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Noncommutative localization

I Localizations of noncommutative rings such as group rings
Z[π] are rings with complicated properties in algebra and
interesting applications to topology.

I The applications are to spaces X with infinite fundamental
group π1(X ), e.g. amalgamated free products and HNN
extensions, such as occur when X is a knot or link
complement.

I The surgery classification of high-dimensional manifolds and
Poincaré complexes, finite domination, fibre bundles over S1,
open books, circle-valued Morse theory, Morse theory of
closed 1-forms, rational Novikov homology, codimension 1 and
2 splitting, homology surgery, knots and links.

I High-dimensional knot theory, Springer (1998)
I Survey: e-print AT.0303046 in Noncommutative

localization in algebra and topology, LMS Lecture Notes
330, Cambridge University Press (2006)
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The cobordism/concordance groups of boundary links

I An n-dimensional µ-component boundary link is a link

` : t
µ

Sn ⊂ Sn+2

such that there exists a µ-component Seifert surface

Mn+1 =
µ
t

i=1
Mi ⊂ Sn+2 with ∂M = `(t

µ
Sn) ⊂ Sn+2.

I Boundary condition equivalent to the existence of a surjection
π1(Sn+2\`(tµ Sn))→ Fµ sending the µ meridians to µ
generators of the free group Fµ of rank µ.

I Let Cn(Fµ) be the cobordism group of n-dimensional
µ-component boundary links.

I A 1-component boundary link is a knot k : Sn ⊂ Sn+2, and
Cn(F1) = Cn is the knot cobordism group.

I Problem Compute Cn(Fµ) !
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A 2-component boundary link ` : S1 t S1 ⊂ S3
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Brief history of the knot cobordism groups C∗

I (Fox-Milnor 1957) Definition of C1.
I (Kervaire 1966) Definition of C∗ for ∗ > 1 and

C2∗ = 0 .

I (Levine 1969) C∗ = C∗+4 for ∗ > 1. Computation of C2∗+1 for
∗ > 0, using Seifert forms over Z, S−1Z = Q and signatures

C2∗+1 =
⊕
∞

Z⊕
⊕
∞

Z2 ⊕
⊕
∞

Z4 .

I (Kearton 1975) Expression of C2∗+1 for ∗ > 0, using a
commutative localization S−1Z[z , z−1] and
S−1Z[z , z−1]/Z[z , z−1]-valued Blanchfield forms.

I (Casson-Gordon 1976) ker(C1 → C5) 6= 0 using commutative
localization.

I (Cochran-Orr-Teichner 2003) Near-computation of C1, using
noncommutative Ore localization of group rings and
L2-signatures.
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Brief history of the boundary link cobordism groups C∗(Fµ)

I (Cappell-Shaneson 1980) Geometric expression of C∗(Fµ) for
∗ > 1 as relative Γ-groups, and

C2∗(Fµ) = 0 .

I (Duval 1984) Algebraic expression of C2∗+1(Fµ) for ∗ > 0,
using a noncommutative localization Σ−1Z[Fµ] and
Σ−1Z[Fµ]/Z[Fµ]-valued Blanchfield forms.

I (Ko 1989) Algebraic expression of C2∗+1(Fµ) for ∗ > 0, using
Seifert forms over Z[Fµ].

I (Sheiham 2003) Computation of C2∗+1(Fµ) for ∗ > 0, using
noncommutative signatures

C2∗+1(Fµ) =
⊕
∞

Z⊕
⊕
∞

Z2 ⊕
⊕
∞

Z4 ⊕
⊕
∞

Z8 .

I Wishful thinking Compute C1(Fµ) for µ > 1 using
noncommutative localization.
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Alexander duality in H∗ and H∗ but not in π1

I Want to investigate knotting properties of submanifolds
Nn ⊂ Mm, especially in codimension m − n = 2, using the
complement P = M\N.

I Alexander duality for H∗,H
∗. The homology and

cohomology of M,N,P are related by Z-module isomorphisms

H∗(M,P) ∼= Hm−∗(N) , H∗(M,P) ∼= Hm−∗(N) .

