
1

SPECTRA AND ASSEMBLY

IN ALGEBRAIC L-THEORY

Andrew Ranicki (Edinburgh)

http://www.maths.ed.ac.uk/̃ aar

Max Planck Institute for Mathematics, Bonn

3rd December, 2012



2

What are spectra, assembly and algebraic L-theory

doing in geometric topology?

I Answer: they are useful homotopy theoretic and algebraic tools in
understanding the homotopy types of topological manifolds.

I Surgery theory thrives on these tools! Especially in dimensions 6= 3, 4:
would be good to know how to include 3 and 4.

I Spectra = stable homotopy theory

I Assembly = passage from local to global.

I Algebraic L-theory = quadratic forms, as in the Wall obstruction
groups L∗(Z[π]) for surgery on manifolds with fundamental group π.
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A brief history of assembly

I Congress shall make no law . . . abridging . . . the right of the people to
peaceable assembly
First Amendment to the United States Constitution, 1791

I Wall (1970) Surgery obstruction groups L∗(Z[π]). Assembly modulo
2-torsion.

I Quinn (1971) Geometric L-theory assembly
[X ,G/TOP]→ Ln(Z[π1(X )])

I Ranicki (1979, 1992) Algebraic L-theory assembly
A : Hn(X ;L•)→ Ln(Z[π1(X )])

I Ranicki-Weiss (1990) Chain complexes and assembly
I Weiss-Williams (1995) Assembly via stable homotopy theory
I Davis-Lück (1998) Assembly via equivariant homotopy theory
I Hambleton-Pedersen (2004) Identification of various assembly maps
I Applications of assembly to Novikov, Borel, Farrell-Jones,Baum-Connes

conjectures, in many contexts besides algebraic L-theory, such as
algebraic K -theory or K -theory of C ∗-algebras. Lück 2010 ICM talk.
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Surgery theory

I The 1960’s saw a great flowering of the topology of high-dimensional
manifolds, especially in dimensions > 4.

I The Browder-Novikov-Sullivan-Wall surgery theory combined with the
Kirby-Siebenmann structure theory for topological manifolds provided
construction methods for recognizing the homotopy types of topological
manifolds among spaces with Poincaré duality.

I The spectra, assembly and L-theory of the title are the technical
tools from homotopy theory and the algebraic theory of quadratic forms
which are used to recognize topological manifolds in homotopy theory.

I Recognition only works in dimension > 4. Need much more subtle
methods in dimensions 3, 4.
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Geometric Poincaré complexes

I An n-dimensional geometric Poincaré complex X is a finite CW
complex together with a homology class [X ] ∈ Hn(X ) such that there
are induced Poincaré duality isomorphisms with arbitrary coefficients

[X ] ∩ − : H∗(X ) ∼= Hn−∗(X ) .

I An n-dimensional topological manifold M is an n-dimensional geometric
Poincaré complex for n 6= 4, and for n = 4 is at least homotopy
equivalent to a 4-dimensional Poincaré complex.

I Any finite CW complex homotopy equivalent to an n-dimensional
topological manifold is a geometric Poincaré complex.

I When is an n-dimensional Poincaré complex X homotopy equivalent to
an n-dimensional topological manifold?

I Motivational answer: for n > 4 if and only if the Mishchenko-R.
symmetric signature σ(X ) ∈ Ln(Z[π1(X )]) is in the image of the
symmetric L-theory assembly map A : Hn(X ;L•)→ Ln(Z[π1(X )]).
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Proto-assembly, from homotopy to homology

I A homology class [X ] ∈ Hn(X ) is local in nature, depending only on the
images

[X ]x ∈ Hn(X ,X\{x}) (x ∈ X ).

I A map of spaces f : X → Y induces a chain map f∗ : C (X )→ C (Y ).
I The proto-assembly function

H0(Y X )→ H0(HomZ(C (X ),C (Y ))) ; f 7→ f∗

sends the homotopy class of a map f : X → Y to the chain homotopy
class of f∗.

