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I An n-dimensional topological manifold M is a paracompact
Hausdorff topological space which is locally homeomorphic to
Rn. Also called a TOP manifold.

I TOP manifolds with boundary (M, ∂M), locally (Rn
+,Rn−1).

I High dimensional = n > 5.
I Then = before Kirby-Siebenmann (1970)
I Now = after Kirby-Siebenmann (1970)
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Time scale

I 1905 Manifold duality (Poincaré)
I 1944 Embeddings (Whitney)
I 1952 Transversality, cobordism (Pontrjagin, Thom)
I 1952 Rochlin’s theorem
I 1953 Signature theorem (Hirzebruch)
I 1956 Exotic spheres (Milnor)
I 1960 Generalized Poincaré Conjecture and h-cobordism

theorem for DIFF , n > 5 (Smale)
I 1962–1970 Browder-Novikov-Sullivan-Wall surgery theory for

DIFF and PL, n > 5
I 1966 Topological invariance of rational Pontrjagin classes

(Novikov)
I 1968 Local contractibility of Homeo(M) (Chernavsky)
I 1969 Stable Homeomorphism and Annulus Theorems (Kirby)
I 1970 Kirby-Siebenmann breakthrough: high-dimensional TOP

manifolds are just like DIFF and PL manifolds, only more so!
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The triangulation of manifolds

I A triangulation (K , f ) of a space M is a simplicial complex K
together with a homeomorphism

f : |K |
∼= // M .

I M is compact if and only if K is finite.

I A DIFF manifold M can be triangulated, in an essentially
unique way (Cairns, Whitehead, 1940).

I A PL manifold M can be triangulated, by definition.
I What about TOP manifolds?

I In general, still unknown.
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Are topological manifolds at least homotopy triangulable?

I A compact TOP manifold M is an ANR, and so dominated
by the compact polyhedron L = |K | of a finite simplicial
complex K , with maps

f : M → L , g : L → M

and a homotopy
gf ' 1 : M → M

(Borsuk, 1933).
I M has the homotopy type of the noncompact polyhedron

( ∞⊔
k=−∞

L× [k, k + 1]
)
/{(x , k) ∼ (fg(x), k + 1) | x ∈ L, k ∈ Z}

I Does every compact TOP manifold M have the homotopy
type of a compact polyhedron?

I Yes (K.-S., 1970)
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Are topological manifolds triangulable?

I Triangulation Conjecture
Is every compact n-dimensional TOP manifold M
triangulable?

I Yes for n 6 3 (Möıse, 1951)
I No for n = 4 (Casson, 1985)
I Unknown for n > 5.

I Is every compact n-dimensional TOP manifold M a finite CW
complex?

I Yes for n 6= 4, since M has a finite handlebody structure
(K.-S., 1970)
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Homology manifolds and Poincaré duality

I A space M is an n-dimensional homology manifold if

Hr (M,M − {x}) =

{
Z if r = n

0 if r 6= n
(x ∈ M) .

I A compact ANR n-dimensional homology manifold M has
Poincaré duality isomorphisms

[M] ∩ − : Hn−∗(M) ∼= H∗(M)

with [M] ∈ Hn(M) a fundamental class; twisted coefficients in
the nonorientable case.

I An n-dimensional TOP manifold is an ANR homology
manifold, and so has Poincaré duality in the compact case.

I Compact ANR homology manifolds with boundary (M, ∂M)
have Poincaré-Lefschetz duality

Hn−∗(M, ∂M) ∼= H∗(M) .
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Are topological manifolds combinatorially triangulable?

I The polyhedron |K | of a simplicial complex K is an
n-dimensional homology manifold if and only if the link of
every simplex σ ∈ K is a homology S (n−|σ|−1).

I An n-dimensional PL manifold is the polyhedron M = |K | of a
simplicial complex K such that the link of every simplex
σ ∈ K is PL homeomorphic S (n−|σ|−1).

I A PL manifold is a TOP manifold with a combinatorial
triangulation.

I Combinatorial Triangulation Conjecture
Does every compact TOP manifold have a PL manifold
structure?

I No: by the K.-S. PL-TOP analogue of the classical DIFF -PL
smoothing theory, and the determination of TOP/PL.

I There exist non-combinatorial triangulations of any
triangulable TOP manifold Mn for n > 5
(Edwards, Cannon, 1978)
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The Hauptvermutung: are triangulations unique?

I Hauptvermutung (Steinitz, Tietze, 1908)
For finite simplicial complexes K , L is every homeomorphism
h : |K | ∼= |L| homotopic to a PL homeomorphism?
i.e. do K , L have isomorphic subdivisions?

I Originally stated only for manifolds.

I No (Milnor, 1961)
Examples of homeomorphic non-manifold compact polyhedra
which are not PL homeomorphic.

I Manifold Hauptvermutung Is every homeomorphism of
compact PL manifolds homotopic to a PL homeomorphism?

I No: by the K.-S. PL-TOP smoothing theory.
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TOP bundle theory

I TOP analogues of vector bundles and PL bundles.
Microbundles = TOP bundles, with classifying spaces

BTOP(n) , BTOP = lim−→
n

BTOP(n) .

(Milnor, Kister 1964)

I A TOP manifold Mn has a TOP tangent bundle

τM : M → BTOP(n) .

I For large k > 1 M × Rk has a PL structure if and only if
τM : M → BTOP lifts to a PL bundle τ̃M : M → BPL.
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DIFF-PL smoothing theory

I DIFF structures on PL manifolds (Cairns, Whitehead, Hirsch,
Milnor, Munkres, Lashof, Mazur, . . . , 1940–1968)
The DIFF structures on a compact PL manifold M are in
bijective correspondence with the lifts of τM : M → BPL to a
vector bundle τ̃M : M → BO, i.e. with [M,PL/O].

I Fibration sequence of classifying spaces

PL/O → BO → BPL → B(PL/O) .

I The difference between DIFF and PL is quantified by

πn(PL/O) =

{
θn for n > 7

0 for n 6 6

with θn the finite Kervaire-Milnor group of exotic spheres.
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PL-TOP smoothing theory

I PL structures on TOP manifolds (K.-S., 1969)
For n > 5 the PL structures on a compact n-dimensional TOP
manifold M are in bijective correspondence with the lifts of
τM : M → BTOP to τ̃M : M → BPL, i.e. with [M,TOP/PL].

