
1

A TOPOLOGIST’S VIEW OF
SYMMETRIC AND QUADRATIC FORMS

Andrew Ranicki (Edinburgh)

http://www.maths.ed.ac.uk/̃ aar

Patterson 60++, Göttingen, 27 July 2009



2

The mathematical ancestors of S.J.Patterson

Mary Lucy Cartwright 
University of Oxford (1930)

Walter Kurt Hayman

G. H. (Godfrey Harold) Hardy 
University of Cambridge

Augustus Edward Hough Love 
Eidgenössische Technische Hochschule Zürich

Alan Frank Beardon

Samuel James Patterson 
University of Cambridge (1975)



3

The 35 students and 11 grandstudents of S.J.Patterson

S.J.Patterson

Autenrieth, Michael (Hannover) Di, Do

Bauer, Friedrich Wolfgang (Frankfurt) Di,Do

Beyerstedt, Bernd (Göttingen) Di,Do 

Brüdern, Jörg (Stuttgart) Di,Do 

Bruns, Hans-Jürgen (Oldenburg?) Di 

Cromm, Oliver ( ) Di

Deng, An-Wen (Taiwan ) Do

Eckhardt, Carsten (Frankfurt) Do

Falk, Kurt (Maynooth ) Di

Giovannopolous, Fotios (Göttingen) Do (ongoing)

Hahn, Jim (Korea ) Di

Hill, Richard (UC London) Do

Hopf, Christof () Di

John, Guido () Di

Karaschewski, Horst (Hamburg) Do

Kellner, Berndt (Göttingen) Di

Klose, Joachim (Bonn) Do

Louvel, Benoit (Lausanne) Di (Rennes), Do

Mandouvalos, Nikolaos (Thessaloniki) Do

Mirgel, Christa (Frankfurt?) Di

Möhring, Leonhard (Hannover) Di,Do

Propach, Ralf ( ) Di 

Schubert, Volcker (Vlotho) Do

Stratmann, Bernd O. (St. Andrews) Di,Do

Stünkel, Matthias (Göttingen) Di

Talom, Fossi (Montreal) Do

Thiel, Björn (Göttingen(?)) Di,Do

Thirase, Jan (Göttingen) Di,Do

Wellhausen, Gunther (Hannover) Di,Do

Widera, Manuela (Hannover) Di

Kern, Thomas () M.Sc. (USA)

Krämer, Stefan (Göttingen) Di (Burmann)

Matthews, Charles (Cambridge) Do (JWS Casels)

Monnerjahn, Thomas ( ) St.Ex. (Kriete)

Wright, David (Oklahoma State) Do (B. Mazur)

Valentin Blomer (Stuttgart) Do

Stephan Daniel (Stuttgart) Do

Sabine Poehler (Stuttgart) Do

Rainer Dietmann (Stuttgart) Do

Thilo Breyer (Stuttgart) Do

Dirk Daemen (Stuttgart) Do

Stefan Neumann (Stuttgart) Do

Markus Hablizel (Stuttgart) Do

James Spelling (UC London) Do

Martial Hille (St. Andrews) Do



4

Paddy with Carla Ranicki at the Göttingen Wildgehege, 1985



5

Irish roots: a practical treatise on planting Woods . . .



6

Symmetric forms

I Slogan 1 It is a fact of sociology that topologists are interested in
quadratic forms – Serge Lang.

I Let A be a commutative ring, or more generally a noncommutative ring
with an involution.

I Slogan 2 Topologists like quadratic forms over group rings!

I Definition For ε = 1 or −1 an ε-symmetric form (F , λ) over A is a
f.g. free A-module F with a bilinear pairing λ : F × F → A such that

λ(x , y) = ελ(y , x) ∈ A (x , y ∈ F ) .

I The form (F , λ) is nonsingular if the A-module morphism

λ : F → F ∗ = HomA(F ,A) ; x 7→ (y 7→ λ(x , y))

is an isomorphism.
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The (−)n-symmetric form of a 2n-manifold

I Slogan 3 Manifolds have ε-symmetric forms over Z and Z2, given
algebraically by Poincaré duality and cup/cap products, and
geometrically by intersections.

I Z in oriented case, Z2 in general. An m-dimensional manifold Mm is
oriented if the tangent m-plane bundle τM is oriented, in which case
the homology and cohomology are related by the Poincaré duality
isomorphisms H∗(M) ∼= Hm−∗(M).