I Local to global.
I Vietoris theorem: if f : X → Y is a surjection of reasonable spaces

(e.g. simplicial complexes) with acyclic point inverses

H∗(f
−1(x)) ∼= H∗(x) (x ∈ X )

then the proto-assembly f∗ is an isomorphism in homology.
I More about this in Spiros Adams-Florou’s talk tomorrow.
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Proto-assembly: the diagonal map

I The diagonal map

∆ : X → X × X ; x 7→ (x , x)

sends [X ] ∈ Hn(X ) to the chain homotopy class

∆[X ] ∈ Hn(X × X ) = H0(HomZ(C (X )n−∗,C (X )))

of the chain map ∆[X ] = [X ] ∩− : C (X )n−∗ → C (X ). Local to global.
I If X is a closed oriented n-dimensional manifold with fundamental class

[X ] ∈ Hn(X ) then

Hr (X ,X\{x}) =

{
Z for r = n, generated by [X ]x = 1

0 for r 6= n .

I The local Poincaré duality isomorphisms

[X ]x ∩ − : H∗({x}) ∼= Hn−∗(X ,X\{x} (x ∈ X ))

assemble to the global Poincaré duality isomorphisms

[X ] ∩ : H∗(X ) ∼= Hn−∗(X ) .
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Suspension and loop spaces

I Only really need Ω-spectra, but suspension spectra motivational.

I The suspension of a pointed space X is

ΣX = S1 ∧ X .

I The loop space of X is
ΩX = X S1

.

I Adjointness property: for any pointed X ,Y

XΣY = (ΩX )Y , [ΣY ,X ] = [Y ,ΩX ] .

I In particular, for Y = Sn have

πn+1(X ) = πn(ΩX ) .
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Suspension spectra

I A suspension spectrum is a sequence of pointed spaces and maps

E = {Ek ,ΣEk → Ek+1 | k > 0}

I The homotopy groups of E are defined by

πn(E) = lim−→
k

πn+k(Ek) .

I Example The homology groups of a space X are the homotopy groups
of the Eilenberg-MacLane suspension spectrum H(X )

Hn(X ) = πn(H(X )) , H(X )k = X+ ∧ K (Z, k)

with X+ = X t {+}.
I Hard to see the local nature of H∗(X ).
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The Pontrjagin-Thom transversality construction

I Given an oriented k-plane bundle η : X → BSO(k) let T (η) be the
Thom space.

I Pontrjagin-Thom construction: Every map ρ : Nn+k → T (η) from
an oriented (n + k)-dimensional manifold N is homotopic to a map
transverse regular at the zero section X ⊂ T (η). The inverse image is
an oriented n-dimensional submanifold

Mn = ρ−1(X ) ⊂ N .

I The normal bundle of M ⊂ N is the pullback oriented k-plane bundle

νM⊂N = f ∗η : M → X → BSO(k)

of η along the restriction f = ρ| : M → X .
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The Pontrjagin-Thom assembly in bordism theory

I The Thom space MSO(k) = T (1k) of the universal k-plane bundle
1k : BSO(k)→ BSO(k) is the kth space of the universal Thom
suspension spectrum

MSO = {MSO(k) |ΣMSO(k)→ MSO(k + 1)} .

I Let ΩSO
n (X ) be the bordism groups of closed oriented n-dimensional

manifolds Mn with a map M → X
I The Pontrjagin-Thom isomorphism

πn(X+ ∧MSO)→ ΩSO
n (X ) ;

(ρ : Sn+k → X+ ∧MSO(k)) 7→ (ρ| : Mn = ρ−1(X × BSO(k))→ X )

will serve as a model for the algebraic L-theory assembly map A, but it
is hard to see it as local to global. The Pontrjagin-Thom construction
is too analytic to translate into algebra directly. Also, A is not in
general an isomorphism.
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Ω-spectra

I An Ω-spectrum is a sequence of pointed spaces and homotopy
equivalences

F = {Fk ,Fk ' ΩFk−1 | k ∈ Z}
so that there are homotopy equivalences

F0 ' ΩF−1 ' . . . ' ΩkF−k .

I The homotopy groups of F are defined by

πn(F) = πn(F0) = . . . = πn+k(F−k) .

I There is no essential difference between the homotopy theoretic
properties of the suspension spectra and Ω-spectra.

I A suspension spectrum E = {Ek ,ΣEk → Ek+1} determines an
Ω-spectrum Ω∞E = F with the same homotopy groups

F = {Fk ' ΩFk+1} , Fk = lim−→
j

ΩjEj−k , πn(F) = πn(E) .
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Homotopy invariant functors

I The homotopy groups of a covariant functor

F : {topological spaces} → {Ω-spectra} ; X 7→ F (X )

are written
Fn(X ) = πn(F (X )) (n ∈ Z) .