I Fibration sequence of classifying spaces

TOP/PL → BPL → BTOP → B(TOP/PL)

I The difference between PL and TOP is quantified by

πn(TOP/PL) =

{
Z2 for n = 3

0 for n 6= 3

detected by the Rochlin signature invariant.
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Signature

I The signature σ(M) ∈ Z of a compact oriented
4k-dimensional ANR homology manifold M4k with ∂M = ∅ or
a homology (4k − 1)-sphere Σ is the signature of the Poincaré
duality nonsingular symmetric intersection form

φ : H2k(M)× H2k(M) → Z ; (x , y) 7→ 〈x ∪ y , [M]〉
I Theorem (Hirzebruch, 1953) For a compact oriented DIFF

manifold M4k

σ(M) = 〈Lk(M), [M]〉 ∈ Z
with Lk(M) ∈ H4k(M; Q) a polynomial in the Pontrjagin
classes pi (M) = pi (τM) ∈ H4i (M). L1(M) = p1(M)/3.

I Signature theorem also in the PL category. Define
pi (M),Li (M) ∈ H4i (M; Q) for a PL manifold Mn by

〈Li (M), [N]〉 = σ(N) ∈ Z

for compact PL submanifolds N4i ⊂ Mn × Rk with trivial
normal PL bundle (Thom, 1958).
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The signature mod 8

I Theorem (Milnor, 1958–) If M4k is a compact oriented
4k-dimensional ANR homology manifold with even
intersection form

φ(x , x) ≡ 0 (mod 2) for x ∈ H2k(M) (∗)

then
σ(M) ≡ 0 (mod 8) .

I For a TOP manifold M4k

φ(x , x) = 〈v2k(νM), x ∩ [M]〉 ∈ Z2 for x ∈ H2k(M)

with v2k(νM) ∈ H2k(M; Z2) the 2kth Wu class of the stable
normal bundle νM = −τM : M → BTOP. So condition (∗) is
satisfied if v2k(νM) = 0.

I (∗) is satisfied if M is almost framed, meaning that νM is
trivial on M − {pt.}.

I For k = 1 spin ⇐⇒ w2 = 0 ⇐⇒ v2 = 0 =⇒ (∗).
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E8

I The E8-form has signature 8

E8 =



2 0 0 1 0 0 0 0
0 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
1 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2


I For k > 2 let W 4k be the E8-plumbing of 8 copies of τS2k , a

compact (2k − 1)-connected 4k-dimensional framed DIFF
manifold with (H2k(W ), φ) = (Z8,E8), σ(W ) = 8.
The boundary ∂W = Σ4k−1 is an exotic sphere.

I The 4k-dimensional non-DIFF almost framed PL manifold
M4k = W 4k ∪Σ4k−1 cΣ obtained by coning Σ has σ(M) = 8.
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Rochlin’s Theorem

I Theorem (Rochlin, 1952) The signature of a compact
4-dimensional spin PL manifold M has σ(M) ≡ 0(mod 16).

I The Kummer surface K 4 has σ(K ) = 16.

I Every oriented 3-dimensional PL homology sphere Σ is the
boundary ∂W of a 4-dimensional framed PL manifold W .
The Rochlin invariant

α(Σ) = σ(W ) ∈ 8Z/16Z = Z2

accounts for the difference between PL and TOP manifolds!
I α(Σ) = 1 for the Poincaré 3-dimensional PL homology sphere

Σ3 = SO(3)/A5 = ∂W , with W 4 = the 4-dimensional framed
PL manifold with σ(W ) = 8 obtained by the E8-plumbing of
8 copies of τS2 .

I The 4-dimensional homology manifold P4 = W ∪Σ cΣ is
homotopy equivalent to a compact 4-dimensional spin TOP
manifold M4 = W ∪Σ Q with Q4 contractible, ∂Q = Σ3,
(H2(M), φ) = (Z8,E8), σ(M) = 8 (Freedman, 1982).
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The topological invariance of the rational Pontrjagin classes

I Theorem (Novikov, 1965)
If h : M → N is a homeomorphism of compact PL manifolds
then

h∗pi (N) = pi (M) ∈ H4i (M; Q) (i > 1) .

I It suffices to prove the splitting theorem: for any k > 1 and
compact PL submanifold Y 4i ⊂ N × Rk with π1(Y ) = {1}
and trivial PL normal bundle the product homeomorphism

h × 1 : M × Rk → N × Rk

is proper homotopic to a PL map f : M × Rk → N × Rk

which is PL split at Y , meaning that it is PL transverse and
f | : X 4i = f −1(Y ) → Y is also a homotopy equivalence.

I Then 〈Li (M), [X ]〉 = σ(X ) = σ(Y ) = 〈Li (N), [Y ]〉 ∈ Z, and
h∗Li (N) = Li (M) ∈ H4i (M; Q), so that h∗pi (N) = pi (M).
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Splitting homotopy equivalences of manifolds

I For CAT = DIFF , PL or TOP define
CAT isomorphism = diffeomorphism, PL homeomorphism,
homeomorphism.

I A homotopy equivalence of CAT manifolds h : M → N is CAT
split along a CAT submanifold Y ⊂ N if h is homotopic to a
map f : M → N CAT transverse at Y , with the restriction

f | : X = f −1(Y ) → Y

also a homotopy equivalence of CAT manifolds.

I If h is homotopic to a CAT isomorphism then h is CAT split
along every CAT submanifold.

I Converse: if h is not CAT split along one CAT submanifold
then h is not homotopic to a CAT isomorphism!
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The splitting theorem

I Theorem (Novikov 1965) Let k > 1, n > 5. If Nn is a
compact n-dimensional PL manifold with π1(N) = {1}, W n+k

is a non-compact PL manifold, h : W → N × Rk is a
homeomorphism, then h is PL split along N × {0} ⊂ N × Rk ,
with h proper homotopic to a PL transverse map f such that
f | : X = f −1(N × {0}) → N is a homotopy equivalence.

