THE MASLOV INDEX, THE SIGNATURE AND BAGELS

Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/~aar Göttingen, 22 December 2009

Introduction

- The original Maslov index appeared in the early 1960's work of the Russian mathematical physicist V.P.Maslov on the quantum mechanics of nanostructures and lasers; he has also worked on the tokamak (= magnetic field bagel with plasma filling). The Maslov index also appeared in the early 1960's work of J.B.Keller and H.M.Edwards.
- V.I.Arnold (1967) put the Maslov index on a mathematical footing, in terms of the intersections of paths in the space of lagrangian subspaces of a symplectic form.
- The Maslov index is the generic name for a very large number of inter-related invariants which arise in the topology of manifolds, symplectic geometry, mathematical physics, index theory, L²-cohomology, surgery theory, knot theory, singularity theory, differential equations, group theory, representation theory, as well as the algebraic theory of quadratic forms and their automorphisms.
- Maslov index: 387 entries on Mathematical Reviews, 27,100 entries on Google Scholar, 45,000 entries on Google.

The 1-dimensional lagrangians

• **Definition** (i) Let \mathbb{R}^2 have the symplectic form

 $[,] : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} ; ((x_1, y_1), (x_2, y_2)) \mapsto x_1 y_2 - x_2 y_1 .$

▶ (ii) A subspace $L \subset \mathbb{R}^2$ is a **lagrangian** of $(\mathbb{R}^2, [,])$ if

$$L = L^{\perp} = \{x \in \mathbb{R}^2 \, | \, [x, y] = 0 \text{ for all } y \in L\}$$

- ▶ Proposition A subspace L ⊂ ℝ² is a lagrangian of (ℝ², [,]) if and only if L is 1-dimensional,
- ▶ Definition (i) The 1-dimensional lagrangian Grassmannian Λ(1) is the space of lagrangians L ⊂ (ℝ², [,]), i.e. the Grassmannian of 1-dimensional subspaces L ⊂ ℝ².
- ▶ (ii) For $\theta \in \mathbb{R}$ let

$$L(\theta) = \{(r\cos\theta, r\sin\theta) | r \in \mathbb{R}\} \in \Lambda(1)$$

be the lagrangian with gradient tan θ .

The topology of $\Lambda(1)$

Proposition The square function

$$\Lambda(1) o S^1$$
; $L(heta) \mapsto e^{2i heta}$

and the square root function

$$\omega : S^1 \to \Lambda(1) = \mathbb{RP}^1 ; e^{2i\theta} \mapsto L(\theta)$$

are inverse diffeomorphisms, and

$$\pi_1(\Lambda(1)) = \pi_1(S^1) = \mathbb{Z}$$
.

• **Proof** Every lagrangian L in $(\mathbb{R}^2, [,])$ is of the type $L(\theta)$, and

L(heta) = L(heta') if and only if $heta' - heta = k\pi$ for some $k \in \mathbb{Z}$.

Thus there is a unique $\theta \in [0, \pi)$ such that $L = L(\theta)$. The loop $\omega : S^1 \to \Lambda(1)$ represents the generator

$$\omega = 1 \in \pi_1(\Lambda(1)) = \mathbb{Z}$$
.

The real Maslov index of a 1-dimensional lagrangian I.

• **Definition** The **real-valued Maslov index** of a lagrangian $L = L(\theta)$ in $(\mathbb{R}^2, [,])$ is

$$au(L(heta)) \;=\; egin{cases} 1-rac{2 heta}{\pi} & ext{if } 0 < heta < \pi \ 0 & ext{if } heta = 0 \end{cases} \in \mathbb{R} \;.$$

Examples

$$au(L(0)) = au(L(\pi/2)) = 0, au(L(\pi/4)) = 1/2, au(L(3\pi/4)) = -1/2$$

For 0 < θ < π</p>

$$egin{array}{rll} au(L(heta)) &=& 1-2 heta/\pi \ &=& -1+2(\pi- heta)/\pi \ &=& - au(L(\pi- heta))\in \mathbb{R} \;. \end{array}$$

The real Maslov index of a 1-dimensional lagrangian II.

