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From “Cats cradle song”

Its monstrous, horrid, shocking,
Beyond the power of thinking,
Not to know, interlocking

Is no mere form of linking.

James Clerk Maxwell



Outline

e For u > 1 let F,u = <217227---7Z,u> be the
infinite free group on u generators. The
geometry of high-dimensional y-component
boundary links motivates pure algebra, for
any ring A :

— decompositions of the algebraic K- and
L-theory of A[F,] and a noncommuta-
tive localization X~1A[F,] in terms of
the algebraic K- and L-theory of A.

e Applications to boundary links for A = 7 :

— Blanchfield algebra = homological Z[F},]-
module invariants of the exteriors of u-
component boundary links.

— Seifert algebra = homological Z-module
invariants of the pu-component Seifert
surfaces of u-component boundary links.
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Boundary links

Definition A pu-component link is a locally
flat embedding

Lo ||smcsnt? .
7!

For =1 a knot S™ C S"T2.

Every u-component link £ admits a Seifert
surface, a codimension 1 submanifold
yntl - gnt+2 with boundary

oV = L([|s™) cst?.
i

Definition £ is a boundary link if there ex-
ists a u-component Seifert surface

L4
vV = || Vicstt?,
i=1

Vi, Va,...,V, C "2 disjoint and connected.
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A 2-component boundary link with a
2-component Seifert surface

J.B.



A Dbrief history of boundary links

Definition and basic properties of boundary
1-links, 1966 (Fox, Smythe)

Characterization of high-dimensional bound-
ary links, 1972 (Gutierrez)

Formulation in terms of high-dimensional
homology surgery theory, 1980, 1987 (Cappell-
Shaneson, Ko)

Isotopy classification of high-dimensional
simple boundary links, 1977 (Liang) 1992
(Farber)

Computation of high-dimensional bound-
ary link cobordism, 2003 (Sheiham)



T he exterior

e Every n-link £ :|]S™ c S"t2 has a tubular
m

neighbourhood N = c(usn) x D2 c snt2,
m

e Definition The exterior of L is the compact
(n 4+ 2)-dimensional manifold

X = cIosure(S”"‘Q\N)
with boundary

80X = ON = L£(||S™) xst.
7’

e Theorem (Smythe 1966 for n = 1,
Gutierrez 1972 for n > 2)
An n-link £ : |]S™ ¢ S*"t2 is a boundary
w

link if and only if there exists a surjection
c:m(X) — F, sending the meridians
{i} xStCc X (1<i<p)toz,20,...,2,
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The Hopf link is not a boundary link

e Let n : S3 — S! be the Hopf map. The
2-component Hopf link

Lo @ n l(x1Uxy) = STuslcs3
IS not a boundary link, with

X = T?x[0,1], m(X) = Z°.

J.B.



T he trivial link

e Definition The trivial u-component link
Lo :L]S™ ¢ S"*2 is the connected sum of
o

u copies of the trivial knot

S"C (8" x D) u (D"t x sty = gnt2

e Lemma Ly is a boundary link with yu-component
Seifert surface and exterior given by

V=||D"t, Xg=#D"tIxst ~\/stv\/ sl
p H I p—1

e Theorem (Gutierrez 1972) For every
pu-component boundary link £ : || S™ ¢ Sn12
m

there exists a degree 1 map c : X — Xp
which induces homology isomorphisms

e T Ho(X) = Ho(Xg) .

For n > 2 ¢ is a homotopy equivalence if
and only if £ is unlinked.



