )

is an isomorphism of groups. �

Example 4.3.15 For each n ∈ Z the translation of R by n units to the right defines a homeomorphism

hn : R→ R ; x 7→ x+ n

with hnhm = hm+n. The infinite cyclic subgroup

G = {hn |n ∈ Z} ⊂ Homeo(R)

satisfies the hypothesis of Theorem 4.3.12, so that

p : R→ R/G = R/Z = S1 ; x 7→ e2πix

is a regular covering projection with fibre G = Z and by Theorem 4.3.14

π1(S1) = Homeop(R) = G = Z ⊂ Homeo(R) .

Every loop ω : S1 → S1 can be lifted to a path α : I → R such that

ω(e2πit) = e2πiα(t) ∈ S1 (t ∈ I) .

The degree of ω is defined by
degree(ω) = α(1)− α(0) ∈ Z .

The degree defines an isomorphism of groups

π1(S1)→ Z ; ω 7→ degree(ω) .

A loop ω with degree(ω) = n is homotopic to the standard loop with degree n

ωn : S1 → S1 ; z 7→ zn

with lift αn : I → R; t 7→ nt. �

Recall that a space X is simply-connected if it is path-connected and π1(X) = {1}.

Proposition 4.3.16 Every covering projection p : X̃ → X of a simply-connected space X is trivial.



SMST C: Geometry and Topology 4–14

Proof Let F be the fibre. Choose a base point x0 ∈ X, and an open neighbourhood U0 ⊆ X of x0 with
a trivialisation

φ0 : F × U0 → p−1(U0)

of p| : p−1(U0)→ U0, i.e. a homeomorphism such that

pφ0(a, u) = u ∈ X (a ∈ F, u ∈ U0) .

In particular, there is defined a bijection

F → p−1(x0) ; a 7→ φ0(a, x0) .

For each x ∈ X choose a path αx : I → X from αx(0) = x0 to αx(1) = x, and use fibre transport (4.3.8)
to define a homeomorphism

φ : F ×X → X̃ ; (a, x) 7→ (αx)#(φ0(a, x0)) .

The condition π1(X) = {1} is needed to prove that φ is independent of the choices of paths αx. �

Example 4.3.17 Every covering p : Ĩ → I is trivial, with a homeomorphism φ : F × I → Ĩ such that
pφ(a, x) = x. �

Definition 4.3.18 A covering projection p : X̃ → X of a path-connected space X is universal if X̃ is
simply-connected. �

Example 4.3.19 The covering projection p : R→ S1 is universal. �

A space X is locally path connected if for each x ∈ X and for each open subset U ⊆ X with x ∈ U there
is a path-connected open subset V ⊆ U with x ∈ V . (Main example: open subsets of Rn).

Theorem 4.3.20 Let X be a path-connected locally path-connected space with a universal covering pro-
jection p : X̃ → X. Let x0 ∈ X, x̃0 ∈ X̃ be base points such that p(x̃0) = x0.
(i) The function

π1(X,x0)→ p−1(x0) ; α 7→ α#(x̃0)

is a bijection.
(ii) For each y ∈ p−1(x0) there is a unique covering translation hy ∈ Homeop(X̃) such that

hy(x̃0) = y ∈ X̃ .

The function
p−1(x0)→ Homeop(X̃) ; y 7→ hy

is a bijection, with inverse h 7→ h(x̃0). The composite bijection

π1(X,x0)→ p−1(x0)→ Homeop(X̃)

is an isomorphism of groups. [AT61]

Remark 4.3.21 If p : X̃ → X is a universal covering projection satisfying the hypothesis of Theorem
4.3.20 then for any subgroup G ⊆ π1(X) = Homeop(X̃) there is defined a universal covering projection

q : Ỹ = X̃ → Y = X̃/G

also satisfying the hypothesis of 4.3.20, with

π1(Y ) = Homeoq(Ỹ ) = G .

The projection r : Y → X is a covering projection with

r∗(π1(Y )) = G ⊆ π1(X) , Homeor(Y ) = π1(X)/N

where N ⊆ π1(X) is the smallest normal group containing G. The construction defines a one-one cor-
respondence between the isomorphism classes of covering projections r : Y → X with Y path-connected
and the conjugacy classes of subgroups G ⊆ π1(X). The regular covering projections correspond to the
normal subgroups G ⊆ π1(X), with N = G and

Homeor(Y ) = π1(X)/G .

See [AT63-78] for a rather more detailed account!
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Remark 4.3.22 Theorem 4.3.20 gives a geometric method for computing the fundamental group of a
path-connected space X which admits a universal covering p : X̃ → X, namely

π1(X,x0) = Homeop(X̃) = p−1(x0) .

For any path-connected space X and x0 ∈ X let X̃ be the topological space of equivalence class of paths
α : I → X such that α(0) = x0, with α ∼ α′ if there exists a rel {0, 1} homotopy β : α ' α′ : I → X, and

p : X̃ → X ; α 7→ α(1) .

It is a theorem that p is the universal covering projection of X with fibre F = p−1(x0) = π1(X,x0) if X
is semi-locally simply-connected, meaning that for every x ∈ X there exists an open subset U ⊆ X with
x ∈ U such that the inclusion i : U → X induces the trivial homomorphism i∗ = 1 : π1(U, x)→ π1(X,x)
(in which case p−1(U) is homeomorphic to U × π1(X,x)). In general, this is too synthetic a construction
of the universal cover to be of use in the computation of π1(X). In practice, a geometrically interesting
space X has a geometrically interesting universal cover X̃, and this can be used to compute π1(X). For
example, a smooth atlas A on an m-dimensional manifold M can be used to construct a universal cover
M̃ , which is again an m-dimensional manifold with a smooth atlas Ã.

4.4 The higher homotopy groups π∗(X)

The higher homotopy group πn(X,x) is defined for n > 1 to be the set of based homotopy classes of
continuous maps ω : Sn → X such that ω(1) = x ∈ X, where 1 = (1, 0, . . . , 0) ∈ Sn. In order to define
the group law it is convenient to identify Sn with the quotient space In/∂In, with In = I × · · · × I the
unit n-cube and ∂In its boundary. There is an evident one-one correspondence between the continuous
maps α : In → X such that α(∂In) = {x} and the continuous maps ω : Sn → X such that ω(1) = x ∈ X.
Similarly for homotopies.

Definition 4.4.1 The nth homotopy group πn(X,x) is the set of rel ∂In homotopy classes of continuous
maps α : In → X such that α(∂In) = {x}, with the group law

πn(X,x)× πn(X,x)→ πn(X,x) ; ([α], [β]) 7→ [α][β] = [α • β]

given by

α • β : In → X ; (t1, t2, . . . , tn) 7→

{
α(2t1, t2, . . . , tn) if 0 6 t1 6 1/2
β(2t1 − 1, t2, . . . , tn) if 1/2 6 t1 6 1

and inverses by

πn(X,x)→ πn(X,x) ; [α] 7→ [−α : (t1, t2, . . . , tn) 7→ α(1− t1, t2, . . . , tn)] .

�

In particular, for n = 1 this is just the fundamental group π1(X,x).
The basic properties of the higher homotopy groups have already been stated in the Introduction 4.1.2.
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