▶ Motivation in terms of the L^2 -signature for \mathbb{Z} , with $0 < \theta < \pi$

au

$$\begin{split} f(L(\theta)) &= \frac{1}{2\pi} \int_{\omega \in S^1} \operatorname{sgn}((1-\omega)e^{i\theta} + (1-\overline{\omega})e^{-i\theta})d\omega \\ &= \frac{1}{2\pi} \int_{\psi=0}^{2\pi} \operatorname{sgn}(\sin(\psi/2)\sin(\psi/2+\theta))d\psi \; (\omega = e^{i\psi}) \\ &= \frac{1}{2\pi} (\int_{\psi=0}^{2\pi-2\theta} d\psi - \int_{\psi=2\pi-2\theta}^{2\pi} d\psi) \\ &= \frac{1}{2\pi} (2\pi - 2\theta - 2\theta) \\ &= 1 - \frac{2\theta}{\pi} \in \mathbb{R} \; . \end{split}$$

The real Maslov index

- Many other motivations!
- The real Maslov index formula

$$au(L(heta)) \;=\; 1 - rac{2 heta}{\pi} \in \mathbb{R}$$

has featured in many guises (e.g. as assorted η -, γ -, ρ -invariants and an L^2 -signature) in the papers of Arnold (1967), Atiyah, Patodi and Singer (1975), Neumann (1978), Atiyah (1987), Cappell, Lee and Miller (1994), Bunke (1995), Nemethi (1995), Cochran, Orr and Teichner (2003), ...

- Can be traced back to the failure of the Hirzebruch signature theorem and the Atiyah-Singer index theorem for manifolds with boundary.
- See http://www.maths.ed.ac.uk/~aar/maslov.htm for detailed references.

The real Maslov index of a pair of 1-dimensional lagrangians

• **Definition** The **Maslov index** of a pair of lagrangians in $(\mathbb{R}^2, [,])$

$$(L_1, L_2) = (L(\theta_1), L(\theta_2))$$

is

$$\begin{aligned} \tau(L_1,L_2) &= \tau(L(\theta_2 - \theta_1)) \\ &= \begin{cases} 1 - \frac{2(\theta_2 - \theta_1)}{\pi} & \text{if } 0 \leqslant \theta_1 < \theta_2 < \pi \quad \in \mathbb{R} \\ -1 + \frac{2(\theta_1 - \theta_2)}{\pi} & \text{if } 0 \leqslant \theta_2 < \theta_1 < \pi \\ 0 & \text{if } \theta_1 = \theta_2 . \end{cases} \end{aligned}$$

τ(L₁, L₂) = −τ(L₂, L₁) ∈ ℝ.
 Examples τ(L) = τ(ℝ ⊕ 0, L), τ(L, L) = 0.

The integral Maslov index of a triple of 1-dimensional lagrangians

• Definition The Maslov index of a triple of lagrangians

$$(L_1, L_2, L_3) = (L(\theta_1), L(\theta_2), L(\theta_3))$$

in $(\mathbb{R}^2, [,])$ is

$$egin{array}{rll} au(L_1,L_2,L_3) &=& au(L_1,L_2)+ au(L_2,L_3)+ au(L_3,L_1) \ &\in \{-1,0,1\}\subset \mathbb{R} \ . \end{array}$$

• **Example** If $0 \leq \theta_1 < \theta_2 < \theta_3 < \pi$ then

$$\tau(L_1,L_2,L_3) = 1 \in \mathbb{Z} .$$

The integral Maslov index and the degree I.

A pair of 1-dimensional lagrangians (L₁, L₂) = (L(θ₁), L(θ₂)) determines a path in Λ(1) from L₁ to L₂

$$\omega_{12} : I \to \Lambda(1) ; t \mapsto L((1-t)\theta_1 + t\theta_2) .$$

For any $L = L(\theta) \in \Lambda(1) \setminus \{L_1, L_2\}$ $(\omega_{12})^{-1}(L) = \{t \in [0,1] \mid L((1-t)\theta_1 + t\theta_2) = L\}$ $= \{t \in [0,1] \mid (1-t)\theta_1 + t\theta_2 = \theta\}$ $= \begin{cases} \left\{\frac{\theta - \theta_1}{\theta_2 - \theta_1}\right\} & \text{if } 0 < \frac{\theta - \theta_1}{\theta_2 - \theta_1} < 1\\ \emptyset & \text{otherwise} \end{cases}$

The degree of a loop ω : S¹ → Λ(1) = S¹ is the number of elements in ω⁻¹(L) for a generic L ∈ Λ(1). In the geometric applications the Maslov index counts the number of intersections of a curve in a lagrangian manifold with the codimension 1 cycle of singular points.

