SPECTRA AND ASSEMBLY IN ALGEBRAIC L-THEORY Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/~aar

Max Planck Institute for Mathematics, Bonn 3rd December, 2012

What are spectra, assembly and algebraic *L*-theory doing in geometric topology?

- Answer: they are useful homotopy theoretic and algebraic tools in understanding the homotopy types of topological manifolds.
- Surgery theory thrives on these tools! Especially in dimensions \u2272 3,4: would be good to know how to include 3 and 4.
- Spectra = stable homotopy theory
- Assembly = passage from local to global.
- Algebraic L-theory = quadratic forms, as in the Wall obstruction groups L_{*}(Z[π]) for surgery on manifolds with fundamental group π.

A brief history of assembly

Congress shall make no law ... abridging ... the right of the people to peaceable assembly

First Amendment to the United States Constitution, 1791

- Wall (1970) Surgery obstruction groups L_{*}(ℤ[π]). Assembly modulo 2-torsion.
- Quinn (1971) Geometric L-theory assembly [X, G/TOP] → L_n(ℤ[π₁(X)])
- ► Ranicki (1979, 1992) Algebraic *L*-theory assembly A : H_n(X; L_●) → L_n(ℤ[π₁(X)])
- Ranicki-Weiss (1990) Chain complexes and assembly
- ▶ Weiss-Williams (1995) Assembly via stable homotopy theory
- Davis-Lück (1998) Assembly via equivariant homotopy theory
- Hambleton-Pedersen (2004) Identification of various assembly maps
- Applications of assembly to Novikov, Borel, Farrell-Jones, Baum-Connes conjectures, in many contexts besides algebraic *L*-theory, such as algebraic *K*-theory or *K*-theory of *C**-algebras. Lück 2010 ICM talk.

Surgery theory

- The 1960's saw a great flowering of the topology of high-dimensional manifolds, especially in dimensions > 4.
- The Browder-Novikov-Sullivan-Wall surgery theory combined with the Kirby-Siebenmann structure theory for topological manifolds provided construction methods for recognizing the homotopy types of topological manifolds among spaces with Poincaré duality.
- The spectra, assembly and L-theory of the title are the technical tools from homotopy theory and the algebraic theory of quadratic forms which are used to recognize topological manifolds in homotopy theory.
- Recognition only works in dimension > 4. Need much more subtle methods in dimensions 3, 4.

Geometric Poincaré complexes

An n-dimensional geometric Poincaré complex X is a finite CW complex together with a homology class [X] ∈ H_n(X) such that there are induced Poincaré duality isomorphisms with arbitrary coefficients

$$[X] \cap - : H^*(X) \cong H_{n-*}(X)$$
.

- An *n*-dimensional topological manifold *M* is an *n*-dimensional geometric Poincaré complex for n ≠ 4, and for n = 4 is at least homotopy equivalent to a 4-dimensional Poincaré complex.
- Any finite CW complex homotopy equivalent to an n-dimensional topological manifold is a geometric Poincaré complex.
- When is an *n*-dimensional Poincaré complex X homotopy equivalent to an *n*-dimensional topological manifold?
- Motivational answer: for n > 4 if and only if the Mishchenko-R. symmetric signature σ(X) ∈ Lⁿ(ℤ[π₁(X)]) is in the image of the symmetric L-theory assembly map A : H_n(X; L[•]) → Lⁿ(ℤ[π₁(X)]).

Proto-assembly, from homotopy to homology

A homology class [X] ∈ H_n(X) is local in nature, depending only on the images

$$[X]_x \in H_n(X, X \setminus \{x\}) \ (x \in X).$$

- A map of spaces $f : X \to Y$ induces a chain map $f_* : C(X) \to C(Y)$.
- The proto-assembly function

$$H_0(Y^X) o H_0(\operatorname{Hom}_{\mathbb{Z}}(C(X), C(Y))) ; f \mapsto f_*$$

sends the homotopy class of a map $f : X \to Y$ to the chain homotopy class of f_* .

- Local to global.
- ► Vietoris theorem: if f : X → Y is a surjection of reasonable spaces (e.g. simplicial complexes) with acyclic point inverses

$$H_*(f^{-1}(x)) \cong H_*(x) \ (x \in X)$$

then the proto-assembly f_* is an isomorphism in homology.

More about this in Spiros Adams-Florou's talk tomorrow.

