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Introduction

I In 1829 Sturm proved a theorem calculating the number of
real roots of a non-zero real polynomial P(X ) ∈ R[X ] in an
interval [a, b] ⊂ R, using the Euclidean algorithm in R[X ] and
counting sign changes.

I In 1853 Sylvester interpreted Sturm’s theorem using continued
fractions and the signature of a tridiagonal quadratic form. In
fact, this was the first application of the signature!

I The survey paper of Étienne Ghys and A.R.
http://arxiv.org/abs/1512.09258 Signatures in algebra,
topology and dynamics includes a modern interpretation of
the results of Sturm and Sylvester in terms of the “Witt
group” of quadratic forms over the function field R(X ).

I History, algebra, topology – and even some number theory!

http://arxiv.org/abs/1512.09258
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Jacques Charles François Sturm (1803-1855)
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Sturm’s problem

I Major problem in early 19th century How many real roots
of a degree n real polynomial P(X ) ∈ R[X ] are there in an
interval [a, b] ⊂ R?

I Sturm’s 1829 formula for the numbers of roots involved the
Sturm sequences: the remainders and quotients in the
Euclidean algorithm (with sign change) in R[X ] for finding the
greatest common divisor of P0(X ) = P(X ), P1(X ) = P ′(X )

P∗(X ) = (P0(X ), . . . ,Pn(X )) , Q∗(X ) = (Q1(X ), . . . ,Qn(X ))

with deg(Pk+1(X )) < deg(Pk(X )) 6 n − k and

Pk−1(X ) + Pk+1(X ) = Pk(X )Qk(X ) (1 6 k 6 n) .

I Simplifying assumption P(X ) is generic: the real roots of
P0(X ), P1(X ), . . . ,Pn(X ) are distinct and non-zero, so that
deg(Pk(X )) = n − k and Pn(X ) is a non-zero constant.
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Variation

I The variation of p = (p0, p1, . . . , pn) ∈ (R\{0})n+1 is the
number of sign changes p0 → p1 → · · · → pn, which is
expressed in terms of the sign changes pk−1 → pk by

var(p) = (n −
n∑

k=1

sign(pk/pk−1))/2 ∈ {0, 1, . . . , n} .

I Sturm’s root-counting formula involved the variations of the
Sturm functions Pk(X ) evaluated at ‘regular’ x ∈ R.

I Call x ∈ R regular if Pk(x) ̸= 0 (0 6 k 6 n − 1), so that the
variation

var(P∗(x)) = var(P0(x),P1(x), . . . ,Pn(x)) ∈ {0, 1, . . . , n}

is defined.
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Sturm’s Theorem I.

I Theorem (1829) The number of real roots of a generic
P(X ) ∈ R[X ] in [a, b] ⊂ R for regular a < b is

|{x ∈ [a, b] |P(x) = 0 ∈ R}| = var(P∗(a))− var(P∗(b)) .

I Idea of proof The function

f : [a, b]→ {0, 1, . . . , n} ; x 7→ var(P∗(a))− var(P∗(x))

jumps by

{
1

0
at root x of Pk(X ) if k =

{
0

1, 2, . . . , n.
I For k = 0 the jump in f at a root x of P0(x) is 1, since for y

close to x

P0(y)P1(y) = d/dy(P(y)2)/2 =

{
< 0 if y < x

> 0 if y > x ,

var(P0(y),P1(y)) =

{
var(+,−) = var(−,+) = 1 if y < x

var(+,+) = var(−,−) = 0 if y > x .



7

Sturm’s Theorem II.

I For k = 1, 2, . . . , n the jump in f at a root x of Pk(x) is 0.
I k = n trivial, since Pn(X ) is non-zero constant.
I For k = 1, 2, . . . , n − 1 the numbers Pk−1(x),

Pk+1(x) ̸= 0 ∈ R have opposite signs since

Pk−1(x) + Pk+1(x) = Pk(x)Qk(x) = 0 .

