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Quadratic forms

Es gilt f — f ~0, denn diese Form hat die Koeffizienten a;, — a;, und nach
dem Hilfssatz kann jedes Paar a;, — a; durch 1, — 1 ersetzt werden. Wie jetzt leicht
zu sehen ist, gilt

Satz 6. Die Klassen dhnlicher Formen bilden einen Ring.

E. Witt, Theorie der quadratischen Formen in beliebigen
Korpern (Crelle, 1936)

The Witt group W/(K) of a field K is the group of stable
isomorphism classes of quadratic forms over K, i.e. vector
spaces V over K with a nonsingular symmetric bilinear pairing

b VXV K, d(xy)=oly,x).

0 1
1 0
The Witt group W(R) of quadratic forms over K = R is
isomorphic to Z by the isomorphism

o : W(R)—Z,; (V,¢)— signature(V, @) .

Stable = hyperbolic forms ( ) are equivalent to 0.



Generalized Witt groups

» Quadratic forms on modules over a ring with involution A,
with Wall groups L, (A).

» If1/2€ A
Lo(A) = W(A)
with W/(A) defined as for fields.

» If 1/2 ¢ A Lop(A) uses quadratic refinements of ¢, but there is
a forgetful map Lo(A) — W/(A) which is an isomorphism
modulo 8-torsion.

» Quadratic forms on A-module chain complexes, same L,(A)

» Sheaves of quadratic forms over a topological space X, with
Witt groups the generalized homology groups H.(X;L(Z)).
Here L(Z) is a spectrum with

m(L(Z)) = Li(Z) .



Cobordism of manifolds

The most direct application of the Witt group to manifolds is
via the symmetric intersection form of a closed oriented
4 k-dimensional manifold M

¢ H*(M:R) x H**(M;:R) = R ; (x,y) — (xUy, [M]) .
The signature of M
o(M) = o(H**(M;R),¢) € W(R) = Z

Is a cobordism invariant: if M = N is the boundary of a
(4k + 1)-dimensional manifold N then o(M) = 0.

Example The intersection form of M = Sk x Sk js
ok 0 1
(HH(MiR),¢) = ROR, (] 4))-

M = ON with N = §2k x D?*1 and ¢(M) =0 € Z.



The homotopy types of topological manifolds

An n-dimensional topological manifold M is a paracompact
Hausdorff topological space such that each x € M has an
open neighbourhood homeomorphic to R".

Will only consider compact oriented manifolds.

The Browder-Novikov-Sullivan-Wall surgery theory developed
in the 1960’s for differentiable and combinatorial manifolds
culminated in the 1970 Kirby-Siebenmann breakthrough on
the structure theory of topological manifolds of dimension
n>4.

The Whitney trick for removing singularities fails for n = 4 in
general. Freedman (1982) extended the K-S theory to
4-dimensional topological manifolds, subject to fundamental
group restrictions.

... topological manifolds bear the simplest possible relation to
their underlying homotopy types. This is a broad statement
worth testing. (Siebenmann, ICM talk 1970)



The total surgery obstruction

» Theorem (A.R., 1978 —) (i) For any space X there is an
exact sequence of generalized Witt groups

A

o= Ho(X L(Z)) 2 Lo(Z[r1(X)]) = Sa(X) = Ho1(X;L(Z)) — . ..

with A the assembly map.
(ii)) A compact polyhedron X with n-dimensional Poincaré
duality has a total surgery obstruction s(X) € S,(X) such
that s(X) = 0 if (and for n > 4 only if) X is homotopy
equivalent to an n-dimensional manifold.

» Roughly speaking, s(X) is the algebraic cobordism (i.e. Witt)
class of a sheaf over X of quadratic forms over Z with the
stalk at x € X the failure of the local homology groups

H. (X, X\{x}) to be

Z, for x =n

A.(R7, RM\{0}) = {0 for x # n .



The triangulation of manifolds

Given a simplicial complex K let |K| be the polyhedron.

A triangulation of a topological manifold M is a finite
simplicial complex K with a homeomorphism M = |K]|.

Every manifold M is homotopy equivalent to a compact
polyhedron (Kirby+Siebenmann 1970).

A combinatorial manifold is automatically triangulable.
Differentiable manifolds have a canonical combinatorial
structure.