The diagonal map

$$\Delta: X o X imes X$$
; $x \mapsto (x, x)$

sends $[X] \in H_n(X)$ to the chain homotopy class

$$\Delta[X] \in H_n(X \times X) = H_0(\operatorname{Hom}_{\mathbb{Z}}(C(X)^{n-*}, C(X)))$$

of the chain map $\Delta[X] = [X] \cap -: C(X)^{n-*} \to C(X)$. Local to global.

• If X is a closed oriented *n*-dimensional manifold with fundamental class $[X] \in H_n(X)$ then

$$H_r(X, X \setminus \{x\}) = \begin{cases} \mathbb{Z} & \text{for } r = n, \text{ generated by } [X]_x = 1 \\ 0 & \text{for } r \neq n \end{cases}$$

The local Poincaré duality isomorphisms

$$[X]_x \cap - : H^*(\{x\}) \cong H_{n-*}(X, X \setminus \{x\} \ (x \in X))$$

assemble to the global Poincaré duality isomorphisms

 $[X] \cap : H^*(X) \cong H_{n-*}(X) .$

Suspension and loop spaces

- Only really need Ω -spectra, but suspension spectra motivational.
- The **suspension** of a pointed space X is

$$\Sigma X = S^1 \wedge X$$
.

The loop space of X is

$$\Omega X = X^{S^1}$$
.

Adjointness property: for any pointed X, Y

$$X^{\Sigma Y} = (\Omega X)^{Y}, [\Sigma Y, X] = [Y, \Omega X].$$

• In particular, for $Y = S^n$ have

$$\pi_{n+1}(X) = \pi_n(\Omega X) \, .$$

Suspension spectra

A suspension spectrum is a sequence of pointed spaces and maps

$$\mathbb{E} = \{E_k, \Sigma E_k \to E_{k+1} \mid k \ge 0\}$$

• The homotopy groups of $\mathbb E$ are defined by

$$\pi_n(\mathbb{E}) = \lim_{k \to \infty} \pi_{n+k}(E_k) .$$

► Example The homology groups of a space X are the homotopy groups of the Eilenberg-MacLane suspension spectrum H(X)

$$H_n(X) = \pi_n(\mathbb{H}(X)) , \ \mathbb{H}(X)_k = X_+ \wedge K(\mathbb{Z}, k)$$

with $X_{+} = X \sqcup \{+\}.$

• Hard to see the local nature of $H_*(X)$.

The Pontrjagin-Thom transversality construction

- ► Given an oriented k-plane bundle η : X → BSO(k) let T(η) be the Thom space.
- ▶ **Pontrjagin-Thom construction**: Every map $\rho : N^{n+k} \to T(\eta)$ from an oriented (n + k)-dimensional manifold N is homotopic to a map transverse regular at the zero section $X \subset T(\eta)$. The inverse image is an oriented *n*-dimensional submanifold

$$M^n =
ho^{-1}(X) \subset N$$
 .

• The normal bundle of $M \subset N$ is the pullback oriented k-plane bundle

$$\nu_{M\subset N} = f^*\eta : M \to X \to BSO(k)$$

of η along the restriction $f = \rho | : M \to X$.

The Pontrjagin-Thom assembly in bordism theory

The Thom space MSO(k) = T(1_k) of the universal k-plane bundle 1_k : BSO(k) → BSO(k) is the kth space of the universal Thom suspension spectrum

 $MSO = \{MSO(k) | \Sigma MSO(k) \rightarrow MSO(k+1)\}$.

- Let Ω^{SO}_n(X) be the bordism groups of closed oriented n-dimensional manifolds Mⁿ with a map M → X
- The Pontrjagin-Thom isomorphism

 $\pi_n(X_+ \wedge MSO) \rightarrow \Omega_n^{SO}(X)$;

 $(\rho: S^{n+k} \to X_+ \land MSO(k)) \mapsto (\rho|: M^n = \rho^{-1}(X \times BSO(k)) \to X)$

will serve as a model for the algebraic L-theory assembly map A, but it is hard to see it as local to global. The Pontrjagin-Thom construction is too analytic to translate into algebra directly. Also, A is not in general an isomorphism.

