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Noncommutative localization

Localizations of noncommutative rings such as group rings
Z|r] are rings with complicated properties in algebra and
interesting applications to topology.

The applications are to spaces X with infinite fundamental
group m1(X), e.g. amalgamated free products and HNN
extensions, such as occur when X is a knot or link
complement.

The surgery classification of high-dimensional manifolds and
Poincaré complexes, finite domination, fibre bundles over S!,
open books, circle-valued Morse theory, Morse theory of
closed 1-forms, rational Novikov homology, codimension 1 and
2 splitting, homology surgery, knots and links.
High-dimensional knot theory, Springer (1998)

Survey: e-print AT.0303046 in Noncommutative
localization in algebra and topology, LMS Lecture Notes
330, Cambridge University Press (2006)



The cobordism/concordance groups of boundary links

An n-dimensional py-component boundary link is a link
¢ LuS"c §m2
"

such that there exists a y-component Seifert surface

Mt = Iﬁl M; C S™2 with OM = ((L] S) C S™*2.
Boundary condition equivalent to the existence of a surjection
m1(S"T2\¢(U,, S™)) — F,, sending the u meridians to u
generators of the free group F, of rank p.

Let C,(F.) be the cobordism group of n-dimensional
p-component boundary links.

A 1-component boundary link is a knot k : S” C $"*2 and
Cn(F1) = G, is the knot cobordism group.

Problem Compute C,(F,) !



A 2-component boundary link ¢: S111S! ¢ S3




Brief history of the knot cobordism groups C,

» (Fox-Milnor 1957) Definition of C;.
> (Kervaire 1966) Definition of C, for * > 1 and

G. = 0.

> (Levine 1969) C. = Ci44 for x > 1. Computation of Cp.41 for
% > 0, using Seifert forms over Z, S™7Z = Q and signatures

Cowy1 = @Z@@Zz@@z4 :

» (Kearton 1975) Expression of Cp.41 for * > 0, using a
commutative localization S~!Z[z, z71] and
S71Z[z,z7]/Z|z, z7]-valued Blanchfield forms.

» (Casson-Gordon 1976) ker(C; — Cs) # 0 using commutative
localization.

» (Cochran-Orr-Teichner 2003) Near-computation of Cj, using
noncommutative Ore localization of group rings and
L%-signatures.
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Brief history of the boundary link cobordism groups C.(F,)

> (Cappell-Shaneson 1980) Geometric expression of C.(F,) for
x > 1 as relative [-groups, and

Cou(F) = 0.

> (Duval 1984) Algebraic expression of Co.11(F,) for x >0,
using a noncommutative localization ¥~'Z[F,] and
¥ ~1Z[F,]/Z[F,]-valued Blanchfield forms.
> (Ko 1989) Algebraic expression of Co.11(F,) for * > 0, using
Seifert forms over Z[F,].
> (Sheiham 2003) Computation of Co.41(F,) for x > 0, using
noncommutative signatures

Couta(F, @Z@@%@@@@@Zg

» Wishful thinking Compute Cy(F,) for ;x> 1 using
noncommutative localization.



Alexander duality in H, and H* but not in 7

Want to investigate knotting properties of submanifolds

N™ C M™, especially in codimension m — n = 2, using the
complement P = M\N.

Alexander duality for H,, H*. The homology and
cohomology of M, N, P are related by Z-module isomorphisms

H*(M,P) 2 Hm_.(N), Hi(M,P) = H™*(N).

Failure of Alexander duality for 7;. The group morphisms
m1(P) — 71(M) induced by P C M are isomorphisms for
n— m > 3, but not in general for n— m=1 or 2.

The Z[m1(P)]-module homology H, (P) of the universal cover

P depends on the knotting of N C M, whereas the Z-module
homology H.(P) does not.



Change of rings

» For a ring A let Mod(A) be the category of left A-modules.

» Given a ring morphism ¢ : A — B regard B as a
(B, A)-bimodule by

BxBxA— B; (b,x,a)— bx.¢(a) .
Use this to define the change of rings a functor
¢ = B®a— : Mod(A) — Mod(B) ; M— B®a M .

» An A-module chain complex C is B-contractible if the
B-module chain complex B ®4 C is contractible.