I An oriented 2n-dimensional manifold M2n has a (−)n-symmetric
intersection form over Z

λ : F n(M)× F n(M)→ Z ; (x , y) 7→ 〈x ∪ y , [M]〉
with F n(M) = Hn(M)/{torsion} a f.g. free Z-module.

I Geometric interpretation If Kn, Ln ⊂ M2n are oriented n-dimensional
submanifolds which intersect transversely in an oriented 0-dimensional
manifold K ∩ L then [K ], [L] ∈ Hn(M) ∼= Hn(M) are such that

λ([K ], [L]) = |K ∩ L| ∈ Z .
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The ε-symmetric Witt group

I A lagrangian for a nonsingular ε-symmetric form (F , λ) is a direct
summand L ⊂ F such that

I λ(L, L) = 0, so that L ⊂ L⊥ = ker(λ| : F → L∗)
I L = L⊥

I A form is metabolic if it admits a lagrangian.

I Example For any ε-symmetric form (L∗, ν) the nonsingular ε-symmetric

form (F , λ) = (L⊕ L∗,

(
0 1
ε ν

)
) with

λ : F × F → A ; ((x1, y1), (x2, y2)) 7→ y2(x1) + εy1(x2) + ν(y1)(y2)

is metabolic, with lagrangian L.

I The ε-symmetric Witt group of A is the Grothendieck-type group

L0(A, ε) =
{isomorphism classes of nonsingular ε-symmetric forms over A}

{metabolic forms}
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Why do topologists like Witt groups?

I Slogan 4 Topologists like Witt groups because we need them in the
Browder-Novikov-Sullivan-Wall surgery theory classification of
manifolds.

I Trivially, the stable classification of symmetric and quadratic forms over
a ring A is easier than the isomorphism classification.

I Nontrivially, the stable classification is just about possible for the group
rings A = Z[π] of interesting groups π.

I The Witt groups of quadratic forms over group rings A = Z[π1(M)] play
a central role in the Wall obstruction theory for non-simply-connected
manifolds M.

I Algebra and number theory are used to compute Witt groups of Z[π] for
finite groups π.

I Geometry and topology are used to compute Witt groups of Z[π] for
infinite groups π. Novikov, Borel and Farrell-Jones conjectures.
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The signature of symmetric forms over R and Z

I Theorem (Sylvester, 1852) Every nonsingular 1-symmetric form (F , λ)
over R is isomorphic to ⊕

p

(R, 1)⊕
⊕
q

(R,−1)

with p + q = dimR(F ).
I Definition The signature of (F , λ) is

signature (F , λ) = p − q ∈ Z .

I Corollary 1 Two nonsingular 1-symmetric forms (F , λ), (F ′, λ′) over R
are isomorphic if and only if (p, q) = (p′, q′), if and only if

dimR(F ) = dimR(F ′) , signature (F , λ) = signature (F ′, λ′) .

I Corollary 2 The signature defines isomorphisms

L0(R, 1)
∼= // Z ; (F , λ) 7→ signature (F , λ) ,

L0(Z, 1)
∼= // Z ; (F , λ) 7→ signatureR⊗Z (F , λ) .
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Cobordism

I Definition Oriented m-dimensional manifolds M,M ′ are cobordant if

M ∪ −M ′ = ∂N

is the boundary of an oriented (m + 1)-dimensional manifold N, where
−M ′ is M ′ with the opposite orientation.

I The m-dimensional oriented cobordism group Ωm is the abelian
group of cobordism classes of oriented m-dimensional manifolds, with
addition by disjoint union.

I Examples
Ω0 = Z , Ω1 = Ω2 = Ω3 = 0 .

I Slogan 5 The Witt groups of symmetric and quadratic forms are the
algebraic analogues of the cobordism groups of manifolds.
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The signature of manifolds

I Slogan 6 Don’t be ashamed to apply quadratic forms to topology!
I The signature of an oriented 4k-dimensional manifold M4k is

signature(M4k) = signature(F 2k(M), λ) ∈ L0(Z, 1) = Z .

I The signature of a manifold was first defined by Weyl in a 1923 paper
http://www.maths.ed.ac.uk/̃ aar/surgery/weyl.pdf published in Spanish
in South America to spare the author the shame of being regarded as a

topologist. Here is Weyl’s own signature:
I Theorem (Thom, 1952, Hirzebruch, 1953) The signature is a

cobordism invariant, determined by the tangent bundle τM

σ : Ω4k → Z ; M 7→ signature(M4k) = 〈L(τM), [M]〉 .

