SURGERY ON TREES

ANDREW RANICKI

- Homotopy vs. homeomorphism
- Transversality
- Codimension 1 submanifolds
- Seifert-Van Kampen Theorem
- Mayer-Vietoris exact sequence
- Algebraic *K* and *L*-theory

Homotopy vs. homeomorphism

- A class of manifolds is <u>rigid</u> if every homotopy equivalence of manifolds in the class is homotopic to a homeomorphism.
- Main example of a rigid class: hyperbolic manifolds, including all oriented 2-dimensional manifolds.
- Borel conjecture: aspherical manifolds are rigid.
- In general, manifolds are not rigid and there are many distinct homeomorphism classes of manifolds within a homotopy type.

Surgery obstruction theory

- Surgery theory provides systematic obstruction theory in dimensions $n \geq 5$ for deciding if a homotopy equivalence of n-dimensional manifolds $f: M^n \to X$ is homotopic to a homeomorphism.
- Obstructions involve the algebraic K- and L-theory of modules and quadratic forms over the group ring $\mathbb{Z}[\pi]$ of the fundamental group $\pi = \pi_1(X)$.

Codimension 1 methods in topology

- Study of 3-manifolds via surfaces $N^2 \subset M^3$.
- The Eilenberg-Steenrod excision axiom for homology is a codimension 1 transversality requirement.
- Codimension 1 submanifolds $N^{n-1} \subset M^n$ play a central role in:
 - Novikov's proof of the topological invariance of the rational Pontrjagin classes (1966)
 - Kirby-Siebenmann structure theory of high dimensional topological manifolds (1969)
 - Chapman's proof of the topological invariance of Whitehead torsion (1974)
 - controlled topology.

Geometric transversality

Let X be a space with a subspace

$$Y \times \mathbb{R} \subset X$$
.

Identify $Y = Y \times \{0\} \subset Y \times \mathbb{R}$.

• Transversality theorem: every map from an n-dimensional manifold

$$f:M^n\to X$$

is homotopic to a map which is $\underline{\text{transverse}}$ at $Y \subset X$, with

$$N^{n-1} = f^{-1}(Y) \subset M^n$$

a codimension 1 submanifold.

Splitting homotopy equivalences

• A homotopy equivalence $f: M^n \to X$ splits along $Y \subset X$ if it is homotopic to one for which the restrictions

$$f|: N^{n-1} = f^{-1}(Y) \to Y,$$

 $f|: M \setminus N = f^{-1}(X \setminus Y) \to X \setminus Y$

are also homotopy equivalences.

- Codimension 1 splitting necessary along all $Y \subset X$ (and sometimes sufficient) for f to be homotopic to a homeomorphism.
- Waldhausen (1969) proved that Haken 3dimensional manifolds are rigid, using codimension 1 splitting methods.

Non-splitting homotopy equivalences

- In general, homotopy equivalences do not split along codimension 1 submanifolds, with both K- and L-theory obstructions.
- Farrell and Hsiang (1970) proved that for $n \geq 6$ a homotopy equivalence $f: M^n \to X \times S^1$ splits along $X \times \{\text{pt.}\} \subset X \times S^1$ if and only if $\tau(f) \in \text{im}(\text{Wh}(\pi) \to \text{Wh}(\pi \times \mathbb{Z}))$, $\pi = \pi_1(X)$ (Whitehead torsion).
- Cappell (1972) used a partial computation of the L-theory of the infinite dihedral group $D_{\infty} = \mathbb{Z}_2 * \mathbb{Z}_2$ to construct homotopy equivalences $h: M^{4k+1} \to \mathbb{RP}^{4k+1} \# \mathbb{RP}^{4k+1}$ for $k \geq 1$ which do not split along the separating codimension 1 submanifold in the connected sum $S^{4k} \subset \mathbb{RP}^{4k+1} \# \mathbb{RP}^{4k+1}$.

