BLANCHFIELD AND SEIFERT ALGEBRA FOR HIGH-DIMENSIONAL BOUNDARY LINKS

ANDREW RANICKI and DESMOND SHEIHAM[†]

http://www.maths.ed.ac.uk/~aar

13th November, 1974 - 25th March, 2005

From "Cats cradle song"

Its monstrous, horrid, shocking, Beyond the power of thinking, Not to know, interlocking Is no mere form of linking.

James Clerk Maxwell

Outline

- For $\mu\geqslant 1$ let $F_{\mu}=\langle z_1,z_2,\ldots,z_{\mu}\rangle$ be the infinite free group on μ generators. The geometry of high-dimensional μ -component boundary links motivates pure algebra, for any ring A:
 - decompositions of the algebraic K- and L-theory of $A[F_{\mu}]$ and a noncommutative localization $\Sigma^{-1}A[F_{\mu}]$ in terms of the algebraic K- and L-theory of A.
- ullet Applications to boundary links for $A=\mathbb{Z}$:
 - Blanchfield algebra = homological $\mathbb{Z}[F_{\mu}]$ module invariants of the exteriors of μ component boundary links.
 - <u>Seifert algebra</u> = homological \mathbb{Z} -module invariants of the μ -component Seifert surfaces of μ -component boundary links.

Boundary links

• Definition A μ -component link is a locally flat embedding

$$\mathcal{L} : \bigsqcup_{\mu} S^n \subset S^{n+2} .$$

For $\mu = 1$ a knot $S^n \subset S^{n+2}$.

• Every μ -component link \mathcal{L} admits a <u>Seifert surface</u>, a codimension 1 submanifold $V^{n+1} \subset S^{n+2}$ with boundary

$$\partial V = \mathcal{L}(\bigsqcup_{\mu} S^n) \subset S^{n+2}$$
.

• <u>Definition</u> \mathcal{L} is a <u>boundary link</u> if there exists a μ -component Seifert surface

$$V = \bigsqcup_{i=1}^{\mu} V_i \subset S^{n+2} ,$$

 $V_1, V_2, \dots, V_{\mu} \subset S^{n+2}$ disjoint and connected.

A 2-component boundary link with a 2-component Seifert surface

J.B.

A brief history of boundary links

- Definition and basic properties of boundary
 1-links, 1966 (Fox, Smythe)
- Characterization of high-dimensional boundary links, 1972 (Gutierrez)
- Formulation in terms of high-dimensional homology surgery theory, 1980, 1987 (Cappell-Shaneson, Ko)
- Isotopy classification of high-dimensional simple boundary links, 1977 (Liang) 1992 (Farber)
- Computation of high-dimensional boundary link cobordism, 2003 (Sheiham)

The exterior

- Every n-link $\mathcal{L}: \coprod_{\mu} S^n \subset S^{n+2}$ has a tubular neighbourhood $N = \mathcal{L} \Big(\coprod_{\mu} S^n \Big) \times D^2 \subset S^{n+2}.$
- <u>Definition</u> The <u>exterior</u> of \mathcal{L} is the compact (n+2)-dimensional manifold

$$X = \operatorname{closure}(S^{n+2} \backslash N)$$

with boundary

$$\partial X = \partial N = \mathcal{L}(\bigsqcup_{\mu} S^n) \times S^1$$
.

• Theorem (Smythe 1966 for n=1, Gutierrez 1972 for $n\geqslant 2$)
An n-link $\mathcal{L}: \coprod_{\mu} S^n \subset S^{n+2}$ is a boundary link if and only if there exists a surjection $c:\pi_1(X)\to F_\mu$ sending the meridians $\{i\}\times S^1\subset X\ (1\leqslant i\leqslant \mu)\ \text{to}\ z_1,z_2,\ldots,z_\mu.$

The Hopf link is not a boundary link

ullet Let $\eta:S^3\to S^1$ be the Hopf map. The 2-component Hopf link

$$\mathcal{L}_2 : \eta^{-1}(*_1 \cup *_2) = S^1 \sqcup S^1 \subset S^3$$

is not a boundary link, with

$$X = T^2 \times [0,1], \ \pi_1(X) = \mathbb{Z}^2.$$

J.B.