 An Ω-spectrum is a sequence of pointed spaces and homotopy equivalences

$$\mathbb{F} = \{F_k, F_k \simeq \Omega F_{k-1} \mid k \in \mathbb{Z}\}$$

so that there are homotopy equivalences

$$F_0 \simeq \Omega F_{-1} \simeq \ldots \simeq \Omega^k F_{-k}$$

The homotopy groups of F are defined by

$$\pi_n(\mathbb{F}) = \pi_n(F_0) = \ldots = \pi_{n+k}(F_{-k})$$

- There is no essential difference between the homotopy theoretic properties of the suspension spectra and Ω-spectra.
- A suspension spectrum E = {E_k, ΣE_k → E_{k+1}} determines an Ω-spectrum Ω[∞]E = F with the same homotopy groups

$$\mathbb{F} = \{F_k \simeq \Omega F_{k+1}\}, F_k = \varinjlim_j \Omega^j E_{j-k}, \pi_n(\mathbb{F}) = \pi_n(\mathbb{E}).$$

Homotopy invariant functors

The homotopy groups of a covariant functor

F : {topological spaces} $\rightarrow \{\Omega$ -spectra} ; $X \mapsto F(X)$

are written

$$F_n(X) = \pi_n(F(X)) \ (n \in \mathbb{Z}) \ .$$

► F is homotopy invariant if for a homotopy equivalence X → Y, or equivalently there are induced isomorphisms

$$F_*(X) \xrightarrow{\cong} F_*(Y)$$
.

• The relative homotopy groups of a pair $(Y, X \subseteq Y)$

$$F_n(Y,X) = \pi_n(F(Y)/F(X))$$

fit into the usual exact sequence

$$\cdots \rightarrow F_n(X) \rightarrow F_n(Y) \rightarrow F_n(Y,X) \rightarrow F_{n-1}(X) \rightarrow \ldots$$

Generalized homology theories

The functor

$${\sf F}$$
 : $\{ ext{topological spaces}\} o \{\Omega ext{-spectra}\}$; ${\sf X}\mapsto {\sf F}({\sf X})$

is **excisive** if for $X = X_1 \cup_Y X_2$ the inclusion $(X_1, Y) \subset (X, X_2)$ induces excision isomorphisms

$$F_n(X_1, Y) \xrightarrow{\cong} F_n(X, X_2)$$

and there is defined a Mayer-Vietoris exact sequence

$$\cdots \rightarrow F_n(Y) \rightarrow F_n(X_1) \oplus F_n(X_2) \rightarrow F_n(X) \rightarrow F_{n-1}(Y) \rightarrow \dots$$

- F is a generalized homology functor if it is both homotopy invariant and excisive.
- ► The homotopy groups F_{*}(X) = π_{*}(F(X)) are called generalized homology groups.

Generalized homology functors and Ω -spectra I.

Theorem (G.W. Whitehead 1962) An Ω-spectrum

$$\mathbb{F} = \{F_k, \Omega F_k \simeq F_{k-1} \mid k \in \mathbb{Z}\}$$

determines a generalized homology functor

$$egin{array}{rcl} F &=& H(?;\mathbb{F}) \ : \ \{ ext{topological spaces}\} o \{\Omega ext{-spectra}\} \ ; \ &X\mapsto F(X) \ = \ H(X;\mathbb{F}) \ = \ X_+\wedge\mathbb{F} \ . \end{array}$$

The generalized homology groups are

$$H_n(X;\mathbb{F}) = F_n(X) = \lim_{k \to \infty} \pi_{n+k}(X_+ \wedge F_{-k}) .$$

Moreover, every generalized homology theory arises in this way.

Generalized homology functors and Ω -spectra II.

Theorem (Weiss-Williams 1995) For every homotopy invariant functor

F : {topological spaces} $\rightarrow \{\Omega$ -spectra}

there is an assembly natural transformation $A: F^{\%} \to F$. with

$$\operatorname{{\sf F}}^{\%} \;=\; \operatorname{{\sf H}}(\operatorname{?};\operatorname{{\sf F}}(*)) \;:\; \{\operatorname{topological spaces}\} o \{\Omega ext{-spectra}\}$$

the F(*)-coefficient generalized homology functor..

- ► F[%] is the best approximation to a generalized homology theory with a natural transformation to F.
- ► The algebraic L-spectrum F(X) = L(ℤ[π₁(X)]) does give the algebraic L-theory assembly A, but very abstractly.