The Maslov index and the degree II.

• **Proposition** A triple of lagrangians (L_1, L_2, L_3) determines a loop in $\Lambda(1)$

$$\omega_{123} = \omega_{12}\omega_{23}\omega_{31} : S^1 \to \Lambda(1)$$

with homotopy class the Maslov index of the triple

$$\omega_{123} = \tau(L_1, L_2, L_3) \in \{-1, 0, 1\} \subset \pi_1(\Lambda(1)) = \mathbb{Z}$$

Proof It is sufficient to consider the special case

$$(L_1, L_2, L_3) = (L(\theta_1), L(\theta_2), L(\theta_3))$$

with $0 \leqslant \theta_1 < \theta_2 < \theta_3 < \pi$, so that

$$\det^2 \omega_{123} = 1 : S^1 \to S^1 ,$$

 $\deg ree(\det^2 \omega_{123}) = 1 = \tau(L_1, L_2, L_3) \in \mathbb{Z}$

The Euclidean structure on \mathbb{R}^{2n}

- ► The phase space is the 2n-dimensional Euclidean space ℝ²ⁿ, with preferred basis {p₁, p₂,..., p_n, q₁, q₂,..., q_n}.
- The 2n-dimensional phase space carries 4 additional structures.
- ▶ Definition The Euclidean structure on ℝ²ⁿ is the positive definite symmetric form over ℝ

$$(,) : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R} ; (v, v') \mapsto \sum_{j=1}^{n} x_j x'_j + \sum_{k=1}^{n} y_k y'_k ,$$

$$(v = \sum_{j=1}^{n} x_j p_j + \sum_{k=1}^{n} y_k q_k , v' = \sum_{j=1}^{n} x'_j p_j + \sum_{k=1}^{n} y'_k q_k \in \mathbb{R}^{2n}).$$

▶ The automorphism group of $(\mathbb{R}^{2n}, (,))$ is the **orthogonal group** O(2n) of invertible $2n \times 2n$ matrices $A = (a_{jk})$ $(a_{jk} \in \mathbb{R})$ such that $A^*A = I_{2n}$ with $A^* = (a_{kj})$ the transpose.

The complex structure on \mathbb{R}^{2n}

▶ **Definition** The **complex structure** on ℝ²ⁿ is the linear map

$$J : \mathbb{R}^{2n} \to \mathbb{R}^{2n} ; \sum_{j=1}^{n} x_j p_j + \sum_{k=1}^{n} y_k q_k \mapsto \sum_{j=1}^{n} x_j p_j - \sum_{k=1}^{n} y_k q_k$$

such that

$$J^2 = -1 : \mathbb{R}^{2n} o \mathbb{R}^{2n}$$
.

Use J to regard \mathbb{R}^{2n} as an *n*-dimensional complex vector space, with an isomorphism

$$\mathbb{R}^{2n}
ightarrow \mathbb{C}^n$$
; $v \mapsto (x_1 + iy_1, x_2 + iy_2, \dots, x_n + iy_n)$.

The automorphism group of (ℝ²ⁿ, J) = ℂⁿ is the complex general linear group GL(n, ℂ) of invertible n × n matrices (a_{jk}) (a_{jk} ∈ ℂ).

The symplectic structure on \mathbb{R}^{2n}

• **Definition** The symplectic structure on \mathbb{R}^{2n} is the symplectic form

$$\begin{bmatrix} , \end{bmatrix} : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R} ;$$

$$(v, v') \mapsto [v, v'] = (Jv, v') = -[v', v] = \sum_{j=1}^{n} (x'_{j}y_{j} - x_{j}y'_{j})$$

$$(v = \sum_{j=1}^{n} x_{j}p_{j} + \sum_{k=1}^{n} y_{k}q_{k} , v' = \sum_{j=1}^{n} x'_{j}p_{j} + \sum_{k=1}^{n} y'_{k}q_{k} \in \mathbb{R}^{2n}) .$$