I Proof: Wrap up the homeomorphism h : W → N × Rk of
non-compact simply-connected PL manifolds to a
homeomorphism g = h : V → N × T k of compact
non-simply-connected PL manifolds such that

h ' g̃ : W = Ṽ → N × Rk .

PL split g by k-fold iteration of codim. 1 PL splittings along
T 0 = {pt.} ⊂ T 1 ⊂ T 2 ⊂ · · · ⊂ T k . Lift to PL splitting of h.

I The PL splitting needs the algebraic K -theory computation
K̃0(Z[Zk−1]) = 0, or Bass-Heller-Swan Wh(Zk) = 0. The
k-fold iteration of the Siebenmann (1965) end obstruction
(unknown to N.)
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The Stable Homeomorphism and Annulus Theorems

I A homeomorphism h : M → M is stable if

h = h1h2 . . . hk : M → M

is the composite of homeomorphisms hi : M → M each of
which is the identity on an open subset Ui ⊂ Rn.

I Stable Homeomorphism Theorem (Kirby, 1969) For n > 5
every orientation-preserving homeomorphism h : Rn → Rn is
stable.

I Annulus Theorem (Kirby, 1969) If n > 5 and h : Dn → Dn is
a homeomorphism such that h(Dn) ⊂ Dn − Sn−1 the
homeomorphism

1 t h| : Sn−1 t Sn−1 → Sn−1 t h(Sn−1)

extends to a homeomorphism

Sn−1 × [0, 1] ∼= Dn − h(Dn) .
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Wrapping up and unwrapping

I Kirby’s proof of the Stable Homeomorphism Theorem involves
both wrapping up and unwrapping

compact non-simply-connected T n

OO

wrapping up unwrapping
��

non-compact simply-connected Rn

I The wrapping up passes from the homeomorphism
h : Rn → Rn to a homeomorphism h : T n → T n using
geometric topology, via an immersion T n − {pt.} # Rn.
Also need the vanishing of the end obstruction for π1 = {1}.

I h is a bounded distance from 1 : T n → T n, and hence stable.
I The unwrapping passes from h back to h using the surgery

theory classification of PL manifolds homotopy equivalent to
T n for n > 5 via the algebraic L-theory of Z[π1(T

n)] = Z[Zn].
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The original wrapping up/unwrapping diagrams

I From Kirby’s 1969 Annals paper

I From the Kirby-Siebenmann 1969 AMS Bulletin paper
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TOP/PL

I Theorem (K.-S., 1969) Fibration sequence

TOP/PL ' K (Z2, 3) // BPL

// BTOP
κ // B(TOP/PL) ' K (Z2, 4)

I The Pontrjagin classes pk(η) ∈ H4k(X ; Q) for TOP bundles
η : X → BTOP are defined by pullback from universal classes

pk ∈ H4k(BTOP; Q) = H4k(BPL; Q) .

I The L-genus of a TOP manifold Mn is defined by
Lk(M) = Lk(τM) ∈ H4k(M; Q), and for n = 4k

σ(M) = 〈Lk(M), [M]〉 ∈ Z .

I Bundles over S4 classified by p1 ∈ 2Z ⊂ H4(S4; Q) = Q and
κ ∈ H4(S4; Z2) = Z2, with isomorphisms

π4(BPL)
∼= // Z ; η̃ 7→ p1(η̃)/2 ,

π4(BTOP)
∼= // Z⊕ Z2 ; η 7→ (p1(η)/2, κ(η)) .
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TOP bundles over S4

I A TOP bundle η : S4 → BTOP has a PL lift η̃ : S4 → BPL if
and only if

κ(η) = 0 ∈ H4(S4; Z2) = Z2 .

I A TOP bundle η : S4 → BTOP is fibre homotopy trivial if
and only if J(η) = 0 ∈ π4(BG ) = πS

3 = Z24 or equivalently

p1(η)/2 ≡ 12κ(η) (mod 24) .

I A fibre homotopy trivial TOP bundle η : S4 → BTOP has a
PL lift η̃ : S4 → BPL if and only if p1(η) ≡ 0(mod 48).

I The Poincaré homology sphere Σ3 is used to construct a
non-PL homeomorphism h : Rn × S3 → Rn × S3 (n > 4) with
ph = p : Rn × S3 → S3. The TOP(n)-bundle
η : S4 → BTOP(n) with clutching function h is fibre
homotopy trivial but does not have a PL lift, with

p1(η) = 24 ∈ Z , κ(η) = 1 ∈ Z2 .
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PL structures on TOP manifolds

I The PL structure obstruction of a compact n-dimensional
TOP manifold M

κ(M) ∈ [M,B(TOP/PL)] = H4(M; Z2)

is the PL lifting obstruction of the stable tangent bundle τM

κ(M) : M
τM // BTOP

κ // B(TOP/PL) ' K (Z2, 4) .

For n > 5 κ(M) = 0 if and only if M has a PL structure.
(K.-S. 1969)

I If n > 5 and κ(M) = 0 the PL structures on M are in bijective
correspondence with [M,TOP/PL] = H3(M; Z2).

I For each n > 4 there exist compact n-dimensional TOP
manifolds M with κ(M) 6= 0. Such M do not have a PL
structure, and are counterexamples to the Combinatorial
Triangulation Conjecture.

I All known counterexamples for n > 5 can be triangulated.
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The triangulation obstruction

I Rochlin invariant map α fits into short exact sequence

0 // ker(α) // θH
3

α // Z2
// 0

with θH
3 the cobordism group of oriented 3-dimensional PL

homology spheres.
I ker(α) is infinitely generated (Fintushel-Stern 1990, using

Donaldson, 1982).
I (Galewski-Stern, Matumoto, 1976)

The triangulation obstruction of a compact n-dimensional
TOP manifold M is

δκ(M) ∈ H5(M; ker(α))

with δ : H4(M; Z2) → H5(M; ker(α)) the Bockstein. For
n > 5 M can be triangulated if and only if δκ(M) = 0.

I Still unknown if δκ(M) can be non-zero for Mn with n > 5!
I M4 with κ(M) 6= 0 cannot be triangulated (Casson, 1985).

