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The 1-dimensional Lagrangians

Definition (i) Let R2 have the symplectic form
[,]: RZxR> >R ((x1, 1), (x2,2)) = x1y2 — x2)1 -
(ii) A subspace L C R? is Lagrangian of (R?,[, ]) if
L =1t = {xeR?|[x,y]=0forally e L}.

Proposition A subspace L C R? is a Lagrangian of (R2[, ]) if and
only if L is 1-dimensional,

Definition (i) The 1-dimensional Lagrangian Grassmannian A(1) is
the space of Lagrangians L C (R?,[, ]), i.e. the Grassmannian of
1-dimensional subspaces L C R2.

(ii) For 6 € R let

L(B) = {(rcosb,rsinf)|re R} € A(1)

be the Lagrangian with gradient tan 6.



The topology of A(1)

» Proposition The square function
det? : A(1) — S; L(0) — &2
and the square root function
w: ST A1) = RP; €20 L(0)
are inverse diffeomorphisms, and
mA(1) = m(SY) = 7.
» Proof Every Lagrangian L in (R?,[, ]) is of the type L(#), and
L(O) = L(¢')ifand only if & — 0 = km for some k € Z .

Thus there is a unique 0 € [0, 7) such that L = L(6). The loop
w : ST — A(1) represents the generator

w=1lem(A1) = Z.



The Maslov index of a 1-dimensional Lagrangian

Definition The Maslov index of a Lagrangian L = L(6) in (R%,[, ]) is

1—% fo<O<m
T
0 if0=0

(L) =

The Maslov index for Lagrangians in @(R?,[ , ]) is reduced to the

n
special case n = 1 by the diagonalization of unitary matrices.

The formula for 7(L) has featured in many guises besides the Maslov
index (e.g. as assorted 7-, -, p-invariants and an L2-signature) in the
papers of Arnold (1967), Neumann (1978), Atiyah (1987), Cappell, Lee
and Miller (1994), Bunke (1995), Nemethi (1995), Cochran, Orr and
Teichner (2003), ...

See http://www.maths.ed.ac.uk/"aar/maslov.htm for detailed
references.
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The Maslov index of a pair of 1-dimensional Lagrangians

» Note The function 7 : A(1) — R is not continuous.
1
> Examples 7(L(0)) = T(L(g)) =0, T(L(%)) = 5 € Ruith
s s
L(0) = R®O0, L(E) = 08R, L(Z) = {(x,x)|x € R} .
» Definition The Maslov index of a pair of Lagrangians
(L1, L2) = (L(61), L(62)) in (R%,[, ]) is

L 202 01)
T(Ll,Lg) = —T(LQ,I_l) = T
0 if 61 = 6.

fo<bi<br<m

» Examples 7(L) =7(R&0,L), 7(L,L) = 0.



The Maslov index of a triple of 1-dimensional Lagrangians

» Definition The Maslov index of a triple of Lagrangians

in (R2[, ])is

7(L1, Ly, L3)

(L1, L2, L3) = (L(61), L(62),L(63))

= T(Ll, L2) +T(L2, L3) +T(L3, Ll) € {—1,0, 1} CR.

» Example If 0 < 61 < 03 < 03 <« then 7(L1, Lo, L3) =1 € Z.

» Example The Wall computation of the signature of CP? is given in
terms of the Maslov index as

o(CP?)

7(L(0), L(7/4), L(7/2))

7(L(0), L(m/4)) + 7(L(w/4), L(x/2)) + 7(L(7/2), L(0))

1 1
- +-+0=1€ZCR.
2+2+ €L C



The Maslov index and the degree |.

» A pair of 1-dimensional Lagrangians (L1, L2) = (L(61), L(62))
determines a path in A(1) from L; to L

w I — /\(1) ot L((l — t)@l + t92) .