I F is homotopy invariant if for a homotopy equivalence X → Y , or
equivalently there are induced isomorphisms

F∗(X )
∼= // F∗(Y ) .

I The relative homotopy groups of a pair (Y ,X ⊆ Y )

Fn(Y ,X ) = πn(F (Y )/F (X ))

fit into the usual exact sequence

· · · → Fn(X )→ Fn(Y )→ Fn(Y ,X )→ Fn−1(X )→ . . . .
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Generalized homology theories

I The functor

F : {topological spaces} → {Ω-spectra} ; X 7→ F (X )

is excisive if for X = X1 ∪Y X2 the inclusion (X1,Y ) ⊂ (X ,X2) induces
excision isomorphisms

Fn(X1,Y )
∼= // Fn(X ,X2)

and there is defined a Mayer-Vietoris exact sequence

· · · → Fn(Y )→ Fn(X1)⊕ Fn(X2)→ Fn(X )→ Fn−1(Y )→ . . . .

I F is a generalized homology functor if it is both homotopy invariant
and excisive.

I The homotopy groups F∗(X ) = π∗(F (X )) are called generalized
homology groups.
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Generalized homology functors and Ω-spectra I.

I Theorem (G.W. Whitehead 1962) An Ω-spectrum

F = {Fk ,ΩFk ' Fk−1 | k ∈ Z}

determines a generalized homology functor

F = H(?;F) : {topological spaces} → {Ω-spectra} ;

X 7→ F (X ) = H(X ;F) = X+ ∧ F .

I The generalized homology groups are

Hn(X ;F) = Fn(X ) = lim−→
k

πn+k(X+ ∧ F−k) .

I Moreover, every generalized homology theory arises in this way.

http://www.maths.ed.ac.uk/~aar/papers/gww9.pf
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Generalized homology functors and Ω-spectra II.

I Theorem (Weiss-Williams 1995) For every homotopy invariant functor

F : {topological spaces} → {Ω-spectra}

there is an assembly natural transformation A : F% → F . with

F% = H(?;F (∗)) : {topological spaces} → {Ω-spectra}

the F (∗)-coefficient generalized homology functor..

I F% is the best approximation to a generalized homology theory with a
natural transformation to F .

I The algebraic L-spectrum F (X ) = L(Z[π1(X )]) does give the algebraic
L-theory assembly A, but very abstractly.

http://www.maths.ed.ac.uk/~aar/papers/wwassembly.pdf
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Bordism is a generalized homology theory

I Theorem (Thom 1954, Atiyah 1960) The functor

ΩSO
∗ : {topological spaces} → {Z-graded abelian groups} ;

X 7→ ΩSO
∗ (X )

is a generalized homology theory, i.e. satisfies the Eilenberg-Steenrod
axioms other than dimension.

I Example: The Mayer-Vietoris exact sequence for a union
X = X1 ∪Y X2 with Y × R ⊂ X

· · · → ΩSO
n (Y )→ ΩSO

n (X1)⊕ ΩSO
n (X2)→ ΩSO

n (X )→ ΩSO
n−1(Y )→ . . .

is proved by codimension 1 transversality, with

∂ : ΩSO
n (X1 ∪Y X2)→ ΩSO

n−1(Y ) ;

(f : Mn → X1 ∪Y X2) 7→ (f | : Nn−1 = f −1(Y )→ Y ) .

http://www.maths.ed.ac.uk/~aar/papers/thomcob.pdf
http://www.maths.ed.ac.uk/~aar/papers/atiyahb.pdf
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The generalized homology functor of bordism.

I Want to construct a generalized homology functor

ΩSO : {topological spaces} → {Ω-spectra}

such that
π∗(ΩSO(X )) = ΩSO

∗ (X ) .

I The Ω-spectrum Ω∞MSO of the Thom suspension spectrum MSO to
construct a generalized homology functor

ΩSO : {topological spaces} → {Ω-spectra}

such that π∗(ΩSO(X )) = ΩSO
∗ (X ).

I However, this procedure does not adapt gracefully to algebraic L-theory.
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Assembly via simplicial complexes

I There is a direct construction of an assembly map

A : H(X ;F(∗))→ F(X )

for any functor F, with X = |K | the polyhedron of a simplicial complex
K .

I Will concentrate on the bordism functors F in various contexts:
manifolds, geometric Poincaré complexes, algebraic Poincaré complexes.