Knotting and unknotting

» Slogan The fundamental group m; detects knotting for
n— m =1 or 2, whereas Z-coefficient homology and
cohomology do not.

» The applications of algebraic K- and L-theory to knots and
links use the chain complexes of the universal covers of the
complements. They involve the algebraic K- and L-theory of
B-contractible A-module chain complexes for augmentations

o =€¢: A=1Zml—-B =7, angHZg.

gemy gemy

> In favourable circumstances (e.g. m1 = F,) there exists a
‘stably flat noncommutative localization’ A < ¥ 1A such
that an A-module chain complex C is B-contractible if and
only if C is ¥~ 1A-contractible. The algebraic K- and L-theory
of such C can be then described entirely in terms of A.
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Algebraic K-theory .
» Let A be an associative ring with 1.
» The projective class group Ky(A) is the abelian group with

one generator [P] for each isomorphism class of f.g. projective
A-modules P, and relations

[Po Q] = [P]+[Q] € Ko(A) .

> A finite f.g. projective A-module chain complex C has a chain
homotopy invariant projective class

[€] = Z( '[G] € Ko(A) -

» Example Ky(Z) = Z. The projective class of a finite f.g. free
A-module chain complex is just the Euler characteristic the
projective class

[C] = x Z( idima(G) € im(Ko(Z) — Ko(A)) .
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Algebraic K-theory Il.

The Whitehead group Ki(A) is the abelian group with one
generator 7(f) for each automorphism f : P — P of a f.g.
projective A-module P, and relations

r(faf) = 7(f)+7(f), m(gfg™t) = 7(f) € Ki(A) .

The Whitehead torsion of a contractible finite based f.g.
free A-module chain complex C is

T(C) = T(d +I: Codcl - Ceven) S Kl(A)
with T : 0~ 1: C — C any chain contraction

dfr+Ird =1: ¢ —-C, .

Can generalize Ky(A), Ki(A) to K (A) for all x € Z.
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Change of rings in algebraic K-theory

» A ring morphism ¢ : A — B induces an exact sequence of
algebraic K-groups

- — Ka(A) ﬂ) Kn(B) — Kn(¢) — Kn—1(A) — ...

» A B-contractible finite f.g. free A-module chain complex C
with x(C) = 0 € Z has a Reidemeister torsion

7[C] € ker(Ki(¢) — Ko(A))

= im(K1(B) — Ki(¢))
coker(¢s : K1(A) — Ki(B))

given by 7(B ®4 C) € Ki(B) for any choice of bases for C.
» (Milnor 1966) Whitehead torsion interpretation of the

Reidemeister torsion of a knot using the augmentation
¢:A=17Z[z,z7'] — B = F* for any field F.
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Commutative localization

The localization of a commutative ring A inverting a
multiplicatively closed subset S C A of non-zero divisors with
1 € S is the ring S~1A of fractions a/s (a € A,s € S), where

a/s = b/tifand only if at = bs .
Usual addition and multiplication

a/s+ b/t = (at+ bs)/(st), (a/s)(b/t) = (as)/(bt)

and canonical embedding A — S71A;a s a/1.
For an integral domain A and S = A— {0}

S7'A = quotient field(A) .

Example If A= Z then S7!A = Q.
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The standard example k : S” C S"+2 I.

The exterior of an n-dimensional knot k is an
(n + 2)-dimensional manifold with boundary

(X,0X) = (cl.(S"2\(k(S") x D?)),5" x S1)

with X C $"*2\S" a deformation retract of the complement.
The generator 1 € H*(X) = Z is realized by a homology
equivalence (f,0f) : (X,0X) — (Xo, 0Xp) with (Xo, 9Xo) the
exterior of the trivial knot

ko : S"CS™? = S"x D*uD" x S
with Xo = D" x S1 ~ Sl and Of a homeomorphism.
Theorem (Dehn+P. for n = 1, Kervaire+Levine for n > 2)
k is unknotted if and only if f is a homotopy equivalence.
The circle S! has universal cover S! = R, with m1(St) =7,
Z[r1(SY)] = Z[z,z7]. The homology equivalence
f 1 X — S! lifts to a Z-equivariant map f : X — R with

X = f*R the pullback infinite cyclic cover of X.
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The standard example k : S” C S"+2 Il.
The Blanchfield localization S™1A of A = Z[z, z7!] inverts
S=¢1(1) C A with € : A— Z; z — 1 the augmentation.

