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Homotopy vs. homeomorphism

A class of manifolds is rigid if every
homotopy equivalence of manifolds in the
class is homotopic to a homeomorphism.

Main example of a rigid class:
hyperbolic manifolds, including all oriented
2-dimensional manifolds.

Borel conjecture: aspherical manifolds are
rigid.

In general, manifolds are not rigid and there
are many distinct homeomorphism classes
of manifolds within a homotopy type.



Surgery obstruction theory

e Surgery theory provides systematic obstruc-
tion theory in dimensions n > 5 for deciding
if a homotopy equivalence of n-dimensional
manifolds f : M™ — X is homotopic to a
homeomorphism.

e Obstructions involve the algebraic K- and
L-theory of modules and quadratic forms
over the group ring Z[x] of the fundamental
group ™ = w1 (X).



Codimension 1 methods in topology
e Study of 3-manifolds via surfaces N2c M3.

e T he Eilenberg—Steenrod excision axiom for
homology is a codimension 1 transversality
requirement.

e Codimension 1 submanifolds N*—1 c m™
play a central role in:

— Novikov's proof of the topological in-
variance of the rational Pontrjagin classes
(1966)

— Kirby-Siebenmann structure theory of high
dimensional topological manifolds (1969)

— Chapman’s proof of the topological
invariance of Whitehead torsion (1974)

— controlled topology.




Geometric transversality

Let X be a space with a subspace

Y XRCX.
Identify Y =Y x {0} C Y xR.

Transversality theorem: every map from an
n-dimensional manifold

f M — X

IS homotopic to a map which is transverse
at Y C X, with

Nn—l — f_l(Y) c M™

a codimension 1 submanifold.



Splitting homotopy equivalences

e A homotopy equivalence f : M™ — X splits
along Y C X if it is homotopic to one for
which the restrictions

fl :N“l=f1tY)—>Y,
fl :M\N = fHX\Y)— X\Y

are also homotopy equivalences.

e Codimension 1 splitting necessary along all
Y C X (and sometimes sufficient) for f to
be homotopic to a homeomorphism.

e Waldhausen (1969) proved that Haken 3-
dimensional manifolds are rigid, using codi-
mension 1 splitting methods.



Non-splitting homotopy equivalences

e In general, homotopy equivalences do not
split along codimension 1 submanifolds, with
both K- and L-theory obstructions.

e Farrell and Hsiang (1970) proved that for
n > 6 a homotopy equivalence f : M" —
X x St splits along X x {pt.} ¢ X x St if
and only if 7(f) € im(Wh(x) — Wh(nrxZ)),
m = w1 (X) (Whitehead torsion).

e Cappell (1972) used a partial computation
of the L-theory of the infinite dihedral group
Doo = ZoxZ> to construct homotopy equiv-
alences h : M4+l _, Rp4k+1pRp4hitl for
k > 1 which do not split along the sep-
arating codimension 1 submanifold in the
connected sum S ¢ RPAF+14Rp4k+1
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Object of the exercise

e Invent algebra which is sufficiently flexible
to have the geometric transversality prop-
erties of manifolds.

e Identify the difference between homotopy
equivalences and homeomorphisms of man-
ifolds with the extent to which the K- and
L-groups of the fundamental group ring
Z|w] have this flexibility.

e Computations in algebraic K- and L-theory
are used in two directions, to prove that:

— some homotopy equivalences of mani-
folds are definitely homotopic to home-
omorphisms

— others are definitely not homotopic to
homeomorphisms.



The two cases

e X,Y connected, Y xR C X.

e Case A: The complement X\Y = X7 U X>»
IS disconnected.

X X1 Y X5

e Case B: The complement X\Y is connected.

X\Y




The Seifert—van Kampen Theorem

The fundamental group of a connected space
X with a connected subspace Y C X is de-
termined by the fundamental groups of Y,
X\Y.

Case A: amalgamated free product
m1(X) = m(X1) %, (yv) T1(X2)

— Example: X =Stv st v ={pt}].

Case B: HNN extension
(X)) = m1(X\Y) * (v {t}

— Example: X =51, v = {pt.}.

Amalgamated free products and HNN ex-
tensions are the groups which act on trees
with quotient I and S1 (Bass-Serre).
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T he Mayer—Vietoris exact sequence

e The homology of X is determined by the
homologies of Y, X\Y by the Mayer—Vietoris
exact sequence.