I Method also works for arbitrary F - see Chapter 6 of Algebraic L-theory
and topological manifolds (CUP, 1992)

I The key idea is to construct H(X ;F) = H(K ;F) as an Ω-spectrum of
Kan ∆-sets which keeps track of one piece of F for each simplex
σ ∈ K , and these pieces fit together according to the simplicial
structure of K . The assembly map A : H(K ;F)→ F(X ) = F(K )
forgets the K -local structure.

http://www.maths.ed.ac.uk/~aar/books/topman.pdf
http://www.maths.ed.ac.uk/~aar/books/topman.pdf
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Nerves

I Let X be a topological space with a covering

X =
⋃
v∈V

X (v)

by subspaces X (v) ⊆ X , some of which may be empty.

I The nerve of the cover is the simplicial complex K with vertex set

K (0) = {v ∈ V |X (v) 6= ∅} .

The vertices v0, v1, . . . , vn ∈ K (0) span an n-simplex of K if

X (v0) ∩ X (v1) ∩ · · · ∩ X (vn) 6= ∅ .
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Dissections

I Let K be a simplicial complex. A K -dissection of a space X is a
covering

X =
⋃
σ∈K

X (σ)

by subspaces X (σ) ⊆ X , some of which may be empty, such that

X (σ) ∩ X (τ) =

{
X (στ) if στ ∈ K

∅ otherwise.

I The nerve of the cover is the subcomplex

{σ ∈ K |X (σ) 6= ∅} ⊆ K .
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The barycentric subdivision

I The barycentric subdivision K ′ is the simplicial complex with vertices
the barycentres σ̂ of the simplexes σ ∈ K . There is one n-simplex
(σ̂0σ̂1 . . . σ̂n) ∈ X ′ for each flag of simplexes

σ0 < σ1 < · · · < σn ∈ K .

I Same polyhedron

|K ′| = |K | =
∐
σ∈K

∆dimσ/ ∼ .

I Poincaré used the dual cells D(σ,K ) ⊆ K ′ (σ ∈ K ) to prove Poincaré
duality Hn−∗(K ) ∼= H∗(K ) for an n-dimensional combinatorial
homology manifold K .

I The assembly A : H(K ;F(∗))→ F(K ) will also use dual cells, in the
first instance to just describe H(K ;F(∗)).
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Dual cells

I The dual cell of a simplex σ ∈ K is the contractible subcomplex

D(σ,K ) = {(σ̂0σ̂1 . . . σ̂n) |σ 6 σ0 < σ1 < · · · < σn ∈ K} ⊆ K ′ .

I The boundary of D(σ,K ) is the subcomplex

∂D(σ,K ) =
⋃
τ>σ

D(τ,K )

= {(σ̂0σ̂1 . . . σ̂n) |σ < σ0 < σ1 < · · · < σn ∈ K} ⊂ D(σ,K ) .

I The dual cells constitute a K -dissection of |K | with nerve K

|K | =
⋃
σ∈K

D(σ,K )

such that

D(σ,K ) ∩ D(τ,K ) =

{
D(στ,K ) if στ ∈ K

∅ otherwise .
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Inverse images of the dual cells

I Given a simplicial complex K and a map f : M → |K ′| write the inverse
images of the dual cells and their boundaries as

(M(σ), ∂M(σ)) = f −1(D(σ,K ), ∂D(σ,K )) ⊂ M

(which may be empty).
I Properties:

∂M(σ) =
⋃
τ>σ

M(τ) ,

M(σ) ∩M(τ) =

{
M(στ) if στ ∈ K

∅ otherwise .

I The nerve of the cover of M

M =
⋃
σ∈K

M(σ)

is the subcomplex
{σ|M(σ) 6= ∅} ⊆ K .
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Manifold transversality from the simplicial complex point of view

I Theorem (Marshall Cohen, 1967)
Let M be an n-dimensional PL manifold M and K a simplicial complex.
A simplicial map f : M → K ′ is automatically transverse at the dual
cells D(σ,K ) ⊂ K ′, with the inverse images codimension k
submanifolds with boundary

(M(σ)n−k , ∂M(σ)) = f −1(D(σ,K ), ∂D(σ,K )) ⊂ M

(which may be empty), where k = dim(σ).
I Converse: given a simplicial complex K and a space M with a

K -dissection {M(σ) |σ ∈ K} there is defined a map f : M → |K ′| such
that

M(σ) = f −1D(σ,K ) (σ ∈ K )

If each (M(σ), ∂M(σ)) is an (n − dim(σ))-dimensional PL manifold
with boundary then M is an n-dimensional PL manifold.