I Failure of Alexander duality for π1. The group morphisms
π1(P)→ π1(M) induced by P ⊂ M are isomorphisms for
n −m > 3, but not in general for n −m = 1 or 2.

I The Z[π1(P)]-module homology H∗(P̃) of the universal cover
P̃ depends on the knotting of N ⊂ M, whereas the Z-module
homology H∗(P) does not.
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Change of rings

I For a ring A let Mod(A) be the category of left A-modules.

I Given a ring morphism φ : A→ B regard B as a
(B,A)-bimodule by

B × B × A→ B ; (b, x , a) 7→ b.x .φ(a) .

Use this to define the change of rings a functor

φ∗ = B ⊗A − : Mod(A)→ Mod(B) ; M 7→ B ⊗A M .

I An A-module chain complex C is B-contractible if the
B-module chain complex B ⊗A C is contractible.
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Knotting and unknotting

I Slogan The fundamental group π1 detects knotting for
n −m = 1 or 2, whereas Z-coefficient homology and
cohomology do not.

I The applications of algebraic K - and L-theory to knots and
links use the chain complexes of the universal covers of the
complements. They involve the algebraic K - and L-theory of
B-contractible A-module chain complexes for augmentations

φ = ε : A = Z[π1]→ B = Z ;
∑
g∈π1

ngg 7→
∑
g∈π1

g .

I In favourable circumstances (e.g. π1 = Fµ) there exists a
‘stably flat noncommutative localization’ A ↪→ Σ−1A such
that an A-module chain complex C is B-contractible if and
only if C is Σ−1A-contractible. The algebraic K - and L-theory
of such C can be then described entirely in terms of A.
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Algebraic K -theory I.

I Let A be an associative ring with 1.
I The projective class group K0(A) is the abelian group with

one generator [P] for each isomorphism class of f.g. projective
A-modules P, and relations

[P ⊕ Q] = [P] + [Q] ∈ K0(A) .

I A finite f.g. projective A-module chain complex C has a chain
homotopy invariant projective class

[C ] =
∞∑
i=0

(−)i [Ci ] ∈ K0(A) .

I Example K0(Z) = Z. The projective class of a finite f.g. free
A-module chain complex is just the Euler characteristic the
projective class

[C ] = χ(C ) =
∞∑
i=0

(−)idimA(Ci ) ∈ im(K0(Z)→ K0(A)) .
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Algebraic K -theory II.

I The Whitehead group K1(A) is the abelian group with one
generator τ(f ) for each automorphism f : P → P of a f.g.
projective A-module P, and relations

τ(f ⊕ f ′) = τ(f ) + τ(f ′) , τ(gfg−1) = τ(f ) ∈ K1(A) .

I The Whitehead torsion of a contractible finite based f.g.
free A-module chain complex C is

τ(C ) = τ(d + Γ : Codd → Ceven) ∈ K1(A)

with Γ : 0 ' 1 : C → C any chain contraction

dΓ + Γd = 1 : Cr → Cr .

I Can generalize K0(A),K1(A) to K∗(A) for all ∗ ∈ Z.



12

Change of rings in algebraic K -theory

I A ring morphism φ : A→ B induces an exact sequence of
algebraic K -groups

· · · → Kn(A)
φ∗ // Kn(B)→ Kn(φ)→ Kn−1(A)→ . . .

I A B-contractible finite f.g. free A-module chain complex C
with χ(C ) = 0 ∈ Z has a Reidemeister torsion

τ [C ] ∈ ker(K1(φ)→ K0(A))

= im(K1(B)→ K1(φ))

= coker(φ∗ : K1(A)→ K1(B))

given by τ(B ⊗A C ) ∈ K1(B) for any choice of bases for C .
I (Milnor 1966) Whitehead torsion interpretation of the

Reidemeister torsion of a knot using the augmentation
φ : A = Z[z , z−1]→ B = F • for any field F .
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Commutative localization

I The localization of a commutative ring A inverting a
multiplicatively closed subset S ⊂ A of non-zero divisors with
1 ∈ S is the ring S−1A of fractions a/s (a ∈ A, s ∈ S), where

a/s = b/t if and only if at = bs .