The cellular A-module chain map f : C(X) — C(R) induces a
chain equivalence

f=1®Ff:Z®sC(X)=C(X) = Z®aC(R)= C(Sh).

The algebraic mapping cone C = C(f) is a finite f.g. free
A-module chain complex such that
H(Z®aC) = 0, ST*H,(C) = 0, x(C) = 0.
The Reidemeister torsion is an isotopy invariant
T[C] = (1-¢(2))/Ak)
€ Ki(¢) = coker(¢, : K1(A) — K1(S7tA)) = (S71A)*/A°

with A(k) € S the Alexander polynomial of k.
The localization ¢ : A < S!A first used by Blanchfield

(1957) in the study of the duality properties of H,(X).



v
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The noncommutative Ore localization
(Ore 1931) The Ore localization S~1A is defined for a
multiplicatively closed subset S C A with 1 € S, and such that
forallac€ A, s € S thereexist be A, t € S with ta = bs € A.

E.g. central, sa=as forallac A, s € S.
The Ore localization is the ring of fractions

STIA = (Sx A)/~
with (s,a) ~ (t, b) if and only if there exist u, v € A with
us = vteS, ua = vbeA.
An element of ST1A is a noncommutative fraction
-1

s 'a = equivalence class of (s,a) € ST*A

with addition and multiplication more or less as usual.
Example A commutative localization is an Ore localization.
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Ore localization is flat
The Ore localization S™1A is a flat A-module, i.e. the functor
S71 : Mod(A) = Mod(S7A); M— S IM=S"1Ax M

is exact.
For any A-module M

Tord(STTAM) =0 (i=1).
For any A-module chain complex C
H.(S7'C) = S7'H.(C).

Proposition For any finite f.g. free S™'A-module chain
complex D there exists a finite f.g. free A-module chain
complex C with an S™1A-module isomorphism S~1C = D.

Proof Clear denominators!
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Universal localization I.

Given a ring A and a set X of elements, matrices, morphisms,

., it is possible to construct a new ring ¥ LA, the

localization of A inverting all the elements in X.

In general, A and Y 1A are noncommutative, and A — ¥ 1A
is not injective.

Original algebraic motivation: construction of
noncommutative analogues of the quotient field

of an integral domain.

Topological applications to knots and links use the algebraic
K- and L-theory of A and Y LA, in two separate situations:

» Given a ring morphism ¢ : A — B there exists a factorization
¢:A— L 1A — B such that a free A-module chain complex
C is B-contractible if and only if C is ¥ ! A-contractible.

» If a ring R is an amalgamated free product or an HNN
extension then for k = 2 or 3 the matrix ring My(R) is Z71A
for a triangular matrix ring A C Mk(R) : gives all known
decomposition theorems for K. (R) and L.(R).



v
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Universal localization II.

A = ring, ¥ = a set of morphisms s : P — @ of f.g. projective
A-modules.

A ring morphism A — B is X-inverting if each

1®s:BRaP — B®aQ (s € X)isa B-module isomorphism.
(P.M. Cohn 1970) The universal localization ¥ ~'A is a ring
with a Y-inverting morphism A — ¥ 1A such that any

Y -inverting morphism A — B has a unique factorization

A— Y 1A= B.

The universal localization ¥ ~1A exists (and it is unique); but
it couldbe0—egif0eX.

In general, ¥~1A is not a flat A-module. ¥ ~!A is a flat
A-module if and only if Z71A is an Ore localization (Beachy,
Teichner, 2003).
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The normal form I.

» (Gerasimov, Malcolmson 1981) Assume X consists of all the
morphisms s : P — @ of f.g. projective A-modules such that
1®s: X 'P—¥71Qis a XL A-module isomorphism.

(Can enlarge any ¥ to have this property). Every element
x € ¥ 1A 'is of the form x = fs~1g for some

(s:P—-Q)eX,f:P—-A,g:A—=Q.

