THE SIGNATURE MOD 2, 4 AND 8

Andrew Ranicki (Edinburgh)
Larry Taylor (Notre Dame)

Oxford, 31st January 2005

The signature mod 2, 4 and 8 of a 4k-dimensional Poincaré space X

- Theorem $\sigma^*(X) \equiv \chi(X) \pmod{2}$ with $\sigma^*(X)$, $\chi(X) \in \mathbb{Z}$ the signature and Euler characteristic.
- Theorem $\sigma^*(X) \equiv \langle \mathcal{P}_2(v), [X] \rangle$ (mod 4) $\mathcal{P}_2: H^{2k}(X; \mathbb{Z}_2) \to H^{4k}(X; \mathbb{Z}_4)$ Pontrjagin square, $v = v_{2k}(\nu_X) \in H^{2k}(X; \mathbb{Z}_2)$ the $2k^{\text{th}}$ Wu class of the Spivak normal fibration ν_X $\langle x \cup x, [X] \rangle = \langle v \cup x, [X] \rangle \in \mathbb{Z}_2 \ (x \in H^{2k}(X; \mathbb{Z}_2))$
- Theorem $\sigma^*(X) \equiv \langle \widetilde{v} \cup \widetilde{v}, [X] \rangle$ (mod 8) for any integral lift $\widetilde{v} \in H^{2k}(X)$ of v.
- To what extent are these classical results for the signature of a Poincaré space true for the 'mod 8 signature' of a 'normal space'?

Spherical fibrations

- A <u>spherical fibration</u> is a Serre fibration $\nu: S^{j-1} \to E \to X$.
- The Thom space $T(\nu)$ is the mapping cone of $E \to X$. Will only consider oriented case, so have Thom class $U \in \widetilde{H}^j(T(\nu))$ with

$$U \cap -: \widetilde{H}_{*+j}(T(\nu)) \stackrel{\cong}{\to} H_*(X) ,$$

$$U \cup -: H^*(X) \stackrel{\cong}{\to} \widetilde{H}^{*+j}(T(\nu)) .$$

- Wu classes $v_r(\nu) \in H^r(X; \mathbb{Z}_2) \ (r \geqslant 0)$ characterized by dual Steenrod squares $\chi(Sq)^r(U) = U \cup v_r(\nu) \in \widetilde{H}^{r+j}(T(\nu); \mathbb{Z}_2)$.
- Spherical fibrations classified by maps $\nu: X \to BSG(j)$. Stable classifying space $BSG = \varinjlim_{j} BSG(j)$, $\pi_*(BSG) = \pi_{*-1}^S$ with $H_*(BSG)$, $H^*(BSG)$ finite for $* \neq 0$.

Normal spaces

- Definition (Quinn, 1972) An <u>n</u>-dimensional normal space (X, ν_X, ρ_X) is a space X together with a spherical fibration $\nu_X \colon X \to BSG(j)$ and a map $\rho_X \colon S^{n+j} \to T(\nu_X)$. The <u>fundamental class</u> of X is the Hurewicz-Thom image $[X] = U \cap h(\rho_X) \in \widetilde{H}_{n+j}(T(\nu_X)) \cong H_n(X)$.
- Thom-Wu formula: for any $x \in H^{n-r}(X; \mathbb{Z}_2)$ $[X] \cap Sq^r(x) = [X] \cap (v_r(\nu_X) \cup x) \in H_0(X; \mathbb{Z}_2)$
- Will assume that the torsion-free quotients $F^r(X) = H^r(X)/\text{torsion}$ are finitely generated, e.g. if X is finite, or $H^r(X)$ is torsion.

Poincaré spaces

• <u>Definition</u> An <u>n-dimensional Poincaré space</u> X is a finite CW complex with fundamental class $[X] \in H_n(X)$ and duality isomorphisms

$$[X] \cap - : H^{n-*}(X) \stackrel{\cong}{\longrightarrow} H_*(X)$$

- Canonical example An oriented n-dimensional manifold is an n-dimensional Poincaré space.
- Theorem (Spivak 1965, Wall, Browder) An n-dimensional Poincaré space X is an n-dimensional normal space, with ν_X the 'Spivak normal fibration'

$$\nu_X \colon S^{j-1} \to \partial W \to W \simeq X$$

defined by a regular neighbourhood $(W, \partial W)$ of $X \subset S^{n+j}$ (j large), and

$$\rho_X \colon S^{n+j} \to W/\partial W \simeq T(\nu_X)$$

the degree 1 collapse map.

Normal maps

• A <u>normal map</u> of n-dimensional normal spaces $(f,b): X \to Y$ is a degree 1 map $f: X \to Y$

$$f_*[X] = [Y] \in H_n(Y)$$

together with a map of normal fibrations b: $\nu_X \to \nu_Y$ s.t. $T(b)\rho_X = \rho_Y \in \pi_{n+k}(T(\nu_Y))$.

