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Quadratic forms

I

E. Witt, Theorie der quadratischen Formen in beliebigen
Körpern (Crelle, 1936)

I The Witt group W (K ) of a field K is the group of stable
isomorphism classes of quadratic forms over K , i.e. vector
spaces V over K with a nonsingular symmetric bilinear pairing

φ : V × V → K , φ(x , y) = φ(y , x) .

I Stable = hyperbolic forms

(
0 1
1 0

)
are equivalent to 0.

I The Witt group W (R) of quadratic forms over K = R is
isomorphic to Z by the isomorphism

σ : W (R)→ Z ; (V , φ) 7→ signature(V , φ) .
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Generalized Witt groups

I Quadratic forms on modules over a ring with involution A,
with Wall groups L∗(A).

I If 1/2 ∈ A
L0(A) = W (A)

with W (A) defined as for fields.

I If 1/2 /∈ A L0(A) uses quadratic refinements of φ, but there is
a forgetful map L0(A)→W (A) which is an isomorphism
modulo 8-torsion.

I Quadratic forms on A-module chain complexes, same L∗(A)

I Sheaves of quadratic forms over a topological space X , with
Witt groups the generalized homology groups H∗(X ; L(Z)).
Here L(Z) is a spectrum with

π∗(L(Z)) = L∗(Z) .
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Cobordism of manifolds

I The most direct application of the Witt group to manifolds is
via the symmetric intersection form of a closed oriented
4k-dimensional manifold M

φ : H2k(M;R)× H2k(M;R)→ R ; (x , y) 7→ 〈x ∪ y , [M]〉 .

I The signature of M

σ(M) = σ(H2k(M;R), φ) ∈W (R) = Z

is a cobordism invariant: if M = ∂N is the boundary of a
(4k + 1)-dimensional manifold N then σ(M) = 0.

I Example The intersection form of M = S2k × S2k is

(H2k(M;R), φ) = (R⊕ R,
(

0 1
1 0

)
) .

M = ∂N with N = S2k × D2k+1, and σ(M) = 0 ∈ Z.
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The homotopy types of topological manifolds

I An n-dimensional topological manifold M is a paracompact
Hausdorff topological space such that each x ∈ M has an
open neighbourhood homeomorphic to Rn.

I Will only consider compact oriented manifolds.
I The Browder-Novikov-Sullivan-Wall surgery theory developed

in the 1960’s for differentiable and combinatorial manifolds
culminated in the 1970 Kirby-Siebenmann breakthrough on
the structure theory of topological manifolds of dimension
n > 4.

I The Whitney trick for removing singularities fails for n = 4 in
general. Freedman (1982) extended the K-S theory to
4-dimensional topological manifolds, subject to fundamental
group restrictions.

I . . . topological manifolds bear the simplest possible relation to
their underlying homotopy types. This is a broad statement
worth testing. (Siebenmann, ICM talk 1970)
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The total surgery obstruction

I Theorem (A.R., 1978 –) (i) For any space X there is an
exact sequence of generalized Witt groups

· · · → Hn(X ; L(Z))
A // Ln(Z[π1(X )])→ Sn(X )→ Hn−1(X ; L(Z))→ . . .

with A the assembly map.
(ii) A compact polyhedron X with n-dimensional Poincaré
duality has a total surgery obstruction s(X ) ∈ Sn(X ) such
that s(X ) = 0 if (and for n > 4 only if) X is homotopy
equivalent to an n-dimensional manifold.

I Roughly speaking, s(X ) is the algebraic cobordism (i.e. Witt)
class of a sheaf over X of quadratic forms over Z with the
stalk at x ∈ X the failure of the local homology groups
H∗(X ,X\{x}) to be

H∗(Rn,Rn\{0}) =

{
Z for ∗ = n

0 for ∗ 6= n .
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The triangulation of manifolds

I Given a simplicial complex K let |K | be the polyhedron.

I A triangulation of a topological manifold M is a finite
simplicial complex K with a homeomorphism M ∼= |K |.