I For y , z close to x with y < x < z

sign(Pk−1(y)) = −sign(Pk+1(y))

= sign(Pk−1(z)) = −sign(Pk+1(z)) ,

var(Pk−1(y),Pk(y),Pk+1(y))

= var(Pk−1(z),Pk(z),Pk+1(z)) = 1 ,

that is

var(+,+,−) = var(+,−,−) = var(−,+,+) = var(−,−,+) = 1.
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Sturm’s theorem III.
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James Joseph Sylvester (1814-1897)
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Sylvester’s papers related to Sturm’s theorem

I On the relation of Sturm’s auxiliary functions to the roots of
an algebraic equation. (1841)

I A demonstration of the theorem that every homogeneous
quadratic polynomial is reducible by real orthogonal
substitutions to the form of a sum of positive and negative
squares. (1852)

I On a remarkable modification of Sturm’s Theorem (1853)

I On a theory of the syzygetic relations of two rational integral
functions, comprising an application to the theory of Sturm’s
functions, and that of the greatest algebraical common
measure. (1853)
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The signature

I Definition The signature of a symmetric n × n matrix
S = (sij)16i ,j6n is

τ(S) = τ+(S)− τ−(S) ∈ {−n,−n + 1, . . . , n − 1, n}
with τ+(S) (resp. τ−(S)) the number of positive (resp.
negative) eigenvalues.

I Law of Inertia (Sylvester (1852)) For any invertible n × n
matrix A = (aij) with transpose A∗ = (aji )

τ(A∗SA) = τ(S) .

I Theorem (Sylvester (1853), Jacobi (1857), Gundelfinger
(1881), Frobenius (1895))
The signature of a symmetric n × n matrix S in R with the
principal minors µk = µk(S) = det(sij)16i ,j6k non-zero is

τ(S) =
n∑

k=1

sign(µk/µk−1) = n − 2 var(µ) .
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The tridiagonal symmetric matrix (Jacobi, Sylvester)

I Definition The tridiagonal symmetric matrix of
q = (q1, q2, . . . , qn) is

Tri(q) =


q1 1 0 . . . 0
1 q2 1 . . . 0
0 1 q3 . . . 0
...

...
...

. . .
...

0 0 0 . . . qn


I Tridiagonal Signature Theorem For q ∈ Rn the signature of

Tri(q) is

τ(Tri(q)) =
n∑

k=1

sign(µk/µk−1) = n − 2 var(µ)

assuming µk = µk(Tri(q)) = det(Tri(q1, q2, . . . , qk)) ̸= 0 ∈ R.
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Continued fractions and the Sturm functions

I The improper continued fraction of (q1, q2, . . . , qn) is

[q1, q2, . . . , qn] = q1 −
1

q2 −
. . .
− 1

qn

assuming there are no divisions by 0.
I The continued fraction expansion of P(X )/P ′(X ) is

P(X )

P ′(X )
= [Q1(X ),Q2(X ), . . . ,Qn(X )] ∈ R(X )

with Q1(X ),Q2(X ), . . . ,Qn(X ) the Sturm quotients.
I The Sturm remainders (P0(X ),P1(X ), . . . ,Pn(X )) are the

numerators in the reverse convergents

[Qk+1(X ),Qk+2(X ), . . . ,Qn(X )] =
Pk(X )

Pk+1(X )
∈ R(X ) (0 6 k 6 n−1)

Pk(X )/Pn(X ) = det(Tri(Qk+1(X ),Qk+2(X ), . . . ,Qn(X ))).



14

Sylvester’s Duality Theorem (1853)

I The convergents of [Q1(X ),Q2(X ), . . . ,Qn(X )] ∈ R(X ) are

[Q1(X ),Q2(X ), . . . ,Qk(X )]

=
P∗
k (X )

det(Tri(Q2(X ),Q3(X ), . . . ,Qk(X )))

with numerators the minors of Tri(Q1(X ),Q2(X ), . . . ,Qn(X ))

P∗
k (X ) = µk(Tri(Q1(X ),Q2(X ), . . . ,Qn(X )))

= det(Tri(Q1(X ),Q2(X ), . . . ,Qk(X ))) ∈ R[X ] .

