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The signature mod 2,4 and 8
of a 4k-dimensional Poincaré space X

e Theorem o*(X) = x(X) (mod 2)
with o*(X), x(X) € Z the signature and
Euler characteristic.

e Theorem o*(X) = (Py(v), [X]) (mod 4)

Ps : H?K(X:7Z5) — H*(X;Z,) Pontrjagin
square, v = vor(vy) € H?R(X;Z5) the 2kt"
Wu class of the Spivak normal fibration vy

(xUzx, [X]) = (vUx, [X]) € Zo (x € H2k(X; 7))

e Theorem o*(X) = (vUw,[X]) (Mmod8)
for any integral lift o € H2k(X) of v.

e [0 what extent are these classical results
for the signature of a Poincaré space true
for the ‘mod 8 signature’ of a ‘normal space’?
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Spherical fibrations

A spherical fibration is a Serre fibration
v:Si-1 o B X,

The Thom space T'(v) is the mapping cone
of £ — X. Will only consigve_r oriented case,
so have Thom class U € H/(T'(v)) with

UN—: H,yj(T(v)) = H«(X) ,
UuU—: H¥YX) = mg*Hi(T@)) .

Wu classes v, (v) € H"(X;Z5) (r > 0)
characterized by dual Stee/nvroq squares
X(8)"(U) = UUwv(v) € HTI(T(v); Zo) .

Spherical fibrations classified by maps

v . X — BSG(j). Stable classifying space
BSG = lim.BSG(j) , m(BSG) = ™ 4
with H«(BSG), H*(BSG) finite for x = 0.
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Normal spaces

e Definition (Quinn, 1972)
An n-dimensional normal space (X, vy, px)
IS a space X together with a spherical
fibration vy : X — BSG(j5) and a map
px: S"TJ — T(vy). The fundamental class
of X is the Hurewicz-Thom image

[X] = Unh(px) € Hytj(T(vx)) = Hn(X) .

e Thom-Wu formula: foranyz € H" "(X; Z»>)
[X]INSq"(z) = [X]N(vr(vx)Uz) € Ho(X; Z2)

e Will assume that the torsion-free quotients
F"(X) = H"(X)/torsion are finitely gener-
ated, e.g. if X is finite, or H"(X) is torsion.



Poincaré spaces

e Definition An n-dimensional Poincaré space
X is a finite CW complex with fundamen-
tal class [X] € Hn(X) and duality isomor-
phisms

[(X]N— : H"*(X) = H«(X)

e Canonical example An oriented n-dimensional
manifold is an n-dimensional Poincaré space.

e Theorem (Spivak 1965, Wall, Browder)
An n-dimensional Poincaré space X is an
n-dimensional normal space, with vy the
‘Spivak normal fibration’

VX:Sj_1—>8W—>W:X

defined by a.regular neighbourhood (W, 0W)
of X c s"*+J (j large), and

PX - Sn+‘7 — W/(?W ~ T(VX)
the degree 1 collapse map.




Normal maps

e A normal map of n-dimensional normal spaces
(f,b): X Y isadegreel map f: X =Y

f+[X] = [Y] € Hn(Y)
together with a map of normal fibrations b :
vx = vy S.t. T(b)px = py € mp k(T (vy)).

e Proposition (Quinn) The mapping cylinder
W of a n-dimensional normal map (f,b) :
X — Y defines an (n 4+ 1)-dimensional
normal space cobordism (W; X,Y).

e Basic question of surgery theory: is a Poincaré

space homotopy equivalent to a manifold?
Surgery obstruction to a normal map (f,b) :
X — Y from a manifold X to a Poincaré
space Y being bordant to a homotopy equiv-
alence. Is a normal space bordant to a
Poincaré space?” Same obstruction.