There are non-triangulable 4-dimensional manifolds
(Freedman+Casson 1990).

It is not known if there exist non-triangulable n-dimensional
manifolds for n > 4.



Poincaré duality

» The homology and cohomology groups of an n-dimensional
manifold M are related by the Poincaré duality
isomorphisms

MO — : HYM) = H,_.(M)

with [M] € H,(M) the fundamental class.

» An n-dimensional manifold with boundary (M, M) has
Poincaré-Lefschetz duality isomorphisms

MM — © HY(M) = H,_.(M,0M)

with [M] € H,(M,9M) the fundamental class.

» Working with the universal cover M of M there are also
Z|m1(M)]-coefficient Poincaré and Poincaré-Lefschetz duality
isomorphisms.



The Browder-Novikov-Sullivan-Wall surgery theory
from the modern point of view |. Manifold structures

Existence problem When is a compact polyhedron X with
n-dimensional Z[m1(X)]-coefficient Poincaré duality

~

H™™*(X) = H.(X)
homotopy equivalent to an n-dimensional manifold?

Yes for n = 2, but no for n > 2 in general.

BNSW+KS surgery theory provides a 2-stage obstruction for
n > 4, working outside of X, involving maps f : M — X from
manifolds M.

Primary obstruction in topological K-theory of vector bundles
to the existence of f.

Secondary obstruction in algebraic L-theory of quadratic forms
over Z[m1(X)] to making f a homeomorphism by
surgery/cobordism.
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Manifold structures from the modern point of view

Modern existence theorem For n > 4 a compact
polyhedron X is homotopy equivalent to an n-dimensional
manifold if and only if X has sufficient Poincaré duality.

Can see the total surgery obstruction s(X) inside X as failures
of local Poincaré duality on the simplicial chain level, although
still need to work outside X for the proofs.

(A.R.) The total surgery obstruction (Aarhus Proceedings,
Springer, 1979)

(A.R.) Algebraic L-theory and Topological Manifolds
(Tract, Cambridge, 1992)

Would prefer to develop obstruction theory for any space X,
using singular chains, but there are technical difficulties, see:
(A.R.+M.Weiss) On the construction and topological
invariance of the Pontryagin classes (Geometriae Dedicata,
2010)



11

How much Poincaré duality is sufficient?

If X is homotopy equivalent to an n-dimensional manifold
then it has Z[m1(X)]-coefficient Poincaré duality

HP=(X) = H.(X)
with X the universal cover of X. So Z[r1(X)]-coefficient
Poincaré duality is necessary for X to be homotopy equivalent
to an n-dimensional manifold.
Since the 1960's it has been know that there exist X for each
n > 2 with Z[m1(X)]-coefficient Poincaré duality which are
not homotopy equivalent to an n-dimensional manifold.
Thus Z[m1(X)]-coefficient Poincaré duality is in general not
sufficient for X to be homotopy equivalent to an
n-dimensional manifold.
In order to make precise how much Poincaré duality is
sufficient need to study the generalized Witt groups of
quadratic forms on chain complexes indexed by simplicial
complexes.
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The Browder-Novikov-Sullivan-Wall surgery theory
from the modern point of view ll. Rigidity

Uniqueness problem When is a homotopy equivalence of
n-dimensional manifolds f : M — N homotopic to a
homeomorphism?

Again, yes for n = 2, but for n > 2 no in general.

The 3-dimensional lens spaces provided the first examples of
homotopy equivalent manifolds which are not homeomorphic.

BNSW+KS provided a 2-stage obstruction theory for n > 4.

Modern uniqueness theorem For n > 4 a homotopy
equivalence f : M — N of n-dimensional manifolds is
homotopic to a homeomorphism if and only if the point
inverses f~1(x) C M (x € N) are sufficiently acyclic.
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Uniqueness = relative existence

» The mapping cylinder of a map f : M — N is the space
X = (Mx[0,1]uN)/{(x,1) ~ f(x)|x € M}
homotopy equivalent to N, with subspace
oX = Mx{0}uNCX.

» |If f : M — N is a homotopy equivalence of n-dimensional
manifolds then (X, 9X) has the Z[r1(X)]-coefficient
Poincaré-Lefschetz duality

H*(X) 2 Hny1-.(X,0X)

of an (n + 1)-dimensional manifold with boundary.