I Sylvester’s Duality Theorem Let x ∈ R be regular for
P(X ). The variations of the sequence of the numerators of
the convergents and reverse convergents are equal

var(P0(x),P1(x), . . . ,Pn(x)) = var(P∗
0 (x),P

∗
1 (x), . . . ,P

∗
n(x)) .
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Sylvester’s reformulation of Sturm’s Theorem

I Theorem (S.-S.) The number of real roots of P(X ) ∈ R[X ]
in an interval [a, b] with regular a < b can be calculated from
the signatures of the tridiagonal symmetric matrices
Tri(Q∗(x)) for x = a and b

var(P0(a),P1(a), . . . ,Pn(a))− var(P0(b),P1(b), . . . ,Pn(b))

= (τ(Tri(Q∗(b)))− τ(Tri(Q∗(a)))
)
/2 ∈ {0, 1, 2, . . . , n} .

I Proof For any regular x ∈ [a, b]

var(P0(x),P1(x), . . . ,Pn(x))

= var(P∗
0 (x),P

∗
1 (x), . . . ,P

∗
n(x)) (by the Duality Theorem)

=
(
n − τ(Tri(Q∗(x))

)
/2 ∈ {0, 1, 2, . . . , n} .
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Sylvester’s musical inspiration for the Duality Theorem616 On a remarkahle Modification oj Sturm's Theorem. [61 

As an artist delights in recalling the particular time and atmospheric 
effects under which he has composed a favourite sketch, so I hope to be 
excused putting upon record that it was in listening to one of the magnificent 
choruses in the' Israel in Egypt' that, unsought and unsolicited, like a ray 
of light, silently stole into my mind the idea (simple, but previously un-
perceived) of the equivalence of the Sturmian residues to the denominator 
series formed by the reverse convergents. The idea was just what was 
wanting,-the key-note to the due and perfect evolution of the theory. 

Postscript. 

Immediately after leaving the foregoing matter in the hands of the printer, 
a most simple and complete proof has occurred to me of the theorem left 
undemonstrated in the text Cp. 610]. 

Suppose that we have any series of terms u" U z, U 3 ... Un, where 

ｾ＠ = A" U z= A,Az -1, U3 = A,AzA3 - A, - A3, &c. 

and in general 

then u" uz, u3 ... Un will be the successive principal coaxal determinants 
of a symmetrical matrix. Thus suppose n = 5; if we write down the matrix 

A" 1, 0, 0, 0, 

1, A2 , 1, 0, 0, 

0, 1, 11.3, 1, 0, 

0, 0, 1, A4, 1, 

0, 0, 0, 1, A5, 

(the mode of formation of which is self-apparent), these succeSSIve coaxal 
determinants will be 

1 1 A, 1\ A" 1 I A" 1, ° A" 1, 0, ° A" 1, 0, 0, ° 1, .A z 1, 11.2 , 1 1, Az, 1, ° 1, A 2 , 1, 0, ° 0, 1, 11.3 0, 1, A3, 1 0, 1, A3, 1, ° 0, 0, 1, A4 0, 0, 1, A4, 1 

0, 0, 
that is 

0, 1, 11.5 

1, A" A,A2 -1, 11.,11.211.3 - A, - 11.3, A,AzA3A4 - A,Az - 11.,11.4 - AaA4 + 1, 

A,A2AaA4A5 - A,AzA5 - 11.111.411.5 - A3A4A5 - A,AzA3 + 11.5 + A3 + A,. 

It is proper to introduce the unit because it is, in fact, the value of a deter-
minant of zero places, as I have observed elsewhere. Now I have demon-
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Ernst Witt (1911–1991)

I “Artin fractions”:

1�6

�64
=

1

4
,
2�6

�65
=

2

5
,
1�9

�95
=

1

5
,
4�9

�98
=

4

8
.