Bordism is a generalized homology theory

Theorem (Thom 1954, Atiyah 1960) The functor

 Ω^{SO}_* : {topological spaces} o { \mathbb{Z} -graded abelian groups} ; $X\mapsto \Omega^{SO}_*(X)$

is a generalized homology theory, i.e. satisfies the Eilenberg-Steenrod axioms other than dimension.

Example: The Mayer-Vietoris exact sequence for a union X = X₁ ∪_Y X₂ with Y × ℝ ⊂ X

$$\cdots \to \Omega_n^{SO}(Y) \to \Omega_n^{SO}(X_1) \oplus \Omega_n^{SO}(X_2) \to \Omega_n^{SO}(X) \to \Omega_{n-1}^{SO}(Y) \to \ldots$$

is proved by codimension 1 transversality, with

$$\begin{array}{l} \partial \hspace{0.1cm} : \hspace{0.1cm} \Omega_n^{SO}(X_1 \cup_Y X_2) \rightarrow \Omega_{n-1}^{SO}(Y) \hspace{0.1cm} ; \\ (f:M^n \rightarrow X_1 \cup_Y X_2) \mapsto (f|:N^{n-1} = f^{-1}(Y) \rightarrow Y) \hspace{0.1cm} . \end{array}$$

The generalized homology functor of bordism.

Want to construct a generalized homology functor

$$\Omega^{SO}$$
 : {topological spaces} \rightarrow { Ω -spectra}

such that

$$\pi_*(\Omega^{SO}(X)) = \Omega^{SO}_*(X) .$$

 The Ω-spectrum Ω[∞]MSO of the Thom suspension spectrum MSO to construct a generalized homology functor

$$\Omega^{SO}$$
 : {topological spaces} \rightarrow { Ω -spectra}

such that $\pi_*(\Omega^{SO}(X)) = \Omega^{SO}_*(X)$.

► However, this procedure does not adapt gracefully to algebraic *L*-theory.

Assembly via simplicial complexes

There is a direct construction of an assembly map

$$A : H(X; \mathbb{F}(*)) \to \mathbb{F}(X)$$

for any functor \mathbb{F} , with X = |K| the polyhedron of a simplicial complex K.

- ► Will concentrate on the bordism functors F in various contexts: manifolds, geometric Poincaré complexes, algebraic Poincaré complexes.
- ► Method also works for arbitrary F see Chapter 6 of Algebraic L-theory and topological manifolds (CUP, 1992)
- The key idea is to construct H(X; 𝔅) = H(K; 𝔅) as an Ω-spectrum of Kan Δ-sets which keeps track of one piece of 𝔅 for each simplex σ ∈ K, and these pieces fit together according to the simplicial structure of K. The assembly map A : H(K; 𝔅) → 𝔅(X) = 𝔅(K) forgets the K-local structure.

Nerves

Let X be a topological space with a covering

$$X = \bigcup_{v \in V} X(v)$$

by subspaces $X(v) \subseteq X$, some of which may be empty.

▶ The **nerve** of the cover is the simplicial complex K with vertex set

$$\mathcal{K}^{(0)} \;=\; \{v\in V\,|\, X(v)
eq \emptyset\}\;.$$

The vertices $v_0, v_1, \ldots, v_n \in K^{(0)}$ span an *n*-simplex of K if

$$X(v_0) \cap X(v_1) \cap \cdots \cap X(v_n) \neq \emptyset$$
.

Dissections

Let K be a simplicial complex. A K-dissection of a space X is a covering

$$X = \bigcup_{\sigma \in K} X(\sigma)$$

by subspaces $X(\sigma) \subseteq X$, some of which may be empty, such that

$$X(\sigma) \cap X(\tau) = egin{cases} X(\sigma au) & ext{if } \sigma au \in K \ \emptyset & ext{otherwise.} \end{cases}$$

The nerve of the cover is the subcomplex

$$\{\sigma \in K \,|\, X(\sigma) \neq \emptyset\} \subseteq K$$
.