I Every manifold M is homotopy equivalent to a compact
polyhedron (Kirby+Siebenmann 1970).

I A combinatorial manifold is automatically triangulable.
Differentiable manifolds have a canonical combinatorial
structure.

I There are non-triangulable 4-dimensional manifolds
(Freedman+Casson 1990).

I It is not known if there exist non-triangulable n-dimensional
manifolds for n > 4.
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Poincaré duality

I The homology and cohomology groups of an n-dimensional
manifold M are related by the Poincaré duality
isomorphisms

[M] ∩ − : H∗(M) ∼= Hn−∗(M)

with [M] ∈ Hn(M) the fundamental class.

I An n-dimensional manifold with boundary (M, ∂M) has
Poincaré-Lefschetz duality isomorphisms

[M] ∩ − : H∗(M) ∼= Hn−∗(M, ∂M)

with [M] ∈ Hn(M, ∂M) the fundamental class.

I Working with the universal cover M̃ of M there are also
Z[π1(M)]-coefficient Poincaré and Poincaré-Lefschetz duality
isomorphisms.
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The Browder-Novikov-Sullivan-Wall surgery theory
from the modern point of view I. Manifold structures

I Existence problem When is a compact polyhedron X with
n-dimensional Z[π1(X )]-coefficient Poincaré duality

Hn−∗(X̃ ) ∼= H∗(X̃ )

homotopy equivalent to an n-dimensional manifold?

I Yes for n = 2, but no for n > 2 in general.

I BNSW+KS surgery theory provides a 2-stage obstruction for
n > 4, working outside of X , involving maps f : M → X from
manifolds M.

I Primary obstruction in topological K -theory of vector bundles
to the existence of f .

I Secondary obstruction in algebraic L-theory of quadratic forms
over Z[π1(X )] to making f a homeomorphism by
surgery/cobordism.
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Manifold structures from the modern point of view

I Modern existence theorem For n > 4 a compact
polyhedron X is homotopy equivalent to an n-dimensional
manifold if and only if X has sufficient Poincaré duality.

I Can see the total surgery obstruction s(X ) inside X as failures
of local Poincaré duality on the simplicial chain level, although
still need to work outside X for the proofs.

I (A.R.) The total surgery obstruction (Aarhus Proceedings,
Springer, 1979)

I (A.R.) Algebraic L-theory and Topological Manifolds
(Tract, Cambridge, 1992)

I Would prefer to develop obstruction theory for any space X ,
using singular chains, but there are technical difficulties, see:
(A.R.+M.Weiss) On the construction and topological
invariance of the Pontryagin classes (Geometriae Dedicata,
2010)
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How much Poincaré duality is sufficient?

I If X is homotopy equivalent to an n-dimensional manifold
then it has Z[π1(X )]-coefficient Poincaré duality

Hn−∗(X̃ ) ∼= H∗(X̃ )

with X̃ the universal cover of X . So Z[π1(X )]-coefficient
Poincaré duality is necessary for X to be homotopy equivalent
to an n-dimensional manifold.

I Since the 1960’s it has been know that there exist X for each
n > 2 with Z[π1(X )]-coefficient Poincaré duality which are
not homotopy equivalent to an n-dimensional manifold.

I Thus Z[π1(X )]-coefficient Poincaré duality is in general not
sufficient for X to be homotopy equivalent to an
n-dimensional manifold.

I In order to make precise how much Poincaré duality is
sufficient need to study the generalized Witt groups of
quadratic forms on chain complexes indexed by simplicial
complexes.
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The Browder-Novikov-Sullivan-Wall surgery theory
from the modern point of view II. Rigidity

I Uniqueness problem When is a homotopy equivalence of
n-dimensional manifolds f : M → N homotopic to a
homeomorphism?

I Again, yes for n = 2, but for n > 2 no in general.

I The 3-dimensional lens spaces provided the first examples of
homotopy equivalent manifolds which are not homeomorphic.

