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What are spectra, assembly and algebraic L-theory

doing in geometric topology?

Answer: they are useful homotopy theoretic and algebraic tools in
understanding the homotopy types of topological manifolds.

Surgery theory thrives on these tools! Especially in dimensions # 3, 4:
would be good to know how to include 3 and 4.

Spectra = stable homotopy theory
Assembly = passage from local to global.

Algebraic L-theory = quadratic forms, as in the Wall obstruction
groups L.(Z[r]) for surgery on manifolds with fundamental group .
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A brief history of assembly

Congress shall make no law ... abridging ... the right of the people to
peaceable assembly

First Amendment to the United States Constitution, 1791

Wall (1970) Surgery obstruction groups L.(Z[r]). Assembly modulo
2-torsion.

Quinn (1971) Geometric L-theory assembly

[X,G/TOP| — Ln(Z[m1(X)])

Ranicki (1979, 1992) Algebraic L-theory assembly

A Hp(X;Le) — Lnp(Z[71(X)])

Ranicki-Weiss (1990) Chain complexes and assembly

Weiss-Williams (1995) Assembly via stable homotopy theory
Davis-Liick (1998) Assembly via equivariant homotopy theory
Hambleton-Pedersen (2004) ldentification of various assembly maps
Applications of assembly to Novikov, Borel, Farrell-Jones,Baum-Connes
conjectures, in many contexts besides algebraic L-theory, such as
algebraic K-theory or K-theory of C*-algebras. Lick 2010 ICM talk.



Surgery theory

The 1960's saw a great flowering of the topology of high-dimensional
manifolds, especially in dimensions > 4.

The Browder-Novikov-Sullivan-Wall surgery theory combined with the
Kirby-Siebenmann structure theory for topological manifolds provided
construction methods for recognizing the homotopy types of topological
manifolds among spaces with Poincaré duality.

The spectra, assembly and L-theory of the title are the technical
tools from homotopy theory and the algebraic theory of quadratic forms
which are used to recognize topological manifolds in homotopy theory.

Recognition only works in dimension > 4. Need much more subtle
methods in dimensions 3, 4.



Geometric Poincaré complexes

An n-dimensional geometric Poincaré complex X is a finite CW
complex together with a homology class [X] € H,(X) such that there
are induced Poincaré duality isomorphisms with arbitrary coefficients

X]N— : H"X) = Hp_o(X) .

An n-dimensional topological manifold M is an n-dimensional geometric
Poincaré complex for n # 4, and for n = 4 is at least homotopy
equivalent to a 4-dimensional Poincaré complex.

Any finite CW complex homotopy equivalent to an n-dimensional
topological manifold is a geometric Poincaré complex.

When is an n-dimensional Poincaré complex X homotopy equivalent to
an n-dimensional topological manifold?

Motivational answer: for n > 4 if and only if the Mishchenko-R.
symmetric signature o(X) € L"(Z[r1(X)]) is in the image of the
symmetric L-theory assembly map A : H,(X;L®) — L"(Z[m1(X)]).
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Proto-assembly, from homotopy to homology

A homology class [X] € H,(X) is local in nature, depending only on the
images
X1 € HalX, X\{x}) (x € X).

» A map of spaces f : X — Y induces a chain map £, : C(X) — C(Y).
» The proto-assembly function

Ho(YX) — Ho(Homz(C(X), C(Y))) ; f s f,

sends the homotopy class of a map f : X — Y to the chain homotopy
class of f..

> Local to global.
» Vietoris theorem: if f : X — Y is a surjection of reasonable spaces

(e.g. simplicial complexes) with acyclic point inverses
Ho(fH(x)) = Hu(x) (x € X)

then the proto-assembly f, is an isomorphism in homology.
More about this in Spiros Adams-Florou's talk tomorrow.



Proto-assembly: the diagonal map
The diagonal map
A: X > XxX; x—(x,x)
sends [X] € H,(X) to the chain homotopy class
A[X] € Hp(X x X) = Ho(Homz(C(X)"™, C(X)))

of the chain map A[X] = [X]N—: C(X)"* — C(X). Local to global.
If X is a closed oriented n-dimensional manifold with fundamental class
[X] € Hn(X) then

Z for r = n, generated by [X]x =1
0 forr#n.
The local Poincaré duality isomorphisms

XL = H'({x}) = Hpu(X, X\{x} (x € X))
assemble to the global Poincaré duality isomorphisms

X]N = H*(X) & Hypu(X) .

HA (X, X\{x}) = {
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Suspension and loop spaces

Only really need Q-spectra, but suspension spectra motivational.

The suspension of a pointed space X is
¥X = S'AX.

The loop space of X is X
QX = X° .