E.g. the 4-dim. Freedman E8-manifold cannot be triangulated.
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The handle straightening obstruction

I A homeomorphism h : M → N of compact n-dimensional PL
manifolds has a handle straightening obstruction

κ(h) = τM − h∗τN ∈ [M,TOP/PL] = H3(M; Z2) .

For n > 5 κ(h) = 0 if and only if h is isotopic to a PL
homeomorphism (K.-S., 1969).

I The mapping cylinder of h is a TOP manifold W with a PL
structure on boundary ∂W = M ∪ N, such that W is
homeomorphic to M × [0, 1]. The handle straightening
obstruction is the rel ∂ PL structure obstruction

κ(h) = κ∂(W ) ∈ H4(W , ∂W ; Z2) = H3(M; Z2).

I For each n > 5 every element κ ∈ H3(M; Z2) is κ = κ(h) for
a homeomorphism h : M → N.
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TOP transversality

I Theorem (K.-S. 1970, Rourke-Sanderson 1970, Marin, 1977)
Let (X ,Y ⊂ X ) be a pair of spaces such that Y has a TOP
k-bundle neighbourhood

νY⊂X : Y → BTOP(k) .

For n − k 6= 4, every map f : M → X from a compact
n-dimensional TOP manifold M is homotopic to a map
g : M → X which is TOP transverse at Y ⊂ X , meaning that

Nn−k = f −1(Y ) ⊂ Mn

is a codimension k TOP submanifold with normal TOP
k-bundle

νN⊂M = f ∗νY⊂X : N → BTOP(k)

I Also for n − k = 4 (Quinn, 1988)
I TOP analogue of Sard-Thom transversality for DIFF and PL,

but much harder to prove.
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TOP handlebodies

I Theorem (K.-S. 1970)
For n > 6 every compact n-dimensional TOP manifold Mn

has a handlebody decomposition

M =
⋃

h0 ∪
⋃

h1 ∪ · · · ∪
⋃

hn

with every i-handle hi = D i × Dn−i attached to lower handles
at

∂+hi = S i−1 × Dn−i ⊂ hi .

I In particular, M is a finite CW complex.

I TOP analogue of handlebody decomposition for DIFF and
PL, but much harder to prove.

I There is also a TOP analogue of Morse theory for DIFF and
PL.
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The TOP h- and s-cobordism theorems

I An h-cobordism is a cobordism (W ;M,N) such that the
inclusions M ↪→ W , N ↪→ W are homotopy equivalences.

I TOP h- and s-cobordism theorems (K.-S. 1970).
For n > 5 an (n + 1)-dimensional TOP h-cobordism
(W n+1;M,N) is homeomorphic to M × ([0, 1]; {0}, {1}) rel M
if and only if it is an s-cobordism, i.e. the Whitehead torsion is

τ(M ' W ) = 0 ∈ Wh(π1(M)) .

I If τ = 0 the composite homotopy equivalence

M
' // W

' // N

is homotopic to a homeomorphism.

I Generalization of the DIFF and PL cases originally due to
Smale, 1962 and Barden-Mazur-Stallings, 1964.
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Why are TOP manifolds harder than DIFF and PL manifolds?

I For CAT = DIFF and PL the structure theory of CAT
manifolds can be developed working entirely in CAT to obtain
transversality and handlebody decompositions.

I Need n > 5 for Whitney trick for removing double points.
I But do not need sophisticated algebraic computation beyond

Wh(1) = 0

required for the combinatorial invariance of Whitehead torsion.

I The high-dimensional TOP manifold structure theory cannot
be developed just in the TOP category!

I The TOP theory also needs the PL surgery classification of the
homotopy types of the tori T n for n > 5 which depends on the
Bass-Heller-Swan (1964) computation

Wh(Zn) = 0

or some controlled K - or L-theory analogue.
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Why are TOP manifolds easier than DIFF and PL manifolds?

I Topological manifolds bear the simplest possible relation to
their underlying homotopy types. This is a broad statement
worth testing.

L.C.Siebenmann (Nice ICM article, 1970)

I (R., 1992) The homotopy types of high-dimensional TOP
manifolds are in one-one correspondence with the homotopy
types of Poincaré duality spaces with some additional chain
level quadratic structure.

I Homeomorphisms correspond to homotopy equivalences
preserving the additional structure.
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Poincaré duality spaces

I An n-dimensional Poincaré duality space X is a space with the
simple homotopy type of a finite CW complex, and a
fundamental class [X ] ∈ Hn(X ) such that cap product defines
a simple chain equivalence

[X ] ∩ − : C (X )n−∗
' // C (X )

inducing duality isomorphisms [X ] ∩ − : Hn−∗(X ) ∼= H∗(X )
with arbitrary Z[π1(X )]-module coefficients.

I A compact n-dimensional TOP manifold is an n-dimensional
Poincaré space (K.-S., 1970).

I Any space homotopy equivalent to a Poincaré duality space is
again a Poincaré duality space.

I There exist n-dimensional Poincaré duality spaces which are
not homotopy equivalent to compact n-dimensional TOP
manifolds (Gitler-Stasheff, 1965 and Wall, 1967 for PL, K.-S.
1970 for TOP)
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The CAT manifold structure set

I Let CAT= DIFF , PL or TOP.
I The CAT structure set SCAT (X ) of an n-dimensional Poincaré

duality space X is the set of equivalence classes of pairs
(M, f ) with M a compact n-dimensional CAT manifold and
f : M → X a homotopy equivalence, with

I (M, f ) ∼ (M ′, f ′) if there exists a CAT isomorphism
h : M → M ′ with a homotopy f ' f ′h : M → X .

I Fundamental problem of surgery theory:
decide if SCAT (X ) is non-empty, and if so compute it by
algebraic topology.