» For n > 4 f is homotopic to a homeomorphism if and only if
(X,0X) is homotopy equivalent rel 9 to an
(n + 1)-dimensional manifold M with boundary OM = 90X.
Same obstruction theory as for the uniqueness problem.

» Will concentrate on uniqueness problem.
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Rings with involution
An involution on a ring A is a function
A—A; a— 23

such that

at+b =3a+b,ab = ba,a = a(abcA).

Example 1 A commutative ring A, with 3 = a.
Example 2 A group ring A = Z[r] with g = g~ (g € 7).
Regard a left A-module P as a right A-module with

PxA— P, (x,a)— ax .

The tensor product of left A-modules P, Q is the abelian
group defined by

Po,Q = PRz Q/{ax®Ry —x®aylace A xe P,y e Q}

with transposition isomorphism

PRaRQ—+QRAP; xQy—yRx.
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Duality over a ring with involution

» The dual of a left A-module P is the left A-module
P* = Homua(P,A), AXx P" = P*; (a,f) — (x— f(x)a) .

» The natural A-module morphism

P— P™ ; x+— (f — f(x))

Is an isomorphism for f.g. free P.

» For A-modules P, @ the abelian group morphisms

P*®a @ — Homa(P,Q) ; f @y — (x— f(x)y),
* : Homa(P, Q) = Homa(Q*, P*) ; f— (f*: g~ (x+— g(f(x))))

are isomorphisms for f.g. free P, Q.
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Quadratic forms on chain complexes |.

» Reference The algebraic theory of surgery (1978, Proc.
LMS)

» The n-dual of a f.g. free A-module chain complex

C:osC -9 5. 5ag -9 ..

is the f.g. free A-module chain complex

d”* d”

cr—* . ... 2oty B s

with C" = (/.

» An ‘algebraic Poincaré complex’ is a f.g. free A-module chain
complex C with a chain equivalence C"™* ~ (C satisfying
extra conditions. There are two versions: symmetric and
quadratic. Will ignore the difference today.
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Quadratic forms on chain complexes Il.

» For any f.g. free A-module chain complex C there is defined
an isomorphism of A-module chain complexes

C®RaC—Homua(C ", C); x@y = (f— f(x).y).
The homology group
Hn(C X A C) = Ho(HomA(C”_*, C))

Is the group of chain homotopy classes of chain maps
. C"*— C.
» The action of T € Z, by the transposition involution

T :CR®AC = CRaAC; xRy — (—)Plyex(xe Gy € ()
corresponds to the duality involution

T : Homa(C7*,C) = Homu(C7*,C) ; f— (—)PIf*,

(f: CP = Cg) = ((=)P9F7: CT = Gp) , y(FF(x)) = x(f(y)) -



18

Algebraic Poincaré cobordism

An n-dimensional quadratic Poincaré complex (C, ¢) is an
n-dimensional f.g. free A-module chain complex C together
with a chain equivalence ¢ : C"™* — C such that there exists
a chain homotopy Top ~ ¢ : C"* — C. If 1/2 & A need
additional quadratic structure.

The quadratic Poincaré cobordism group L,(A) is the
group of equivalence classes of n-dimensional quadratic
Poincaré complexes (C, ¢) with (C,¢) ~ (C’, ¢') if

C @ C" C D for an (n+ 1)-dimensional f.g. free A-module
chain complex D such that

H™1=*(D,C) = H.(D,C").

L,(A) = Lyia(A).
L4k (A) is the Witt group of quadratic forms over A.
For A = Z signature defines the isomorphism

Lan(Z) —= W(R) = Z: (C,¢) — o(H*(R&yC),10¢)



The polyhedron of a simplicial complex

» A simplicial complex K is a collection of finite subsets
o C KO of an ordered vertex set K(9) such that:

(a) v € K for each v € K9,
(b) if o € K and 7 C o then 7 € K.

» The dimension of 0 € K is
lo| = (no. of verticesin o) —1

Let K(") denote the set of n-simplexes in K.

