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Symmetric forms

Slogan 1 It is a fact of sociology that topologists are interested in
quadratic forms — Serge Lang.

Let A be a commutative ring, or more generally a noncommutative ring
with an involution.

Slogan 2 Topologists like quadratic forms over group rings!

Definition For ¢ = 1 or —1 an e-symmetric form (F,\) over A is a
f.g. free A-module F with a bilinear pairing A : F x F — A such that

Axy) = eMy,x) €A (x,y € F).
The form (F, \) is nonsingular if the A-module morphism
A F—= F* = Homa(F,A); x—= (y— Ax,y))

is an isomorphism.



The (—)"-symmetric form of a 2n-manifold

Slogan 3 Manifolds have e-symmetric forms over Z and Z;, given
algebraically by Poincaré duality and cup/cap products, and
geometrically by intersections.

7Z in oriented case, Z; in general. An m-dimensional manifold M™ is
oriented if the tangent m-plane bundle 7y is oriented, in which case
the homology and cohomology are related by the Poincaré duality
isomorphisms H*(M) = Hp,_.(M).

An oriented 2n-dimensional manifold M?" has a (—)"-symmetric
intersection form over Z

A F'"(M)x F" (M) = Z; (x,y) — (xUy, [M])
with F"(M) = H"(M)/{torsion} a f.g. free Z-module.
Geometric interpretation If K", L" C M?" are oriented n-dimensional

submanifolds which intersect transversely in an oriented 0-dimensional
manifold K N L then [K],[L] € H,(M) = H"(M) are such that

AMIKLIL) = |KNLleZ .
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The e-symmetric Witt group

A lagrangian for a nonsingular e-symmetric form (F, \) is a direct
summand L C F such that

» A(L,L) =0, so that L C L+ = ker(\| : F — L*)
| 4 L:LJ-

A form is metabolic if it admits a lagrangian.
Example For any e-symmetric form (L*, ) the nonsingular e-symmetric

form (F,\) = (L& L*, <O i)) with

€

At FxF—=A; ((x1,0), () = ya(x1) + eyi(xe) + v(yi)(y2)

is metabolic, with lagrangian L.
The e-symmetric Witt group of A is the Grothendieck-type group

LO(A€) =

{isomorphism classes of nonsingular e-symmetric forms over A}

{metabolic forms}



Why do topologists like Witt groups?

» Slogan 4 Topologists like Witt groups because we need them in the
Browder-Novikov-Sullivan-Wall surgery theory classification of
manifolds.

> Trivially, the stable classification of symmetric and quadratic forms over
a ring A is easier than the isomorphism classification.

> Nontrivially, the stable classification is just about possible for the group
rings A = Z[r] of interesting groups .

» The Witt groups of quadratic forms over group rings A = Z[r1(M)] play
a central role in the Wall obstruction theory for non-simply-connected
manifolds M.

» Algebra and number theory are used to compute Witt groups of Z[nx] for
finite groups .

» Geometry and topology are used to compute Witt groups of Z[r] for
infinite groups . Novikov, Borel and Farrell-Jones conjectures.
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The signature of symmetric forms over R and 7Z

Theorem (Sylvester, 1852) Every nonsingular 1-symmetric form (F, \)
over R is isomorphic to

P®r.1)e Pr -1)

with p + g = dimg(F).
Definition The signature of (F,\) is
signature (F,\) = p—q€Z.
Corollary 1 Two nonsingular 1-symmetric forms (F, A), (F', ) over R
are isomorphic if and only if (p, q) = (p, ¢’), if and only if
dimg(F) = dimg(F’) , signature(F,\) = signature (F',\') .
Corollary 2 The signature defines isomorphisms

LO(R, 1) =,z . (F,\) — signature (F, \) ,

1°(z,1) —= Z; (F,\) — signatureR @z (F, \) .
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Cobordism

Definition Oriented m-dimensional manifolds M, M’ are cobordant if
MU-M = ON

is the boundary of an oriented (m + 1)-dimensional manifold N, where
—M'’" is M’ with the opposite orientation.
The m-dimensional oriented cobordism group €2, is the abelian
group of cobordism classes of oriented m-dimensional manifolds, with
addition by disjoint union.
Examples

Q =2, = Q2 =Q =0.

Slogan 5 The Witt groups of symmetric and quadratic forms are the
algebraic analogues of the cobordism groups of manifolds.
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The signature of manifolds

» Slogan 6 Don't be ashamed to apply quadratic forms to topology!
The signature of an oriented 4k-dimensional manifold M*¥ is

signature(M*<) = signature(F?*(M),\) € L°(Z,1) = Z .