I BNSW+KS provided a 2-stage obstruction theory for n > 4.

I Modern uniqueness theorem For n > 4 a homotopy
equivalence f : M → N of n-dimensional manifolds is
homotopic to a homeomorphism if and only if the point
inverses f −1(x) ⊂ M (x ∈ N) are sufficiently acyclic.
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Uniqueness = relative existence

I The mapping cylinder of a map f : M → N is the space

X = (M × [0, 1] t N)/{(x , 1) ∼ f (x) | x ∈ M}
homotopy equivalent to N, with subspace

∂X = M × {0} t N ⊂ X .

I If f : M → N is a homotopy equivalence of n-dimensional
manifolds then (X , ∂X ) has the Z[π1(X )]-coefficient
Poincaré-Lefschetz duality

H∗(X̃ ) ∼= Hn+1−∗(X̃ , ∂̃X )

of an (n + 1)-dimensional manifold with boundary.
I For n > 4 f is homotopic to a homeomorphism if and only if

(X , ∂X ) is homotopy equivalent rel ∂ to an
(n + 1)-dimensional manifold M with boundary ∂M = ∂X .
Same obstruction theory as for the uniqueness problem.

I Will concentrate on uniqueness problem.



14

Rings with involution

I An involution on a ring A is a function

A→ A ; a 7→ a

such that

a + b = a + b , ab = ba , a = a (a, b ∈ A) .

I Example 1 A commutative ring A, with a = a.
I Example 2 A group ring A = Z[π] with g = g−1 (g ∈ π).
I Regard a left A-module P as a right A-module with

P × A→ P ; (x , a) 7→ ax .

I The tensor product of left A-modules P,Q is the abelian
group defined by

P ⊗A Q = P ⊗Z Q/{ax ⊗ y − x ⊗ ay | a ∈ A, x ∈ P, y ∈ Q}
with transposition isomorphism

P ⊗A Q → Q ⊗A P ; x ⊗ y 7→ y ⊗ x .
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Duality over a ring with involution

I The dual of a left A-module P is the left A-module

P∗ = HomA(P,A) , A× P∗ → P∗ ; (a, f ) 7→ (x 7→ f (x)a) .

I The natural A-module morphism

P → P∗∗ ; x 7→ (f 7→ f (x))

is an isomorphism for f.g. free P.

I For A-modules P,Q the abelian group morphisms

P∗ ⊗A Q → HomA(P,Q) ; f ⊗ y 7→ (x 7→ f (x)y) ,

∗ : HomA(P,Q)→ HomA(Q∗,P∗) ; f 7→ (f ∗ : g 7→ (x 7→ g(f (x))))

are isomorphisms for f.g. free P,Q.
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Quadratic forms on chain complexes I.

I Reference The algebraic theory of surgery (1978, Proc.
LMS)

I The n-dual of a f.g. free A-module chain complex

C : · · · → Cr
d // Cr−1 → · · · → C1

d // C0 → . . .

is the f.g. free A-module chain complex

Cn−∗ : · · · → C 0 d∗ // C 1 → · · · → C r−1 d∗ // C r → . . .

with C r = C ∗r .

I An ‘algebraic Poincaré complex’ is a f.g. free A-module chain
complex C with a chain equivalence Cn−∗ ' C satisfying
extra conditions. There are two versions: symmetric and
quadratic. Will ignore the difference today.
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Quadratic forms on chain complexes II.

I For any f.g. free A-module chain complex C there is defined
an isomorphism of A-module chain complexes

C ⊗A C → HomA(C−∗,C ) ; x ⊗ y 7→ (f 7→ f (x).y) .

The homology group

Hn(C ⊗A C ) = H0(HomA(Cn−∗,C ))

is the group of chain homotopy classes of chain maps
φ : Cn−∗ → C .