T he signature
of a 4k-dimensional normal space X

e Symmetric intersection pairing

¢ o FR(X)XF(X) = Z; (x,y) — (zUy, [X])

Nonsingular for Poincaré X.

e [ he signature of X is

o*(X) = signature(F?¥(X), ¢) € Z

e \Warning For non-Poincaré X can have

o™ (X) # x(X) (mod 2)

Proof For any finite CW complex X with
odd x(X) € Z (e.g. X ={x}) and any vy :
X — BSG(j) set pxy = * : S¥*Ti - T(vy),
so that [X] =0 € Hyp(X), o*(X) =0 € Z.

7



Normal and Poincaré cobordism (I)

Cobordism of normal and Poincaré spaces,
with groups QY QF.

Signature o™(X) €Zis a Poincaré cobordism
invariant, with mod 2 reduction x(X) € Z»

Theorem (Quinn) ‘Pontrjagin-Thom’
iIsomorphisms for normal space cobordism

Q) = m(MSG) ; (X,vx,px) = vxpx

with MSG the Thom spectrum of the uni-
versal spherical fibration 1 : BSG — BSG.
Proof Every normal space (X,vy,pyx) Iis
cobordant to (BSG,1,vxpx) by mapping
cylinder of normal map vy : X — BSG.

The signature and mod 2 Euler character-
istic are not normal space cobordism in-
variants: F*(BSG)=0 (x#0), x({x}) = 1.
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Normal and Poincaré cobordism (II)

e Theorem (Levitt-Jones-Quinn-Hausmann-
Vogel, 1972-1988) For n > 4 there is an
exact sequence

---—>Ln(Z)—>Q§—>Q£¥—>Ln_1(2)—>...

with L4«(Z) the simply-connected surgery
obstruction groups.

e Theorem (Brumfiel and Morgan, 1976)
The signature and the mod-8-Hirzebruch
number define surjections

o* QL —Z; X —o*(X),
G* 1 Q. — Zg ; X (Vi (Lag), [X])

with ¢4, € H**(BSG; Zg) the mod 8 ¢-class.
o* and ¢* are isomorphisms for k = 1.
The forgetful maps Qf, — QY (k> 1) are
surjections, since Ly;_1(Z) = 0.




The mod 8 signature of a
4k-dimensional normal space X

Definition The mod 8 signature is the Brumfiel-
Morgan mod 8 Hirzebruch number

o (X) = (vxar), [X]) € Zg .

The mod 8 signature of a Poincaré X is the
signature mod 8, ¢*(X) = [¢*(X)] € Zg.

Every X is normal cobordant to a Poincaré
space Y, with 6*(X) = [0*(Y)] € Zs.

Warning For non-Poincaré X can have
mod 8 signature #* signature mod 8

o"(X) # [0"(X)] € Zsg .
Proof Takevy = 1: X = BSG(j) - BSG(j).
Every d # 0€Zg is realized as d=c*(X) for
some py : S**ti 5 X, but o*(X) =0 € Z.
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Homological formulae for the
mod 2 and 4 signatures of normal spaces

e Theorem 1 (R.-T.) The mod 4 reduction
of the mod 8 signature of a 4k-dimensional
normal space X is

[67(X)] = (P2(var(vx)), [X]) € Zq
with Po : H2F(X:Z,) — H*(X:;Z4) the
Pontrjagin square.

(True for Poincaré X: Morita (1971), Brumfiel-
Morgan (1974))

e Corollary (R.-T.) The mod 2 reduction of
the mod 8 signature of a 4k-dimensional
normal space X is

[67(X)] = (vop(vx) Uvog(vx), [X]) € Zo
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Homological formulae for the mod 8
signature of certain normal spaces (I)

Theorem 2 (R.-T.) Let X be a 4k-dimensional
normal space. Suppose that

vor(vx) € ker(8q 1 H2M(X; Zp) — H2FTL1(X;Zy))
= Iim(H?"(X; Zs) — H?F(X; Z3)),
with 4 = the Bockstein for
O — Zo — Zg — Zo — 0
For any lift v € H2K(X:Z4) of vor(vy) € H2K(X; Z5)
5*(X) = (Pa(v),[X]) € Zg

with Py : H2%(X;7Z4) — H*¥(X;Zg) the Pontr-
jagin square.
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Homological formulae for the mod 8
signature of certain normal spaces (II)