The signature of a manifold was first defined by Weyl in a 1923 paper
http://www.maths.ed.ac.uk/~aar/surgery /weyl.pdf published in Spanish
in South America to spare the author the shame of being regarded as a

topologist. Here is Weyl's own signature:  Aavumacm be A
Theorem (Thom, 1952, Hirzebruch, 1953) The signature is a
cobordism invariant, determined by the tangent bundle 7y

o Qu — 7 ; M signature(M**) = (L(mw),[M]) .
If M = ON is the boundary of an oriented (4k + 1)-manifold N then
L =im(F?K(N) — F?k(M)) is a lagrangian of (F2K(M), \), which is
thus metabolic and has signature 0. ¢ is an isomorphism for k =1,
onto for k > 2, with signature(CP2 x CP? x --- x CP?) = 1.
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Quadratic forms
» Definition An e-quadratic form (F, A, 1) over A is an e-symmetric
form (F,\) with a function
w: F— Q(A) = coker(l—€: A— A)

such that for all x,y € F,ac A
» A(x,x) = (1+e)u(x) e A
> p(ax) = u(x), plx+y) = px) = puly) = Ax.y) € Q(A).
» Proposition (Tits 1966, Wall 1970) The pairs (A, i) are in one-one
correspondence with equivalence classes of ¢ € Homa(F, F*) such that

Axy) = (X)) +ev(y)(x) € A, ulx) = d(x)(x) € Qe(A) -

Equivalence: ¢ ~ ¢/ if ¢/ — 1 = x — ex™* for some x € Homa(F, F*).
» An e-symmetric form (F, ) is a fixed point of the e-duality

A € ker(1—ex : Homa(F, F*) — Homa(F, F*)) = H°(Zy; Homa(F, F*))
while an e-quadratic form (F, A, 1) is an orbit
(A1) = [¥] € coker(1 — ex) = Ho(Zo; Homa(F, F¥)) .
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The e-quadratic forms H (L, «, 3)

» Definition Given (—e)-symmetric forms (L, o), (L*, 5) over A define
the nonsingular e-quadratic form over A

HC(L7a’B) = (L®L*’A7#)?
AM(xasx1), (2, 2)) = y2(x1) + ey1(x2)
plxy) = a()(x) +By)(y) +y(x)
with L, L* complementary lagrangians in the e-symmetric form
(L L*,N).
» Proposition A nonsingular e-quadratic form (F, A, 1) is isomorphic to
He(L,«, B) if and only if the e-symmetric form (F, \) is metabolic.

» Proof If L C F is a lagrangian of (F,\) and A = ¢ + €)™ then there
exists a complementary lagrangian L* C F for (F,)\), and

a 1 L (01N
b = <o 5) , Y+ e _(E 0) CF=lal*sF=1"al

witha+ea"*=0: L= L* B+ef*=0:L"— L
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The e-quadratic Witt group

Definition A nonsingular e-quadratic form (F, A, i) is hyperbolic if
there exists a lagrangian L for (F, A) such that u(L) = {0} C Q.(A).
Proposition Every hyperbolic form is isomorphic to

H.(L,0,0) = (L® L*, A\, ) for some f.g. free A-module L, with

A= <(€) (1)> c FxF—=A; ((a,n),(x,y)) = ya(x) + eyi(x),

poo F=Q(A); (xy) = y(x) .
Definition The e-quadratic Witt group of A is

Lo(A, ¢) {isomorphism classes of nonsingular e-quadratic forms over A}
€ =
oV% {hyperbolic forms}

The 4-periodic surgery obstruction groups L,(A) of Wall (1970) are
Lok(A) = Lo(A,(-)) ,
| . 0 1
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The forgetful map
Forgetting the e-quadratic structure defines a map
Lo(A,€) = LO(A,€) ; (F A u)— (F,\) .
The kernel of the forgetful map is generated by
He(L, v, B) € ker(Lo(A, €) — L°(A¢€)) .
Proposition If 1/2 € A
e-quadratic forms over A = e-symmetric forms over A

and the forgetful map is an isomorphism

Lo(A€) —= LO(A,e) .

Proof An e-symmetric form (F, \) over A has a unique e-quadratic

function
o F—= Q(A); x— Ax,x)/2.