I Usual addition and multiplication

a/s + b/t = (at + bs)/(st) , (a/s)(b/t) = (as)/(bt)

and canonical embedding A ↪→ S−1A; a 7→ a/1.

I For an integral domain A and S = A− {0}

S−1A = quotient field(A) .

I Example If A = Z then S−1A = Q.
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The standard example k : Sn ⊂ Sn+2 I.

I The exterior of an n-dimensional knot k is an
(n + 2)-dimensional manifold with boundary

(X , ∂X ) = (cl.(Sn+2\(k(Sn)× D2)), Sn × S1)

with X ⊂ Sn+2\Sn a deformation retract of the complement.
I The generator 1 ∈ H1(X ) = Z is realized by a homology

equivalence (f , ∂f ) : (X , ∂X )→ (X0, ∂X0) with (X0, ∂X0) the
exterior of the trivial knot

k0 : Sn ⊂ Sn+2 = Sn × D2 ∪ Dn+1 × S1

with X0 = Dn+1 × S1 ' S1, and ∂f a homeomorphism.
I Theorem (Dehn+P. for n = 1, Kervaire+Levine for n > 2)

k is unknotted if and only if f is a homotopy equivalence.
I The circle S1 has universal cover S̃1 = R, with π1(S1) = Z,

Z[π1(S1)] = Z[z , z−1]. The homology equivalence
f : X → S1 lifts to a Z-equivariant map f : X → R with
X = f ∗R the pullback infinite cyclic cover of X .
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The standard example k : Sn ⊂ Sn+2 II.

I The Blanchfield localization S−1A of A = Z[z , z−1] inverts
S = ε−1(1) ⊂ A, with ε : A→ Z; z 7→ 1 the augmentation.

I The cellular A-module chain map f : C (X )→ C (R) induces a
chain equivalence

f = 1⊗ f : Z⊗A C (X ) = C (X )→ Z⊗A C (R) = C (S1).

I The algebraic mapping cone C = C(f ) is a finite f.g. free
A-module chain complex such that

H∗(Z⊗A C ) = 0 , S−1H∗(C ) = 0 , χ(C ) = 0 .

The Reidemeister torsion is an isotopy invariant

τ [C ] = (1− φ(z))/∆(k)

∈ K1(φ) = coker(φ∗ : K1(A)→ K1(S−1A)) = (S−1A)•/A•

with ∆(k) ∈ S the Alexander polynomial of k .
I The localization φ : A ↪→ S−1A first used by Blanchfield

(1957) in the study of the duality properties of H∗(X ).
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The noncommutative Ore localization

I (Ore 1931) The Ore localization S−1A is defined for a
multiplicatively closed subset S ⊂ A with 1 ∈ S , and such that
for all a ∈ A, s ∈ S there exist b ∈ A, t ∈ S with ta = bs ∈ A.

I E.g. central, sa = as for all a ∈ A, s ∈ S .
I The Ore localization is the ring of fractions

S−1A = (S × A)/∼ ,

with (s, a) ∼ (t, b) if and only if there exist u, v ∈ A with

us = vt ∈ S , ua = vb ∈ A .

I An element of S−1A is a noncommutative fraction

s−1a = equivalence class of (s, a) ∈ S−1A

with addition and multiplication more or less as usual.
I Example A commutative localization is an Ore localization.
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Ore localization is flat

I The Ore localization S−1A is a flat A-module, i.e. the functor

S−1 : Mod(A)→ Mod(S−1A) ; M 7→ S−1M = S−1A⊗A M

is exact.

I For any A-module M

TorAi (S−1A,M) = 0 (i > 1) .

I For any A-module chain complex C

H∗(S
−1C ) = S−1H∗(C ) .

I Proposition For any finite f.g. free S−1A-module chain
complex D there exists a finite f.g. free A-module chain
complex C with an S−1A-module isomorphism S−1C ∼= D.

I Proof Clear denominators!
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Universal localization I.