The barycentric subdivision

The barycentric subdivision K' is the simplicial complex with vertices the barycentres ô of the simplexes σ ∈ K. There is one *n*-simplex (ô₀ô₁...ô_n) ∈ X' for each flag of simplexes

 $\sigma_0 < \sigma_1 < \cdots < \sigma_n \in K .$

Same polyhedron

$$|\mathcal{K}'| = |\mathcal{K}| = \prod_{\sigma \in \mathcal{K}} \Delta^{\mathsf{dim}\sigma} / \sim$$

- Poincaré used the dual cells D(σ, K) ⊆ K' (σ ∈ K) to prove Poincaré duality H^{n-*}(K) ≅ H_{*}(K) for an *n*-dimensional combinatorial homology manifold K.
- The assembly A : H(K; 𝔅(*)) → 𝔅(K) will also use dual cells, in the first instance to just describe H(K; 𝔅(*)).

Dual cells

- The dual cell of a simplex σ ∈ K is the contractible subcomplex $D(σ, K) = \{ (\hat{σ}_0 \hat{σ}_1 ... \hat{σ}_n) \, | \, σ ≤ σ_0 < σ_1 < \cdots < σ_n ∈ K \} ⊆ K' .$
- The **boundary** of $D(\sigma, K)$ is the subcomplex

$$\begin{aligned} \partial D(\sigma, K) &= \bigcup_{\tau > \sigma} D(\tau, K) \\ &= \left\{ \left(\widehat{\sigma}_0 \widehat{\sigma}_1 \dots \widehat{\sigma}_n \right) \, | \, \sigma < \sigma_0 < \sigma_1 < \dots < \sigma_n \in K \right\} \subset D(\sigma, K) \end{aligned}$$

• The dual cells constitute a K-dissection of |K| with nerve K

$$|K| = \bigcup_{\sigma \in K} D(\sigma, K)$$

such that

$$D(\sigma, K) \cap D(\tau, K) = \begin{cases} D(\sigma \tau, K) & \text{if } \sigma \tau \in K \\ \emptyset & \text{otherwise} \end{cases}$$

Inverse images of the dual cells

► Given a simplicial complex K and a map f : M → |K'| write the inverse images of the dual cells and their boundaries as

$$(M(\sigma), \partial M(\sigma)) = f^{-1}(D(\sigma, K), \partial D(\sigma, K)) \subset M$$

(which may be empty).

Properties:

$$\partial M(\sigma) = \bigcup_{\tau > \sigma} M(\tau) ,$$

$$M(\sigma) \cap M(\tau) = \begin{cases} M(\sigma\tau) & \text{if } \sigma\tau \in K \\ \emptyset & \text{otherwise }. \end{cases}$$

The nerve of the cover of M

$$M = \bigcup_{\sigma \in K} M(\sigma)$$

is the subcomplex

 $\{\sigma | M(\sigma) \neq \emptyset\} \subseteq K$.

Manifold transversality from the simplicial complex point of view

Theorem (Marshall Cohen, 1967)

Let M be an *n*-dimensional PL manifold M and K a simplicial complex. A simplicial map $f : M \to K'$ is automatically transverse at the dual cells $D(\sigma, K) \subset K'$, with the inverse images codimension k submanifolds with boundary

$$(M(\sigma)^{n-k},\partial M(\sigma)) = f^{-1}(D(\sigma,K),\partial D(\sigma,K)) \subset M$$

(which may be empty), where $k = \dim(\sigma)$.

Converse: given a simplicial complex K and a space M with a K-dissection {M(σ) | σ ∈ K} there is defined a map f : M → |K'| such that

$$M(\sigma) = f^{-1}D(\sigma, K) \ (\sigma \in K)$$

If each $(M(\sigma), \partial M(\sigma))$ is an $(n - \dim(\sigma))$ -dimensional *PL* manifold with boundary then *M* is an *n*-dimensional *PL* manifold.

• There are also versions for CAT = O, TOP.

Assembly via \triangle -sets

- Chapters 11,12 of Algebraic L-theory and topological manifolds use the Rourke-Sanderson 1971 theory of Kan Δ-sets to construct the assembly A : H(K; F) → F(K') ≃ F(K) for a homotopy invariant functor F : {simplicial complexes} → {Ω-spectra of Kan Δ-sets}.
- The construction uses an abstract version of the theorem of Marshall Cohen: a simplex x ∈ H(K; F) is a compatible collection of simplices

$$x(\sigma) \in \mathbb{F}(D(\sigma, K)) \ (\sigma \in K)$$
.