- Proposition (Quinn) The mapping cylinder W of a n-dimensional normal map (f,b): $X \to Y$ defines an (n+1)-dimensional normal space cobordism (W;X,Y).
- Basic question of surgery theory: is a Poincaré space homotopy equivalent to a manifold? Surgery obstruction to a normal map (f,b): $X \to Y$ from a manifold X to a Poincaré space Y being bordant to a homotopy equivalence. Is a normal space bordant to a Poincaré space? Same obstruction.

The signature of a 4k-dimensional normal space X

Symmetric intersection pairing

$$\phi: F^{2k}(X) \times F^{2k}(X) \to \mathbb{Z} \; ; \; (x,y) \mapsto \langle x \cup y, [X] \rangle$$

Nonsingular for Poincaré X .

ullet The <u>signature</u> of X is

$$\sigma^*(X) = \operatorname{signature}(F^{2k}(X), \phi) \in \mathbb{Z}$$

ullet Warning For non-Poincaré X can have

$$\sigma^*(X) \not\equiv \chi(X) \pmod{2}$$

Proof For any finite CW complex X with odd $\chi(X) \in \mathbb{Z}$ (e.g. $X = \{*\}$) and any ν_X : $X \to BSG(j)$ set $\rho_X = *: S^{4k+j} \to T(\nu_X)$, so that $[X] = 0 \in H_{4k}(X)$, $\sigma^*(X) = 0 \in \mathbb{Z}$.

Normal and Poincaré cobordism (I)

- Cobordism of normal and Poincaré spaces, with groups Ω_n^N , Ω_n^P .
- Signature $\sigma^*(X) \in \mathbb{Z}$ is a Poincaré cobordism invariant, with mod 2 reduction $\chi(X) \in \mathbb{Z}_2$
- Theorem (Quinn) 'Pontrjagin-Thom' isomorphisms for normal space cobordism

 $\Omega_n^N \stackrel{\cong}{\Longrightarrow} \pi_n(MSG)$; $(X, \nu_X, \rho_X) \mapsto \nu_X \rho_X$ with MSG the Thom spectrum of the universal spherical fibration $1: BSG \to BSG$. Proof Every normal space (X, ν_X, ρ_X) is cobordant to $(BSG, 1, \nu_X \rho_X)$ by mapping cylinder of normal map $\nu_X: X \to BSG$.

• The signature and mod 2 Euler characteristic are not normal space cobordism invariants: $F^*(BSG) = 0 \ (* \neq 0), \ \chi(\{*\}) = 1.$

Normal and Poincaré cobordism (II)

• Theorem (Levitt-Jones-Quinn-Hausmann-Vogel, 1972-1988) For $n \geqslant 4$ there is an exact sequence

$$\cdots \to L_n(\mathbb{Z}) \to \Omega_n^P \to \Omega_n^N \to L_{n-1}(\mathbb{Z}) \to \cdots$$

with $L_*(\mathbb{Z})$ the simply-connected surgery obstruction groups.

Theorem (Brumfiel and Morgan, 1976)
 The signature and the mod-8-Hirzebruch number define surjections

$$\sigma^*: \Omega^P_{4k} \to \mathbb{Z} \; ; \; X \mapsto \sigma^*(X) \; ,$$

$$\widehat{\sigma}^*: \Omega^N_{4k} \to \mathbb{Z}_8 \; ; \; X \mapsto \langle \nu_X^*(\ell_{4k}), [X] \rangle$$

with $\ell_{4k} \in H^{4k}(BSG; \mathbb{Z}_8)$ the mod 8 ℓ -class. σ^* and $\widehat{\sigma}^*$ are isomorphisms for k=1. The forgetful maps $\Omega^P_{4k} \to \Omega^N_{4k} \ (k \geqslant 1)$ are surjections, since $L_{4k-1}(\mathbb{Z}) = 0$.

The mod 8 signature of a 4k-dimensional normal space X

 <u>Definition</u> The <u>mod 8 signature</u> is the Brumfiel-Morgan mod 8 Hirzebruch number

$$\hat{\sigma}^*(X) = \langle \nu_X^*(\ell_{4k}), [X] \rangle \in \mathbb{Z}_8.$$

- The mod 8 signature of a Poincaré X is the signature mod 8, $\hat{\sigma}^*(X) = [\sigma^*(X)] \in \mathbb{Z}_8$.
- Every X is normal cobordant to a Poincaré space Y, with $\widehat{\sigma}^*(X) = [\sigma^*(Y)] \in \mathbb{Z}_8$.
- Warning For non-Poincaré X can have mod 8 signature \neq signature mod 8

$$\widehat{\sigma}^*(X) \neq [\sigma^*(X)] \in \mathbb{Z}_8$$
.

Proof Take $\nu_X = 1 : X = BSG(j) \to BSG(j)$. Every $d \neq 0 \in \mathbb{Z}_8$ is realized as $d = \widehat{\sigma}^*(X)$ for some $\rho_X : S^{4k+j} \to X$, but $\sigma^*(X) = 0 \in \mathbb{Z}$.