» The polyhedron of K is the usual identification space

Kl = (J] A" x kM)~
n=0

with A" the convex hull of (0,...,0,1,0,...,0) € R"*!,
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The simplicial chain complex
» The simplicial chain complex C(K) has
d . C(K),=2Z[K"M = C(K)y_1 = Z[K(r—1] ;

n .
(ovi .- V)= D (=)' (voy .-y Vi1, Vitls ey Vi)
=0

(o < vy < -+ < vp)

» The homology and cohomology groups of the polyhedron are
the same as those of the simplicial complex

H.(IK]) = Hi(K) = H.(C(K)),
H*(IK]) = H*(K) = H*(C(K)).

» For any simplicial complexes K, L H,(|K| x |L|) is the group
of chain homotopy classes of chain maps C(K)"~* — C(L).
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Polyhedral Poincaré complexes

» An polyhedral n-dimensional Poincaré complex is a finite

simplicial complex K with universal cover K and a homology
class [K] € Hn(K) satisfying the equivalent conditions:
(a) the cap products

[K]N— : H""(K) = H.(C(K)"*) = H.(K)

are Z[m1(K)]-module isomorphisms.
(b) The image A[K] € H,(X) under the diagonal map

A K] = X = K| Xeyk) K] x = (%,X)

is a chain homotopy class of Z[mr;(K)]-module chain
equivalences ¢ = A[K] : C(K)"* — C(K).

(c) the cap product [X] N —: H"(X) — H,(X) is an isomorphism,
with A[K]* € H"(X) a Z[m1(K)]-module chain homotopy
inverse ¢~ : C(K) — C(K)™*.

> Example A triangulated n-dimensional manifold is a
polyhedral n-dimensional Poincaré complex, and (C(K), ¢) is
an n-dimensional algebraic Poincaré complex over Z[m1(K)].
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Dual cells

The barycentric subdivision of K is the simplicial complex
K’ with K'©) = K and

K" = {(00,01,...,0n) |00 Co1 C--- Copn}.

Homeomorphic polyhedron |K'| 2 |K]|.
The dual cells of K are the contractible subcomplexes

D(c) = {(o0,01,...,0n) €K' |og Co} C K.
The boundary of the dual cell D(o) is
0D(o) = {(00,01,...,0,) € D(0)| 0o # 0} .

Proposition The local homology groups of |K| at x € |K| are
the homology groups of the dual cells relative to boundaries

H.(|K|, |[K|\{x}) = Hi_s|(D(c),0D(0)) (x € interior(c),0 € K).
For each 0 € K and x € interior(o) there are natural maps

05 = Hi(|K|) = H(K) = H.(IK][, |[KI\{x}) = Hi—|5/(D(0),9D(7)) -
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Homology manifolds

» A polyhedral n-dimensional homology manifold is a finite
simplicial complex K with a homology class [K] € H,(K) such
that for each 0 € K

0,[KIN — : H(D(0)) ~+ Hyio}—+(D(0).0D(0))
is an isomorphism, or equivalently such that for each x € |K|

Z, fx=n

H. (K] [K\{x}) = H(R",R"\{0}) = .
0 ifx#n.
» Example A triangulated n-dimensional manifold is a
polyhedral n-dimensional homology manifold.

» Being a homology manifold is not a homotopy invariant
property: so this is too much Poincaré duality to characterize
polyhedra homotopy equivalent to a manifold.
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McCrory’s theorem

» Theorem (McC., 1977) A polyhedral n-dimensional Poincaré
complex K is an n-dimensional homology manifold if and only
if the polyhedral 2n-dimensional Poincaré complex

(X, [X]) = (K| x K], [K] @ [K])

is such that the Poincaré dual A[K]* € H"(X) of the diagonal
class A[K] € Hp(X) is supported near the diagonal Ak C X,
l.e.

A[K]* € im(H"(X, X\A k) = H"(X))
= ker(H"(X) — H"(X\A k) -
» (A.R.) Singularities, double points, controlled topology
and chain duality Doc. Math. (1999)

Interpretation of Theorem in terms of the (Z, K)-module
category.



The (Z, K)-category I. Modules

(A.R.+M.Weiss) Chain complexes and assembly,

Math.Z.(1999)
A (Z,K)-module is a f.g. free Z-module A with splitting

A = X;A(a).