I This can be done for n > 5, allowing the systematic
construction and classification of CAT manifolds and
homotopy equivalences using algebra.
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The Spivak normal fibration

I A spherical fibration η over a space X is a fibration

Sk−1 → S(η) → X

e.g. the sphere bundle of a k-plane vector or TOP bundle.
I Classifying spaces BG (k), BG = lim−→k

BG (k) with homotopy
groups the stable homotopy groups of spheres

πn(BG ) = πS
n−1 = lim−→

k

πn+k−1(S
k)

I The Spivak normal fibration νX : X → BG of an
n-dimensional Poincaré duality space X is

Sk−1 → S(νX ) = ∂W → W ' X

(W , ∂W ) regular neigbhd. of embedding X ⊂ Sn+k (k large).
I If M is a CAT manifold the Spivak normal fibration
νM : M → BG lifts to the BCAT stable normal bundle
νCAT
M : M → BCAT of an embedding M ⊂ Sn+k (k large).
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Surgery obstruction theory

I Wall (1969) defined the algebraic L-groups Ln(A) of a ring
with involution A. Abelian Grothendieck-Witt groups of
quadratic forms on based f.g. free A-modules and their
automorphisms. 4-periodic: Ln(A) = Ln+4(A).

I Let CAT = DIFF , PL or TOP. A CAT normal map
f : M → X from a compact n-dimensional CAT manifold M
to an n-dimensional Poincaré duality space X has
f∗[M] = [X ] ∈ Hn(X ) and νM ' f ∗νCAT

X : M → BCAT for a
CAT lift νCAT

X : X → BCAT of νX : X → BG .
I The surgery obstruction of a CAT normal map f

σ∗(f ) ∈ Ln(Z[π1(X )])

is such that for n > 5 σ∗(f ) = 0 if and only if f is CAT
normal bordant to a homotopy equivalence.

I Same obstruction groups in each CAT .
I Also a rel ∂ version, with homotopy equivalences on the

boundaries.
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The surgery theory construction of homotopy
equivalences of manifolds from quadratic forms

I Theorem (Wall, 1969, for CAT = DIFF ,PL, after K.-S. also
for TOP).
For an n-dimensional CAT manifold M with n > 5 every
element x ∈ Ln+1(Z[π1(M)]) is realized as the rel ∂ surgery
obstruction x = σ∗(f ) of a CAT normal map

(f ; 1, h) : (W ;M,N) → M × ([0, 1]; {0}, {1})

with h : N → M a homotopy equivalence.
I Build W by attaching middle-dimensional handles to M × I

W n+1 =

{
M × [0, 1] ∪

⋃
hi if n + 1 = 2i

M × [0, 1] ∪
⋃

hi ∪
⋃

hi+1 if n + 1 = 2i + 1

using x to determine the intersections and self-intersections.
I Interesting quadratic forms x lead to interesting homotopy

equivalences h : N → M of CAT manifolds!
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G/PL and G/TOP

I The classifying spaces BPL, BTOP, BG for PL, TOP bundles
and spherical fibrations fit into a braid of fibrations

TOP/PL

  B
BB

BB
BB

B

  
BPL

  A
AA

AA
AA

AA

��
BG

G/PL

??~~~~~~~~

  @
@@

@@
@@

BTOP

BB��������

G/TOP

>>}}}}}}}}

I G/CAT classifies CAT bundles with fibre homotopy
trivialization.

I If X is a Poincaré duality space with CAT lift of νX then
[X ,G/CAT ] = the set of cobordism classes of CAT normal
maps f : M → X . Abelian group πn(G/CAT ) for X = Sn.
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The surgery exact sequence

Theorem (B.-N.-S.-W. for CAT = DIFF , PL, K.-S. for TOP)
Let X be an n-dimensional Poincaré duality space, n > 5.

I X is homotopy equivalent to a compact n-dimensional CAT
manifold if and only if there exists a lift of νX : X → BG to
ν̃X : X → BCAT for which the corresponding CAT normal
map f : M → X with νCAT

M = f ∗ν̃X : M → BCAT has surgery
obstruction

σ∗(f ) = 0 ∈ Ln(Z[π1(X )]) .

I If X is a CAT manifold the structure set SCAT (X ) fits into
the CAT surgery exact sequence of pointed sets

· · · → Ln+1(Z[π1(X )]) → SCAT (X )

→ [X ,G/CAT ] → Ln(Z[π1(X )]) .
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The Manifold Hauptvermutung from the
surgery point of view

I The TOP and PL surgery exact sequences of a compact
n-dimensional PL manifold M (n > 5) interlock in a braid of
exact sequences of abelian groups

Ln+1(Z[π1(M)])
''OOO

O

!!
STOP(M)

''OOO
O

##
H4(M; Z2)

SPL(M)

99ttt

%%JJ
J

[M,G/TOP]

66mmmm

((QQQQ

H3(M; Z2)

77ooo

==
[M,G/PL]

77oooo

;;
Ln(Z[π1(M)])

I A homeomorphism h : M → N is homotopic to a PL homeo-
morphism if and only if κ(h) ∈ ker(H3(M; Z2) → SPL(M)).

I [κ(h)] ∈ [M,G/PL] is the Hauptvermutung obstruction of
Casson and Sullivan (1966-7) - complete for π1(M) = {1}.
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Why is the TOP surgery exact sequence better
than the DIFF and PL sequences?

I Because it has an algebraic model (R., 1992)!

I For ‘any space’ X can define the algebraic surgery exact
sequence of cobordism groups of quadratic Poincaré complexes

. . . // Ln+1(Z[π1(X )]) // Sn+1(X ) //

Hn(X ; L(Z))
A // Ln(Z[π1(X )]) // Sn(X ) // . . .

with L(Z) a 1-connective spectrum of quadratic forms over Z,
and A the assembly map from the local generalized
L(Z)-coefficient homology of X to the global L-theory of
Z[π1(X )].

I π∗(L(Z)) = L∗(Z) and S∗({pt.}) = 0.
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Quadratic Poincaré complexes

I An n-dimensional quadratic Poincaré complex C over a ring
with involution A is an A-module chain complex C with a
chain equivalence ψ : Cn−∗ = HomA(C ,A)∗−n ' C .

I Ln(A) is the cobordism group of n-dimensional quadratic
Poincaré complexes C of based f.g. free A-modules with
Whitehead torsion τ(ψ) = 0 ∈ K̃1(A).

I Hn(X ; L(Z)) is the cobordism group of ‘sheaves’ C over X of
n-dimensional quadratic Poincaré complexes over Z, with
Verdier-type duality. Assembly A(C ) = q!p

!C with p : X̃ → X
the universal cover projection, q : X̃ → {pt.}.