16



Quadratic forms over Z»

» Theorem (Dickson, 1901) A nonsingular 1-quadratic form (F, A, p1)
over Zp with dimz, F = 2g is isomorphic to

either Hi (6P Z»,0,0)
g

or Hi(Z2,1,1) ® Hi( €D Z»,0,0) .
g—1

> The two cases are distinguished by the subsequent Arf invariant, and
the Theorem gives

Lo(Z2,1) = Zo .

> In fact, Dickson obtained such a classification for nonsingular
1-quadratic forms over any finite field of characteristic 2.

17



18

The signature of quadratic forms over Z

Theorem (van der Blij, 1958) The signature of a nonsingular
1-symmetric form (F, \) over Z is such that

signature(F,\) = A(v,v) (mod 8)

for any v € F such that A\(x,x) = A(x,v) (mod 2) (x € F).
For nonsingular 1-quadratic form (F, A, 1) can take v =0 € F, so

signature(F,\) = 0 (mod 8) .
Example signature(Z8, Eg) = 8, with exact sequence

0= Lo(Z,1)=Z 3~ 19Z,1) =Z —~Zg — 0.

Theorem (R., 1980) For any A, € both the composites of
Lo(A €) = LO%(A€) ; (F, A\ ) — (F,A),
LO(A €) — Lo(A€) ; (F,\) > (Z8, E3) @ (F, \)

are multiplication by 8, so L°(A, €), Lo(A,€) only differ in 8-torsion.



Cahit Arf (1910-1997)

» Turkish number theorist, student of Hasse in Gottingen, 1937-38
» A banker’s view of the Arf invariant over Z,

TURKIYE CUMHURIYET MERKEZ BANKASI A010725993 ﬁ

N Arf (= Z H@y oL e 2,

=y

e 0 BN T@RK URASH 1 .

» 10 Turkish Lira = €4.75
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The Arf invariant |I.
Let K be a field of characteristic 2. A nonsingular 1-symmetric form
(F, ) over K is metabolic if and only if dimk(F) = 0(mod 2). The
function LO(K,1) — Zo; (F, \) = dimk(F) is an isomorphism, and the
forgetful map Lo(K,1) — L°(K,1) is 0.
The Arf invariant of a nonsingular 1-quadratic form (F, \, i) over K is

Arf(F, A, 1) Z“ i) € coker(1 — 42 : K — K)

for any symplectic basis {al, bi,...,ag, bg} of F, with
)\(a,-,aj) = )\(b,‘,bj) =0 s /\(a,-,bj) = 1ifi :j, = 0ifi 7&]
and 1/12 - K — K: x — x2 the Frobenius endomorphism.
Proposition For 1-symmetric forms a =a* : L - L*, =5 : [* —» L
over K there exist u € L*, v € L with a(x)(x) = u(x) € K (x € L),
Bly)(y) =y(v) € K (y € L), and
Arf(Hy(L, o, B)) = u(v) € coker(1 —¢? : K — K) .
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The Arf invariant Il.

» Definition A field K of characteristic 2 is perfect if ©° : K — K is an
automorphism, i.e. every k € K has a square root vk € K.
» Theorem (Arf, 1941) If K is perfect then

» (i) Every nonsingular 1-quadratic form over K is isomorphic to one of the

type Hi(L, o, B).
» (ii) There is an isomorphism H;(L,«, 8) = Hi(L', o, 8') if and only if

dimz, (L) = dimg, (L"), Arf(Hi(L, o, B)) = Arf(H (L', ', 3")) .

» (iii) The Arf invariant defines an isomorphism

~

Arf @ Lo(K,1) — coker(1 —?) ; (F, A u) — Arf(F, A, p) .

» Example For K = Z, have isomorphism

~

Arf : Lo(Zp,1) — coker(1 —? : Zp — Zp) = Zy .
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5 formulae for the Arf invariant over Z,

Formula 1 (Klingenberg+Witt, 1954) The Arf invariant of the
nonsingular 1-quadratic form Hi(L, o, 3) over Z; is

Arf(F, A\, ) = trace(fa: L — L)€ Z; .