The trivial link

• Definition The trivial μ -component link $\mathcal{L}_0: \coprod_{\mu} S^n \subset S^{n+2}$ is the connected sum of μ copies of the trivial knot

$$S^n \subset (S^n \times D^2) \cup (D^{n+1} \times S^1) = S^{n+2}$$

• Lemma \mathcal{L}_0 is a boundary link with μ -component Seifert surface and exterior given by

$$V = \coprod_{\mu} D^{n+1}, \ X_0 = \#_{\mu} D^{n+1} \times S^1 \simeq \bigvee_{\mu} S^1 \vee \bigvee_{\mu-1} S^{n+1}$$

• Theorem (Gutierrez 1972) For every μ -component boundary link $\mathcal{L}: \bigsqcup_{\mu} S^n \subset S^{n+2}$ there exists a degree 1 map $c: X \to X_0$ which induces homology isomorphisms

$$c_*$$
: $H_*(X) \cong H_*(X_0)$.

For $n \geqslant 2$ c is a homotopy equivalence if and only if \mathcal{L} is unlinked.

The Cayley tree G_{μ}

- The universal cover of $BF_{\mu} = \bigvee_{\mu} S^1$ is the Cayley tree $EF_{\mu} = G_{\mu}$ of F_{μ} with respect to the generators $\{z_1, z_2, \dots, z_{\mu}\}$. One vertex for each $g \in F_{\mu}$, and one edge $[g, gz_i]$ for each pair (g, gz_i) $(g \in F_{\mu}, 1 \leqslant i \leqslant \mu)$.
- EF_{μ} is a contractible space with a free F_{μ} -action, and fundamental domain

$$H_{\mu} = \bigcup_{i=1}^{\mu} [1, z_i] \cup \bigcup_{i=1}^{\mu} [z_i^{-1}, 1] \subset EF_{\mu}.$$

• For a connected space X every group morphism $c:\pi_1(X)\to F_\mu$ is realized by a map $c:X\to BF_\mu=\bigvee_\mu S^1$. The pullback F_μ -cover

$$\widetilde{X} \xrightarrow{\widetilde{c}} EF_{\mu} \\
\downarrow \qquad \qquad \downarrow \\
X \xrightarrow{c} BF_{\mu}$$

has fundamental domain $\tilde{c}^{-1}(H_{\mu}) \subset \widetilde{X}$.

The Cayley tree G_2 of $F_2 = \langle z_1, z_2 \rangle$

F_{μ} -covers (I.)

• Proposition For any compact connected manifold X every group morphism $c: \pi_1(X) \to F_\mu$ is realized by a map

$$c: X \to BF_{\mu} = \bigvee_{\mu} S^1$$

which is transverse regular at $\{1, 2, ..., \mu\} \subset BF_{\mu}$, with $V_i = c^{-1}(i) \subset X$ disjoint connected codimension 1 submanifolds.

• The induced F_{μ} -cover $\widetilde{X}=c^*EF_{\mu}$ of X has a fundamental domain $U=\widetilde{c}^{-1}(H_{\mu})\subset\widetilde{X}$, a manifold with boundary

$$\partial U = \bigsqcup_{i=1}^{\mu} (V_i \sqcup z_i V_i) .$$

• Example If X is the exterior of a boundary link $\mathcal{L}: \bigsqcup_{\mu} S^n \subset S^{n+2}$ then V_i is a Seifert surface for ith component $S^n \subset S^{n+2}$.

F_{μ} -covers (II.)

There is one translate gU of U for each vertex $g \in F_{\mu}$ of the Cayley tree G_{μ} , and one translate $gV_i = g(z_i^{-1}U \cap U)$ of V_i for each edge $[g, gz_i]$.

Algebraic transversality I.

• Theorem For any ring A, every finite f.g. free $A[F_{\mu}]$ -module chain complex E has a f.g. free $A[F_{\mu}]$ -module M-V presentation

$$\mathcal{E}: 0 \longrightarrow \bigoplus_{i=1}^{\mu} D_i[F_{\mu}] \xrightarrow{f} C[F_{\mu}] \longrightarrow E \longrightarrow 0$$

with C, D_i finite f.g. free A-module chain complexes, $f = (f_1^+ - z_1 f_1^- \dots f_\mu^+ - z_\mu f_\mu^-)$ for A-module chain maps $f_i^+, f_i^- : D_i \to C$.

ullet Proof Construct ${\mathcal E}$ as a subobject of the infinitely generated free $A[F_{\mu}]$ -module M-V presentation of E defined by the E-coefficient simplicial chain complex of the Cayley tree

$$\mathcal{E}\langle\infty\rangle$$
: $0\longrightarrow\bigoplus_{i=1}^{\mu}E[F_{\mu}]\xrightarrow{\partial}E[F_{\mu}]\longrightarrow E\longrightarrow 0$

with $\partial = (\zeta_1 - z_1 \ldots \zeta_{\mu} - z_{\mu})$ for the A-module chain maps

$$\zeta_i : E \to E ; x \mapsto z_i x$$
.