I (x , y , z) = (1, 6, 4), (2, 6, 5), (1, 9, 5) and (4, 9, 8) are the only
single-digit solutions of

10x + y

10y + z
=

x

z
.
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Fractions

I Let R be a commutative ring, and S ⊂ R a multiplicative
subset of non-zero divisors, with 1 ∈ S .

I The localization of R inverting S is the ring of fractions

S−1R = {r/s | r ∈ R, s ∈ S}

with natural injection

R → S−1R ; r 7→ r/1 .

I The comparison of the classifications of symmetric matrices
over R and S−1R is a fundamental technique of algebra,
topology - and number theory!
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Minkowski, Hasse and Witt

I Minkowski (1880’s) related the classification of symmetric
matrices over the integers Z and rationals Q = (Z\{0})−1Z.

I Hasse (1920’s) related the classification of symmetric matrices
over R and K for the ring of algebraic integers R = OK in an
algebraic number field K = (R\{0})−1R.

I Witt (1937) introduced the “Witt group” W (K ) of a field K
to be the Grothendieck group (avant la lettre) of equivalence
classes of invertible symmetric matrices over K .

I Witt’s computation of W (K ) for char(K ) ̸= 2 gave a uniform
treatment of the invariants of Minkowski and Hasse for an
algebraic number field K .

I Relation between W (R) and W (S−1R) given by the
“localization exact sequence”. R = R[X ] and S−1R = R(X )
relevant to Sturm’s theorem.



20

Symmetric forms

I Let R be a commutative ring.

I A symmetric form over R (V , ϕ) is a f.g. free R-module V
together with a symmetric bilinear pairing ϕ : V × V → R.

I (V , ϕ) essentially the same as a symmetric n × n matrix
S = (sij) with

sij = sji ∈ R , n = dimR V .

I (V , ϕ) is nonsingular if the adjoint R-module morphism

ϕ : V → V ∗ = HomR(V ,R) ; v 7→ (w 7→ ϕ(v ,w) = ϕ(w , v))

is an isomorphism. The form is nonsingular if and only if the
matrix is invertible.
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The symmetric Witt group W (R)

I The symmetric Witt group W (R) is the abelian group of
equivalence classes of nonsingular symmetric forms (V , ϕ)
over R with

(i) (V , ϕ) ∼ (V ′, ϕ′) if there exists an isomorphism f : V → V ′

such that ϕ′(f (v), f (w)) = ϕ(v ,w) for all v ,w ∈ V ,

(ii) (V , ϕ)⊕ (V ,−ϕ) ∼ 0 for any (V , ϕ) .

Addition by

(V1, ϕ1) + (V2, ϕ2) = (V1 ⊕ V2, ϕ1 ⊕ ϕ2) ∈W (R) .

I (Sylvester, 1852) By the Law of Inertia the signature map is
an isomorphism

τ : W (R)→ Z ; (V , ϕ) 7→ τ(V , ϕ) .

I (Serre, 1962) τ : W (Z)→ Z is an isomorphism.
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Linking forms

I An (R, S)-module T is a f.g. homological dimension 1
R-module such that S−1T = 0, so that

T = coker(σ : Rn → Rn) (det(σ) ∈ S) .

I A symmetric linking form over (R, S) (T , λ) is an
(R, S)-module T with a symmetric bilinear pairing

λ : T × T → S−1R/R .

I (T , λ) is nonsingular if the adjoint R-module morphism

T → HomR(T , S−1R/R) ; x 7→ (y 7→ λ(x , y))

is an isomorphism.

I The Witt group W (R, S) of nonsingular symmetric linking
forms over (R, S) is defined by analogy with W (R).
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The localization exact sequence of Witt groups

I Theorem (R. 1980) For any commutative ring R and
multiplicative system S ⊂ R the Witt groups of R and S−1R
are related by exact sequence

W (R) // W (S−1R)
∂ // W (R, S) .