Corollary (R.-T.) Suppose that

vor(vy) € ker(d0o : H2F(X; Zo) — H2FT1(X))
= im(H?*(X) — H**(X; Z3))
with do0c = the Bockstein for
0 >Z27-—7>—0.
For any lift v € H2F(X) of vor(vy) € H25(X; Z5)
(zUz, [X]) = (wUz, [X]) € Zs (z € H?*(X))
and

7 (X)) = (vUnw,[X]) € Zg .

(True for Poincaré X: Hirzebruch and Hopf
(1958), van der Blij (1959))
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Strategy of proofs (I)

e Use the chain complex theory of algebraic
surgery to interpret the mod 8 signature
c*(X) € Zg as the cobordism class of the
‘algebraic normal complex’ (C(X),®,~v, x)
of X, computing it as a ‘characteristic num-
ber’ of the ‘algebraic normal structure’ (¢,~, x).

o ¢ = {¢s|s > 0} consists of the chain map
do = [X]N—: CX)™™* = O(X)

and the chain homotopies ¢g 41 : ¢s = Tos,
which determine the evaluation of the
Steenrod and Pontrjagin squares on the
fundamental class [X] € Hap(X).

e ~ is the ‘chain bundle’ of vy : X — BSG(j),
determined by Wu classes v«(vy) € H*(X; Z>).
x is determined by px € mar4;(T(vx)).
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Strategy of proofs (II)

e ¢ and ~ are essentially homological in
nature, but x is more subtle: difference be-
tween px € ma54,(T(vx)) and the Hurewicz-
Thom image UNh(pyx) = [X] € Hyp(X).

e It turns out that the mod 4 reduction
[6*(X)] € Z4 is determined by ¢ and ~, and
hence by Py : H2#(X;Zo) — H*(X;Z4) as
in Theorem 1.

e The mod 8 signature ¢*(X) € Zg is
in general determined by ¢,~v and also x.
However, if the Bockstein hypothesis
of Theorem 2 is satisfied then ¢*(X) is
determined only by ¢,~, and hence by
Py H?2K(X:74) — H¥(X:;Zg) as in
the conclusion.
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The L-groups of Z

e EXxact sequence relating the quadratic,
symmetric Poincaré and normal cobordism
groups of chain complexes with duality

oo = Lp(Z) — L'™(Z) — L™(Z) = Lyp—1(Z) — ...

nmod4  L,(z) L™(Z) L™(Z)

0 7 7 Zs
1 0 7> 7>
2 7 0 0
3 0 0 7

e The signature o* : Qf, — Z and the mod 8
signature o* : Qi\% — Zg extend to a natural
transformation of exact sequences

Ln(Z)— Q) —Lp_1(Z)
T

P

Ln(Z)—L"(Z)—L™(Z) — Lyp-1(Z)
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The symmetric and normal signatures
from the chain complex point of view

e The signature o*(X) € L*(Z) = Z of a
Poincaré space X is the algebraic cobor-
dism invariant of the ‘symmetric Poincaré
structure’ on C(X) given by the Poincaré
duality chain equivalence

[(X]Nn—: C(X)" " =C(X)

e The mod 8 signatures*(X) € L**(Z) = Zg
of a normal space X is the algebraic cobor-
dism invariant of the ‘algebraic normal struc-
ture’ on C(X), given by the chain map

[(X]Nn—: C(X)"* — C(X)

and the ‘chain bundle’ properties C(X) in-
herits from vy : X — BSG(j) and px :
S4k+T 5 T(vy).
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Steenrod and Pontrjagin squares

e Natural Alexander-Whitney-Steenrod diagonal
chain approximation for any space X