The Cayley tree G

e The universal cover of BF, = VSt is the

7!
Cayley tree EF;, = G, of I, with respect to
the generators {z1,2,...,2,}. One vertex

for each g € Fj,, and one edge [g,gz;] for
each pair (g,9z;) (g € Fu, 1 <i<p).

e I/F}, is a contractible space with a free Fj-
action, and fundamental domain

7 T

1 =1 =1

e For a connected space X every group mor-
phism ¢ : 71 (X) — F}, is realized by a map
c: X — BF, = VS The pullback Fj-

i
cover )
X——LEFy,

|

X —<-BFj
has fundamental domain &~ 1(H,) C X.
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The Cayley tree Gy of Fr = (21, 22)

(22)°

29(21) 71 2 2129
qsz(zl)_l 2921 ¢
(213)_2 (21)71 1 21 (Zé)Q
?(22) M (z1)7! (z2) 'z
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F,-covers (I1.)

e Proposition For any compact connected

manifold X every group morphism
c:m(X) — Fj, is realized by a map

¢c: X —BF, = \/S1
7

which is transverse regular at {1,2,...,u} C
BF,, with V; = ¢~ 1(i) C X disjoint
connected codimension 1 submanifolds.

The induced Fj-cover X = c¢*EF, of X has
a fundamental domain U = ¢ 1(H,) C X,
a manifold with boundary

L4
=1

Example If X is the exterior of a boundary
link £ : |JS™ C S"t2 then V; is a Seifert
I

surface for ith component S™ ¢ S"»t2.
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F,-covers (II.)

.%.
R
0{0 () 0+o
N
.*. . .*.

o*o

There is one translate gU of U for each vertex
g € I, of the Cayley tree G, and one translate
gV, = g(zi_lUﬂ U) of V; for each edge [g, gz].
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Algebraic transversality 1.

e Theorem For any ring A, every finite f.qg.
free A[F,]-module chain complex E has a
f.g. free A[F,]-module M-V presentation

7!
£ : 0— @ DiF)L-ClF)—E—o0

1=1
with C, D; finite f.g. free A-module chain
complexes, f = (f{"—zlfl_ fj—zﬂf;)

for A-module chain maps fj',fz._ . D; — C.

e Proof Construct £ as a subobject of the
infinitely generated free A[F,]-module M-V
presentation of E defined by the E-coefficient
simplicial chain complex of the Cayley tree

i
E(o0) o%,@lE[Fu]iE[FM]HEHo
1=
module chain maps
¢ . BE—FE;, xw— z;x .
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Algebraic transversality II.

e RemarKk The algebraic transversality theo-
rem can be proved using the Higman lin-
earization methods of Waldhausen, applied
to the Bass-Serre trees of the successive
amalgamations in

F'u — Fl*F,u,—l — Fl*(Fl*(Fl*(---*F1>)) .

e Example For manifold X with 71(X) — Fj,
define the inclusions

fz'—i_afz'— : V;—>U, L — T, CB*—>Z,L-_1.CU.

The cellular Z[F,]-module chain complex
C'(X) has the finite f.g. free Z[F,]-module
M-V presentation

0— & CONIE]L-CO)IF]—o(X)—0

1=1
with f=(ff —21f7 -« fil —2ufi)-
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Seifert and Blanchfield chain complexes

e Corollary A finite f.g. free A[F,]-module
chain complex E which is A-acyclic (i.e.
Hy(A®y[p,) £) = 0) has an M-V presenta-
tion of the type

0 - &® DiIF) - ® DilF] -E -0 (%

1=1 1=1
with D, finite fg free A-module chain
complexes, f—(f1 —21f7 - fj—zﬂf,f)

for A-module chain maps fw ,f :Dj — D;
such that fz.}'.' — fi; = 0;;-

e Example Let X be the exterior of a u-
component boundary link £, with u-component
Seifert surface V.= V3 u..-uV, The
Blanchfield finite f.g. free Z[FM] module
chain complex E = C(¢ : C(X) — C(Xp))
is Z-acyclic. E has an M-V presentation as
in (x), with D; = C(C(V;) — C(D"t1)) the
Seifert Z-module chain complexes.
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The algebraic K-theory of A[F}]

e [heorem The Bass-Quillen algebraic K-
groups of A[F}] split as

Kn(A[Fu])) = Kn(A) @ Nil,_1(A,2u)
with
Nil(A,21) = P K«(A) @ Nil(A,2u)
7!

the algebraic K-groups of the exact
category Nil(A,2u) of f.g. projective
A-modules with a 2u-component nilpotent
endomorphism (= M-V presentations of 0).