Object of the exercise

- Invent algebra which is sufficiently flexible to have the geometric transversality properties of manifolds.
- Identify the difference between homotopy equivalences and homeomorphisms of manifolds with the extent to which the K- and L-groups of the fundamental group ring $\mathbb{Z}[\pi]$ have this flexibility.
- Computations in algebraic K- and L-theory are used in two directions, to prove that:
 - some homotopy equivalences of manifolds are definitely homotopic to homeomorphisms
 - others are definitely not homotopic to homeomorphisms.

The two cases

• X, Y connected, $Y \times \mathbb{R} \subset X$.

• Case A: The complement $X \setminus Y = X_1 \cup X_2$ is disconnected.

• Case B: The complement $X \setminus Y$ is connected.

The Seifert-van Kampen Theorem

- The fundamental group of a connected space X with a connected subspace $Y \subset X$ is determined by the fundamental groups of Y, $X \backslash Y$.
- Case A: <u>amalgamated free product</u>

$$\pi_1(X) = \pi_1(X_1) *_{\pi_1(Y)} \pi_1(X_2)$$

- Example: $X = S^1 \vee S^1$, $Y = \{pt.\}$.
- Case B: <u>HNN</u> extension

$$\pi_1(X) = \pi_1(X \backslash Y) *_{\pi_1(Y)} \{t\}$$

- Example: $X = S^1$, $Y = \{pt.\}$.
- Amalgamated free products and HNN extensions are the groups which act on trees with quotient I and S^1 (Bass-Serre).

The Mayer-Vietoris exact sequence

• The homology of X is determined by the homologies of Y, $X \setminus Y$ by the Mayer–Vietoris exact sequence.

- Case A:
$$X = X_1 \cup_Y X_2$$

$$\dots \to H_n(Y) \to H_n(X_1) \oplus H_n(X_2)$$

$$\to H_n(X) \to H_{n-1}(Y) \to \dots$$

- Case B:

$$\dots \to H_n(Y) \to H_n(X \backslash Y)$$
$$\to H_n(X) \to H_{n-1}(Y) \to \dots$$

with two inclusions $Y \to X \backslash Y$.

 Proved by codimension 1 transversality on cycle level.

The Whitehead group

- The Whitehead group Wh(π) of a group π is the abelian group of equivalence classes of invertible $k \times k$ matrices with entries in $\mathbb{Z}[\pi]$ for all integers $k \geq 1$, modulo the equivalence relation generated by Gaussian elimination and stabilization by direct sum with identity matrices. (Whitehead, 1939)
- A nonsingular matrix over $\mathbb{Z}[\pi]$ can be reduced to the identity matrix by elementary row and column operations if and only if it represents 0 in the Whitehead group $\mathrm{Wh}(\pi)$.

Higman

- Initiated the algebraic computation of the Whitehead group
 - Units in group rings (1940)
- Wh($\{1\}$) = 0 by Gaussian elimination for matrices with entries in \mathbb{Z} .
- Wh(\mathbb{Z}) = 0, Wh(\mathbb{Z}_5) \neq 0.

Whitehead torsion

- A homotopy equivalence $f: M \to N$ of compact polyhedra has a Whitehead torsion $\tau(f) \in Wh(\pi_1(N))$ such that:
 - $-\tau(f)=\tau(g)$ if $f,g:M\to N$ homotopic,
 - $-\tau(f)=0$ if f is a homeomorphism.
- There exist 3-dimensional lens space manifolds M,N which are homotopy equivalent but not homeomorphic, with homotopy equivalences $f:M\to N$ such that $\tau(f)\neq 0$. (Reidemeister, Whitehead, 1930's).
- Generalized Whitehead groups $\operatorname{Wh}_n(\pi)$ defined for $n \in \mathbb{Z}$ (Bass for $n \leq -1$, Quillen for $n \geq 3$) with $\operatorname{Wh}_1(\pi) = \operatorname{Wh}(\pi)$, and $\operatorname{Wh}_0(\pi) = \widetilde{K}_0(\mathbb{Z}[\pi])$ the reduced projective class group.