The automorphism group of (ℝ²ⁿ, [,]) is the symplectic group Sp(n) of invertible 2n × 2n matrices A = (a_{jk}) (a_{jk} ∈ ℝ) such that

$$A^* \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} A = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$

The *n*-dimensional lagrangians

Definition Given a finite-dimensional real vector space V with a nonsingular symplectic form [,]: V × V → ℝ let Λ(V) be the set of lagrangian subspaces L ⊂ V, with

$$L ~=~ L^{\perp} ~=~ \{x \in V \,|\, [x,y] = 0 \in \mathbb{R} ext{ for all } y \in L\}$$
 .

• Terminology
$$\Lambda(\mathbb{R}^{2n}) = \Lambda(n)$$
.

- ▶ **Proposition** Every lagrangian $L \in \Lambda(n)$ has a canonical complement $JL \in \Lambda(n)$, with $L \oplus JL = \mathbb{R}^{2n}$.
- **Example** \mathbb{R}^n and $J\mathbb{R}^n$ are lagrangian complements, with $\mathbb{R}^{2n} = \mathbb{R}^n \oplus J\mathbb{R}^n$.
- **Definition** The graph of a symmetric form (\mathbb{R}^n, ϕ) is the lagrangian

$$\Gamma_{(\mathbb{R}^n,\phi)} = \{(x,\phi(x)) \mid x = \sum_{j=1}^n x_j p_j, \ \phi(x) = \sum_{j=1}^n \sum_{k=1}^n \phi_{jk} x_j q_k\} \in \Lambda(n)$$

complementary to $J\mathbb{R}^n$.

• **Proposition** Every lagrangian complementary to $J \mathbb{R}^n$ is a graph.

The hermitian structure on \mathbb{R}^{2n}

• **Definition** The hermitian inner product on \mathbb{R}^{2n} is defined by

or equivalently by

$$\langle , \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C} ; (z, z') \mapsto \langle z, z' \rangle = \sum_{j=1}^n z_j \overline{z}'_j .$$

The automorphism group of (ℂⁿ, ⟨, ⟩) is the **unitary group** U(n) of invertible n × n matrices A = (a_{jk}) (a_{jk} ∈ ℂ) such that AA* = I_n, with A* = (ā_{kj}) the conjugate transpose.

The general linear, orthogonal and unitary groups

▶ **Proposition** (Arnold, 1967) (i) The automorphism groups of ℝ²ⁿ with respect to the various structures are related by

 $O(2n) \cap GL(n,\mathbb{C}) = GL(n,\mathbb{C}) \cap Sp(n) = Sp(n) \cap O(2n) = U(n)$.

 (ii) The determinant map det : U(n) → S¹ is the projection of a fibre bundle

$$SU(n)
ightarrow U(n)
ightarrow S^1$$
 .

(iii) Every A ∈ U(n) sends the standard lagrangian Rⁿ of (R²ⁿ, [,]) to a lagrangian A(Rⁿ). The unitary matrix A = (a_{jk}) is such that A(Rⁿ) = Rⁿ if and only if each a_{jk} ∈ R ⊂ C, with

$$O(n) = \{A \in U(n) \mid A(\mathbb{R}^n) = \mathbb{R}^n\} \subset U(n) .$$

The lagrangian Grassmannian $\Lambda(n)$ I.

- $\Lambda(n)$ is the space of all lagrangians $L \subset (\mathbb{R}^{2n}, [,])$.
- Proposition (Arnold, 1967) The function

$$U(n)/O(n) \to \Lambda(n) ; A \mapsto A(\mathbb{R}^n)$$

is a diffeomorphism.

• $\Lambda(n)$ is a compact manifold of dimension

dim
$$\Lambda(n)$$
 = dim $U(n)$ - dim $O(n)$ = $n^2 - \frac{n(n-1)}{2} = \frac{n(n+1)}{2}$

The graphs $\{\Gamma_{(\mathbb{R}^n,\phi)} | \phi^* = \phi \in M_n(\mathbb{R})\} \subset \Lambda(n)$ define a chart at $\mathbb{R}^n \in \Lambda(n)$.