Homological formulae for the mod 2 and 4 signatures of normal spaces

• Theorem 1 (R.-T.) The mod 4 reduction of the mod 8 signature of a 4k-dimensional normal space X is

$$[\widehat{\sigma}^*(X)] = \langle \mathcal{P}_2(v_{2k}(\nu_X)), [X] \rangle \in \mathbb{Z}_4$$

with $\mathcal{P}_2: H^{2k}(X; \mathbb{Z}_2) \to H^{4k}(X; \mathbb{Z}_4)$ the Pontrjagin square.

(True for Poincaré X: Morita (1971), Brumfiel-Morgan (1974))

• Corollary (R.-T.) The mod 2 reduction of the mod 8 signature of a 4k-dimensional normal space X is

$$[\widehat{\sigma}^*(X)] = \langle v_{2k}(\nu_X) \cup v_{2k}(\nu_X), [X] \rangle \in \mathbb{Z}_2$$

Homological formulae for the mod 8 signature of certain normal spaces (I)

Theorem 2 (R.-T.) Let X be a 4k-dimensional normal space. Suppose that

$$v_{2k}(\nu_X) \in \ker(\delta_4 : H^{2k}(X; \mathbb{Z}_2) \to H^{2k+1}(X; \mathbb{Z}_2))$$

= $\operatorname{im}(H^{2k}(X; \mathbb{Z}_4) \to H^{2k}(X; \mathbb{Z}_2)),$

with δ_4 = the Bockstein for

$$0 \to \mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2 \to 0$$

For any lift $v \in H^{2k}(X; \mathbb{Z}_4)$ of $v_{2k}(\nu_X) \in H^{2k}(X; \mathbb{Z}_2)$

$$\hat{\sigma}^*(X) = \langle \mathcal{P}_4(v), [X] \rangle \in \mathbb{Z}_8$$

with $\mathcal{P}_4: H^{2k}(X; \mathbb{Z}_4) \to H^{4k}(X; \mathbb{Z}_8)$ the Pontrjagin square.

Homological formulae for the mod 8 signature of certain normal spaces (II)

Corollary (R.-T.) Suppose that

$$v_{2k}(\nu_X) \in \ker(\delta_{\infty} : H^{2k}(X; \mathbb{Z}_2) \to H^{2k+1}(X))$$

= $\operatorname{im}(H^{2k}(X) \to H^{2k}(X; \mathbb{Z}_2))$

with $\delta_{\infty} =$ the Bockstein for

$$0 \to \mathbb{Z} \stackrel{2}{\longrightarrow} \mathbb{Z} \to \mathbb{Z}_2 \to 0 \ .$$

For any lift $v \in H^{2k}(X)$ of $v_{2k}(\nu_X) \in H^{2k}(X; \mathbb{Z}_2)$

$$\langle x \cup x, [X] \rangle = \langle v \cup x, [X] \rangle \in \mathbb{Z}_2 \ (x \in H^{2k}(X))$$

and

$$\widehat{\sigma}^*(X) = \langle v \cup v, [X] \rangle \in \mathbb{Z}_8$$
.

(True for Poincaré X: Hirzebruch and Hopf (1958), van der Blij (1959))

Strategy of proofs (I)

- Use the chain complex theory of algebraic surgery to interpret the mod 8 signature $\widehat{\sigma}^*(X) \in \mathbb{Z}_8$ as the cobordism class of the 'algebraic normal complex' $(C(X), \phi, \gamma, \chi)$ of X, computing it as a 'characteristic number' of the 'algebraic normal structure' (ϕ, γ, χ) .
- $\phi = \{\phi_s | s \ge 0\}$ consists of the chain map $\phi_0 = [X] \cap -: C(X)^{4k-*} \to C(X)$

and the chain homotopies $\phi_{s+1}: \phi_s \simeq T\phi_s$, which determine the evaluation of the Steenrod and Pontrjagin squares on the fundamental class $[X] \in H_{4k}(X)$.

• γ is the 'chain bundle' of $\nu_X: X \to BSG(j)$, determined by Wu classes $v_*(\nu_X) \in H^*(X; \mathbb{Z}_2)$. χ is determined by $\rho_X \in \pi_{4k+j}(T(\nu_X))$.

Strategy of proofs (II)

- ϕ and γ are essentially homological in nature, but χ is more subtle: difference between $\rho_X \in \pi_{4k+j}(T(\nu_X))$ and the Hurewicz-Thom image $U \cap h(\rho_X) = [X] \in H_{4k}(X)$.
- It turns out that the mod 4 reduction $[\widehat{\sigma}^*(X)] \in \mathbb{Z}_4$ is determined by ϕ and γ , and hence by $\mathcal{P}_2 : H^{2k}(X; \mathbb{Z}_2) \to H^{4k}(X; \mathbb{Z}_4)$ as in Theorem 1.
- The mod 8 signature $\hat{\sigma}^*(X) \in \mathbb{Z}_8$ is in general determined by ϕ, γ and also χ . However, if the Bockstein hypothesis of Theorem 2 is satisfied then $\hat{\sigma}^*(X)$ is determined only by ϕ, γ , and hence by $\mathcal{P}_4: H^{2k}(X; \mathbb{Z}_4) \to H^{4k}(X; \mathbb{Z}_8)$ as in the conclusion.