— Case A: X = X7 Uy X>
— Hp(Y) — Hn(X1) ® Hn(X2)
— Hp(X)—H,_ 1Y) — ... .
— Case B:

— Hp(Y) — Hp(X\Y)
— Hp(X) — Hp_1(Y) — ...

with two inclusions ¥ — X\Y.

e Proved by codimension 1 transversality on
cycle level.
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The Whitehead group

e The Whitehead group Wh(rw) of a group =«
IS the abelian group of equivalence classes
of invertible k x k£ matrices with entries in
Z|w] for all integers k > 1, modulo the
equivalence relation generated by Gaussian
elimination and stabilization by direct sum
with identity matrices. (Whitehead, 1939)

e A nonsingular matrix over Z[x] can be re-
duced to the identity matrix by elemen-
tary row and column operations if and only
iIf it represents O in the Whitehead group
Wh(mr).
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Higman

e Initiated the algebraic computation of the
Whitehead group

— Units in group rings (1940)

e Wh({1}) = O by Gaussian elimination for
matrices with entries in Z.

e Wh(Z) = 0, Wh(Zs) # O.
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Whitehead torsion

e A homotopy equivalence f : M — N of
compact polyhedra has a Whitehead torsion
7(f) € Wh(xw1(N)) such that:

— 7(f) =7(9) if f,g: M — N homotopic,

— 7(f) =0 if f is a homeomorphism.

e [ here exist 3-dimensional lens space man-
ifolds M, N which are homotopy equiva-
lent but not homeomorphic, with homo-
topy equivalences f : M — N such that
7(f) # 0. (Reidemeister, Whitehead, 1930’s).

e Generalized Whitehead groups Wh,(7) de-
fined for n € Z (Bass for n < —1, Quillen
for n > 3) with Why(x) = Wh(x), and
Whq(7) = Ko(Z[x]) the reduced projective
class group.
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Waldhausen’s theorem

e Theorem (1976) The generalized White-
head groups Whi(X) = Wh«(m1(X)) of a
connected space X with connected Y C
X fit into exact sequences of the Mayer—
Vietoris type:

— Case A: XY disconnected X = XUy X>

— V\/hn(Y) — \/\/hn(Xl) D Whn(XQ)

— Case B: X\Y connected

— Why(Y) — Wh,(X\Y)

e Corollary Why(w) = 0 for the fundamental
groups w of Haken 3-manifolds.
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Cappell’s theorem

e [ he unitary nilpotent groups UNil, are the
obstructions to a Mayer-Vietoris exact
sequence in the algebraic L-theory of groups
acting on trees (= amalgamated free prod-
ucts and HNN extensions).

e Theorem (1976) For n > 6 a homotopy
equivalence of n-dimensional manifolds f :
M"™ — X splits along a codimension 1 sub-
manifold Y C X if and only if Nil and UNil
obstructions vanish.

e Proved geometrically, using the entire ap-
paratus of the Browder-Novikov-Sullivan-
Wall surgery theory.
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Chain complexes

e T he algebraic K-groups defined by chain
complexes.

e "Whatever can be done for abstract K-
groups can be done (usually with more
difficulty) for the L-groups” (C.T.C.Wall)

e [ he algebraic L-groups defined by chain
complexes with Poincaré duality.
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Algebraic transversality

e Chain complexes over the group ring Z|x]
of a group 7 which is an amalgamated free
product w1 *xp mp Or an HNN extension
T1 *p {t} have the transversality properties
of manifolds with these fundamental groups.

e Algebraic transversality: if C is a Z[r]-module
chain complex then C has corresponding
codimension 1 subcomplex D C C over Z[p].

e Can now prove Cappell’'s theorem using al-
gebraic transversality for chain complexes
with Poincaré duality.
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State of the art

e T he Nil and UNil groups were studied by
Bass-Heller-Swan, Farrell and Hsiang in the
60's, Waldhausen, Cappell in the 70's, Con-
nolly, Kozniewski and R. in the 90’s:

— hard to compute,
— either O or infinitely generated,
— obstructions to the integral Novikov

conjecture.

e Connolly and R. have new results on the
L-theory of Dqo.
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Two trees

o Case A: m = m1 *p mp has tree T" with

70 = [7: m]U[7 : 7] 7(1) = [7:p] .
— Example: Infinite dihedral group
Doo = Zo %13 Zz = {51,521 (51)7, (s2)°}

T =R, s1(x) = —x, sp(x) =2—x, T/Doc = 1.

S172 ™ ™2 S2T1  S285172
° ° ° ° °
—1 0 1 2 3

o Case B: m = my *, {t} has tree T with
70 = [7: 7] 71 = [7:p] .
— Example: Infinite cyclic group Z = {t}
T=R , t(zxy=z+1 , T/Z=S5'.
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