> For f.g. projective A-modules M, N every ¥ 1 A-module
morphism x : ¥ 'M — ¥71N is of the form x = fs~1g for
some(s:P—-Q)eX, f:P—-N,g:M—Q

M—E% —p s o f .

» Addition by
folg+f's g = (fFaf)sos) Hewg): T M- IN

Similarly for composition.
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The normal form Il.

» For f.g. projective M, N, a ¥~ A-module morphism
fslg : ¥ 'M — ¥ "IN is such that fs~!g = 0 if and only if
there is a commutative diagram of A-module morphisms

s 0 0 ¢

0 ss 0 O

0 0 s &

f i 0 O
PP P M QeQdQaeN
(P p1 p2 m) (q a1 g2 ")T

. T
with s,s1,%,(p p1 p2),(¢9 @1 q2) €X.
(Exercise: diagram = fs~1g = 0).
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Localization in algebraic K-theory I.

> Assume each (s: P — Q) € X is injective and A — ¥ 1A is
injective. The torsion exact category T(A, X) has objects
A-modules T with =71 T = 0, hom.dim.(T) = 1.
E.g., T = coker(s) for s € X.

» Theorem (Bass 1968 for central, Schofield 1985 for universal
> 1A). Exact sequence

Ki(A) = Ki(ZTA) —2> Ko(T(A X)) — Ko(A) — Ko(Z71A)
with

A(r(fslg : T7IM — T7IN))

= [coker( <Z 2) POM — N& Q)] — [coker(s: P — Q)]

» Theorem (Quillen 1972, Grayson 1980) Higher K-theory
localization exact sequence for Ore localization ¥ 1A, by
flatness.
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Universal localization is not flat

» In general, if M is an A-module and C is an A-module chain
complex

Tord(Z YA M) #£0, H(Z71C) # X H.(C) .

True for Ore localization ¥ 1A, by flatness.
» Example The universal localization ¥ 1A of the free product

A = Zixi,x2) = Z[x1] * Z[x2]

inverting ¥ = {x;} is not flat. The 1-dimensional f.g. free
A-module chain complex

de = (xix) : GG = ADA—- G = A
is a resolution of Ho(C) = Z and
Hi(Z71C) = Torf (T A, Ho(C))
= Y1A #£ T H(C) = 0.



v
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Chain complex lifting I.

A lift of a f.g. free Y1 A-module chain complex D is a

f.g. projective A-module chain complex C with a chain
equivalence ¥ "1C ~ D.

For an Ore localization ¥~ A one can lift every n-dimensional
f.g. free Y1 A-module chain complex D, for any n > 0.

For a universal localization ¥ 1A one can only lift for n < 2 in
general.

Proposition (Neeman+R., 2001) For n > 3 there are lifting
obstructions in Tor (XA, X ~1A) for i > 2.

Torf(Z71A, X7 1A) = 0 always.
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Chain complex lifting II.

» Example The boundary map in the Schofield exact sequence
for an injective universal localization A — ¥ 1A

9 Ki(Z'A) = Ko(T(A, X)) ; 7(D) — [C]

sends the Whitehead torsion 7(D) of a contractible based

f.g. free Y"1 A-module chain complex D to the projective class
[C] of any f.g. projective A-module chain complex C such
that T°1C ~ D.
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Stable flatness

> A universal localization XA is stably flat if
Tord(Z7IAXIA) =0 (i>2).
> For stably flat 1A have stable exactness:

H.(Z7'C) = lim ¥ 'H.(B)
B
with maps C — B such that ¥ 1C ~ ¥ 1B.

> Flat = stably flat. If ¥~1A is flat (i.e. an Ore localization)
then
Tord(T1AM) =0 (i>1)

for every A-module M. The special case
M = Y ~1A gives that ¥1A is stably flat.
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A localization which is not stably flat

» Given a ring extension R C S and an S-module M let
K(M) = ker(S ®r M — M).