The L-groups of $\mathbb Z$

 Exact sequence relating the quadratic, symmetric Poincaré and normal cobordism groups of chain complexes with duality

$$\cdots \to L_n(\mathbb{Z}) \to L^n(\mathbb{Z}) \to \widehat{L}^n(\mathbb{Z}) \to L_{n-1}(\mathbb{Z}) \to \ldots$$

$n \mod 4$	$L_n(\mathbb{Z})$	$L^n(\mathbb{Z})$	$\widehat{L}^n(\mathbb{Z})$	
0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_8	
1	0	\mathbb{Z}_2	\mathbb{Z}_2	
2	\mathbb{Z}_2	0	0	
3	0	0	\mathbb{Z}_2	

• The signature $\sigma^*:\Omega^P_{4k}\to\mathbb{Z}$ and the mod 8 signature $\widehat{\sigma}^*:\Omega^N_{4k}\to\mathbb{Z}_8$ extend to a natural transformation of exact sequences

$$L_{n}(\mathbb{Z}) \longrightarrow \Omega_{n}^{P} \longrightarrow \Omega_{n}^{N} \longrightarrow L_{n-1}(\mathbb{Z})$$

$$\downarrow \sigma^{*} \qquad \qquad \downarrow \widehat{\sigma}^{*} \qquad \qquad \downarrow$$

$$L_{n}(\mathbb{Z}) \longrightarrow L^{n}(\mathbb{Z}) \longrightarrow \widehat{L}^{n}(\mathbb{Z}) \longrightarrow L_{n-1}(\mathbb{Z})$$

The symmetric and normal signatures from the chain complex point of view

• The signature $\sigma^*(X) \in L^{4k}(\mathbb{Z}) = \mathbb{Z}$ of a Poincaré space X is the algebraic cobordism invariant of the 'symmetric Poincaré structure' on C(X) given by the Poincaré duality chain equivalence

$$[X] \cap -: C(X)^{n-*} \stackrel{\sim}{\longrightarrow} C(X)$$

• The mod 8 signature $\hat{\sigma}^*(X) \in \hat{L}^{4k}(\mathbb{Z}) = \mathbb{Z}_8$ of a normal space X is the algebraic cobordism invariant of the 'algebraic normal structure' on C(X), given by the chain map

$$[X] \cap -: C(X)^{n-*} \to C(X)$$

and the 'chain bundle' properties C(X) inherits from $\nu_X:X\to BSG(j)$ and $\rho_X:S^{4k+j}\to T(\nu_X).$

Steenrod and Pontrjagin squares

ullet Natural Alexander-Whitney-Steenrod diagonal chain approximation for any space X

$$\Delta_s \colon C(X)_r \to (C(X) \otimes C(X))_{r+s} \ (s \geqslant 0)$$
 such that up to signs

$$d\Delta_s + \Delta_s d + (1-T)\Delta_{s-1} = 0 \quad (\Delta_{-1} = 0)$$
 $T(x \otimes y) = y \otimes x, \ \Delta_0 \colon C(X) \to C(X) \otimes C(X)$ chain map, $\Delta_1 \colon \Delta_0 \simeq T\Delta_0$ chain homotopy,...

- Steenrod squares for any $k \ge r \ge 0$ $Sq^r \colon H^k(X; \mathbb{Z}_2) \to H^{k+r}(X; \mathbb{Z}_2); x \mapsto (x \otimes x) \Delta_{k-r}$ For $k = r \ Sq^k(x) = x \cup x \in H^{2k}(X; \mathbb{Z}_2).$
- Pontrjagin squares for any $j \geqslant 1$, $k \geqslant 0$

$$\mathcal{P}_{2j} \colon H^k(X; \mathbb{Z}_{2j}) \to H^{2k}(X; \mathbb{Z}_{4j}) ;$$

$$x \mapsto (x \otimes x)(\Delta_0 + d\Delta_1)$$

Reduction mod \mathbb{Z}_{2j} : $\mathcal{P}_{2j}(x) \mapsto x \cup x \in H^{2k}(X; \mathbb{Z}_{2j})$