Adjointness property: for any pointed X, Y
XEY = (QX)Y, [ZY,X] = [YV,QX].
In particular, for Y = S” have

Tnr1(X) = mp(02X) .
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Suspension spectra

A suspension spectrum is a sequence of pointed spaces and maps
E = {Ek,ZEk — Ek+1 | k> O}
The homotopy groups of E are defined by

7T,,(E) = |i_m>7r,,+k(Ek).
k

Example The homology groups of a space X are the homotopy groups
of the Eilenberg-MacLane suspension spectrum H(X)

Hn(X) = 7"'n(IHI()Q)? H(X)k = X—i-/\K(Z? k)

with X3 = X U {+}.
Hard to see the local nature of H.(X).
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The Pontrjagin-Thom transversality construction

» Given an oriented k-plane bundle i : X — BSO(k) let T(n) be the
Thom space.

» Pontrjagin-Thom construction: Every map p: Ntk — T(n) from
an oriented (n + k)-dimensional manifold N is homotopic to a map
transverse regular at the zero section X C T(n). The inverse image is
an oriented n-dimensional submanifold

M" = pHX)C N.
» The normal bundle of M C N is the pullback oriented k-plane bundle
vmen = f'n M — X — BSO(k)

of n along the restriction f = p| : M — X.
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The Pontrjagin-Thom assembly in bordism theory
> The Thom space MSO(k) = T (1) of the universal k-plane bundle

k : BSO(k) — BSO(k) is the kth space of the universal Thom
suspension spectrum

MSO = {MSO(k)|EMSO(k) — MSO(k + 1)} .

» Let Q79(X) be the bordism groups of closed oriented n-dimensional
manifolds M" with a map M — X

» The Pontrjagin-Thom isomorphism
ma(Xy A MSO) — Q70(X) ;
(p: S™k — Xy AMSO(k)) = (p| : M" = p~1(X x BSO(k)) — X)
will serve as a model for the algebraic L-theory assembly map A, but it
is hard to see it as local to global. The Pontrjagin-Thom construction

is too analytic to translate into algebra directly. Also, A is not in
general an isomorphism.
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Q-spectra
An Q-spectrum is a sequence of pointed spaces and homotopy

equivalences
F = {Fk, Fr ~ QF_1 ‘ k € Z}

so that there are homotopy equivalences
Fo ~ QF 1 ~ ... ~ QKF , .
The homotopy groups of F are defined by
m(F) = m(Fo) = ... = moek(F_k) -

There is no essential difference between the homotopy theoretic
properties of the suspension spectra and {2-spectra.

A suspension spectrum E = {Ey, X E; — Ex11} determines an
Q-spectrum Q°E = F with the same homotopy groups

F = {Fk~QF1}, Fr = “—n;QjEj*kv mn(F) = ma(E) .
J



Homotopy invariant functors

» The homotopy groups of a covariant functor
F : {topological spaces} — {Q-spectra} ; X — F(X)

are written
Fa(X) = ma(F(X)) (neZ) .

» F is homotopy invariant if for a homotopy equivalence X — Y, or
equivalently there are induced isomorphisms

F.(X) —= F.(Y).
» The relative homotopy groups of a pair (Y, X C Y)
Fa(Y, X) = ma(F(Y)/F(X))
fit into the usual exact sequence

coo = Fp(X) = Fo(Y) = Fa(Y, X) = Froa(X) — ...

13
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Generalized homology theories

» The functor
F : {topological spaces} — {Q-spectra} ; X — F(X)
is excisive if for X = X1 Uy X3 the inclusion (X1, Y) C (X, X2) induces
excision isomorphisms
FalX0,Y) —= Fa(X, %)
and there is defined a Mayer-Vietoris exact sequence

c = Fa(Y) = Fo(X1) @ Fa(X2) = Fn(X) = Fpoi(Y) — ...

» F is a generalized homology functor if it is both homotopy invariant
and excisive.

» The homotopy groups F.(X) = m.(F(X)) are called generalized
homology groups.
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Generalized homology functors and Q-spectra I.

» Theorem (G.W. Whitehead 1962) An Q-spectrum
F = {Fx,QFc ~ Fx_1 |k € Z}
determines a generalized homology functor
F = H(?;F) : {topological spaces} — {Q-spectra} ;
X = F(X) = HX;F) = X, AF.
» The generalized homology groups are

Ha(X:F) = Fa(X) = limmopa(X; A Fg) -
k

» Moreover, every generalized homology theory arises in this way.


http://www.maths.ed.ac.uk/~aar/papers/gww9.pf
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Generalized homology functors and Q2-spectra Il.