The Kan extension condition is used to form the union

$$A(x) = \bigcup_{\sigma \in K} x(\sigma) .$$

• Model: a simplicial map $f: M^n \to K'$ is a compatible collection

$$\begin{array}{rcl} f| & : & M(\sigma)^{n-\dim\sigma} & = & f^{-1}D(\sigma,K) \to D(\sigma,K) \; (\sigma \in K) \\ \text{with } M = \bigcup_{\sigma \in K} M(\sigma). \end{array}$$

Δ -sets I.

• A Δ -set K is a sequence $K^{(n)}$ $(n \ge 0)$ of sets, together with face maps

$$\partial_i : K^{(n)} \to K^{(n-1)} \quad (0 \leq i \leq n)$$

such that $\partial_i \partial_j = \partial_{j-1} \partial_i$ ((*i* < *j*).

- Example An ordered simplicial complex K determines a Δ-set K, with K⁽ⁿ⁾ the set of n-simplexes.
- A Δ -set K is **Kan** if every Δ -map

$$\Lambda_{i,n} = \Delta^n \setminus \{n \text{-face} \cup i \text{th} (n-1) \text{-face}\} \to K$$

extends to a Δ -map $\Delta^n \to K$.

The homotopy theory of Kan Δ-sets is essentially the same as the homotopy theory of simplicial complexes.

Δ -sets II.

- A Δ-set K is **pointed** if there is a base simplex Ø ∈ K⁽ⁿ⁾ in each dimension n ≥ 0.
- The **homotopy groups** of a Kan pointed Δ -set K are

$$\pi_n(\mathcal{K}) = \{ x \in \mathcal{K}^{(n)} \, | \, \partial_i x = \emptyset \text{ for } 0 \leqslant i \leqslant n \} / \sim$$

The loop space of a Kan pointed Δ-set K is the Kan pointed Δ-set ΩK with

$$(\Omega \mathcal{K})^{(n)} = \{ x \in \mathcal{K}^{(n+1)} | \partial_{n+1} x = \emptyset, \partial_0 \partial_1 \dots \partial_n x = \emptyset \} ,$$

such that

$$\pi_n(\Omega K) = \pi_{n+1}(K) .$$

The Ω -spectrum $\Omega^{CAT}(K)$

- ▶ Let CAT be one of the categories O, PL, TOP.
- An (n + k)-dimensional CAT manifold k-ad M is an (n + k)-dimensional CAT manifold M with transverse codimension 0 submanifolds ∂₀M, ∂₁M,..., ∂_kM ⊂ ∂M such that

$$\bigcap_{j=0}^k \partial_j M = \emptyset , \ \bigcup_{j=0}^k \partial_j M = \partial M .$$

► Examples: 0-ad = closed manifold, 1-ad = cobordism.

• Let $\Omega^{CAT}(K)$ be the Ω -spectrum with

 $\Omega^{CAT}(K)_n^{(k)} = \{ (n+k) \text{-dimensional } CAT \text{ manifold } k \text{-ads } M, \\ \text{with a map } f : M \to |K| \} .$

Base points the empty manifold k-ads \emptyset .

The functor

 $\Omega^{CAT} : \{ \text{simplicial complexes} \} \to \{ \Omega \text{-spectra} \} ; \ \mathcal{K} \mapsto \Omega^{CAT}(\mathcal{K})$ is homotopy invariant, with $\pi_n(\Omega^{CAT}(\mathcal{K})) = \Omega_n^{CAT}(\mathcal{K}).$

The Ω -spectrum $H(K; \Omega^{CAT})$

- H(K; Ω^{CAT}) is the subspectrum of Ω^{CAT}(K) in which f : M → |K| is required to be CAT transverse at the dual cells D(σ, K) ⊂ |K| (σ ∈ K).
- The assembly map is the inclusion

$$A^{CAT}$$
 : $H(K; \Omega^{CAT}) \rightarrow \Omega^{CAT}(K)$.

- CAT transversality = A^{CAT} is a homotopy equivalence.
- Apart from transversality, everything works just as well in the category of geometric Poincaré complexes, with assembly the inclusion

$$A^P$$
 : $H(K; \Omega^P) \to \Omega^P(K)$.

► Theorem For n ≥ 5 an n-dimensional geometric Poincaré complex K is homotopy equivalent to a compact n-dimensional topological manifold if and only if

$$(1: K \to K) \in \operatorname{im}(A^P : H_n(K; \Omega^P) \to \Omega^P_n(K))$$
.