I Given a ring A and a set Σ of elements, matrices, morphisms,
. . . , it is possible to construct a new ring Σ−1A, the
localization of A inverting all the elements in Σ.

I In general, A and Σ−1A are noncommutative, and A→ Σ−1A
is not injective.

I Original algebraic motivation: construction of
noncommutative analogues of the quotient field
of an integral domain.

I Topological applications to knots and links use the algebraic
K - and L-theory of A and Σ−1A, in two separate situations:

I Given a ring morphism φ : A→ B there exists a factorization
φ : A→ Σ−1A→ B such that a free A-module chain complex
C is B-contractible if and only if C is Σ−1A-contractible.

I If a ring R is an amalgamated free product or an HNN
extension then for k = 2 or 3 the matrix ring Mk(R) is Σ−1A
for a triangular matrix ring A ⊂ Mk(R) : gives all known
decomposition theorems for K∗(R) and L∗(R).
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Universal localization II.

I A = ring, Σ = a set of morphisms s : P → Q of f.g. projective
A-modules.

I A ring morphism A→ B is Σ-inverting if each
1⊗ s : B⊗A P → B⊗A Q (s ∈ Σ) is a B-module isomorphism.

I (P.M. Cohn 1970) The universal localization Σ−1A is a ring
with a Σ-inverting morphism A→ Σ−1A such that any
Σ-inverting morphism A→ B has a unique factorization
A→ Σ−1A→ B.

I The universal localization Σ−1A exists (and it is unique); but
it could be 0 – e.g if 0 ∈ Σ.

I In general, Σ−1A is not a flat A-module. Σ−1A is a flat
A-module if and only if Σ−1A is an Ore localization (Beachy,
Teichner, 2003).
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The normal form I.

I (Gerasimov, Malcolmson 1981) Assume Σ consists of all the
morphisms s : P → Q of f.g. projective A-modules such that
1⊗ s : Σ−1P → Σ−1Q is a Σ−1A-module isomorphism.
(Can enlarge any Σ to have this property). Every element
x ∈ Σ−1A is of the form x = fs−1g for some

(s : P → Q) ∈ Σ , f : P → A , g : A→ Q .

I For f.g. projective A-modules M,N every Σ−1A-module
morphism x : Σ−1M → Σ−1N is of the form x = fs−1g for
some (s : P → Q) ∈ Σ, f : P → N, g : M → Q

M
g // P Q

soo f // N .

I Addition by

fs−1g + f ′s ′−1g ′ = (f ⊕ f ′)(s⊕s ′)−1(g⊕g ′) : Σ−1M → Σ−1N

Similarly for composition.



21

The normal form II.

I For f.g. projective M,N, a Σ−1A-module morphism
fs−1g : Σ−1M → Σ−1N is such that fs−1g = 0 if and only if
there is a commutative diagram of A-module morphisms

P ⊕ P1 ⊕ P2 ⊕M


s 0 0 g
0 s1 0 0
0 0 s2 g2

f f1 0 0


//

(
p p1 p2 m

)
  B

BB
BB

BB
BB

BB
BB

BB
BB

B Q ⊕ Q1 ⊕ Q2 ⊕ N

L

(
q q1 q2 n

)T

==|||||||||||||||||||

with s, s1, s2,
(
p p1 p2

)
,
(
q q1 q2

)T ∈ Σ.
(Exercise: diagram =⇒ fs−1g = 0).

I The condition generalizes to express

fs−1g = f ′s ′−1g ′ : Σ−1M → Σ−1N

in terms of A-module morphisms.
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Localization in algebraic K -theory I.

I Assume each (s : P → Q) ∈ Σ is injective and A→ Σ−1A is
injective. The torsion exact category T (A,Σ) has objects
A-modules T with Σ−1T = 0, hom. dim. (T ) = 1.
E.g., T = coker(s) for s ∈ Σ.