Formula 2 (M.Kneser, 1954) Centre of Clifford algebra.
Formula 3 (W.Browder, 1972) The majority vote

Arf(F, A, 1) = majority{u(x) |x € F} € Zy = {0,1} .
Formula 4 (E.H.Brown, 1972) Gauss sum

Af(F A1) = (D e /\/FleZy = {1,-1} .

xeF
Formula 5 (Lannes, 1981) If v € F is such that

p(x) = Mx,v)€Zy (xel)

then
Arf(F, A\ u) = p(v) € Zy .
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Framed manifolds

A framing of an m-dimensional differentiable manifold M™ is an
embedding M x R/ € R™*/ (j large). Equivalent to a stable
trivialization of the tangent bundle 7y, as given by a vector bundle
isomorphism

ot TMDE = ™

Slogan 7 Framed manifolds have 4+-quadratic forms.

» Theorem (Pontrjagin, 1955) (i) Isomorphism between the

m-dimensional framed cobordism group Qf and the stable
homotopy group

T = M (8) —— Q: (F: 8™ = &) M™ = £(pt.) .
J

(i) Qff = Z, Qff = Z, (Hopf invariant), Qff = Z, (Arf invariant).

» (iii) The Arf invariant of M? x R/ C R/*2 was defined using the

quadratic form (H1(M; Z3), A\, ) over Zy with
,u(S:l cM) = Hopf(S1 xRxR cMxR CRj+2) € Q{r = 7.



Michel Kervaire (1927-2007)

» French topologist, student of Hopf in Ziirich.
» Worked in New York and Geneva.

24
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The quadratic form of a framed (4k + 2)-manifold

Theorem (Kervaire, K-Milnor, Browder, Brown, ..., 1960’s)

A framed (4k 4 2)-dimensional manifold (M*+2 §7) has a
nonsingular 1-quadratic form (Haxy1(M; Z3), A, 1) over Zy, with p
determined by 7y

General construction uses the embedding M* 2 x R/ ¢ RIT4k+2 the
Umkehr map

(Rj+4k+2)oo _ 5j+4k+2_>(M4k+2 XRJ)OO = YIMT

and functional Steenrod squares.

The normal bundle of an embedding x : S24t1 c M**+2 js 3

(2k + 1)-plane vector bundle vy over S?%*1 with a stable trivialization
Suy v @ =2 g2k Sych pairs are classified by a Zp-invariant, and

M(X) = ((51/X,1/X) S 7T2k+2(BO(j + 2k + 1), 50(2/( + 1)) = 7o .

Can also define u(x) € Z geometrically using the self-intersections of
immersions x : S2k*1 qu M4 +2 determined by the framing.
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The Kervaire invariant of a framed (4k + 2)-manifold
Definition The Kervaire invariant of (M*+2 §7y/) is
Kervaire(M, 01pn) = Arf(Haoxr1(M; Z2), M\, ) € Zo
defining a function
K = Kervaire : Qff ., = m3i0 = Laki2(Z,1) = Lo(Z2,1) = Zy .

Example For k = 0,1,3 K is onto: there exists a framing d7p of

M = S2k+1 x §2k+1 with K(M) = 1.

Theorem (K, 1960) For k =2 K = 0 and there exists a 10-dimensional
PL (= piecewise linear) manifold without differentiable structure.
Theorem (K-Milnor, 1963) (i) For k > 2 every framed 4k-manifold M
has signature(M) = 0 and is framed cobordant to an exotic sphere.
(ii) A framed (4k + 2)-manifold M is framed cobordant to an exotic
sphere if and only if K(M) =0 € Zp. Thus K(M) is a surgery
obstruction.

Google: 4,500 hits for Arf invariant, and 4,000 hits for Kervaire
invariant.
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The Kervaire invariant problem

Problem (1963) For which dimensions 4k + 2 is the function

K :Qff ., — Z; onto?

Slogan 8 The Kervaire invariant problem is a key to understanding the
homotopy groups of spheres.

» K is onto for 4k +2 = 26,14, 30, 62.

» Browder (1969) If K is onto then
4k +2 = 2i—2forsomei>2.

Two independent solutions have been announced:

» Akhmetev (2008): heavy duty geometry, K is onto for a finite number of
dimensions.

» Hopkins-Hill-Ravenel (2009): heavy duty algebraic topology, if K is onto
then 4k +2 € {2,6,14,30,62,126}. The case 4k + 2 = 126 is still
unresolved.

» http://www.maths.ed.ac.uk/"aar/atiyah80.htm

» http://www.math.rochester.edu/u/faculty/doug/kervaire.html
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e-quadratic and e-symmetric structures on chain complexes
Define the e-symmetric and e-quadratic forms on an A-module F
Sym(F,e) = ker(1 — T.:Homa(F, F*) — Homa(F, F*)) ,
Quad(F,e) = coker(l — T, : Homa(F, F*) — Homa(F, F*))
with T, the e-duality involution T A(x)(y) = eA(y)(x).