I There are also versions for CAT = O, TOP.

http://www.maths.ed.ac.uk/~aar/papers/mcohen.pdf
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Assembly via ∆-sets

I Chapters 11,12 of Algebraic L-theory and topological manifolds use the
Rourke-Sanderson 1971 theory of Kan ∆-sets to construct the

assembly A : H(K ;F)→ F(K ′) ' F (K ) for a homotopy invariant
functor F : {simplicial complexes} → {Ω-spectra of Kan ∆-sets}.

I The construction uses an abstract version of the theorem of Marshall
Cohen: a simplex x ∈ H(K ;F) is a compatible collection of simplices

x(σ) ∈ F(D(σ,K )) (σ ∈ K ) .

The Kan extension condition is used to form the union

A(x) =
⋃
σ∈K

x(σ) .

I Model: a simplicial map f : Mn → K ′ is a compatible collection

f | : M(σ)n−dimσ = f −1D(σ,K )→ D(σ,K ) (σ ∈ K )

with M =
⋃
σ∈K

M(σ).

http://www.maths.ed.ac.uk/~aar/books/topman.pdf
http://www.maths.ed.ac.uk/~aar/papers/deltars.pdf
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∆-sets I.

I A ∆-set K is a sequence K (n) (n > 0) of sets, together with face maps

∂i : K (n) → K (n−1) (0 6 i 6 n)

such that ∂i∂j = ∂j−1∂i ((i < j).

I Example An ordered simplicial complex K determines a ∆-set K , with
K (n) the set of n-simplexes.

I A ∆-set K is Kan if every ∆-map

Λi ,n = ∆n\{n-face ∪ ith (n − 1)-face} → K

extends to a ∆-map ∆n → K .

I The homotopy theory of Kan ∆-sets is essentially the same as the
homotopy theory of simplicial complexes.
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∆-sets II.

I A ∆-set K is pointed if there is a base simplex ∅ ∈ K (n) in each
dimension n > 0.

I The homotopy groups of a Kan pointed ∆-set K are

πn(K ) = {x ∈ K (n) | ∂ix = ∅ for 0 6 i 6 n}/ ∼ .

I The loop space of a Kan pointed ∆-set K is the Kan pointed ∆-set
ΩK with

(ΩK )(n) = {x ∈ K (n+1) | ∂n+1x = ∅, ∂0∂1 . . . ∂nx = ∅} ,

such that
πn(ΩK ) = πn+1(K ) .
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The Ω-spectrum ΩCAT (K )

I Let CAT be one of the categories O,PL,TOP.
I An (n + k)-dimensional CAT manifold k-ad M is an

(n + k)-dimensional CAT manifold M with transverse codimension 0
submanifolds ∂0M, ∂1M, . . . , ∂kM ⊂ ∂M such that

k⋂
j=0

∂jM = ∅ ,
k⋃

j=0

∂jM = ∂M .

I Examples: 0-ad = closed manifold, 1-ad = cobordism.
I Let ΩCAT (K ) be the Ω-spectrum with

ΩCAT (K )
(k)
n = {(n + k)-dimensional CAT manifold k-ads M,

with a map f : M → |K |} .
Base points the empty manifold k-ads ∅.

I The functor

ΩCAT : {simplicial complexes} → {Ω-spectra} ; K 7→ ΩCAT (K )

is homotopy invariant, with πn(ΩCAT (K )) = ΩCAT
n (K ).
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The Ω-spectrum H(K ; ΩCAT )

I H(K ; ΩCAT ) is the subspectrum of ΩCAT (K ) in which f : M → |K | is
required to be CAT transverse at the dual cells D(σ,K ) ⊂ |K | (σ ∈ K ).

I The assembly map is the inclusion

ACAT : H(K ; ΩCAT )→ ΩCAT (K ) .

I CAT transversality = ACAT is a homotopy equivalence.
I Apart from transversality, everything works just as well in the category

of geometric Poincaré complexes, with assembly the inclusion

AP : H(K ; ΩP)→ ΩP(K ) .

I Theorem For n > 5 an n-dimensional geometric Poincaré complex K is
homotopy equivalent to a compact n-dimensional topological manifold
if and only if

(1 : K → K ) ∈ im(AP : Hn(K ; ΩP)→ ΩP
n (K )) .