Theorem (Weiss-Williams 1995) For every homotopy invariant functor
F : {topological spaces} — {Q-spectra}
there is an assembly natural transformation A: F” — F. with
F% = H(?; F(x)) : {topological spaces} — {Q-spectra}

the F(x)-coefficient generalized homology functor..

F” is the best approximation to a generalized homology theory with a
natural transformation to F.

The algebraic L-spectrum F(X) = L(Z[r1(X)]) does give the algebraic
L-theory assembly A, but very abstractly.


http://www.maths.ed.ac.uk/~aar/papers/wwassembly.pdf

Bordism is a generalized homology theory

» Theorem (Thom 1954, Atiyah 1960) The functor

Q20 : {topological spaces} — {Z-graded abelian groups} ;
X — Q39(X)
is a generalized homology theory, i.e. satisfies the Eilenberg-Steenrod

axioms other than dimension.

» Example: The Mayer-Vietoris exact sequence for a union
X=XiUy Xo with Y xR C X

17

R— QfO(Y) — QfO(Xl) fast QfO(Xz) — QfO(X) — Qf(_)l(Y) — ...

is proved by codimension 1 transversality, with
0 : ng(Xl Uy X2) — Qf?l(Y) :
(f : M" = Xy Uy Xo) = (f| : N* L= F1(Y) > V).


http://www.maths.ed.ac.uk/~aar/papers/thomcob.pdf
http://www.maths.ed.ac.uk/~aar/papers/atiyahb.pdf
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The generalized homology functor of bordism.

» Want to construct a generalized homology functor
QY : {topological spaces} — {Q-spectra}

such that
m(20(X)) = ROX).

» The Q-spectrum Q°°MSO of the Thom suspension spectrum MSO to
construct a generalized homology functor

QY : {topological spaces} — {Q-spectra}

such that 7, (Q°9(X)) = Q2°(X).

» However, this procedure does not adapt gracefully to algebraic L-theory.
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Assembly via simplicial complexes

There is a direct construction of an assembly map
A H(X;F(x)) — F(X)

for any functor F, with X = |K| the polyhedron of a simplicial complex
K.

Will concentrate on the bordism functors [F in various contexts:
manifolds, geometric Poincaré complexes, algebraic Poincaré complexes.
Method also works for arbitrary IF - see Chapter 6 of Algebraic L-theory
and topological manifolds (CUP, 1992)

The key idea is to construct H(X;F) = H(K; F) as an Q-spectrum of
Kan A-sets which keeps track of one piece of F for each simplex

o € K, and these pieces fit together according to the simplicial
structure of K. The assembly map A : H(K;F) — F(X) = F(K)
forgets the K-local structure.


http://www.maths.ed.ac.uk/~aar/books/topman.pdf
http://www.maths.ed.ac.uk/~aar/books/topman.pdf
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Nerves

» Let X be a topological space with a covering

X = |JXWv)

veV

by subspaces X(v) C X, some of which may be empty.
» The nerve of the cover is the simplicial complex K with vertex set

KO = {veV|X(v)+#0}.
The vertices vp, vi, . .., vy € K(© span an n-simplex of K if

X(vo) N X(vi)N---NX(vp) # 0.



Dissections

Let K be a simplicial complex. A K-dissection of a space X is a
covering

X = | X()

geK

by subspaces X (o) C X, some of which may be empty, such that

X(oT) iforeK
0 otherwise.

X(o) N X(r) = {

The nerve of the cover is the subcomplex

{ceK|X(o)#0} CK.

21
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The barycentric subdivision

The barycentric subdivision K’ is the simplicial complex with vertices
the barycentres o of the simplexes o € K. There is one n-simplex
(G001 ...04) € X' for each flag of simplexes

op<o1 < <op€EK.

Same polyhedron

K| = 1Kl = [ A%~
ceK

Poincaré used the dual cells D(o, K) C K’ (0 € K) to prove Poincaré
duality H"*(K) = H.(K) for an n-dimensional combinatorial
homology manifold K.

The assembly A : H(K;F(x)) — F(K) will also use dual cells, in the

first instance to just describe H(K;F(x)).
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Dual cells

» The dual cell of a simplex o € K is the contractible subcomplex
D(o,K) = {(6o01...0n)|0<opg<o1<--<o,e K}C K.
» The boundary of D(o, K) is the subcomplex
OD(o,K) = U D(r,K)
= {T(>§081...8,,)\a<ao <01 <---<op€ K} CD(o,K) .
» The dual cells constitute a K-dissection of |K| with nerve K

k| = | Do, k)

oceK
such that

D(or,K) ifor e K

D(o,K)N D(7,K) = {@ otherwise .
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Inverse images of the dual cells

» Given a simplicial complex K and a map f : M — |K’| write the inverse
images of the dual cells and their boundaries as

(M(c),0M(c)) = f~1(D(o,K),dD(c,K)) C M
(which may be empty).
» Properties:
oM(o) = U M(r),

T>0

M(o) O M(7) = {M(JT) ifor € K

0 otherwise .