I The action of T ∈ Z2 by the transposition involution

T : C⊗AC → C⊗AC ; x⊗y 7→ (−)pqy⊗x (x ∈ Cp, y ∈ Cq)

corresponds to the duality involution

T : HomA(C−∗,C )→ HomA(C−∗,C ) ; f 7→ (−)pqf ∗ ,

(f : Cp → Cq) 7→ ((−)pqf ∗ : Cq → Cp) , y(f ∗(x)) = x(f (y)) .
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Algebraic Poincaré cobordism

I An n-dimensional quadratic Poincaré complex (C , φ) is an
n-dimensional f.g. free A-module chain complex C together
with a chain equivalence φ : Cn−∗ → C such that there exists
a chain homotopy Tφ ' φ : Cn−∗ → C . If 1/2 /∈ A need
additional quadratic structure.

I The quadratic Poincaré cobordism group Ln(A) is the
group of equivalence classes of n-dimensional quadratic
Poincaré complexes (C , φ) with (C , φ) ∼ (C ′, φ′) if
C ⊕ C ′ ⊂ D for an (n + 1)-dimensional f.g. free A-module
chain complex D such that

Hn+1−∗(D,C ) ∼= H∗(D,C
′) .

I Ln(A) = Ln+4(A).
I L4k(A) is the Witt group of quadratic forms over A.
I For A = Z signature defines the isomorphism

L4k(Z)
∼= // W (R) = Z ; (C , φ) 7→ σ(H2k(R⊗ZC ), 1⊗φ) .
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The polyhedron of a simplicial complex

I A simplicial complex K is a collection of finite subsets
σ ⊆ K (0) of an ordered vertex set K (0) such that:

(a) v ∈ K for each v ∈ K (0),
(b) if σ ∈ K and τ ⊆ σ then τ ∈ K .

I The dimension of σ ∈ K is

|σ| = (no. of vertices in σ)− 1

Let K (n) denote the set of n-simplexes in K .

I The polyhedron of K is the usual identification space

|K | = (
∞∐
n=0

∆n × K (n))/∼

with ∆n the convex hull of (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn+1.
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The simplicial chain complex

I The simplicial chain complex C (K ) has

d : C (K )n = Z[K (n)]→ C (K )n−1 = Z[K (n−1)] ;

(v0v1 . . . vn) 7→
n∑

i=0
(−)i (v0, . . . , vi−1, vi+1, . . . , vn)

(v0 < v1 < · · · < vn)

I The homology and cohomology groups of the polyhedron are
the same as those of the simplicial complex

H∗(|K |) = H∗(K ) = H∗(C (K )) ,

H∗(|K |) = H∗(K ) = H∗(C (K )) .

I For any simplicial complexes K , L Hn(|K | × |L|) is the group
of chain homotopy classes of chain maps C (K )n−∗ → C (L).
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Polyhedral Poincaré complexes

I An polyhedral n-dimensional Poincaré complex is a finite

simplicial complex K with universal cover K̃ and a homology
class [K ] ∈ Hn(K ) satisfying the equivalent conditions:
(a) the cap products

[K ] ∩ − : Hn−∗(K̃ ) = H∗(C (K̃ )n−∗)→ H∗(K̃ )

are Z[π1(K )]-module isomorphisms.
(b) The image ∆[K ] ∈ Hn(X ) under the diagonal map

∆ : |K | → X = |K̃ | ×π1(K) |K̃ | ; x 7→ (x̃ , x̃)

is a chain homotopy class of Z[π1(K )]–module chain

equivalences φ = ∆[K ] : C (K̃ )n−∗ → C (K̃ ).
(c) the cap product [X ] ∩ − : Hn(X )→ Hn(X ) is an isomorphism,

with ∆[K ]∗ ∈ Hn(X ) a Z[π1(K )]-module chain homotopy

inverse φ−1 : C (K̃ )→ C (K̃ )n−∗.
I Example A triangulated n-dimensional manifold is a

polyhedral n-dimensional Poincaré complex, and (C (K̃ ), φ) is
an n-dimensional algebraic Poincaré complex over Z[π1(K )].
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Dual cells

I The barycentric subdivision of K is the simplicial complex
K ′ with K ′(0) = K and

K ′
(n)

= {(σ0, σ1, . . . , σn) |σ0 ⊂ σ1 ⊂ · · · ⊂ σn} .
Homeomorphic polyhedron |K ′| ∼= |K |.