Example (Arnold and Givental, 1985)

$$\begin{split} \Lambda(2)^3 &= \{ [x, y, z, u, v] \in \mathbb{R} \, \mathbb{P}^4 \, | \, x^2 + y^2 + z^2 = u^2 + v^2 \} \\ &= S^2 \times S^1 / \{ (x, y) \sim (-x, -y) \} \; . \end{split}$$

The lagrangian Grassmannian $\Lambda(n)$ II.

In view of the fibration

$$\Lambda(n) = U(n)/O(n) \rightarrow BO(n) \rightarrow BU(n)$$

 $\Lambda(n)$ classifies real *n*-plane bundles β with a trivialisation $\delta\beta: \mathbb{C} \otimes \beta \cong \epsilon^n$ of the complex *n*-plane bundle $\mathbb{C} \otimes \beta$.

The canonical real n-plane bundle η over Λ(n) is

$$E(\eta) = \{(L,\ell) \mid L \in \Lambda(n), \ \ell \in L\} \ .$$

The complex *n*-plane bundle $\mathbb{C}\otimes\eta$

$$E(\mathbb{C} \otimes \eta) = \{(L, \ell_{\mathbb{C}}) \mid L \in \Lambda(n), \ \ell_{\mathbb{C}} \in \mathbb{C} \otimes_{\mathbb{R}} L\}$$

is equipped with the canonical trivialisation $\delta\eta:\mathbb{C}\otimes\eta\cong\epsilon^n$ defined by

$$\begin{split} &\delta\eta \ : \ E(\mathbb{C}\otimes\eta) \xrightarrow{\cong} E(\epsilon^n) \ = \ \Lambda(n)\times\mathbb{C}^n \ ; \\ &(L,\ell_{\mathbb{C}})\mapsto (L,(p,q)) \ \text{if} \ \ell_{\mathbb{C}} = (p,q)\in\mathbb{C}\otimes_{\mathbb{R}} L = L\oplus JL = \mathbb{C}^n \end{split}$$

The fundamental group $\pi_1(\Lambda(n))$

Theorem (Arnold, 1967) The square of the determinant function

$${\sf det}^2 \hspace{.1 in} : \hspace{.1 in} {\sf \Lambda}(n) o S^1 \hspace{.1 in} ; \hspace{.1 in} L = A({\mathbb R}^n) \mapsto {\sf det}(A)^2$$

induces an isomorphism

$$\det^2 : \pi_1(\Lambda(n)) \xrightarrow{\cong} \pi_1(S^1) = \mathbb{Z} .$$

 Proof By the homotopy exact sequence of the commutative diagram of fibre bundles

The real Maslov index for *n*-dimensional lagrangians I.

► Unitary matrices can be diagonalized. For every A ∈ U(n) there exists B ∈ U(n) such that

$$BAB^{-1} = D(e^{i\theta_1}, e^{i\theta_2}, \dots, e^{i\theta_n})$$

is the diagonal matrix, with $e^{i heta_j}\in S^1$ the eigenvalues, i.e. the roots of the characteristic polynomial

$$\mathsf{ch}_z(A) \;=\; \det(zI_n-A) \;=\; \prod_{j=1}^n (z-e^{i heta_j}) \in \mathbb{C}[z] \;.$$

• **Definition** The **Maslov index** of $L \in \Lambda(n)$ is

$$au(L) = \sum_{j=1}^n au(L(heta_j)) = \sum_{j=1, heta_j
eq 0}^n (1-2 heta_j/\pi) \in \mathbb{R}$$

with $\theta_1, \theta_2, \ldots, \theta_n \in [0, \pi)$ such that $\pm e^{i\theta_1}, \pm e^{i\theta_2}, \ldots, \pm e^{i\theta_n}$ are the eigenvalues of any $A \in U(n)$ such that $A(\mathbb{R}^n) = L$.

The real Maslov index for *n*-dimensional lagrangians II.

• Given $L, L' \in \Lambda(n)$ define

$$\tau(L,L') = \tau(A(\mathbb{R}^n)) \in \mathbb{R}$$

if $A \in U(n)$ is such that A(L) = L'.