The symmetric Q-groups

• Let A be a commutative ring. Given a f.g. free A-module chain complex C let $T \in \mathbb{Z}_2$ act on $C \otimes_A C$ by $T(x \otimes y) = \pm y \otimes x$. The symmetric Q-groups of C are

$$Q^{n}(C) = H^{n}(\mathbb{Z}_{2}; C \otimes_{A} C)$$

$$= H_{n}(\operatorname{Hom}_{\mathbb{Z}[\mathbb{Z}_{2}]}(W, C \otimes_{A} C))$$
with $W = \text{free } \mathbb{Z}[\mathbb{Z}_{2}]\text{-module resolution of } \mathbb{Z},$

$$d = 1 + (-1)^{s}T : W_{s} = \mathbb{Z}[\mathbb{Z}_{2}] \to W_{s-1} = \mathbb{Z}[\mathbb{Z}_{2}]$$

• An element $\phi \in Q^n(C)$ is represented by $\phi = \{\phi_s: C^r = \operatorname{Hom}_A(C_r,A) \to C_{n-r+s} \,|\, s \geqslant 0\}$ such that up to signs

$$d\phi_s + \phi_s d^* + \phi_{s-1} + \phi_{s-1}^* = 0 \quad (\phi_{-1} = 0)$$

A chain map $f: C \to D$ induces morphisms $f^{\mathcal{H}}: Q^n(C) \to Q^n(D); \phi \mapsto (f \otimes f)\phi = f\phi f^*$.

Symmetric complexes

- An <u>n</u>-dimensional symmetric complex (C, ϕ) over A is an n-dimensional f.g. free A-module chain complex C together with an element $\phi \in Q^n(C)$.
- A symmetric complex (C, ϕ) is <u>Poincaré</u> if $\phi_0: C^{n-*} \to C$ is a chain equivalence.
- Example For

$$C: \cdots \to 0 \to C_{2k} \to 0 \to \dots$$

an element $\phi \in Q^{4k}(C)$ is a symmetric form $\phi_0: C^{2k} \times C^{2k} \to A$. In this case Poincaré complex = nonsingular form.

• $L^n(\mathbb{Z}) = \text{cobordism group of } n\text{-dimensional}$ symmetric Poincaré complexes over \mathbb{Z} . For n = 4k isomorphism

$$L^{4k}(\mathbb{Z}) \stackrel{\cong}{\longrightarrow} \mathbb{Z}; (C, \phi) \mapsto \operatorname{signature}(F^{2k}(C), \phi_0)$$

The symmetric complex of a normal space

ullet The symmetric construction on a space X

$$\Delta : H_n(X) \to Q^n(C(X))$$

is induced by the Alexander-Whitney-Steenrod diagonal chain approximation.

• An n-dimensional normal space X determines an n-dimensional symmetric complex $(C(X), \phi)$ over \mathbb{Z} , with

$$\phi = \Delta[X] \in Q^n(C(X))$$

such that

$$\phi_0 = [X] \cap -: C(X)^{n-*} \to C(X)$$
.

• X is Poincaré if and only if $(C(X), \phi)$ is a symmetric Poincaré complex, i.e. ϕ_0 is a chain equivalence.

Universal examples for the Steenrod squares

• For any $r \geqslant 0$ the \mathbb{Z}_2 -module chain complex

$$B:\cdots o 0 o B_r=\mathbb{Z}_2 o 0 o \ldots$$
 has $Q^n(B)\stackrel{\cong}{\longrightarrow} \mathbb{Z}_2$; $\phi\mapsto \phi_{n-2r}$ $(n\geqslant 2r)$

For any space X and any element

$$y \in H^r(X; \mathbb{Z}_2) = H_0(\operatorname{Hom}_{\mathbb{Z}_2}(C(X; \mathbb{Z}_2), B))$$

the composite

$$H_n(X; \mathbb{Z}_2) \xrightarrow{\Delta} Q^n(C(X; \mathbb{Z}_2)) \xrightarrow{y^{\%}} Q^n(B) \cong \mathbb{Z}_2$$
 is given by $x \mapsto \langle Sq^{n-r}(y), x \rangle$.

• For 4k-dimensional normal space X, $x=[X]\in H_{4k}(X;\mathbb{Z}_2), \ y=v_{2k}(\nu_X)\in H^{2k}(X;\mathbb{Z}_2)$ obtain

$$\langle Sq^{2k}(y), x \rangle = \langle v_{2k}(\nu_X) \cup v_{2k}(\nu_X), [X] \rangle \in \mathbb{Z}_2$$

Universal examples for the Pontrjagin squares

• For any $j \geqslant 1$ the \mathbb{Z}_{4j} -module chain complex concentrated in dimensions 2k, 2k+1

$$B=B(2j,2k):\cdots o 0 o \mathbb{Z}_2 \stackrel{2j}{\longrightarrow} \mathbb{Z}_{4j} o 0 o \ldots$$
 has $H_{2k}(B)=\mathbb{Z}_{2j},\ H_{2k+1}(B)=0$ and
$$Q^{4k}(B)\stackrel{\cong}{\longrightarrow} \mathbb{Z}_{4j}\;;\; \phi\mapsto \phi_0+d\phi_1\;.$$

For any space X and any element

$$y \in H^{2k}(X; \mathbb{Z}_{2j}) = H_0(\operatorname{Hom}_{\mathbb{Z}_{4j}}(C(X; \mathbb{Z}_{4j}), B))$$
 the composite

$$H_{4k}(X; \mathbb{Z}_{4j}) \stackrel{\Delta}{\longrightarrow} Q^{4k}(C(X; \mathbb{Z}_{4j})) \stackrel{y\%}{\longrightarrow} Q^{4k}(B) \cong \mathbb{Z}_{4j}$$
 is given by $x \mapsto \langle \mathcal{P}_{2j}(y), x \rangle$.