I The dual cells of K are the contractible subcomplexes

D(σ) = {(σ0, σ1, . . . , σn) ∈ K ′ |σ0 ⊆ σ} ⊆ K ′ .

I The boundary of the dual cell D(σ) is

∂D(σ) = {(σ0, σ1, . . . , σn) ∈ D(σ) |σ0 6= σ} .
I Proposition The local homology groups of |K | at x ∈ |K | are

the homology groups of the dual cells relative to boundaries

H∗(|K |, |K |\{x}) = H∗−|σ|(D(σ), ∂D(σ)) (x ∈ interior(σ), σ ∈ K ) .

For each σ ∈ K and x ∈ interior(σ) there are natural maps

∂σ : H∗(|K |) = H∗(K )→ H∗(|K |, |K |\{x}) = H∗−|σ|(D(σ), ∂D(σ)) .
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Homology manifolds

I A polyhedral n-dimensional homology manifold is a finite
simplicial complex K with a homology class [K ] ∈ Hn(K ) such
that for each σ ∈ K

∂σ[K ] ∩ − : H∗(D(σ))→ Hn−|σ|−∗(D(σ), ∂D(σ))

is an isomorphism, or equivalently such that for each x ∈ |K |

H∗(|K |, |K |\{x}) = H∗(Rn,Rn\{0}) =

{
Z if ∗ = n

0 if ∗ 6= n .

I Example A triangulated n-dimensional manifold is a
polyhedral n-dimensional homology manifold.

I Being a homology manifold is not a homotopy invariant
property: so this is too much Poincaré duality to characterize
polyhedra homotopy equivalent to a manifold.
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McCrory’s theorem

I Theorem (McC., 1977) A polyhedral n-dimensional Poincaré
complex K is an n-dimensional homology manifold if and only
if the polyhedral 2n-dimensional Poincaré complex

(X , [X ]) = (|K | × |K |, [K ]⊗ [K ])

is such that the Poincaré dual ∆[K ]∗ ∈ Hn(X ) of the diagonal
class ∆[K ] ∈ Hn(X ) is supported near the diagonal ∆|K | ⊂ X ,
i.e.

∆[K ]∗ ∈ im(Hn(X ,X\∆|K |)→ Hn(X ))

= ker(Hn(X )→ Hn(X\∆|K |)) .

I (A.R.) Singularities, double points, controlled topology
and chain duality Doc. Math. (1999)
Interpretation of Theorem in terms of the (Z,K )-module
category.



25

The (Z,K )-category I. Modules

I (A.R.+M.Weiss) Chain complexes and assembly,
Math.Z.(1999)

I A (Z,K )-module is a f.g. free Z-module A with splitting

A =
∑
σ∈K

A(σ) .

I A morphism of (Z,K )-modules f : A→ B is a Z-module
morphism such that

f (A(σ)) ⊆
∑
τ⊇σ

B(τ) (σ ∈ K ) .

I Example The simplicial chain complex C (K ′) is a
(Z,K )-module chain complex with

C (K ′)(σ) = C (D(σ), ∂D(σ)) (σ ∈ K ) .

I Proposition A (Z,K )-module morphism f : A→ B is an
isomorphism if and only if each diagonal component
f (σ, σ) : A(σ)→ B(σ) (σ ∈ K ) is a Z-module isomorphism.
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The (Z,K )-category II. Products

I The product of (Z,K )-modules A,B is the (Z,K )-module

A⊗(Z,K) B = A⊗Z B ,

(A⊗(Z,K) B)(σ) =
∑

λ,µ∈K ,λ∩µ=σ
A(λ)⊗Z B(µ) .