I Theorem (Bass 1968 for central, Schofield 1985 for universal
Σ−1A). Exact sequence

K1(A)→ K1(Σ−1A)
∂ // K0(T (A,Σ))→ K0(A)→ K0(Σ−1A)

with

∂
(
τ(fs−1g : Σ−1M → Σ−1N)

)
=
[
coker(

(
f 0
s g

)
: P ⊕M → N ⊕ Q)

]
−
[
coker(s : P → Q)

]
I Theorem (Quillen 1972, Grayson 1980) Higher K -theory

localization exact sequence for Ore localization Σ−1A, by
flatness.
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Universal localization is not flat

I In general, if M is an A-module and C is an A-module chain
complex

TorA∗ (Σ−1A,M) 6= 0 , H∗(Σ−1C ) 6= Σ−1H∗(C ) .

True for Ore localization Σ−1A, by flatness.
I Example The universal localization Σ−1A of the free product

A = Z〈x1, x2〉 = Z[x1] ∗ Z[x2]

inverting Σ = {x1} is not flat. The 1-dimensional f.g. free
A-module chain complex

dC = (x1 x2) : C1 = A⊕ A −→ C0 = A

is a resolution of H0(C ) = Z and

H1(Σ−1C ) = TorA1 (Σ−1A,H0(C ))

= Σ−1A 6= Σ−1H1(C ) = 0 .
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Chain complex lifting I.

I A lift of a f.g. free Σ−1A-module chain complex D is a
f.g. projective A-module chain complex C with a chain
equivalence Σ−1C ' D.

I For an Ore localization Σ−1A one can lift every n-dimensional
f.g. free Σ−1A-module chain complex D, for any n > 0.

I For a universal localization Σ−1A one can only lift for n 6 2 in
general.

I Proposition (Neeman+R., 2001) For n > 3 there are lifting
obstructions in TorAi (Σ−1A,Σ−1A) for i > 2.

I TorA1 (Σ−1A,Σ−1A) = 0 always.
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Chain complex lifting II.

I Example The boundary map in the Schofield exact sequence
for an injective universal localization A→ Σ−1A

∂ : K1(Σ−1A)→ K0(T (A,Σ)) ; τ(D) 7→ [C ]

sends the Whitehead torsion τ(D) of a contractible based
f.g. free Σ−1A-module chain complex D to the projective class
[C ] of any f.g. projective A-module chain complex C such
that Σ−1C ' D.



26

Stable flatness

I A universal localization Σ−1A is stably flat if

TorAi (Σ−1A,Σ−1A) = 0 (i > 2) .

I For stably flat Σ−1A have stable exactness:

H∗(Σ−1C ) = lim−→
B

Σ−1H∗(B)

with maps C → B such that Σ−1C ' Σ−1B.

I Flat =⇒ stably flat. If Σ−1A is flat (i.e. an Ore localization)
then

TorAi (Σ−1A,M) = 0 (i > 1)

for every A-module M. The special case
M = Σ−1A gives that Σ−1A is stably flat.
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A localization which is not stably flat

I Given a ring extension R ⊂ S and an S-module M let
K (M) = ker(S ⊗R M → M).

I Theorem (Neeman, R. and Schofield)
(i) The universal localization of the ring

A =

R 0 0
S R 0
S S R

 = P1 ⊕ P2 ⊕ P3 (columns)

inverting Σ = {P3 ⊂ P2,P2 ⊂ P1} is Σ−1A = M3(S).
(ii) If S is a flat R-module then

TorAn−1(Σ−1A,Σ−1A) = Mn(Kn(S)) (n > 3).

(iii) If R is a field and dimR(S) = d then

Kn(S) = K (K (. . .K (S) . . . )) = R(d−1)nd .

If d > 2, e.g. S = R[x ]/(xd), then Σ−1A is not stably flat.
(e-print RA.0205034, Math. Proc. Camb. Phil. Soc. 2004).
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Localization in algebraic K -theory II.

I Theorem (Neeman + R., 2001) If A→ Σ−1A is injective and
stably flat then :

I ’fibration sequence of exact categories’

T (A,Σ)→ P(A)→ P(Σ−1A)

with P(A) the category of f.g. projective A-modules, and every
finite f.g. free Σ−1A-module chain complex can be lifted,

I there are exact localization sequences

· · · → Kn(A)→ Kn(Σ−1A)→ Kn−1(T (A,Σ))→ Kn−1(A)→ . . .