A morphism of (Z, K)-modules f : A — B is a Z-module
morphism such that

f(A(0)) € ) B(r) (o €K).

Example The simplicial chain complex C(K’) is a
(Z, K)-module chain complex with

C(K')(0) = C(D(c),dD(c)) (0 € K) .

Proposition A (Z, K)-module morphism f : A — B is an
isomorphism if and only if each diagonal component
f(o,0): A(oc) — B(o) (o0 € K) is a Z-module isomorphism.

25
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The (Z, K)-category Il. Products

» The product of (Z, K)-modules A, B is the (Z, K)-module
A®(Z,K) B = ARy B,

(A®z k) B)(o) = D A(N) ®z B(u) -
A peK Au=c

» Example For simplicial maps f : L — K’, g : M — K’ the
pullback polyhedron

Lxx M = {(x,y) € |L| x [M]|f(x) = g(y) € |K|}
has homology
Ho(L xx M) = H.(C(L) ®zk) C(M))

with C(L)(c) = C(f1D(o), f10D(s)),

C(M)(o) = C(g~'D(0),g7'9D(0)) -



The (Z, K)-category lll. Duality

The dual of a (Z, K)-module A is the (Z, K)-module chain
complex TC with

(S A(R)F ifr=—|o]
TC(c), = {720

0 otherwise.

\

The dual of a (Z, K)-module chain complex C is a
(Z, K)-module chain complex TC. (Analogue of Verdier
duality for sheaves).

Example The dual of C(K’) is (Z, K)-equivalent to the
cochain complex of K

T = O ) = (g LT

For any (Z, K)-module chain complexes A, B
H.(A®@zk) B) = Hi«(Homz )(TA, B)) .
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The assembly map

» Proposition (i) The generalized homology group H,(K;L(Z))
is the cobordism group of n-dimensional quadratic Poincaré
complexes (C, @) in the (Z, K)-module category.

> (ii) The assembly map A: H,(K;L(Z)) — L,(Z]r1(K)]) is
induced by the functor

A : {(Z,K)-modules} — {f.g. free Z[r1(K)]-modules} ;
B= 2. B(o)— A(B)= 2. B(p(9))

ceK 5€R

with p : K — K the universal covering projection.
> (iii) Sp(K) is the cobordism group of (n — 1)-dimensional
quadratic Poincaré complexes (C, ¢) in the (Z, K)-module

category such that the assembly A(C) is a contractible f.g.
free Z[m1(K)]-module chain complex, H.(A(C)) = 0.
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From local to global Poincaré duality, and back again!

» For any simplicial complex K
Hn(K) = Hp(Hom(z k)(TC(K"), C(K"))) -
The cap product with any homology class [K] € H,(K) is a
(Z, K)-module chain map ¢ = [K]N—: TC(K').—n — C(K')
with diagonal components
(0,0) = 05[K] N —: TC(K)s—n(0) = C(D(0))"*17
— C(K")(oc) = C(D(0),0D(0)) (0 € K) ,
assembly [K]N — : TC(K')sn ~ C(K)"* = C(K") ~ C(K).
» K is a homology manifold if and only if [K] N — is a
(Z, K)-module chain equivalence, in which case it is a

Poincaré complex. (Essentially Poincaré’s original proof!)
» The total surgery obstruction of a Poincaré complex K is

s(K) = (C(¢)+1,9) € Sa(K) ,
with C(¢) the algebraic mapping cone of ¢.
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Conclusion

The Novikov conjecture on the homotopy invariance of the
higher signatures of manifolds with fundamental group 7 is
equivalent to the injectivity of

1@ A H(BrL(Z) ® Q — L(Z[x]) @ Q .

The Borel conjecture on the existence and rigidity of
topological manifold structures on aspherical Poincaré
complexes B is essentially equivalent to

A: H.Bm;L(Z)) — L«(Z|r]) being an isomorphism.
Starting with Novikov himself, many authors in the last 40
years have proved many special cases of the Novikov and
Borel conjectures, and the related Farrell-Jones isomorphism
conjecture, using algebraic, geometric and analytic methods.
Some (though not all) have used the algebraic L-theory
assembly map defined here. There is still much work to be
done to understand the relationship between all these
methods of proof, and maybe even prove new results!