» The nerve of the cover of M
M = | M)
ceK
is the subcomplex

{o| M(c) # 0} C K .
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Manifold transversality from the simplicial complex point of view

» Theorem (Marshall Cohen, 1967)
Let M be an n-dimensional PL manifold M and K a simplicial complex.
A simplicial map f : M — K’ is automatically transverse at the dual
cells D(o, K) C K’, with the inverse images codimension k
submanifolds with boundary

(M(o)"%,0M(c)) = fY(D(o,K),dD(c,K)) C M

(which may be empty), where k = dim(o).

» Converse: given a simplicial complex K and a space M with a
K-dissection {M(c)| o € K} there is defined a map f : M — |K’| such
that

M(c) = f'D(o,K) (0 € K)
If each (M(c),0M(c)) is an (n — dim(c))-dimensional PL manifold
with boundary then M is an n-dimensional PL manifold.

» There are also versions for CAT = O, TOP.


http://www.maths.ed.ac.uk/~aar/papers/mcohen.pdf
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Assembly via A-sets

» Chapters 11,12 of Algebraic L-theory and topological manifolds use the
Rourke-Sanderson 1971 theory of Kan A-sets to construct the
assembly A: H(K;F) — F(K’) ~ F(K) for a homotopy invariant
functor I : {simplicial complexes} — {Q-spectra of Kan A-sets}.

» The construction uses an abstract version of the theorem of Marshall
Cohen: a simplex x € H(K; F) is a compatible collection of simplices

x(o) e F(D(o,K)) (0 € K) .

The Kan extension condition is used to form the union

Alx) = | x(0).

ceK
» Model: a simplicial map f : M" — K’ is a compatible collection
fl : M(o)"9m = f71D(0, K) — D(0,K) (0 € K)

with M = | M(o).
geK


http://www.maths.ed.ac.uk/~aar/books/topman.pdf
http://www.maths.ed.ac.uk/~aar/papers/deltars.pdf
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A-sets |.

A A-set K is a sequence K(" (n > 0) of sets, together with face maps
o : K _ g(n—1) (0<i<n)

such that 8,-6,- = 6-,',16,' ((I <j)
Example An ordered simplicial complex K determines a A-set K, with
K (" the set of n-simplexes.

A A-set K is Kan if every A-map
Nin = A"™\{n-faceU ith (n —1)-face} — K

extends to a A-map A" — K.

The homotopy theory of Kan A-sets is essentially the same as the
homotopy theory of simplicial complexes.
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A-sets Il.

» A A-set K is pointed if there is a base simplex ) € K(") in each
dimension n > 0.

» The homotopy groups of a Kan pointed A-set K are
Ta(K) = {xe KM |gx=0for0<i<n}/~ .

» The loop space of a Kan pointed A-set K is the Kan pointed A-set
QK with

(QK)M = {x e K" |9, 1x = 0,000 ... 00x = 0} ,

such that
Th(QK) = mhe1(K) .
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The Q-spectrum QAT (K)

Let CAT be one of the categories O, PL, TOP.

» An (n+ k)-dimensional CAT manifold k-ad M is an

(n + k)-dimensional CAT manifold M with transverse codimension 0
submanifolds 9gM, M, ..., 0 M C OM such that

k k
oM =0, | JoM = oM.
j=0 j=0

Examples: 0-ad = closed manifold, 1-ad = cobordism.
» Let QAT (K) be the Q-spectrum with

QCAT(K)g,k) = {(n+ k)-dimensional CAT manifold k-ads M,
with amap f: M — |K|} .
Base points the empty manifold k-ads ().
The functor

QAT . {simplicial complexes} — {Q-spectra} ; K — QAT (K)

is homotopy invariant, with 7,(Q7(K)) = QAT (K).
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The Q-spectrum H(K; QT)

H(K; QT) is the subspectrum of Q“AT(K) in which f : M — |K| is
required to be CAT transverse at the dual cells D(o, K) C |K| (o € K).
The assembly map is the inclusion

ACAT . H(K;QCAT) —)QCAT(K) )

ACAT

CAT transversality = is a homotopy equivalence.

» Apart from transversality, everything works just as well in the category

of geometric Poincaré complexes, with assembly the inclusion
AP H(K; QF) = QP (k) .
Theorem For n > 5 an n-dimensional geometric Poincaré complex K is

homotopy equivalent to a compact n-dimensional topological manifold
if and only if

(1: K = K) eim(AP : Ho(K; QF) = QP (K)) .