The boundary map ∂ given by the “dual lattice” construction

∂S−1(V , ϕ) = (coker(ϕ : V → V ∗), (f , g) 7→ f (ϕ−1(g)))

= (V#/V , (v/s,w/t) 7→ ϕ(v ,w)/st)

with V# = {v/s ∈ S−1V |ϕ(v)/s ∈ V ∗ ⊂ S−1V ∗}.
I Example For any r , s ∈ S

∂(K , r/s)

= (R/(rs), 1/rs : R/(rs)× R/(rs)→ S−1R/R; (x , y) 7→ xy/rs)

(= (R/(r), 1/r)⊕ (R/(s), 1/s) for coprime r , s ∈ S .)
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W (Dedekind ring)

I (Milnor, 1970) The localization exact sequence for a Dedekind
ring R with quotient field K = S−1R (S = R\{0}) is

0 // W (R) // W (K )
∂ // W (R, S) =

⊕
π▹R prime

W (R/π) .

∂ is split onto for a principal ideal domain R.
I Example For R = Z ⊂ S−1R = Q (R, S)-modules = finite

abelian groups, W (Z) = Z and W (Q) = Z⊕W (Z, S) with
W (Z, S) =

⊕
p prime

W (Fp)

= W (F2)⊕
⊕

4q+1prime
W (F4q+1)⊕

⊕
4r+3prime

W (F4r+3)

= Z2 ⊕
⊕

4q+1prime
(Z2 ⊕ Z2)⊕

⊕
4r+3prime

Z4 .

I For an odd prime p

(
−1
p

)
=

{
1 if p = 4q + 1

−1 if p = 4r + 3.
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The Euclidean algorithm and the localization exact sequence

I For any R, S let p0, p1 ∈ S be coprime, verified by the
Euclidean algorithm with ‘abstract Sturm sequences’
p = (p0, p1, . . . , pn) ∈ Sn+1, q = (q1, q2, . . . , qn) ∈ Rn

pkqk = pk−1 + pk+1 (1 6 k 6 n)

with pn = g.c.d(p0, p1) = 1, pn+1 = 0.

I Proposition (Ghys-R.,2016)
The Sturm sequences lift (R/(p0), p1/p0) ∈W (R,S) to
(S−1Rn,Tri(q)) ∈W (S−1R), with

(S−1Rn,Tri(q)) =
n⊕

k=1

(S−1R, pk−1/pk) ∈W (S−1R) ,

∂(S−1Rn,Tri(q)) = ∂(S−1R, p0/p1)

= (R/(p0), p1/p0) ∈W (R, S) .
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The Witt group W (R(X ))

I (R., 1998) The Witt group localization exact sequence for
R[X ] ⊂ R(X ) splits

0 // W (R[X ]) = Z // W (R(X ))
∂ // W (R[X ], S) // 0

with W (R[X ], S) the Witt group of nonsingular symmetric
linking forms (T , λ : T × T → R(X )/R[X ]) on f.g. S-torsion
R[X ]-modules T (= finite-dimensional R-vector space T with
an endomorphism X : T → T ) .

I W (R[X ], S) =
⊕

π▹R[X ] prime

W (R[X ]/π)

=
⊕
x∈R

W (R[X ]/(X − x))⊕
⊕
z∈H

W (R[X ]/(X − z)(X − z))

= Z[R]⊕ Z2[H] (H = upper half plane ⊂ C) .
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The Witt group interpretation of Sturm-Sylvester theorem

I Suppose that P(X ) ∈ R[X ] is a degree n polynomial with g
real roots {x1, x2, . . . , xg} ⊂ R and 2h complex roots
{z1, z2, . . . , zh} ∪ {z1, z2, . . . , zh} ⊂ H ∪H, with n = g + 2h
and H= complex upper half plane.

I Let P∗(X ) = (P0(X ), . . . ,Pn(X )), Q∗(X ) = (Q1(X ), . . . ,
Qn(X )) be the Sturm functions of P(X ).