e [ he proof uses the Waldhausen K-theory
fibration theorem.

e For u =1, n =1 this is the classical Bass-
Heller-Swan splitting

K1(Alz, 27 1) = K1(A)@Ko(A)@Nilg(A)@Nilp(A)
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T he noncommutative localization
>~LA[F,]

e Let X1A[F,] be the noncommutative Cohn
localization of A[F}] inverting the set X of
A-invertible matrices.

e Universal property of A[F,] — X ~1A[F,]:
a finite f.g. free A[F,]-module chain com-
plex E is A-acyclic if and only if the finite
f.g. free =1 A[F,]-module chain complex

—1 —1
2 FE = X A[FM] ®A[FH]E

IS acyclic.

e Example For a u-component boundary link
L with exterior X the finite f.g. free Z[F},]-
module chain complex

E = C(:C(X) — C(Xp))
is Z-acyclic, and hence ~~1Z[F,]-acyclic.
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Quadratic Poincaré complexes

e (R. 1980) The Wall surgery obstruction
groups Ln,(A) of a ring with involution A
are the cobordism groups n-dimensional quadratic
Poincaré complexes C' over A, with C a f.g.
free A-module chain complex and

vs ¢+ C" = Homy(Cr, A) — Cp—r_s
A-module morphisms satisfying
dips + psd”™ + ¢5—|—1 + ¢:+1 =0 (s=0)
with
o+ 1 C"TF—C

a chain equivalence.

e Abstract Poincaré duality isomorphisms
H"™*(C) £ H.«(C) .
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Blanchfield and Seifert duality complexes

e A Blanchfield duality complex (E,v) over
A[F,] is an A-acyclic quadratic Poincaré
complex over A[F}].

e A Seifert duality complex (D,0) over A is
a quadratic Poincaré complex over A with

7!
D = & D(i), and 6 given by a chain map
i=1
Op : D" * — D, with 6, =0 for s > 1.

e Example A u-component boundary link L :

o
] S™ C Sn+2 with exterior X and pu-component
i=1

Seifert surface V.= Vi U --- UV, deter-

mines an (n 4 2)-dimensional Blanchfield
duality complex (E,v) over Z[F,] with E =
C(c:C(X) — C(Xp)), and also an (n+ 1)-

7!
dimensional Seifert duality complex ( @ C(V;),0)

1=1
over 7.
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The algebraic L-theory of
A[F,] and =~ 1A[F,]

e Theorem (Cappell, 1976 for A = Z, R.
2005 for all A)

Ln(A[Fu]) = La(A) e @ L, 1(4)
i

where I/ = [ with change of K-theory dec-
oration. For u = 1 this is the Shaneson-
Novikov-R. splitting of L,(A[z, 2~ 1]).

e Theorem (Vogel 1982, Neeman-R. 2001)
The algebraic L-groups of A[F,,] and X~ 1A[F),]
fit into the noncommutative localization
exact sequence

- — Ln(A[Fyu]) — La(Z7LA[FL))
— Ln(A[Fu],X) — Ly 1(A[FL]) — ...

with Ln(A[Fy],%X) the cobordism group of
the A-acyclic (n — 1)-dimensional Blanch-
field duality complexes over A[F}].
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The cobordism of Blanchfield and Seifert
duality complexes

e Theorem (R.+S.) For any ring with involu-
tion A the cobordism group L, 43(A[FL],X)
of (n 4+ 2)-dimensional Blanchfield duality
complexes over A[F}] is isomorphic to the
cobordism group LSei,41(A,p) of (n+1)-
dimensional Seifert duality complexes.

e Proof by algebraic transversality, mimick-
ing in algebra the construction of u-component
Seifert surfaces for boundary links.

e FOr n > 2 the cobordism class of a u-
o
component boundary link £ : [| S C §"12

1=1
with Blanchfield duality complex (£,) and

Seifert duality complex (D, #0) is
£] = (E,¢) = (D,0) €
Cn(Fu) = Lpi3(Z[Fu], ) = LSei,y1(Z,pn) .
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