• For 4k-dimensional normal space X, $x = [X] \in H_{4k}(X; \mathbb{Z}_4)$, $y = v_{2k}(\nu_X) \in H^{2k}(X; \mathbb{Z}_2)$ obtain $\langle \mathcal{P}_2(v_{2k}(\nu_X)), [X] \rangle \in \mathbb{Z}_4$.

The hyperquadratic Q-groups

• The <u>hyperquadratic Q-groups</u> of a f.g. free A-module chain complex C

$$\widehat{Q}^n(C) = H_n(\operatorname{Hom}_{\mathbb{Z}[\mathbb{Z}_2]}(\widehat{W}, C \otimes_A C))$$

 $\widehat{W}=$ complete free $\mathbb{Z}[\mathbb{Z}_2]$ -module resolution of \mathbb{Z} , for all $s\in\mathbb{Z}$

$$d = 1 + (-1)^s T : \widehat{W}_s = \mathbb{Z}[\mathbb{Z}_2] \to \widehat{W}_{s-1} = \mathbb{Z}[\mathbb{Z}_2]$$

- An element $\theta \in \widehat{Q}^n(C)$ is represented by $\theta = \{\theta_s : C^r = \operatorname{Hom}_A(C_r, A) \to C_{n-r+s} \mid s \in \mathbb{Z}\}$ such that $d\theta_s + \theta_s d^* + \theta_{s-1} + \theta_{s-1}^* = 0 \ (\pm)$
- ullet The symmetric construction on any S-dual of X is the hyperquadratic construction

$$\widehat{\Delta}: H^*(X) \to \widehat{Q}^*(C(X)^{-*})$$

which generalizes dual Steenrod squares $\chi(Sq)^r$.

Chain bundles

- A <u>chain bundle</u> (C, γ) is a \mathbb{Z} -module chain complex C together with an element $\gamma \in \widehat{Q}^0(C^{-*})$. The <u>Wu classes</u> of (C, γ) are $v_{2k}(\gamma) : H_{2k}(C) \to \mathbb{Z}_2; x \mapsto \gamma_{-4k}(x)(x)$.
- Theorem (R., 1978) A spherical fibration $\nu: X \to BSG(j)$ determines a chain bundle $(C(X), \gamma(\nu) = \widehat{\Delta}U)$ with $\widehat{\Delta}: \widetilde{H}^j(T(\nu)) \to \widehat{Q}^j(\widetilde{C}(T(\nu))^{-*}) = \widehat{Q}^0(C(X)^{-*})$ $v_{2*}(\gamma) = v_{2*}(\nu) \in \widehat{Q}^0(C(X)^{-*}) = H^{2*}(X; \mathbb{Z}_2)$
- Theorem (Weiss, 1985) The chain bundle (B,β) with $B: \ldots \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z}$ and $v_{2k}(\beta): H_{2k}(B) \stackrel{\cong}{\to} \mathbb{Z}_2$ is universal: for any \mathbb{Z} -module chain complex C isomorphism

$$H_0(\operatorname{Hom}_{\mathbb{Z}}(C,B)) = H^{2*}(C;\mathbb{Z}_2) \stackrel{\cong}{\to} \widehat{Q}^0(C^{-*});$$
$$v = v_{2*}(\gamma) \mapsto (v^*)^{\%}(\beta) = \gamma.$$

The twisted quadratic Q-groups

• <u>Definition</u> (Weiss) The <u>twisted quadratic</u> Q-groups $Q_*(C, \gamma)$ fit into exact sequence

$$\dots \to \widehat{Q}^{n+1}(C) \to Q_n(C,\gamma) \to Q^n(C) \xrightarrow{J_{\gamma}} \widehat{Q}^n(C) \to \dots$$
with $Q_n(C,\gamma) \to Q^n(C)$; $(\phi,\chi) \mapsto \phi$,
$$J_{\gamma} : Q^n(C) \to \widehat{Q}^n(C)$$
; $\phi \mapsto \{\phi_s - \phi_0^* \gamma_{s-n} \phi_0 | s \in \mathbb{Z}\}$