I e-print RA.0109118, Geometry and Topology (2004)
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The standard example ` : tµ Sn ⊂ Sn+2 I.

I The exterior of an n-dimensional boundary link ` is an
(n + 2)-dimensional manifold with boundary

(X , ∂X ) = (cl.(Sn+2\((`(t
µ

Sn)× D2)), Sn × S1)

with X ⊂ Sn+2\Sn a deformation retract of the complement.
I (Cappell-Shaneson 1980) There is a homology equivalence

(f , ∂f ) : (X , ∂X )→ (X0, ∂X0)

with (X0, ∂X0) the exterior of the trivial boundary link `0

X0 = #
µ

(S1 × Dn+1) ' ∨µS1 ∨ ∨µ−1S
n+1

π1(X0) = Fµ, and ∂f a homeomorphism.
I The universal Fµ-cover X̃0 of X0 and the pullback cover

X̃ = f ∗X̃0 are such that f lifts to an Fµ-equivariant map

f̃ : X̃ → X̃0 with C (f̃ ) a Z-contractible f.g. free Z[Fµ]-module
chain complex.
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The standard example ` : tµ Sn ⊂ Sn+2 II.

I The Blanchfield universal localization Σ−1A of A = Z[Fµ]
inverts the set Σ of all Z-invertible square matrices in A.

I (Sontag-Dicks 1978, Farber-Vogel 1986) Σ−1A is stably flat.
I (R.-Sheiham 2003-) The algebraic mapping cone C = C(f̃ ) is

a finite f.g. free A-module chain complex such that
H∗(Σ−1C ) = 0, giving an isotopy invariant

τ [C ] = 1/∆(`)

∈ K1(φ) = coker(φ∗ : K1(A)→ K1(S−1A)) ⊆ K0(T (A,Σ))

with ∆(`) ∈ Σ the Alexander matrix of `. Isotopy invariant:
mild generalization of the noncommutative Alexander
polynomials of Farber (1986) and Garoufalidis-Kricker (2003).

I (R.-S.) Blanchfield and Seifert algebra in
high-dimensional boundary link theory I. Algebraic
K -theory, e-print AT.0508405, Geometry and Topology
(2006)
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Algebraic L-theory

I Let A be an associative ring with 1, and with an involution
A→ A; a 7→ ā used to identify

left A-modules = right A-modules .

I Example A group ring A = Z[π] with ḡ = g−1 for g ∈ π.

I The algebraic L-group Ln(A) is the abelian group of
cobordism classes (C , ψ) of n-dimensional f.g. projective
A-module chain complexes C with an n-dimensional quadratic
Poincaré duality

ψ : Hn−∗(C ) ∼= H∗(C ) .

I These are the Wall (1970) surgery obstruction groups L∗(A),
originally defined using quadratic forms and their
automorphisms.
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Localization in algebraic L-theory

I Theorem (R. 1980 for Ore, Vogel 1982 in general) For any
injective universal localization A→ Σ−1A of a ring with
involution A there is an exact sequence of algebraic L-groups

· · · → Ln(A)→ Ln(Σ−1A)→ Ln(A,Σ)→ Ln−1(A)→ . . .

with Ln(A,Σ) the cobordism group of Σ−1A-contractible
(n − 1)-dimensional quadratic Poincaré complexes (C , ψ) over
A.

I Corollary (Duval 1984 + R. 2008) For n > 2 the cobordism
class of a boundary link ` : t

µ
Sn ⊂ Sn+2 is the cobordism

class of the Z-contractible (n + 2)-dimensional quadratic
Poincaré complex (C(f̃ ), ψ) over Z[Fµ]

` = (C(f̃ ), ψ) ∈ Cn(Fµ) = Ln+3(Z[Fµ],Σ)

with f : X → X0 the homology equivalence between the
exteriors of ` and `0.