I Example For simplicial maps f : L→ K ′, g : M → K ′ the
pullback polyhedron

L×K M = {(x , y) ∈ |L| × |M| | f (x) = g(y) ∈ |K |}

has homology

H∗(L×K M) = H∗(C (L)⊗(Z,K) C (M))

with
C (L)(σ) = C (f −1D(σ), f −1∂D(σ)) ,

C (M)(σ) = C (g−1D(σ), g−1∂D(σ)) .
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The (Z,K )-category III. Duality

I The dual of a (Z,K )-module A is the (Z,K )-module chain
complex TC with

TC (σ)r =


∑
τ⊇σ

A(τ)∗ if r = −|σ|

0 otherwise.

I The dual of a (Z,K )-module chain complex C is a
(Z,K )-module chain complex TC . (Analogue of Verdier
duality for sheaves).

I Example The dual of C (K ′) is (Z,K )-equivalent to the
cochain complex of K

TC (K ′) ' C (K )−∗ , C (K )r (σ) =

{
Z if r = −|σ|
0 otherwise.

I For any (Z,K )-module chain complexes A,B

H∗(A⊗(Z,K) B) = H∗(Hom(Z,K)(TA,B)) .
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The assembly map

I Proposition (i) The generalized homology group Hn(K ; L(Z))
is the cobordism group of n-dimensional quadratic Poincaré
complexes (C , φ) in the (Z,K )-module category.

I (ii) The assembly map A : Hn(K ; L(Z))→ Ln(Z[π1(K )]) is
induced by the functor

A : {(Z,K )-modules} → {f.g. free Z[π1(K )]-modules} ;

B =
∑
σ∈K

B(σ) 7→ A(B) =
∑
σ̃∈K̃

B(p(σ̃))

with p : K̃ → K the universal covering projection.

I (iii) Sn(K ) is the cobordism group of (n − 1)-dimensional
quadratic Poincaré complexes (C , φ) in the (Z,K )-module
category such that the assembly A(C ) is a contractible f.g.
free Z[π1(K )]-module chain complex, H∗(A(C )) = 0.
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From local to global Poincaré duality, and back again!

I For any simplicial complex K

Hn(K ) = Hn(Hom(Z,K)(TC (K ′),C (K ′))) .

The cap product with any homology class [K ] ∈ Hn(K ) is a
(Z,K )-module chain map φ = [K ] ∩ − : TC (K ′)∗−n → C (K ′)
with diagonal components

φ(σ, σ) = ∂σ[K ] ∩ − : TC (K ′)∗−n(σ) = C (D(σ))n−∗−|σ|

→ C (K ′)(σ) = C (D(σ), ∂D(σ)) (σ ∈ K ) ,

assembly [K ]∩− : TC (K̃ ′)∗−n ' C (K̃ )n−∗ → C (K̃ ′) ' C (K̃ ).
I K is a homology manifold if and only if [K ] ∩ − is a

(Z,K )-module chain equivalence, in which case it is a
Poincaré complex. (Essentially Poincaré’s original proof!)

I The total surgery obstruction of a Poincaré complex K is

s(K ) = (C (φ)∗+1, ψ) ∈ Sn(K ) ,

with C (φ) the algebraic mapping cone of φ.
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Conclusion

I The Novikov conjecture on the homotopy invariance of the
higher signatures of manifolds with fundamental group π is
equivalent to the injectivity of

1⊗ A : H∗(Bπ; L(Z))⊗Q→ L∗(Z[π])⊗Q .

I The Borel conjecture on the existence and rigidity of
topological manifold structures on aspherical Poincaré
complexes Bπ is essentially equivalent to
A : H∗(Bπ; L(Z))→ L∗(Z[π]) being an isomorphism.

I Starting with Novikov himself, many authors in the last 40
years have proved many special cases of the Novikov and
Borel conjectures, and the related Farrell-Jones isomorphism
conjecture, using algebraic, geometric and analytic methods.

I Some (though not all) have used the algebraic L-theory
assembly map defined here. There is still much work to be
done to understand the relationship between all these
methods of proof, and maybe even prove new results!