► $\tau(L', L) = -\tau(L, L') \in \mathbb{R}$, since if A(L) = L' with eigenvalues $e^{i\theta_j}$ $(0 \leq \theta_j \leq \pi)$ then $L' = A^{-1}(L)$ with eigenvalues $e^{-i\theta_j} = -e^{i(\pi - \theta_j)}$, and

$$1-rac{2 heta_j}{\pi} ~=~ -(1-rac{2(\pi- heta_j)}{\pi})\in\mathbb{R}\;.$$

▶ In general, $\tau(L, L') \neq \tau(L') - \tau(L) \in \mathbb{R}$.

• Given $L, L', L'' \in \Lambda(n)$ define

$$\tau(L,L',L'') = \tau(L,L') + \tau(L',L'') + \tau(L'',L) \in \mathbb{Z}$$

The integral signature

► The integral signature of a 4k-dimensional manifold with boundary (M, ∂M) is

 $\sigma(M) = \text{signature}(\text{symmetric intersection form } (H_{2k}(M; \mathbb{R}), \phi_M)) \in \mathbb{Z}$.

For a triple union of codimension 0 submanifolds

$$M^{4k} = M_1 \cup M_2 \cup M_3$$

Wall (1967) expressed the difference

$$\sigma(\mathsf{M};\mathsf{M}_1,\mathsf{M}_2,\mathsf{M}_3) \;=\; \sigma(\mathsf{M}) - (\sigma(\mathsf{M}_1) + \sigma(\mathsf{M}_2) + \sigma(\mathsf{M}_3)) \in \mathbb{Z}$$

as an invariant of the three lagrangians in the nonsingular symplectic intersection form $(H_{2k-1}(M_{123};\mathbb{R}),\phi_{123})$

$$L_j = \ker(H_{2k-1}(M_{123}; \mathbb{R}) \to H_{2k-1}(M_{j+1} \cap M_{j+2}; \mathbb{R})) \ (j \pmod{3}) \ .$$

with $M_{123} = M_1 \cap M_2 \cap M_3$ the (4k - 2)-dimensional triple intersection. • Kashiwara and Schapira (1992) identified

$$\sigma(\mathsf{M};\mathsf{M}_1,\mathsf{M}_2,\mathsf{M}_3) \;=\; \tau(\mathsf{L}_1,\mathsf{L}_2,\mathsf{L}_3) \in \mathbb{Z} \subset \mathbb{R} \;.$$

The real signature

Let (M, ∂M) be a 4k-dimensional manifold with boundary, and let P^{4k-2} ⊂ ∂M be a separating codimension 1 submanifold of the boundary, with ∂M = N₁ ∪_P N₂. Let (H_{2k-1}(P; ℝ), φ_P) be the nonsingular symplectic intersection form, n = dim_ℝ(H_{2k-1}(P; ℝ))/2.
 Given a choice of isomorphism

$$J : (H_{2k-1}(P; \mathbb{R}), \phi_P) \cong (\mathbb{R}^{2n}, [,])$$

define the real signature

$$\tau_J(M, N_1, N_2, P) = \sigma(M) + \tau(L_1, L_2) \in \mathbb{R}$$

with $L_1, L_2 \subset \mathbb{R}^{2n}$ the images under J of the lagrangians

 $\ker(H_{2k-1}(P;\mathbb{R})\to H_{2k-1}(N_j;\mathbb{R}))\subset (H_{2k-1}(P;\mathbb{R}),\phi_P)\ (j=1,2)$

- ▶ By Wall and Kashiwara+Schapira have additivity of the real signature $\tau_J(M \cup M'; N_1, N_3, P) = \tau_J(M; N_1, N_2, P) + \tau_J(M'; N_2, N_3, P) \in \mathbb{R}$.
- ▶ Note: in general $\tau_J \in \mathbb{R}$ depends on the choice of J.

The Maslov index, whichever way you slice it! I.

▶ The lagrangians $L \subset (\mathbb{R}^2, [,])$ are parametrized by $\theta \in \mathbb{R}$

$$L(\theta) = \{(r\cos\theta, r\sin\theta) \mid r \in \mathbb{R}\} \subset \mathbb{R} \oplus \mathbb{R}$$

with indeterminacy $L(\theta) = L(\theta + \pi)$. The map

$$\det^2$$
 : $\Lambda(1) = U(1)/O(1) \rightarrow S^1$; $L(\theta) \mapsto e^{2i\theta}$

is a diffeomorphism.