If M = ∂N is the boundary of an oriented (4k + 1)-manifold N then
L = im(F 2k(N)→ F 2k(M)) is a lagrangian of (F 2k(M), λ), which is
thus metabolic and has signature 0. σ is an isomorphism for k = 1,
onto for k > 2, with signature(CP2 × CP2 × · · · × CP2) = 1.
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Quadratic forms

I Definition An ε-quadratic form (F , λ, µ) over A is an ε-symmetric
form (F , λ) with a function

µ : F → Qε(A) = coker(1− ε : A→ A)

such that for all x , y ∈ F , a ∈ A
I λ(x , x) = (1 + ε)µ(x) ∈ A
I µ(ax) = a2µ(x) , µ(x + y)− µ(x)− µ(y) = λ(x , y) ∈ Qε(A).

I Proposition (Tits 1966, Wall 1970) The pairs (λ, µ) are in one-one
correspondence with equivalence classes of ψ ∈ HomA(F ,F ∗) such that

λ(x , y) = ψ(x)(y) + εψ(y)(x) ∈ A , µ(x) = ψ(x)(x) ∈ Qε(A) .

Equivalence: ψ ∼ ψ′ if ψ′ − ψ = χ− εχ∗ for some χ ∈ HomA(F ,F ∗).
I An ε-symmetric form (F , λ) is a fixed point of the ε-duality

λ ∈ ker(1−ε∗ : HomA(F ,F ∗)→ HomA(F ,F ∗)) = H0(Z2; HomA(F ,F ∗))

while an ε-quadratic form (F , λ, µ) is an orbit

(λ, µ) = [ψ] ∈ coker(1− ε∗) = H0(Z2; HomA(F ,F ∗)) .
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The ε-quadratic forms Hε(L, α, β)

I Definition Given (−ε)-symmetric forms (L, α), (L∗, β) over A define
the nonsingular ε-quadratic form over A

Hε(L, α, β) = (L⊕ L∗, λ, µ) ,

λ((x1, y1), (x2, y2)) = y2(x1) + εy1(x2) ,

µ(x , y) = α(x)(x) + β(y)(y) + y(x)

with L, L∗ complementary lagrangians in the ε-symmetric form
(L⊕ L∗, λ).

I Proposition A nonsingular ε-quadratic form (F , λ, µ) is isomorphic to
Hε(L, α, β) if and only if the ε-symmetric form (F , λ) is metabolic.

I Proof If L ⊂ F is a lagrangian of (F , λ) and λ = ψ + εψ∗ then there
exists a complementary lagrangian L∗ ⊂ F for (F , λ), and

ψ =

(
α 1
0 β

)
, ψ + εψ∗ =

(
0 1
ε 0

)
: F = L⊕ L∗ → F ∗ = L∗ ⊕ L

with α + εα∗ = 0 : L→ L∗, β + εβ∗ = 0 : L∗ → L.



15

The ε-quadratic Witt group

I Definition A nonsingular ε-quadratic form (F , λ, µ) is hyperbolic if
there exists a lagrangian L for (F , λ) such that µ(L) = {0} ⊆ Qε(A).

I Proposition Every hyperbolic form is isomorphic to
Hε(L, 0, 0) = (L⊕ L∗, λ, µ) for some f.g. free A-module L, with

λ =

(
0 1
ε 0

)
: F × F → A ; ((x1, y1), (x2, y2)) 7→ y2(x1) + εy1(x2) ,

µ : F → Qε(A) ; (x , y) 7→ y(x) .

I Definition The ε-quadratic Witt group of A is

L0(A, ε) =
{isomorphism classes of nonsingular ε-quadratic forms over A}

{hyperbolic forms}
I The 4-periodic surgery obstruction groups Ln(A) of Wall (1970) are

L2k(A) = L0(A, (−)k) ,

L2k+1(A) = L1(A, (−)k) = lim−→j
Aut(H(−)k (Aj , 0, 0))ab/{

(
0 1
1 0

)
} .
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The forgetful map

I Forgetting the ε-quadratic structure defines a map

L0(A, ε)→ L0(A, ε) ; (F , λ, µ) 7→ (F , λ) .

I The kernel of the forgetful map is generated by

Hε(L, α, β) ∈ ker(L0(A, ε)→ L0(A, ε)) .

I Proposition If 1/2 ∈ A

ε-quadratic forms over A = ε-symmetric forms over A

and the forgetful map is an isomorphism

L0(A, ε)
∼= // L0(A, ε) .