» For any L = L(0) € A(1)\{L1, Lo}
(wi2)"H(L) = {te[0,1]|L((1 - t)b; + tby) = L}
= {te€[0,1]](1 —t)b1 + th, =0}
0—0 ) 0—0
{92_911} if 0 < 92_911 <1
0 otherwise .

» The degree of a loop w : ST — A(1) = S is the number of elements in
wY(L) for a generic L € A(1). In the geometric applications the
Maslov index counts the number of intersections of a curve in a
Lagrangian manifold with the codimension 1 cycle of singular points.



The Maslov index and the degree II.

» Proposition A triple of Lagrangians (L1, L2, L3) determines a loop in
A(1)
W123 = Wi12W23W31 51 — /\(1)

with homotopy class the Maslov index of the triple
wioz = 7(L1, Lo, L3) € {—1,0,1} C m1(A(1)) = Z .
» Proof It is sufficient to consider the special case
(L1, L2,L3) = (L(61),L(62), L(63))
with 0 < 01 < 6 < 03 <, so that

det2w123 =1: 51—>51,

degree(det?win3) = 1 = 7(L1, Ly, [3) €Z



The Euclidean structure on R2"

The phase space is the 2n-dimensional Euclidean space R?”, with
preferred basis {p1,p2,..-,Pn,q1,92,---,qn}-
The 2n-dimensional phase space carries 4 additional structures.

Definition The Euclidean structure on R?" is the positive definite
symmetric form over R

n n
(,):R"xR> %R ; (v,V)— lejxjf+kzlyky,’”
J: =
— 5 .n: S !/ & /. d / RZn
(v = Xipj+ > YkQk , V' = Xipj+ > Yiak € ).
=1 k=1 =1 k=1

J

J

The automorphism group of (R2",( , )) is the orthogonal group
O(2n) of invertible 2n x 2n matrices A = (aj) (ajx € R) such that
A*A = b, with A* = (ay;) the transpose.



The complex structure on R?"

» Definition The complex structure on R?" is the linear map
n n n n
VR LR Y Y ks Y e v
j=1 k=1 j=1 k=1

such that 22 = —1. Use 2 to regard R?" as an n-dimensional complex
vector space, with an isomorphism

R 5 C": v (x1 + iyi, x2 + iy2, .oy Xn + iYn) -

» The automorphism group of (R?",2) = C" is the complex general
linear group GL(n,C) of invertible n x n matrices (ajx) (aj € C).

10
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The symplectic structure on R?"

» Definition The symplectic structure on R?” is the symplectic form
[,]: R"xR* 5 R;

(V) = v V] = (V) = — Vv = S0y — xiv))

J=1

» The automorphism group of (R?",[, ]) is the symplectic group Sp(n)
of invertible 2n x 2n matrices A = (ajc) (ajx € R) such that

A0 B\, (0
(G e)a= (5 5)-
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The n-dimensional Lagrangians

Definition Given a finite-dimensional real vector space V with a
nonsingular symplectic form [, ]: V x V — R let A(V) be the set of
Lagrangian subspaces L C V/, with

L =1t = {xeV|[x,y]=0cRforallyelL}.
Terminology A(R2") = A(n). The real and imaginary Lagrangians

n n
= {D _xpi x5 €R} R = {> yiqe|yk € R"} € A(n)
j=1 k=1
are complementary, with R2" = R" @ 4R",
Definition The graph of a symmetric form (R", ¢) is the Lagrangian

n n
Moy = {(x \X—ZXJPJ, x) =D dexjax} € Nn)
j=1 k=1
complementary to :R".
Proposition Every Lagrangian complementary to :R" is a graph.
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The hermitian structure on R?"