• The canonical \mathbb{R} -bundle η over $\Lambda(1)$

$$E(\eta) = \{(L, x) | L \in \Lambda(1), x \in L\}$$

is nontrivial = infinite Möbius band. The induced \mathbb{C} -bundle over $\Lambda(1)$ is

$$E(\mathbb{C}\otimes_{\mathbb{R}}\eta) = \{(L,y) \mid L \in \Lambda(1), y \in \mathbb{C} \otimes_{\mathbb{R}} L\}$$

is equipped with the canonical trivialisation $\delta\eta:\mathbb{C}\otimes_{\mathbb{R}}\eta\cong\epsilon$ defined by

$$\begin{array}{rcl} \delta\eta & : & E(\mathbb{C}\otimes_{\mathbb{R}}\eta) \stackrel{\cong}{\longrightarrow} & E(\epsilon) & = & \Lambda(1)\times\mathbb{C} \\ (L,y) & = (L(\theta), (u+iv)(\cos\theta,\sin\theta)) \mapsto (L(\theta), (u+iv)e^{i\theta}) \end{array}.$$

The Maslov index, whichever way you slice it! II.

▶ Given a bagel $B = S^1 \times D^2 \subset \mathbb{R}^3$ and a map $\lambda : S^1 \to \Lambda(1) = S^1$ slice *B* along

$$C = \{(x, y) \in B \mid y \in \lambda(x)\}$$
.

The slicing line (x, λ(x)) ⊂ B is the fibre over x ∈ S¹ of the pullback [−1, 1]-bundle

$$[-1,1] \to C = D(\lambda^*\eta) \to S^1$$

with boundary (where the knife goes in and out of the bagel)

$$\partial C = \{(x, y) \in C \mid y \in \partial \lambda(x)\}$$

a double cover of S^1 . There are two cases:

- C is a trivial [-1,1]-bundle over S¹ (i.e. an annulus), with ∂C two disjoint circles, which are linked in ℝ³. The complement B\C has two components, with the same linking number.
- C is a non trivial [-1, 1]-bundle over S¹ (i.e. a Möbius band), with ∂C a single circle, which is self-linked in ℝ³. The complement B\C is connected, with the same self-linking number (= linking of ∂C and S¹ × {(0,0)} ⊂ C ⊂ ℝ³).

The Maslov index, whichever way you slice it! III.

- By definition, Maslov index $(\lambda) = degree(\lambda) \in \mathbb{Z}$.
- degree : $\pi_1(S^1) o \mathbb{Z}$ is an isomorphism, so it may be assumed that

$$\lambda : S^1 \to \Lambda(1) ; e^{2i\theta} \mapsto L(n\theta)$$

with Maslov index = $n \ge 0$. The knife is turned through a total angle $n\pi$ as it goes round *B*. It may also be assumed that the bagel *B* is horizontal. The projection of ∂C onto the horizontal cross-section of *B* consists of $n = |\lambda^{-1}(L(0))|$ points. For n > 0 this corresponds to the angles $\theta = j\pi/n \in [0, \pi)$ ($0 \le j \le n - 1$) where $L(n\theta) = L(0)$, i.e. $\sin n\theta = 0$.

- The two cases are distinguished by:
 - If n = 2k then ∂C is a union of two disjoint linked circles in ℝ³. Each successive pair of points in the projection contributes 1 to the linking number n/2 = k.
 - If n = 2k + 1 then ∂C is a single self-linked circle in ℝ³. Each point in the projection contributes 1 to the self-linking number n = 2k + 1. (Thanks to Laurent Bartholdi for explaining this case to me.)

Maslov index = 0, C = annulus, linking number = 0

 $\lambda ~:~ S^1 \to S^1$; $z \mapsto 1$.

Maslov index = 1 , C = Möbius band , self-linking number = 1

$$\lambda : S^1 \rightarrow S^1 ; z \mapsto z$$
.

Thanks to Clara Löh for this picture.

Maslov index = 2 , C = annulus , linking number = 1

$$\lambda : S^1 \rightarrow S^1 ; z \mapsto z^2$$

http://www.georgehart.com/bagel/bagel.html