I Sn+1(X ) is the cobordism group of sheaves C over X of
n-dimensional quadratic Poincaré complexes over Z with the
assembly A(C ) a contractible quadratic Poincaré complex
over Z[π1(X )].
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The total surgery obstruction of a Poincaré duality space

I An n-dim. P. duality space X has a total surgery obstruction

s(X ) = C ∈ Sn(X )

such that for n > 5 s(X ) = 0 if and only if X is homotopy
equivalent to a compact n-dimensional TOP manifold.

I The stalks C (x) (x ∈ X ) of C are quadratic Poincaré
complexes over Z measuring the failure of X to be an
n-dimensional homology manifold, with exact sequences

· · · → Hr (C (x)) → Hn−r ({x}) → Hr (X ,X − {x}) → . . . .

s(X ) = 0 if and only if stalks are coherently null-cobordant.
I For n > 5 the difference between the homotopy types of

n-dimensional TOP manifolds and Poincaré duality spaces is
measured by the failure of the functor

{spaces} → {Z4-graded abelian groups} ; X 7→ L∗(Z[π1(X )])

to be a generalized homology theory.
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The total surgery obstruction of a
homotopy equivalence of manifolds

I A homotopy equivalence f : N → M of compact
n-dimensional TOP manifolds has a total surgery obstruction

s(f ) = C ∈ Sn+1(M)

such that for n > 5 s(f ) = 0 if and only if f is homotopic to a
homeomorphism.

I The stalks C (x) (x ∈ M) of C are quadratic Poincaré
complexes over Z measuring the failure of f to have acyclic
point inverses f −1(x), with exact sequences

· · · → Hr (C (x)) → Hr (f
−1{x}) → Hr ({x}) → . . . .

s(f ) = 0 if and only if the stalks are coherently null-cobordant.
I Theorem (R., 1992) The TOP surgery exact sequence is

isomorphic to the algebraic surgery exact sequence. Bijection

STOP(M)
∼= // Sn+1(M) ; (N, f ) 7→ s(f ) .
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Manifolds with boundary

I For an n-dimensional CAT manifold with boundary (X , ∂X )
let SCAT (X , ∂X ) be the structure set of homotopy
equivalences h : (M, ∂M) → (X , ∂X ) with (M, ∂M) a CAT
manifold with boundary and ∂h : ∂M → ∂X a CAT
isomorphism.

I For n > 5 rel ∂ surgery exact sequence

· · · → Ln+k+1(Z[π1(X )]) → SCAT (X × Dk , ∂(X × Dk))

→ [X × Dk , ∂;G/CAT , ∗] → Ln+k(Z[π1(X )]) →
· · · → Ln+1(Z[π1(X )]) → SCAT (X , ∂X ) → [X , ∂X ;G/CAT , ∗]

→ Ln(Z[π1(X )]) .

I TOP case isomorphic to algebraic surgery exact sequence.
Bijections STOP(X ×Dk , ∂(X ×Dk)) ∼= Sn+k+1(X ) (k > 0).
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The algebraic L-groups of Z

I (Kervaire-Milnor, 1963) The L-groups of Z are given by

Ln(Z) =


Z (signature σ/8)

0

Z2 (Arf invariant)

0

for n ≡


0

1

2

3

(mod 4)

I Define the PL L-groups of Z by

L̃n(Z) =

{
Ln(Z) for n 6= 4

{σ ∈ L4(Z)|σ ≡ 0(mod16)} for n = 4

as in Rochlin’s theorem, with

L4(Z)/L̃4(Z) = Z2 .
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Spheres

I Generalized Poincaré Conjecture For n > 4 a compact
n-dimensional TOP manifold Mn homotopy equivalent to Sn

is homeomorphic to Sn.
I For n > 5: Smale (1960, DIFF ), Stallings (1961, PL),

Newman (1962, TOP).
I For n = 4: Freedman (1982, TOP).

I For n + k > 4

STOP(Sn × Dk , ∂) = Sn+k+1(S
n) = 0 .

I πn(G/PL) = L̃n(Z) (Sullivan, 1967)

I πn(G/TOP) = Ln(Z) (K.-S., 1970), so

L0(Z) ' G/TOP .
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Simply-connected surgery theory

I Theorem (K.-S., 1970) For n > 5 a simply-connected
n-dimensional Poincaré duality space X is homotopy
equivalent to a compact n-dimensional TOP manifold if and
only if the Spivak normal fibration νX : X → BG lifts to a
TOP bundle ν̃X : X → BTOP.

I TOP version of original DIFF theorem of Browder, 1962.
I Also true for n = 4 by Freedman, 1982.

I Corollary For n > 5 a homotopy equivalence of
simply-connected compact n-dimensional TOP manifolds
h : M → N is homotopic to a homeomorphism if and only if a
canonical homotopy

g : h∗νN ' νM : M → BG

lifts to a homotopy

g̃ : h∗νTOP
N ' νTOP

M : M → BTOP .
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Products of spheres

I For m, n > 2, m + n > 5

SPL(Sm × Sn) = L̃m(Z)⊕ L̃n(Z)

STOP(Sm × Sn) = Sm+n+1(S
m × Sn) = Lm(Z)⊕ Ln(Z)

I For CAT = PL and TOP there exist homotopy equivalences
Mm+n ' Sm × Sn of CAT manifolds which are not CAT split,
and so not homotopic to CAT isomorphisms. For CAT = PL
these are counterexamples to the Manifold Hauptvermutung.

I There exist compact TOP manifolds Mm+4 which are
homotopy equivalent to Sm × S4, but do not have a PL
structure. Counterexamples to Combinatorial Triangulation
Conjecture.
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TOP/PL and homotopy structures

I A map h : Sk → TOP(n)/PL(n) is represented by a
homeomorphism h : Rn × Dk → Rn × Dk such that
ph = p : Rn × Dk → Dk and which is a PL homeomorphism
on Rn × Sk−1. For n + k > 6 can wrap up h to a
homeomorphism h : Mn+k → T n × Dk with (M, ∂M) PL,
such that ∂h : ∂M → T n × Sk−1 is a PL homeomorphism.