I Theorem (Ghys-R., 2016) The location of the roots of P(X )
can be read off from the Witt class of the nonsingular
symmetric form (R(X ),P(X )/P ′(X )) over R(X )

(R(X ),P(X )/P ′(X )) = (R(X )n,Tri(Q∗(X )))

=
g⊕

i=1
(R(X ),X − xi )⊕

h⊕
j=1

(R(X ), (X − zj)(X − z j))

⊕− (R(X )h, 1)

=
g∑

i=1
1.xj +

h∑
j=1

1.zj − h.1 ∈W (R(X )) = Z[R]⊕ Z2[H]⊕ Z .
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Terry Wall (1936–)
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Surgery

I (Thom, Milnor, 1950’s) A surgery on a closed n-dimensional
manifold L uses an embedding

Sp × Dq ⊂ L (p + q = n)

to construct a new closed n-dimensional manifold

L′ = (L\Sp × Dq) ∪ Dp+1 × Sq−1 .

I The trace of the surgery is the cobordism (M; L, L′) with

M = L× I ∪ Dp+1 × Dq .
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Manifolds, intersections and linking

I An oriented 2i-dimensional manifold with boundary (M, ∂M)
has an intersection (−1)i -symmetric form over Z
(Hi (M)/torsion, ϕM) over (Z,Z\{0})

ϕM(N i
1 ⊂ M,N i

2 ⊂ M) = N1 ∩ N2 ∈ Z .

I An oriented (2i − 1)-dimensional manifold with boundary
(L, ∂L) has a (−1)i -symmetric linking form over (Z,Z\{0})
(torsionHi−1(L), λL) with

λL(N
i−1
1 ⊂ L,N i−1

2 ⊂ L) =
δN1 ∩ N2

s
∈ Q/Z

if δN i
1 ⊂ L extends ∂δN1 =

∪
s
N1 ⊂ L for some s > 1.

I For (M2i , ∂M) with even i can define signature
τ(M) = (Hi (M)/torsion, ϕM) ∈W (Z) = Z and

∂ : W (Q)→W (Z,Z\{0});
(Hi (M;Q), ϕM) 7→ (torsion(Hi−1(∂M)), λ∂M) .
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The lens spaces

I For any coprime a, c ∈ Z define the lens space

L(c, a) = S1 × D2 ∪A S1 × D2

using any b, d ∈ Z such that ad − bc = 1, with

A =

(
a b
c d

)
∈ SL(2,Z) realized by

A : S1 × S1 → S1 × S1 ; (z ,w) 7→ (zawb, zcwd) .

I L(c, a) is a closed oriented 3-dimensional manifold with
symmetric linking form (H1(L(c , a)), λ) = (Zc , a/c).

I Surgery on S1 × D2 ⊂ L(c, a) results in a cobordism
(M(c , a); L(c, a), L(a, c)) with

M(c , a) = L(c, a)× I ∪ D2 × D2 ,

−L(a, c) = (L(c , a)\S1 × D2) ∪ D2 × S1 .

Symmetric intersection form (H2(M(c, a)), ϕ) = (Z, ac).
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Topological proof of the Sylvester Duality Theorem I.

I (Hirzebruch, 1962) For coprime c > a > 0 the Euclidean
algorithm for g.c.d.(a, c) = 1

p0 = c , p1 = a , . . . , pn = 1 , pn+1 = 0 ,

pkqk = pk−1 + pk+1 (1 6 k 6 n) .

determines an expression of the lens space L(c , a) = ∂M as
the boundary of an oriented 4-dimensional manifold M with
intersection form (H2(M), ϕ) = (Zn,Tri(q)).

I The continued fraction a/c = [q1, q2, . . . , qn] is realized
topologically by a sequence of cobordisms of lens spaces

(M, ∂M) = (M1; L0, L1)∪(M2; L1, L2)∪· · ·∪(Mn∪D4; Ln−1, ∅)

with

L0 = L(p0, p1) = L(c , a) , Ln = L(pn, pn+1) = L(1, 0) = S3 ,

Lk = L(pk , pk+1) = −L(pk , pk−1) (1 6 k 6 n) .
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Topological proof of the Sylvester Duality Theorem II.