As: C(X)r = (C(X)®C(X))r4s (52 0)
such that up to signs

T(xQy) =y®z, Ag: C(X) = C(X)®C(X)
chain map, Aq1: Ag~T Ag chain homotopy,...

e Steenrod squares forany k>r >0

Sq": H¥(X:7Z5) — HN (X Z5); o — (xQx)Aj_,
For k=1r S¢f(x) =zUz € H?*(X;Z5).

e Pontrjagin squares for any 3> 1, k>0

Poj: HN(X; Zoj) — H?K(X; Zy;) ;
r— (r®@x)(Ag+dAq)
Reduction mod Zy;: Paj(z) —xUz € H?K(X; Zy,)
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The symmetric QQ-groups

o Let A be a commutative ring. Given a f.qg.
free A-module chain complex C' let T € Z»
acton CR4C by T(x®y) =ty R .

The symmetric QQ-groups of C are
QM(C) = H"(Z2;,C®40C)
— Hn<HOmz[ZQ](W, C ®A C))
with W=free Z[Zy]-module resolution of Z,

d=14(—1)°T : W, = Z[Zo] — W,_1 = Z[Z>]

e An element ¢ € Q"(C) is represented by
¢ ={¢s: C" = Hom4(Cr, A) — Cn—fr—l—s |s > 0}
such that up to signs

dps + ¢sd” + ¢s—1+ ¢51 =0 (¢_1=0)
A chain map f: C — D induces morphisms

7 QUC) = QUD); ¢ — (fRf) = fof* .
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Symmetric complexes

e An n-dimensional symmetric complex (C, ¢)
over A is an n-dimensional f.g. free A-
module chain complex C together with an
element ¢ € Q™(C).

e A symmetric complex (C, ¢) is Poincaré if
oo . C"* — C is a chain equivalence.

e Example For

c: - =>0—=>0,—=0—...

an element ¢ € Q**(C) is a symmetric form
bo 1 C%F x €% — A. In this case
Poincaré complex = nonsingular form.

e L"(Z) = cobordism group of n-dimensional
symmetric Poincaré complexes over Z.
For n = 4k isomorphism

L (7) = 7; (C, ¢) s signature(F2*(C), ¢p)
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The symmetric complex of a normal
space

The symmetric construction on a space X

A Hp(X) — Q"(C(X))

is induced by the Alexander-Whitney-Steenrod
diagonal chain approximation.

An n-dimensional normal space X deter-
mines an n-dimensional symmetric complex
(C(X), o) over Z, with

¢ = A[X] € Q"(C(X))
such that
do=[X]N—-:C(X)"* = C(X) .

X is Poincaré if and only if (C(X),¢) is a
symmetric Poincaré complex, i.e. ¢g is a
chain equivalence.
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Universal examples for the
Steenrod squares

For any » > O the Z>-module chain complex

B:.--—0—>B=%7>—0—...
has Q™(B) =7 ; ¢+ ¢n_2r (n>2r)

For any space X and any element
y € H' (X, Z>) = Ho(Homz,(C(X;Z3), B))
the composite

%
Hn(X; Z2)2-QM(C(X; Z2))-Q"(B) = Z5
is given by z — (Sq" " (y), x).

For 4k-dimensional normal space X,
x = [X] € Hyp(X;Z3), y = vo(vx) € H2H(X; Zp)
obtain

(Sq%*(y), z) = (vor(vx) Uvop(vx), [X]) € Zo
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Universal examples for the
Pontrjagin squares

e For any 5 > 1 the Zg;-module chain com-
plex concentrated in dimensions 2k,2k + 1

B:B(Qj,Qk):---—>O—>22§>Z4j—>0—>...
has HQk(B) — ZQj, H2k+1(B) = 0 and

Q¥ (B) = Z4; ; ¢+ ¢+ do1 .