Algebraic transversality II.

 Remark The algebraic transversality theorem can be proved using the Higman linearization methods of Waldhausen, applied to the Bass-Serre trees of the successive amalgamations in

$$F_{\mu} = F_1 * F_{\mu-1} = F_1 * (F_1 * (F_1 * (\cdots * F_1)))$$
.

• Example For manifold X with $\pi_1(X) \to F_{\mu}$ define the inclusions

$$f_i^+, f_i^- : V_i \to U ; x \mapsto x, x \mapsto z_i^{-1}x$$
.

The cellular $\mathbb{Z}[F_{\mu}]$ -module chain complex $C(\widetilde{X})$ has the finite f.g. free $\mathbb{Z}[F_{\mu}]$ -module M-V presentation

$$0 \longrightarrow \bigoplus_{i=1}^{\mu} C(V_i)[F_{\mu}] \xrightarrow{f} C(U)[F_{\mu}] \longrightarrow C(\widetilde{X}) \longrightarrow 0$$

with
$$f = (f_1^+ - z_1 f_1^- \dots f_\mu^+ - z_\mu f_\mu^-).$$

Seifert and Blanchfield chain complexes

• Corollary A finite f.g. free $A[F_{\mu}]$ -module chain complex E which is A-acyclic (i.e. $H_*(A \otimes_{A[F_{\mu}]} E) = 0$) has an M-V presentation of the type

$$0 \longrightarrow \bigoplus_{i=1}^{\mu} D_i[F_{\mu}] \xrightarrow{f} \bigoplus_{i=1}^{\mu} D_i[F_{\mu}] \longrightarrow E \longrightarrow 0 \quad (*)$$

with D_i finite f.g. free A-module chain complexes, $f=(f_1^+-z_1f_1^-\dots f_\mu^+-z_\mu f_\mu^-)$ for A-module chain maps $f_{ij}^+, f_{ij}^-:D_j\to D_i$ such that $f_{ij}^+-f_{ij}^-=\delta_{ij}$.

• Example Let X be the exterior of a μ -component boundary link \mathcal{L} , with μ -component Seifert surface $V = V_1 \sqcup \cdots \sqcup V_{\mu}$. The Blanchfield finite f.g. free $\mathbb{Z}[F_{\mu}]$ -module chain complex $E = \mathcal{C}(\widetilde{c}: C(\widetilde{X}) \to C(\widetilde{X}_0))$ is \mathbb{Z} -acyclic. E has an M-V presentation as in (*), with $D_i = \mathcal{C}(C(V_i) \to C(D^{n+1}))$ the Seifert \mathbb{Z} -module chain complexes.

The algebraic K-theory of $A[F_{\mu}]$

• Theorem The Bass-Quillen algebraic K-groups of $A[F_{\mu}]$ split as

$$K_n(A[F_\mu]) = K_n(A) \oplus \mathsf{Nil}_{n-1}(A,2\mu)$$
 with

$$\operatorname{Nil}_*(A,2\mu) = \bigoplus_{\mu} K_*(A) \oplus \widetilde{\operatorname{Nil}}_*(A,2\mu)$$

the algebraic K-groups of the exact category NiI $(A, 2\mu)$ of f.g. projective A-modules with a 2μ -component nilpotent endomorphism (= M-V presentations of 0).

- ullet The proof uses the Waldhausen K-theory fibration theorem.
- \bullet For $\mu=$ 1, n= 1 this is the classical Bass-Heller-Swan splitting

$$K_1(A[z,z^{-1}]) = K_1(A) \oplus K_0(A) \oplus \widetilde{\mathsf{Nil}}_0(A) \oplus \widetilde{\mathsf{Nil}}_0(A)$$

The noncommutative localization $\Sigma^{-1}A[F_{\mu}]$

- Let $\Sigma^{-1}A[F_{\mu}]$ be the noncommutative Cohn localization of $A[F_{\mu}]$ inverting the set Σ of A-invertible matrices.
- Universal property of $A[F_{\mu}] \to \Sigma^{-1}A[F_{\mu}]$: a finite f.g. free $A[F_{\mu}]$ -module chain complex E is A-acyclic if and only if the finite f.g. free $\Sigma^{-1}A[F_{\mu}]$ -module chain complex

$$\Sigma^{-1}E = \Sigma^{-1}A[F_{\mu}] \otimes_{A[F_{\mu}]} E$$

is acyclic.