• An element $(\phi, \chi) \in Q_n(C, \gamma)$ is represented by collections of \mathbb{Z} -module morphisms

$$\phi = \{\phi_s : C^r \to C_{n-r+s} \mid r, s \geqslant 0\}$$

$$\chi = \{\chi_s : C^r \to C_{n-r+s+1} \mid r \geqslant 0, s \in \mathbb{Z}\}$$

such that up to signs

$$d\phi_s + \phi_s d^* + \phi_{s-1} + \phi_{s-1}^* = 0 \quad (\phi_{-1} = 0)$$

$$\phi_s - \phi_0^* \gamma_{s-n} \phi_0 = d\chi_s + \chi_s d^* + \chi_{s-1} + \chi_{s-1}^*.$$

Nonlinear addition by

$$(\phi, \chi) + (\phi', \chi') = (\{\phi_s + \phi'_s\}, \{\chi_s + \chi'_s + \phi_0^* \gamma_{s-n} \phi'_0\})$$

The algebraic normal complex of a normal space

• An n-dimensional normal space (X, ν_X, ρ_X) determines an n-dimensional algebraic normal complex $(C(X), \phi, \gamma, \chi)$ over \mathbb{Z} , with $\phi = \Delta[X]$, $\gamma = \gamma(\nu_X)$, such that

$$\phi_0 = [X] \cap -: H^*(X) \to H_{n-*}(X)$$

$$\phi_{n-2r}(x)(x) = \langle Sq^r(x), [X] \rangle \in \mathbb{Z}_2$$

$$\gamma_{-2r}(y)(y) = \langle v_r(\nu_X), y \rangle \in \mathbb{Z}_2$$

$$[X] \cap Sq^r(x) = [X] \cap (v_r(\nu_X) \cup x) \in H_0(X; \mathbb{Z}_2)$$
for any $x \in H^{n-r}(X; \mathbb{Z}_2), y \in H_r(X; \mathbb{Z}_2)$.

• The element $(\phi, \chi) \in Q_n(C(X), \gamma)$ is the 'algebraic normal invariant' of (X, ν_X, ρ_X) .

Certain exact sequences

• For $\nu: X \to BSG(j)$, $(C, \gamma) = (C(X), \gamma(\nu))$ the Alexander-Whitney-Steenrod diagonal chain approximation extends to a natural transformation from the certain exact sequence of Whitehead

$$\Gamma_{n+j} \longrightarrow \pi_{n+j}(T(\nu)) \stackrel{h}{\to} \widetilde{H}_{n+j}(T(\nu)) \rightarrow \Gamma_{n+j-1}$$

$$\downarrow \qquad \qquad \downarrow \Delta U \qquad \downarrow \Delta U$$

$$\widehat{Q}^{n+1}(C) \longrightarrow Q_n(C,\gamma) \longrightarrow Q^n(C) \stackrel{J_{\gamma}}{\longrightarrow} \widehat{Q}^n(C)$$
with h the Hurewicz map and
$$\Delta U \colon \widetilde{H}_{n+j}(T(\nu)) \cong H_n(X) \stackrel{\Delta}{\to} Q^n(C)$$

• The mod 8 signature $\widehat{\sigma}^*(X) \in \mathbb{Z}_8$ of a 4k-dimensional normal space X is the evaluation on $\rho_X \in \pi_{4k+j}(T(\nu_X))$ of composite $\pi_{4k+j}(T(\nu_X)) \rightarrow Q_{4k}(C,\gamma) \stackrel{v_{\%}}{\rightarrow} Q_{4k}(B,\beta) = \mathbb{Z}_8$ with $v: C = C(X) \rightarrow B$ classifying $\gamma = \gamma(\nu_X) = v_{2*}(\nu_X) \in \widehat{Q}^0(C^{-*}) = H^{2*}(X;\mathbb{Z}_2)$.

The proof of Theorem 1

The \mathbb{Z} -module chain complex concentrated in dimensions 2k, 2k+1

$$B: \cdots \to 0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to 0 \to \cdots$$

is an integral lift of the universal example B(2,2k) for $\mathcal{P}_2: H^{2k}(X;\mathbb{Z}_2) \to H^{4k}(X;\mathbb{Z}_4)$. Let $v = v_{2k}(\nu_X) \in H_0(\operatorname{Hom}_{\mathbb{Z}}(C(X),B)) = H^{2k}(X;\mathbb{Z}_2)$. The commutative diagram

$$\pi_{4k+j}(T(\nu_X)) \longrightarrow \widetilde{H}_{4k+j}(T(\nu_X))$$

$$\downarrow \qquad \qquad \downarrow \Delta U$$

$$Q_{4k}(C(X), \gamma(\nu_X)) \longrightarrow Q^{4k}(C(X))$$

$$\downarrow v \%$$

$$Q_{4k}(B, \beta) = \mathbb{Z}_8 \longrightarrow Q^{4k}(B) = \mathbb{Z}_4$$
sends $\rho_X \in \pi_{4k+j}(T(\nu_X))$ to
$$[\widehat{\sigma}^*(X)] = \langle \mathcal{P}_2(v_{2k}(\nu_X)), [X] \rangle \in \mathbb{Z}_4 \ .$$