e For any space X and any element
y € HM(X ;7o) = Ho(Homg, (C(X; Zsj), B))
the composite
Hap(X; Zag) D QR (C(X; Zap) o QR (B) 22 Ly,
is given by z +— (P2;(y),x).

e For 4k-dimensional normal space X, =z =
(X1 € Hap(X:Z4), y = vop(vx) € H?F(X; 75)
obtain (P(vor(vx)), [X]) € Za4.
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The hyperquadratic Q-groups

e T he hyperquadratic ()-groups of a f.g. free
A-module chain complex C

QM(C) = Hn(HOmz[ZQ](W,C@)A C))
W = complete free Z[Z»]-module resolu-
tion of Z, for all s € Z
d=14(=1)5T: Ws=27Z[Zs] — W,_1=17[Z5]

e An element 6 € Q"(C) is represented by
9 — {93 CT — HomA(Cfr, A) — CTL—’I"—I—S | S & Z}
such that dfs + 0sd* + 0,_1 + 6*_; = 0 (&)

e [ he symmetric construction on any S-dual
of X is the hyperquadratic construction

A HY(X) = Q(C(X)™)
which generalizes dual Steenrod squares x(Sq)".
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Chain bundles

e A chain bundle (C,~) is a Z-module chain
complex C' together with an element
~ € Q%(C—*). The Wu classes of (C,~) are

Vo (7)1 Hop(C) = Zo; x — y_g(x) ().

e Theorem (R., 1978) A spherical fibration
v.X — BSG(j)Adetermines a chain bundle
(C(X),(v) = AU) with i
A HI(T(v)) = QI(C(T(»)™*) = Q°(C(X)™*)
v2:(7) = v2.(v) € QUC(X)™*) = H**(X; Zp)

e Theorem (Weiss, 1985) The chain bundle
(B,B) with B: ...—7-27-97-2.7 and
vor(B) : Hop(B) iZQ is universal: for any
Z-module chain complex C' isomorphism

Ho(Homz(C, B)) = H2*(C; Zy) = QO(C~*);

v = v2,(7) = (V)% (B) = .
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The twisted quadratic QQ-groups

e Definition (Weiss) The twisted quadratic
Q-groups Q«(C,~) fit into exact sequence

= QMO - Qn(C, ) QM) OO . ..
with Qn(C,~) = Q*(C); (6, x) — ¢ |
I Q"(C) — @n(c); ¢ — {ps — ¢6’Ys—n¢0|5 c 7}

e An element (¢, x) € Qn(C,~) is represented
by collections of Z-module morphisms

¢={¢s: C" — Cn—r+3|ras > 0}

X =1{xs:C" = Cp_rq54+1|7=>0,s € Z}
such that up to signs
dos + ¢sd™ + Pps_1 + ij;_l =0 (¢_-1=0)
Ps — doYVs—n®0 = dxs + xsd" + Xs—1 + X5_1-
Nonlinear addition by

(6, 2)+ (¢, X') = {Ps+ 05}, {xs+Xs+P5Vs—nd0})
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T he algebraic normal complex of a
normal space

e An n-dimensional normal space (X,vyx,px)
determines an n-dimensional algebraic nor-
mal complex (C(X),¢,v,x) over Z, with
o = A[X], vy =~(vx), such that

¢o = [X] N — 1 H*(X) = Hp—«(X)
Pn—2r(z)(x) = (5¢"(2), [X]) € Z>

Y—2r(¥)(y) = (vr(vx),y) € Z2

(X1 N Sq"(z) = [X] N (vr(vx) Uz) € Ho(X;Z2)
for any x € H" " "(X;Z>), y € H-(X; Z>).