• Example For a μ -component boundary link $\mathcal L$ with exterior X the finite f.g. free $\mathbb Z[F_\mu]$ -module chain complex

$$E = \mathcal{C}(\widetilde{c}: C(\widetilde{X}) \to C(\widetilde{X}_0))$$

is \mathbb{Z} -acyclic, and hence $\Sigma^{-1}\mathbb{Z}[F_{\mu}]$ -acyclic.

Quadratic Poincaré complexes

• (R. 1980) The Wall surgery obstruction groups $L_n(A)$ of a ring with involution A are the cobordism groups n-dimensional quadratic Poincaré complexes C over A, with C a f.g. free A-module chain complex and

$$\psi_s : C^r = \operatorname{Hom}_A(C_r, A) \to C_{n-r-s}$$

A-module morphisms satisfying

$$d\psi_s + \psi_s d^* + \psi_{s+1} + \psi_{s+1}^* = 0 \quad (s \geqslant 0)$$
 with

$$\psi_0 + \psi_0^* : C^{n-*} \to C$$

a chain equivalence.

• Abstract Poincaré duality isomorphisms

$$H^{n-*}(C) \cong H_*(C)$$
.

Blanchfield and Seifert duality complexes

- A Blanchfield duality complex (E, ψ) over $A[F_{\mu}]$ is an A-acyclic quadratic Poincaré complex over $A[F_{\mu}]$.
- A <u>Seifert duality complex</u> (D, θ) over A is a quadratic Poincaré complex over A with $D = \bigoplus_{i=1}^{\mu} D(i)$, and θ given by a chain map $\theta_0: D^{n-*} \to D$, with $\theta_s = 0$ for $s \geqslant 1$.

The algebraic *L*-theory of $A[F_{\mu}]$ and $\Sigma^{-1}A[F_{\mu}]$

• Theorem (Cappell, 1976 for $A = \mathbb{Z}$, R. 2005 for all A)

$$L_n(A[F_\mu]) = L_n(A) \oplus \bigoplus_{\mu} L'_{n-1}(A)$$

where L' = L with change of K-theory decoration. For $\mu = 1$ this is the Shaneson-Novikov-R. splitting of $L_n(A[z,z^{-1}])$.

• Theorem (Vogel 1982, Neeman-R. 2001) The algebraic L-groups of $A[F_{\mu}]$ and $\Sigma^{-1}A[F_{\mu}]$ fit into the noncommutative localization exact sequence

$$\cdots \to L_n(A[F_{\mu}]) \to L_n(\Sigma^{-1}A[F_{\mu}])$$
$$\to L_n(A[F_{\mu}], \Sigma) \to L_{n-1}(A[F_{\mu}]) \to \cdots$$

with $L_n(A[F_{\mu}], \Sigma)$ the cobordism group of the A-acyclic (n-1)-dimensional Blanchfield duality complexes over $A[F_{\mu}]$.

The cobordism of Blanchfield and Seifert duality complexes

- Theorem (R.+S.) For any ring with involution A the cobordism group $L_{n+3}(A[F_{\mu}], \Sigma)$ of (n+2)-dimensional Blanchfield duality complexes over $A[F_{\mu}]$ is isomorphic to the cobordism group $L\mathrm{Sei}_{n+1}(A,\mu)$ of (n+1)-dimensional Seifert duality complexes.
- Proof by algebraic transversality, mimicking in algebra the construction of μ -component Seifert surfaces for boundary links.
- For $n\geqslant 2$ the cobordism class of a μ -component boundary link $\mathcal{L}: \bigsqcup_{i=1}^{\mu} S^n \subset S^{n+2}$ with Blanchfield duality complex (E,ψ) and Seifert duality complex (D,θ) is

$$[\mathcal{L}] = (E, \psi) = (D, \theta) \in$$

 $C_n(F_\mu) = L_{n+3}(\mathbb{Z}[F_\mu], \Sigma) = L \operatorname{Sei}_{n+1}(\mathbb{Z}, \mu) .$