I

1

1

0

2

1 2 n -1 n
3

n

4

M

L L L L L = S

M M

U D

= L(c, a)

I M is obtained by glueing together the cobordisms
(Mk ; Lk−1, Lk) for k = 1, 2, . . . , n (“plumbing”) with

Lk−1 = L(pk−1, pk) , Mk = M(pk−1, pk)

(M, ∂M)

= (M1; L0, L1) ∪ (M2; L1, L2) ∪ · · · ∪ (Mn ∪ D4; Ln−1, ∅) .
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Topological proof of the Sylvester Duality Theorem III.

I The union Uk =
k∪

j=1
Mj has

(H2(Uk ;Q), ϕUk
) =

k⊕
j=1

(Q, pj−1pj) , τ(Uk) =
k∑

j=1

sign(pj/pj−1)

with pj = det(Tri(qj+1, . . . , qn)).

I The union Vk =
n∪

j=n−k+1

Mj has

(H2(Vk), ϕVk
) = (Zk ,Tri(q1, q2, . . . , qk)) ,

τ(Vk) =
k∑

j=1
sign(p∗j /p

∗
j−1) with p∗j = det(Tri(q1, q2, . . . , qj)) .

I It now follows from M = Un = Vn that

τ(M) = τ(Tri(q1, q2, . . . , qn))

=
n∑

j=1
sign(pj/pj−1) =

n∑
j=1

sign(p∗j /p
∗
j−1) .
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Surgery theory

I The 1960’s Browder-Novikov-Sullivan-Wall surgery
obstruction theory for classifying high dimensional manifolds
within a homotopy type culminated in the development of
Wall’s algebraic surgery obstruction groups Ln(R) for any
ring with involution R.

I In the applications to topology R = Z[π] with π the
fundamental group and the involution

Z[π]→ Z[π] ;
∑
g∈π

ngg 7→
∑
g∈π

ngg
−1

I For n > 5 a topological space X with n-dimensional Poincaré
duality Hn−∗(X ) ∼= H∗(X ) is homotopy equivalent to an
n-dimensional topological manifold if and only if a certain
algebraic L-theory obstruction related to Ln(Z[π1(X )])
vanishes.

I Every finitely presented group π can occur.
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The algebraic L-groups I.

I The L-groups of a ring with involution R are abelian and are
4-periodic

Ln(R) = Ln+4(R) .

I Roughly speaking, modulo 2-primary torsion

Ln(R) =
Witt group of (−1)i -symmetric forms over R

if n = 2i

(automorphism group of (−1)i -symmetric forms over R)ab

if n = 2i + 1

In particular, L4∗(R) = W (R) modulo 2-primary torsion.
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The algebraic L-groups II.

I (R., 1980) The algebraic L-groups Ln(R) were expressed as
the cobordism groups of n-dimensional f.g. free R-module
chain complexes C with the Poincaré duality

Hn−∗(C ) ∼= H∗(C )

of an n-dimensional manifold.

I The Witt group localization exact sequence was extended to

. . . // Ln+1(R, S) // Ln(R) // Ln(S
−1R)

∂ // Ln(R, S) // Ln−1(R) // . . .

for any ring with involution R and S ⊂ R such that
R → S−1R is an injection of rings with involution.
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The computation of L∗(Z[π])

I In the 1970’s Wall initiated the computations of L∗(Z[π]) for
many groups π.

I For finite π the computations use number theory, notably the
“arithmetic square”

Z[π] //

��

Ẑ[π]

��

Q[π] // Q̂[π]

with Ẑ = lim←−
n

Zn the profinite completion of Z and

Q̂ = (Ẑ\{0})−1Ẑ the quotient field, the finite adèles.
I The Novikov and Farrell-Jones conjectures predict L∗(Z[π])

for infinite groups π. Verifications for many classes of groups,
using group theory, differential geometry and topology.