The proof of Theorem 2

The \mathbb{Z} -module chain complex concentrated in dimensions 2k, 2k+1

$$B: \cdots \to 0 \to \mathbb{Z} \xrightarrow{4} \mathbb{Z} \to 0 \to \cdots$$

is an integral lift of the universal example B(4,2k) for $\mathcal{P}_4: H^{2k}(X;\mathbb{Z}_4) \to H^{4k}(X;\mathbb{Z}_8)$. If

$$\delta_4(v_{2k}(\nu_X)) = 0 \in H^{2k+1}(X; \mathbb{Z}_2)$$

then $v_{2k}(\nu_X) \in H^{2k}(X; \mathbb{Z}_2)$ can be lifted to $v \in H^{2k}(X; \mathbb{Z}_4) = H_0(\operatorname{Hom}_{\mathbb{Z}}(C(X), B)).$

The commutative diagram

$$\pi_{4k+j}(T(\nu_X)) \xrightarrow{h} \widetilde{H}_{4k+j}(T(\nu_X))$$

$$\downarrow \qquad \qquad \downarrow \Delta U$$

$$Q_{4k}(C(X), \gamma(\nu_X)) \xrightarrow{} Q^{4k}(C(X))$$

$$\downarrow v \% \qquad \qquad \downarrow v \%$$

$$Q_{4k}(B, \beta) \xrightarrow{\cong} Q^{4k}(B) = \mathbb{Z}_8$$

sends $\rho_X \in \pi_{4k+j}(T(\nu_X))$ to

$$\hat{\sigma}^*(X) = \langle \mathcal{P}_4(v), [X] \rangle \in \mathbb{Z}_8$$
.

Here be dragons!

The mod 2^{m+2} signature for $m \geqslant 1$

• Let X be a 4k-dimensional normal space s.t. $v_{2k}(\nu_X) \in \ker(\delta_{2^{m+1}}) = \operatorname{im}(H^{2k}(X; \mathbb{Z}_{2^{m+1}}))$ $\subseteq H^{2k}(X; \mathbb{Z}_2)$. For any lift $v \in H^{2k}(X; \mathbb{Z}_{2^{m+1}})$ of $v_{2k}(\nu_X)$ define the $\operatorname{mod} 2^{m+2}$ signature

$$\widehat{\sigma}^*(X,v) = \langle \mathcal{P}_{2m+1}(v), [X] \rangle \in \mathbb{Z}_{2m+2}$$
.

For m=1 agrees with previous definition of mod 8 signature by Theorem 2.

• Theorem m+1 For a 4k-dimensional Poincaré X and any lift $v \in H^{2k}(X; \mathbb{Z}_{2^{m+1}})$ of $v_{2k}(\nu_X) \in \operatorname{im}(H^{2k}(X)) \subseteq H^{2k}(X; \mathbb{Z}_2)$

$$[\sigma^*(X)] = \widehat{\sigma}^*(X, v) = \langle \mathcal{P}_{2m+1}(v), [X] \rangle \in \mathbb{Z}_{2m+2}.$$

• Proof The integral lift of $B(2^{m+1}, 2k)$ with $d = 2^{m+1} : B_{2k+1} = \mathbb{Z} \to B_{2k} = \mathbb{Z}$ has

$$Q_{4k}(B,\beta) = Q^{4k}(B) = \mathbb{Z}_{2^{m+2}}$$
.

Wu orientations for Poincaré cobordism?

 \bullet For any $m\geqslant 1$ let $\Omega^N_{4k}\langle \delta_{2^m+1}\rangle$ be the cobordism group of 4k-dimensional normal spaces X such that

$$v_{2k}(\nu_X) \in \ker(\delta_{2^{m+1}}) = \operatorname{im}(H^{2k}(X; \mathbb{Z}_{2^{m+1}}))$$

 $\subseteq H^{2k}(X; \mathbb{Z}_2)$ with a lift $v \in H^{2k}(X; \mathbb{Z}_{2^{m+1}})$.

The mod 2^{m+2} signature is a morphism

$$\widehat{\sigma}^*: \Omega_{4k}^N \langle \delta_{2m+1} \rangle \to \mathbb{Z}_{2m+2}; (X,v) \mapsto \langle \mathcal{P}_{2m+1}(v), [X] \rangle$$

Conjecture There exist Wu-orientation maps

$$\Omega^{P}_{4k} \to \Omega^{N}_{4k} \langle \delta_{2m+1} \rangle; X \mapsto (X, v)$$

to fit into commutative diagram such that

$$\Omega^{P}_{4k} \xrightarrow{\sigma^{*}} \mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega^{N}_{4k} \langle \delta_{2^{m+1}} \rangle \xrightarrow{\widehat{\sigma}^{*}} \mathbb{Z}_{2^{m+2}}$$