» Definition The hermitian inner product on R?" is defined by

(,): R xR¥ - C;
(v, V)= (v V) = (v, V) +ilv,v] = J;(xﬁiyj)(xj—iyj).

or equivalently by

n
(,) : C"xC"=>C; (2,2)—~ (z,Z) = sz?j-.
j=1

» The automorphism group of (C", (, )) is the unitary group U(n) of
invertible n x n matrices A = (ajx) (ajx € C) such that AA* = [, with
A* = (3yj) the conjugate transpose.
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The general linear, orthogonal and unitary groups

» Proposition (Arnold, 1967) (i) The automorphism groups of R2" with
respect to the various structures are related by

O(2n)N GL(n,C) = GL(n,C)N Sp(n) = Sp(n) N O(2n) = U(n) .

» (ii) The determinant map det : U(n) — S is the projection of a fibre
bundle
SU(n) — U(n) — St .

» (iii) Every A € U(n) sends the standard Lagrangian :R" of (R?"[, ])
to a Lagrangian A(zR"). The unitary matrix A = (ajx) is such that
A(2R") = «R" if and only if each aj € R C C, with

O(n) = {Ae U(n)|AGR™) =R"} C U(n) .



The Lagrangian Grassmannian A(n) I.

A(n) is the space of all Lagrangians L C (R?",[, ]).
» Proposition (Arnold, 1967) The function

U(n)/O(n) = A(n) ; Ars AGR)

is a diffeomorphism.

A(n) is a compact manifold of dimension

15

dimA(n) = dim U(n) —dim O(n) = n2— =1 _ n(n+1)

2 2

The graphs {T'(rn ¢y | ¢* = ¢ € My(R)} C A(n) define a chart at

R™ € A(n).

Example (Arnold and Givental, 1985)

A(2)3

{[x,y,z,u,v] € RP*[x* + y? + 2% = u? + v}
S? x SYH{(xy) ~ (=x,=y)} -
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The Lagrangian Grassmannian A(n) Il.

> In view of the fibration
A(n) = U(n)/O(n) — BO(n) — BU(n)
A(n) classifies real n-plane bundles 5 with a trivialisation

08 :C® B =" of the complex n-plane bundle C @ 8.
» The canonical real n-plane bundle 7 over A(n) is

E(n) = {(L,O[LeNA(n), LelL}.
The complex n-plane bundle C ® n
E(C®n) = {(Ltc)|L e Nn), bc € Cg L}

is equipped with the canonical trivialisation 7 : C ® = €" defined by

~

on 1 E(C®n) —= E(e") = A(n) xC";
(L,lc) = (L, (p,q)) ifbc=(p,q) eCRrL=LpiL=C".
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The fundamental group 71(A(n)) I.

» Theorem (Arnold, 1967) The square of the determinant function
det> : A(n) = S ; L= A(GR") — det(A)?
induces an isomorphism
det? : m(A(n)) —= m(SY) = Z.

» Proof By the homotopy exact sequence of the commutative diagram of
fibre bundles




18

The fundamental group 71(A(n)) =Z Il.

» Corollary 1 The function

m1(A(n)) = Z ; (w: S* — A(n)) — degree( §1 —=> A(n) det’_ &1 )

is an isomorphism.

» Corollary 2 The cohomology class
a € HY(A(n)) = Hom(7w1(A(n)),Z)

characterized by

a(w) = degree( 1 —2=A(n) det? sl)ez

is a generator a € HY(A(n)) = Z.
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71(A(1)) = Z in terms of line bundles

Example The universal real line bundle 7 : S — BO(1) = RP* is the
infinite Mobius band over S*

E(n) = Rx[0,7]/{(x,0) ~ (~x,m)} = S§* = [0,7]/(0~ ).
The complexification C ® i : ST — BU(1) = CP* is the trivial
complex line bundle over S?