» Slogan 9 Use chain complexes to model manifolds in algebra!

Given an A-module chain complex C define the Z,-hypercohomology
and Zj-hyperhomology

Q"(C,€e) = H"(Z2; C®a C) = Hp(Homgzz, (W, C®a C)) ,
@n(Ci€) = Hp(Za; C @4 C) = Hnp(W @7z, (C ®a C))
with T(x ® y) = ey ® x and W the free Z[Z]-resolution of Z

W .. — 2] > Z[Zo] - 7[2,] S 7[25]
Example If C, =0 for r 20

QO(Cje) = Sym((y,€), Qo(C,e) = Quad(Cy,e) .
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The generalized e-symmetric Witt groups L"(A,¢)
The e-symmetric L-groups L"(A, ¢) are the algebraic cobordism

groups of n-dimensional f.g. free A-module chain complexes C with a
class ¢ € Q"(C,¢€) inducing a Poincaré duality

H™*(C) = H.(C).
Example L°(A, ¢) is the Witt group of nonsingular e-symmetric forms.

L*(A,1) = the Mishchenko symmetric L-groups

Example An oriented n-dimensional manifold M with universal cover
M has a symmetric signature

" (M) = (C(M),¢) € L"(Z[m(M)], 1) .
Generalization of the signature: the special case n = 4k, m1(M) = {1}

o*(M) = signature(M) € L**(Z,1) = Z .
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The generalized e-quadratic Witt groups L,(A,¢)

The e-quadratic L-groups L,(A) are the algebraic cobordism groups of
n-dimensional f.g. free A-module chain complexes C with a class
¥ € Qn(C,¢€) inducing a Poincaré duality

HP=*(C) = H,(C).

» L.(A,1) = the Wall surgery obstruction groups.

» Example Ly(A,¢) is the Witt group of nonsingular e-symmetric forms.
» Example A degree 1 map of n-dimensional manifolds f : M — X with

normal bundle map b has a quadratic signature
ou(f,b) = (C(F: C(M = X))ut1,9) € Lp(Z[m (X)), 1),

the Wall surgery obstruction.

Generalization of the Arf-Kervaire invariant: in the special case
n=4ak+2, X = S*+2 (M, d7p)= framed manifold

o.(f,b) = Kervaire(M,07py) € Laki2(Z,1) = Zs .
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The L-groups L,(A,€), L*(A,€) and L*(A,e)

» Slogan 10 The e-symmetric and e-quadratic L-groups are related by
the exact sequence

o LA ) = LA €) = Lo(A€) = L"(Ae) = L"(Are) = ... .

The relative groups Z*(A, €) (of exponent 8) are homological
invariants of the ring A, not just Grothendieck-Witt groups.
» Example For a perfect field A of characteristic 2

I[Y(A,1) = coker(l —¢?:A— A) = A/{a—a%|ac A},
[OA1) = ker(1—9¢2:A— A) = {acA|lad=a} = Z.
» Example For A = Z recover van der Blij's theorem
coker(Lo(Z,1) — L%(Z,1)) = coker(8 : Z — Z) = 197,1) = Zg ;
(F,A) — A(v, v) = signature(F, \) (A(v,x) = A(x, x) (mod 2)Vx € F).
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The generalized Arf invariant

» Definition (Banagl and R., 2006) Given a (—e¢)-symmetric form (L, c)
over a ring with involution A define the generalized Arf group

_ {8 € Homa(L*, L) | B* = —€3}
Arf(L, ) = {6 — dag* + (x — ex*) | ¢* = —e, x € Homa(L*, L)}

» Proposition (i) The function 5 +— H.(L, a, 3) defines a one-one
correspondence between Arf(L, ) and the isomorphism classes of
nonsingular e-quadratic forms (F, A, 1) over A with a lagrangian L for
the e-symmetric form (F, \) such that u|; = «, with

F=Lal*, uxy) = a(x)(x)+B0)y)+y(x) e Q(A) .

» (ii) The map Arf(L,a) — ker(Lo(A,€) — L°(A,€)); B+ Hc(L, a, B) is
an isomorphism if A is a perfect field of characteristic 2 and
(L, @) = (A, 1), with Arf(L, o) = coker(1 — 42 : A — A).

» The generalized Arf invariant can be used to compute L,(Z[Ds]) with
Do = Zy * Z the infinite dihedral group.
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