e The element (¢,x) € Qn(C(X),v) is the
‘algebraic normal invariant’ of (X, vy, px).
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Certain exact sequences

e Forv: X — BSG(j), (C,v) = (C(X),~v(v))
the Alexander-Whitney-Steenrod diagonal
chain approximation extends to a natural
transformation from the certain exact
sequence of Whitehead

rn—I—j—>7Tn—|—j(T(V))QHn—Fj(T(V))_>rn—|-j—1
o | PN
Q"T1(C)—Qn(C,7) QM(C)——Q™(C)
with @vthe Hurewicz map and
AU: Hyq {(T(v)) £ Ho(X) 2 QU(C)

e The mod 8 signature *(X) € Zg of a 4k-
dimensional normal space X is the evalua-
tion on px € myp4;(T'(vx)) of composite

Takt;(T(wx)) ~Qar(C, 1) 2Qar(B, B) = Zg
with v : C = C(Xz — B classifying v =
Y(vx) = va(vyx) € QU(C™*) = H?*(X; Z3).
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The proof of Theorem 1

The Z-module chain complex concentrated in
dimensions 2k,2k + 1

B: -3 0—537Z27-30—...

is an integral lift of the universal example B(2, 2k)
for Po: H25(X: 7o) — H*(X;Z4). Let

v = vy(vx) € Ho(Homy(C(X), B)) = H?*(X; Zy).
The commutative diagram

Tak+i (T (vx)) Hapt;(T(vx))
AU
Qar(C(X),v(vx))——Q*(C(X))
U% U%

Qar(B, B) = ZLg——Q*(B) = Z4
sends px € mgp4;(T'(vx)) to

[67(X)] = (P2(v2r(vx)), [X]) € Zs .
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The proof of Theorem 2

The Z-module chain complex concentrated in
dimensions 2k,2k + 1

B: - —>0—2Z%750—...
is an integral lift of the universal example B(4,2k)
for Py : H2K(X:7Z4) — H¥(X; Zg). If
Sa(vop(vx)) =0 € H2T1(X; 2o)

then vop(vx) € H2%(X;Z5) can be lifted to
v e H**(X; Z4) = Ho(Homz(C(X), B)).
The commutative diagram

Tagt i (T(vx)) ——Hypy (T (vx))

\AU
Q4k<C(X>,v(ux>>—>Q4k<T(X>>
Vo v%
Qar(B, B) ———Q*(B) = Zg

sends px € mar4;(T'(vx)) to
6 (X) = (Pa(v), [X]) € Zg .
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Here be dragons!

20 L
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The mod 2™12 signature for m > 1

o Let X be a 4k-dimensional normal space
S.t. U2k(VX) c ker(52m+1) = im(sz(X; ZQm_|_1))

C H?K(X;Zp). Forany lift v € H2K(X; Zom+1)
of vor(vyx) define the mod 2™12 signature
0" (X,v) = (Pom+1(v), [X]) € Zom+2 -

For m = 1 agrees with previous definition
of mod 8 signature by Theorem 2.

e [ heorem m + 1 For a 4k-dimensional Poincaré
X and any lift v € H?*(X; Zom41) of vop(vx) €
im(H2(X)) C H?K(X; Zy)

[0"(X)] = 6" (X,v) = (Pom+1(v), [X]) € Zomi2 .

e Proof The integral lift of B(2™1+1 2k) with
d = 2m—|—1 . BQk—I—l =7 — BQk = 7 has

Qar(B,B) = Q*(B) = Zym2 -
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Wu orientations for Poincaré cobordism?

e Forany m > 1 let Q) (§,m+1) be the cobor-
dism group of 4k-dimensional normal spaces
X such that

vor(Vx) € Ker(6om+1) = IM(H2P(X; Zom+1))

C H?K(X; Zp) with a lift v € H?*(X; Zomt1).
The mod 2™*2 signature is a morphism

g Qé\;<52m—|—l> — ZQm—l-Q; (X,’U) — <P2m+1(v)7 [X]>

e Conjecture T here exist Wu-orientation maps

Qly. — QU (0omr1); X = (X, v)

to fit into commutative diagram such that

*

QL —C Z
o

Q% <52m+1 > —— sz+2
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