E(C®n) = Cx[0,7]/{(2,0) ~ (~z,m)} = S = [0,7]/(0 ~ ).
The canonical trivialisation dn : C ® = € is defined by

~

on : E(C®n) —
E(¢) = Cx[0,7]/{(z,0) ~(z,7)} = CxS'; [z,0] — [z, 6] .
The canonical pair (d1,7) represents
(0n,n) = 1em(N1)) = m(U(1)/0Q1)) = Z,
corresponding to the loop w : St — A(1); €9 — L(6).
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The Maslov index for n-dimensional Lagrangians

» Unitary matrices can be diagonalized. For every A € U(n) there exists
B € U(n) such that

BAB™' = D(e™, e ... )

is the diagonal matrix, with e'i € S the eigenvalues, i.e. the roots of
the characteristic polynomial

ch.(A) = det(zl, — A) = [[(z—e") eCl7].
j=1
» Definition The Maslov index of L € A(n) is

(L) = Y (1-20;/m)eR
j=1
with 01,0,...,0, € [0,7) such that +e/%, +e/% . . +e/% are the
eigenvalues of any A € U(n) such that A(:R") = L.
» There are similar definitions of 7(L, L) € R and 7(L, L', L") € Z.
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The Maslov cycle

» Corollary 2 above shows that the Maslov index o € HY(A(n)) is the
pullback along det? : A(n) — S of the standard form dé on S*.

» Definition The Poincaré dual of « is the Maslov cycle
m = {LeA(n)|LN:R" #{0}} .

> In his 1967 paper Arnold constructs this cycle following ideas that
generalise the standard constructions on Schubert varieties in the
Grassmannians of linear subspaces of Euclidean spaces, and proves that

[m] € Hini2)(n-1)/2(A(n))

is the Poincaré dual of a € H*(A(n)).
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Lagrangian submanifolds of R?" I.
» An n-dimensional submanifold M" C R?" is Lagrangian if for each
x € M the tangent n-plane
Ty(M) C To(R?") = R2"

is a Lagrangian subspace of (R?", [, ]).
» The tangent bundle Ty, : M — BO(n) is the pullback of the canonical
real n-plane bundle over A(n)

E(n) = {(NO|AeN(n), e}

along the classifying map ¢ : M — A(n); x — Tx(M), with

Ty : M ¢ A(n) il

C ® Ty = Ten|m has a canonical trivialisation.
» Definition The Maslov index of a Lagrangian submanifold M" C R?"
is the pullback of the generator v € H*(A(n))

T(M) = ¢*(a) € HY(M) .

BO(n) . The complex n-plane bundle
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Lagrangian submanifolds of R?" II.

Given a Lagrangian submanifold M" C R?" let
m = proj| : M"—=R"; (p,q)—p
be the restriction of the projection R?" = R" @ 1R" — R".
The differentials of 7 are the differentiable maps
dmy : Tu(M) = Tr((R") = R"; £ pifl = (p,q) € Tx(M) C R*"

with ker(dmy) = Tx(M) N2R" C2R".

If 7 is a local diffeomorphism then each dmy is an isomorphism of real
vector spaces, with kernel Tx(M) N:R" = {0}.

Definition The Maslov cycle of a Lagrangian submanifold M C R?" is

m = {x € M|Tx(M)NR" £ {0}} .

Theorem (Arnold, 1967) Generically, m C M is a union of open
submanifolds of codimension > 1. The homology class [m] € H,_1(M)
is the Poincaré dual of the Maslov index class 7(M) € HY(M),
measuring the failure of 7 : M — R” to be a local diffeomorphism.
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Symplectic manifolds

Definition A manifold N is symplectic if it admits a 2-form w which is
closed and non-degenerate.

Examples S2,R?" = C" = T*R"; the cotangent bundle T*B of any
manifold B with a canonical symplectic form.

Definition A submanifold M C N of a symplectic manifold is
Lagrangian if w|y = 0 and each TyM C TxN (x € M) is a
Lagrangian subspace.

Remark A symplectic manifold N is necessarily even dimensional
(because of the non-degeneracy of w) and the dimension of a
Lagrangian submanifold M is necessarily half the dimension of the
ambient manifold.