» Theorem (Neeman, R. and Schofield)
(i) The universal localization of the ring

R 0 O
A= S R 0| = P1®P,® P;(columns)
S SR

inverting ¥ = {P3 C P2, P, C P} is 1A= M3(S).
(i) If S is a flat R-module then

Tord ((Z7PA X IA) = ML(K"(S)) (n>3).
(iii) If R is a field and dimg(S) = d then
K"(S) = K(K(...K(S)...)) = Rtd-1)"d

If d >2, eg S=R[x]/(x9), then X~1A is not stably flat.
(e-print RA.0205034, Math. Proc. Camb. Phil. Soc. 2004).
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Localization in algebraic K-theory II.

» Theorem (Neeman + R., 2001) If A — 1A is injective and
stably flat then :

» 'fibration sequence of exact categories'’
T(A, L) — P(A) — P(X71A)

with P(A) the category of f.g. projective A-modules, and every
finite f.g. free ¥ 1 A-module chain complex can be lifted,
» there are exact localization sequences

= Kp(A) = Kp(Z7'A) = K, 1(T(A X)) — Koo1(A) — ...

» e-print RA.0109118, Geometry and Topology (2004)



29
The standard example ¢: 11, S" C S"™2 .

» The exterior of an n-dimensional boundary link £ is an
(n + 2)-dimensional manifold with boundary

(X,0X) = (c|.(5"+2\((e(5 S") x D?)),S" x St)

with X C S"t2\S" a deformation retract of the complement.

» (Cappell-Shaneson 1980) There is a homology equivalence
(f,0f) = (X,0X) — (Xo,0X0)
with (Xp, 0Xo) the exterior of the trivial boundary link ¢g
Xo = #(S'x D) ~v,Stvy, ;5"
o

m1(Xo) = F,, and Of a homeomorphism.
» The universal F,-cover Xy of Xy and the pullback cover

X = f*Xg are such that f lifts to an F,-equivariant map

f: X — Xo with C(f) a Z-contractible f.g. free Z[F,]-module
chain complex.
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The standard example ¢: 1, S" C S™2 1.

» The Blanchfield universal localization ~'A of A = Z[F,]
inverts the set X of all Z-invertible square matrices in A.

> (Sontag-Dicks 1978, Farber-Vogel 1986) ¥ 1A is stably flat.

> (R.-Sheiham 2003-) The algebraic mapping cone C = C(f) is
a finite f.g. free A-module chain complex such that
H.(X~1C) = 0, giving an isotopy invariant

T[C] = 1/A(¢)
€ K1(¢) = coker(¢s : K1(A) — K1(S71A)) C Ko(T(A, X))

with A(¢) € X the Alexander matrix of £. Isotopy invariant:
mild generalization of the noncommutative Alexander
polynomials of Farber (1986) and Garoufalidis-Kricker (2003).

» (R.-S.) Blanchfield and Seifert algebra in
high-dimensional boundary link theory I. Algebraic
K-theory, e-print AT.0508405, Geometry and Topology
(2006)
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Algebraic L-theory

Let A be an associative ring with 1, and with an involution
A — A;a+— 3 used to identify

left A-modules = right A-modules .

» Example A group ring A = Z[r] with g = g~ ! for g € .

» The algebraic L-group L,(A) is the abelian group of
cobordism classes (C, ) of n-dimensional f.g. projective
A-module chain complexes C with an n-dimensional quadratic
Poincaré duality

¥ 1 H™(C) = H.(C).

These are the Wall (1970) surgery obstruction groups L.(A),
originally defined using quadratic forms and their
automorphisms.
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Localization in algebraic L-theory

» Theorem (R. 1980 for Ore, Vogel 1982 in general) For any
injective universal localization A — ¥ ~1A of a ring with
involution A there is an exact sequence of algebraic L-groups

o= Ly(A) = Ly(Z7TA) = Ly(A X)) — Lypo1(A) — ...

with L,(A, X) the cobordism group of ¥ ~!A-contractible
(n — 1)-dimensional quadratic Poincaré complexes (C, ) over
A.

» Corollary (Duval 1984 + R. 2008) For n > 2 the cobordism
class of a boundary link £:US" C §™2 is the cobordism

o
class of the Z-contractible (n 4 2)-dimensional quadratic
Poincaré complex (C(f),) over Z[F,]

0= (A1) € CuF) = Luss(ZIF,).X)

with £ : X — Xp the homology equivalence between the
exteriors of £ and 4.