Waldhausen's theorem

- Theorem (1976) The generalized White-head groups $Wh_*(X) = Wh_*(\pi_1(X))$ of a connected space X with connected $Y \subset X$ fit into exact sequences of the Mayer-Vietoris type:
 - Case A: $X \setminus Y$ disconnected $X = X_1 \cup_Y X_2$

$$\dots \to \operatorname{Wh}_n(Y) \to \operatorname{Wh}_n(X_1) \oplus \operatorname{Wh}_n(X_2)$$

 $\to \operatorname{Wh}_n(X) \to \operatorname{Wh}_{n-1}(Y) \oplus \operatorname{Nil}_n \to \dots$

- Case B: $X \setminus Y$ connected

$$\dots \to \operatorname{Wh}_n(Y) \to \operatorname{Wh}_n(X \setminus Y)$$

 $\to \operatorname{Wh}_n(X) \to \operatorname{Wh}_{n-1}(Y) \oplus \operatorname{Nil}_n \to \dots$

• Corollary Wh_{*}(π) = 0 for the fundamental groups π of Haken 3-manifolds.

Cappell's theorem

- The <u>unitary nilpotent groups</u> $UNil_n$ are the obstructions to a Mayer-Vietoris exact sequence in the algebraic L-theory of groups acting on trees (= amalgamated free products and HNN extensions).
- Theorem (1976) For $n \geq 6$ a homotopy equivalence of n-dimensional manifolds $f: M^n \to X$ splits along a codimension 1 submanifold $Y \subset X$ if and only if Nil and UNil obstructions vanish.
- Proved geometrically, using the entire apparatus of the Browder-Novikov-Sullivan-Wall surgery theory.

Chain complexes

- The algebraic K-groups defined by <u>chain</u> <u>complexes</u>.
- ullet "Whatever can be done for abstract K-groups can be done (usually with more difficulty) for the L-groups" (C.T.C.Wall)
- The algebraic *L*-groups defined by <u>chain</u> <u>complexes with Poincaré duality</u>.

Algebraic transversality

- Chain complexes over the group ring $\mathbb{Z}[\pi]$ of a group π which is an amalgamated free product $\pi_1 *_{\rho} \pi_2$ or an HNN extension $\pi_1 *_{\rho} \{t\}$ have the transversality properties of manifolds with these fundamental groups.
- Algebraic transversality: if C is a $\mathbb{Z}[\pi]$ -module chain complex then C has corresponding codimension 1 subcomplex $D \subset C$ over $\mathbb{Z}[\rho]$.
- Can now prove Cappell's theorem using algebraic transversality for chain complexes with Poincaré duality.

State of the art

- The Nil and UNil groups were studied by Bass-Heller-Swan, Farrell and Hsiang in the 60's, Waldhausen, Cappell in the 70's, Connolly, Kozńiewski and R. in the 90's:
 - hard to compute,
 - either 0 or infinitely generated,
 - obstructions to the integral Novikov conjecture.
- ullet Connolly and R. have new results on the L-theory of D_{∞} .

Two trees

- Case A: $\pi = \pi_1 *_{\rho} \pi_2$ has tree T with $T^{(0)} = [\pi : \pi_1] \cup [\pi : \pi_2]$, $T^{(1)} = [\pi : \rho]$.
 - Example: Infinite dihedral group $D_{\infty} = \mathbb{Z}_2 *_{\{1\}} \mathbb{Z}_2 = \{s_1, s_2 \mid (s_1)^2, (s_2)^2\}$ $T = \mathbb{R}, s_1(x) = -x, s_2(x) = 2-x, T/D_{\infty} = I.$ $\underbrace{s_1\pi_2 \quad \pi_1 \quad \pi_2 \quad s_2\pi_1 \quad s_2s_1\pi_2}_{-1 \quad 0 \quad 1 \quad 2 \quad 3}$
- Case B: $\pi = \pi_1 *_{\rho} \{t\}$ has tree T with $T^{(0)} = [\pi : \pi_1]$, $T^{(1)} = [\pi : \rho]$.
 - Example: Infinite cyclic group $\mathbb{Z}=\{t\}$ $T=\mathbb{R} \ , \ t(x)=x+1 \ , \ T/\mathbb{Z}=S^1 \ .$ $t^{-2} \quad t^{-1} \quad 1 \quad t \quad t^2$