Examples If N is two dimensional, any one dimensional submanifold is
Lagrangian (why?). If N = T*B for some manifold B with the
canonical symplectic form, then each cotangent space T} B is a
Lagrangian submanifold.
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The A(n)-affine structure of A(V)

> Let V be a 2n-dimensional real vector space with nonsingular
symplectic form [, ]: V x V — R and a complex structure 1 : V — V
such that V x V — R; (v, w) — [ev, w] is an inner product. Let U(V)
be the group of automorphisms A: (V,[, ],2) — (V,[, ],2).

> For Le A(V) let O(L) = {A e U(V)|A(L) = L}.

» Proposition (Guillemin and Sternberg) (i) The function

U(V)/O(L) = AN(V); A= A(L)

is a diffeomorphism.

» (i) There exists an isomorphism f, : (R2" [, ],2) = (V,][, ],2) such
that f, (:R") = L.

» (iii) For any f; as in (ii) the diffeomorphism

fi : N(n)=U(n)/O(n) = N(V)=U(V)/O(L) ; A fr(N)

only depends on L, and not on the choice of f;.

» Thus A(V) has a A(n)-affine structure: for any Ly, Ly € A(V) there is
defined a difference element (L1, Ly) € A(n), with (L1, L1) = :R" C R?"
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An application of the Maslov index I.

» For any n-dimensional manifold B the tangent bundle of the cotangent

bundle
E = T(T*B) - T*B

has each fibre a 2n-dimensional symplectic vector space. The
symplectic form is given in canonical (or Darboux) coordinates as

w = dpAdqg (g€ B, peTyB).

» The bundle of Lagrangian planes I : A(E) — T*B is the fibre bundle
with fibres the affine A(n)-sets M~1(x) = A(TxT*B) of Lagrangians in
the 2n-dimensional symplectic vector space T, T*B.
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An application of the Maslov index II.
» The projection 7 : T*B — B induces the

vertical subbundle V = kerdr C T(T*B) ,

whose fibres are Lagrangian subspaces.

» The map
s T"B = NE); x=(p,q) = Vi = ker(dmy : Tx(T*B) = Tr((B))

is a section of the bundle of Lagrangian planes.

» For any other section r : T*B — A(E) use the A(n)-affine structures of
the fibres M~1(x) to define a difference map

¢ = (r,s) : T"B—= A(n); x— (r(x),s(x))
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An application of the Maslov index IlI.

Let M be a Lagrangian submanifold of T*B, dim M = dim B = n.

If 7|ps : M — B is a local diffeomorphism then each

d(7|m)x : Tx(M) — Tr(x)(B) is an isomorphism of vector bundles,
with kernel T, (M) NV, = {0}.

The Maslov index measures the failure of 7|y : M — B to be a local
diffeomorphism, in general.

We let
Ev = TM C T(T*B), N(Ey) = N7YM) c A(E)

so that ] : A(Eps) — M is a fibre bundle with the fibre over x € M the
A(n)-affine set (M])~1(x) = A(TxM).
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An application of the Maslov index IV.
The maps r,s|p : M — A(Ep) defined by
r(x) = TxM | s|u(x) = Vi C Tx(T*B)

are sections of |. The difference map ¢ = (r,s|m) : M — A(n)
classifies the real n-plane bundle over M with complex trivialisation in
which the fibre over x € M is the Lagrangian (TxM, Vi) € A(n).
Definition The Maslov index class is the pullback along ( of the
generator o = 1 € HY(A(n)) = Z

am = CFac HY(M) .
Proposition The homology class [m] € H,_1(M) of the Maslov cycle
m = {xe M|T,MnV,+#{0}},

is the Poincaré dual of the Maslov index class ay € HY(M).
If the class [m] = ap € H,_1(M) = HY(M) is non-zero then the
projection 7|y : M — B fails to be a local diffeomorphism.
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An application of the Maslov index V.

» (Butler, 2007) This formulation of the Maslov index can be used to
prove that if ¥ is an n-dimensional manifold which is topologically T,
and which admits a geometrically semi-simple convex Hamiltonian,
then X has the standard differentiable structure.



v
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