I Theorem (K.-S., 1970) For 1 6 k < n, n > 5 the wrapping up

πk(TOP(n)/PL(n)) → SPL(T n × Dk , ∂) ; h 7→ h

is injective with image the subset

SPL
∗ (T n × Dk , ∂) ⊆ SPL(T n × Dk , ∂)

invariant under transfers for finite covers T n → T n, and

πk(TOP(n)/PL(n)) ∼= πk(TOP/PL) .

I Key: approximate homeomorphism h : Rn × Dk → Rn × Dk

by homotopy equivalence h : Mn+k → T n × Dk .
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The algebraic L-groups of polynomial extensions

I Theorem (Wall, Shaneson 1969 geometrically for A = Z[π],
Novikov, R. 1970– algebraically)
For any ring with involution A

Lm(A[z , z−1]) = Lm(A)⊕ Lh
m−1(A)

with Lh
∗ defined just like L∗ but ignoring Whitehead torsion.

I Inductive computation

Lm(Z[Zn]) =
n∑

i=0

(
n

i

)
Lm−i (Z)

for any n > 1, using

Z[Zn] = Z[Zn−1][zn, z
−1
n ]

= Z[z1, z
−1
1 , z2, z

−1
2 , . . . , zn, z

−1
n ]

and the Bass-Heller-Swan computation Wh(Zn) = 0.
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Tori

I Theorem (Wall, Hsiang, Shaneson 1969)

[T n × Dk , ∂;G/PL, ∗] =
n−1∑
i=0

(
n

i

)
L̃n+k−i (Z)

⊂ Ln+k(Z[Zn]) =
n∑

i=0

(
n

i

)
Ln+k−i (Z) (n, k > 0) ,

SPL(T n × Dk , ∂) = H3−k(T n; Z2) =

(
n

n + k − 3

)
Z2 (n + k > 5)

I Corollary (K.-S., 1970) For k < n and n > 5

πk(TOP/PL) = SPL
∗ (T n × Dk , ∂) =

{
Z2 if k = 3

0 if k 6= 3

so that TOP/PL ' K (Z2, 3).
I Need SPL

∗ (T n × Dk , ∂) = 0 (k 6= 3) for handle straightening.
I STOP(T n × Dk , ∂) = Sn+k+1(T

n) = 0 for n + k > 5.
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A counterexample to the Manifold Hauptvermutung
from the surgery theory point of view

I The morphism

Ln+1(Z[Zn]) = [T n × D1, ∂;G/TOP, ∗]
→ [T n,TOP/PL] = H3(T n; Z2)

is onto, so for any x 6= 0 ∈ H3(T n; Z2) there exists an element
y ∈ Ln+1(Z[Zn]) with [y ] = x . For n > 5 realize y = σ∗(f ) as
the rel ∂ surgery obstruction of a PL normal map

(f ; 1, g) : (W n+1;T n, τn) → T n × (I ; {0}, {1})
with g : τn → T n homotopic to a homeomorphism h, and

s(g) = κ(h) = x 6= 0 ∈ SPL(T n) = H3(T n; Z2) .

I The homotopy equivalence g is not PL split at T 3 ⊂ T n with
〈x , [T 3]〉 = 1 ∈ Z2, since g−1(T 3) = T 3#Σ3 with Σ3 =
Poincaré homology sphere with Rochlin invariant α(Σ3) = 1.
g is not homotopic to a PL homeomorphism.
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A counterexample to the Combinatorial Triangulation
Conjecture from the surgery theory point of view

I For x 6= 0 ∈ H3(T n; Z2), y ∈ Ln+1(Z[Zn]), n > 5 use the PL
normal map (f ; 1, g) : (W n+1;T n, τn) → T n × (I ; {0}, {1})
with g : τn → T n homotopic to a homeomorphism h to define
a compact (n + 1)-dimensional TOP manifold

Mn+1 = W /{x ∼ h(x) | x ∈ τn}

with a TOP normal map F : M → T n+1 such that

σ∗(F ) = (y , 0) ∈ Ln+1(Z[Zn+1]) = Ln+1(Z[Zn])⊕ Ln(Z[Zn]) .

I The combinatorial triangulation obstruction of M is

κ(M) = δ(x) 6= 0 ∈ im(δ : H3(T n; Z2) → H4(M; Z2)) .

νTOP
M : M → BTOP does not have a PL lift, so M does not

have a PL structure, and is not homotopy equivalent to a
compact (n + 1)-dimensional PL manifold.



54

The original counterexample to
the Manifold Hauptvermutung and

the Combinatorial Triangulation Conjecture

Elementary construction in Siebenmann’s 1970 ICM paper:



55

Some applications of TOP surgery theory
for finite fundamental groups

I The surgery obstruction groups L∗(Z[π]) have been computed
for many finite groups π using algebraic number theory and
representation theory, starting with Wall (1970–).

I Solution of the topological space form problem:
The classification of free actions of finite groups on spheres.
(Madsen, Thomas, Wall 1977)

I Solution of the deRham problem:
The topological classification of linear representations of cyclic
groups. (Cappell-Shaneson, 1981, Hambleton-Pedersen, 2005)
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The Novikov Conjecture

I The higher signatures of a compact oriented n-dimensional
TOP manifold M with fundamental group π1(M) = π are

σx(M) = 〈L(M) ∪ f ∗(x), [M]〉 ∈ Q

with x ∈ Hn−4∗(K (π, 1); Q), f : M → K (π, 1) a classifying
map for the universal cover.

I Conjecture (N., 1969) The higher signatures are homotopy
invariant, that is

σx(M) = σx(N) ∈ Q

for any homotopy equivalence h : M → N of TOP manifolds
and any x ∈ Hn−4∗(K (π, 1); Q).

I Equivalent to the rational injectivity of the assembly map
A : H∗(K (π, 1); L(Z)) → L∗(Z[π]). Trivial for finite π.

I Solved for a large class of infinite groups π, using algebra,
topology, differential geometry and analysis (C ∗-algebra
methods).
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The Borel Conjecture

I A topological space X is aspherical if πi (X ) = 0 for i > 2, or
equivalently X ' K (π, 1) with π = π1(X ). If X is a Poincaré
duality space then π is infinite torsionfree.

I Borel Conjecture Every aspherical n-dimensional Poincaré
duality space X is homotopy equivalent to a compact
n-dimensional TOP manifold, with homotopy rigidity

STOP(X × Dk , ∂) = 0 for k > 0 .

I For n > 5 the Conjecture is equivalent to the assembly map
A : H∗(X ; L(Z)) → L∗(Z[π]) being an isomorphism for
∗ > n + 1, and s(X ) = 0 ∈ Sn(X ) = Z.

I Many positive results on the Borel Conjecture starting with
X = T n, π = Zn, and the closely related Novikov Conjecture
(especially Farrell-Jones, 1986–). Solutions use K.-S. TOP
manifold structure theorems, controlled algebra and
differential geometry.
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Controlled algebra/topology

I The development of high-dimensional TOP manifolds since
1970 has centred on the applications of a mixture of algebra
and topology, called controlled algebra, in which the size of
permitted algebraic operations is measured in a control
(metric) space.

I For example, homeomorphisms of TOP manifolds can be
approximated by bounded/controlled homotopy equivalences.
Also, there are bounded/controlled analogues for
homeomorphisms of the Whitehead and Hurewicz theorems
for recognizing homotopy equivalences as maps inducing
isomorphisms in the homotopy and homology groups.

I Key ingredient: codimension 1 splitting theorems.



59

Approximating homeomorphisms
I. Homotopy conditions

I A CE map of manifolds f : M → N is a map such that the
point-inverses

f −1(x) ⊂ M (x ∈ N)

are contractible, or equivalently
I f is a homotopy equivalence such that the restrictions

f | : f −1(U) → U (U ⊆ N open)

are also homotopy equivalences.

I Theorem (Siebenmann, 1972) For n > 5 a map f : M → N of
n-dimensional TOP manifolds is CE if and only if f is a limit
of homeomorphisms.
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Approximating homeomorphisms
II. Topological conditions

I The tracks of a homotopy h : f0 ' f1 : X → Y are the paths

[0, 1] → Y ; t 7→ h(x , t) (x ∈ X )

from h(x , 0) = f0(x) to h(x , 1) = f1(x).

I If α is an open cover of a space N then a map f : M → N is
an α-equivalence if there exist a homotopy inverse g : N → M
and homotopies gf ' 1 : M → M, fg ' 1 : N → N with each
track contained in some U ∈ α.

I Theorem (Chapman, Ferry, 1979) If n > 5 and Nn is a TOP
manifold, then for any open cover α of N there exists an open
cover β of N such that any β-equivalence is α-close to a
homeomorphism.
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Approximating homeomorphisms
III. Metric conditions

I For δ > 0 a δ-map f : M → N of metric spaces is a map such
that for every x ∈ N

diameter(f −1(x)) < δ .

I Theorem (Ferry, 1979) If n > 5 and Nn is a TOP manifold,
then for any ε > 0 there exists δ < ε such that any surjective
δ-map f : Mn → Nn of n-dimensional TOP manifolds is
homotopic through ε-maps to a homeomorphism.

I Squeezing.
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Metric algebra

I X = metric space, with metric d : X × X → R+.

I An X -controlled group = a free abelian group Z[A] with basis
A and a labelling function

A → X ; a 7→ xa .

I A morphism f = (f (a, b)) : Z[A] → Z[B] of X -controlled
groups is a matrix with entries f (a, b) ∈ Z indexed by the
basis elements a ∈ A, b ∈ B. The diameter of
f : Z[A] → Z[B] is

diameter(f ) = sup d(xa, xb) > 0

with a ∈ A, b ∈ B such that f (a, b) 6= 0.

I For morphisms f : Z[A] → Z[B], g : Z[B] → Z[C ]

diameter(gf ) 6 diameter(f ) + diameter(g)
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Controlled algebra

I (Quinn, 1979–) Controlled algebraic K - and L-theory, with
diameter < ε for small ε > 0.

I Many applications to high-dimensional TOP manifolds, e.g.
controlled h-cobordism theorem, mapping cylinder
neighbourhoods, stratified sets and group actions.

I (Controlled Hurewicz for homeomorphisms) If n > 5 and Nn is
a TOP manifold, then for any ε > 0 there exists δ < ε such
that if f : Mn → Nn induces a δ-epsilon chain equivalence
then f is homotopic to a homeomorphism.

I Disadvantage: condition diameter < ε is not functorial, since
diameter of composite < 2ε. Hard to compute the controlled
obstruction groups.
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Recognizing topological manifolds

I Theorem (Edwards, 1978) For n 6= 4 the polyhedron |K | of a
simplicial complex K is an n-dimensional TOP manifold if and
only if the links of σ ∈ K are simply-connected and have the
homology of Sn−|σ|−1.

I Theorem (Quinn, 1987) For n > 5 a topological space X is an
n-dimensional TOP manifold if and only if it is an
n-dimensional ENR homology manifold with the disjoint disc
property and ‘resolution obstruction’

i(X ) = 0 ∈ L0(Z) = Z .
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Bounded surgery theory

I A morphism f : A → B of X -groups is bounded if

diameter(f ) <∞

I (Ferry-Pedersen, 1995–) Algebraic K - and L-theory of
X -controlled groups with bounded morphisms.

I Bounded surgery theory is functorial: the composite of
bounded morphisms is bounded. Easier to compute bounded
than the controlled obstruction groups. Realization of
quadratic forms as in the compact theory.

I Rn-bounded surgery simplifies proof of TOP/PL ' K (Z2, 3),
replacing non-simply-connected compact PL manifolds in

πk(TOP/PL) = SPL
∗ (T n × Dk , ∂) (k < n, n > 5)

by simply-connected non-compact PL manifolds in

πk(TOP/PL) = SRn−bounded−PL(Rn × Dk , ∂) .
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The future

I More accessible proofs of the Kirby-Siebenmann results in
dimensions n > 5.

I A grand unified theory of topological manifolds, controlled
topology and sheaf theory.

I A proof/disproof of the Triangulation Conjecture.

I The inclusion of the dimensions n 6 4 in the big picture.
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