I Proof An ε-symmetric form (F , λ) over A has a unique ε-quadratic
function

µ : F → Qε(A) ; x 7→ λ(x , x)/2 .
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Quadratic forms over Z2

I Theorem (Dickson, 1901) A nonsingular 1-quadratic form (F , λ, µ)
over Z2 with dimZ2F = 2g is isomorphic to

either H1(
⊕
g
Z2, 0, 0)

or H1(Z2, 1, 1)⊕ H1(
⊕
g−1

Z2, 0, 0) .

I The two cases are distinguished by the subsequent Arf invariant, and
the Theorem gives

L0(Z2, 1) = Z2 .

I In fact, Dickson obtained such a classification for nonsingular
1-quadratic forms over any finite field of characteristic 2.
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The signature of quadratic forms over Z

I Theorem (van der Blij, 1958) The signature of a nonsingular
1-symmetric form (F , λ) over Z is such that

signature(F , λ) ≡ λ(v , v) (mod 8)

for any v ∈ F such that λ(x , x) ≡ λ(x , v) (mod 2) (x ∈ F ).
I For nonsingular 1-quadratic form (F , λ, µ) can take v = 0 ∈ F , so

signature(F , λ) ≡ 0 (mod 8) .

I Example signature(Z8,E8) = 8, with exact sequence

0 // L0(Z, 1) = Z 8 // L0(Z, 1) = Z // Z8
// 0 .

I Theorem (R., 1980) For any A, ε both the composites of

L0(A, ε)→ L0(A, ε) ; (F , λ, µ) 7→ (F , λ) ,

L0(A, ε)→ L0(A, ε) ; (F , λ) 7→ (Z8,E8)⊗ (F , λ)

are multiplication by 8, so L0(A, ε), L0(A, ε) only differ in 8-torsion.
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Čahit Arf (1910-1997)

I Turkish number theorist, student of Hasse in Göttingen, 1937-38

I A banker’s view of the Arf invariant over Z2

I 10 Turkish Lira = e4.75
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The Arf invariant I.

I Let K be a field of characteristic 2. A nonsingular 1-symmetric form
(F , λ) over K is metabolic if and only if dimK (F ) ≡ 0(mod 2). The
function L0(K , 1)→ Z2; (F , λ) 7→ dimK (F ) is an isomorphism, and the
forgetful map L0(K , 1)→ L0(K , 1) is 0.

I The Arf invariant of a nonsingular 1-quadratic form (F , λ, µ) over K is

Arf(F , λ, µ) =

g∑
i=1

µ(ai )µ(bi ) ∈ coker(1− ψ2 : K → K )

for any symplectic basis {a1, b1, . . . , ag , bg} of F , with

λ(ai , aj) = λ(bi , bj) = 0 , λ(ai , bj) = 1 if i = j , = 0 if i 6= j

and ψ2 : K → K ; x 7→ x2 the Frobenius endomorphism.
I Proposition For 1-symmetric forms α = α∗ : L→ L∗, β = β∗ : L∗ → L

over K there exist u ∈ L∗, v ∈ L with α(x)(x) = u(x) ∈ K (x ∈ L),
β(y)(y) = y(v) ∈ K (y ∈ L∗), and

Arf(H1(L, α, β)) = u(v) ∈ coker(1− ψ2 : K → K ) .
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The Arf invariant II.

I Definition A field K of characteristic 2 is perfect if ψ2 : K → K is an
automorphism, i.e. every k ∈ K has a square root

√
k ∈ K .

I Theorem (Arf, 1941) If K is perfect then
I (i) Every nonsingular 1-quadratic form over K is isomorphic to one of the

type H1(L, α, β).
I (ii) There is an isomorphism H1(L, α, β) ∼= H1(L′, α′, β′) if and only if

dimZ2(L) = dimZ2(L′) , Arf(H1(L, α, β)) = Arf(H1(L′, α′, β′)) .

I (iii) The Arf invariant defines an isomorphism

Arf : L0(K , 1)
∼= // coker(1− ψ2) ; (F , λ, µ) 7→ Arf(F , λ, µ) .

I Example For K = Z2 have isomorphism

Arf : L0(Z2, 1)
∼= // coker(1− ψ2 : Z2 → Z2) = Z2 .
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5 formulae for the Arf invariant over Z2

I Formula 1 (Klingenberg+Witt, 1954) The Arf invariant of the
nonsingular 1-quadratic form H1(L, α, β) over Z2 is

Arf(F , λ, µ) = trace(βα : L→ L) ∈ Z2 .

I Formula 2 (M.Kneser, 1954) Centre of Clifford algebra.
I Formula 3 (W.Browder, 1972) The majority vote

Arf(F , λ, µ) = majority{µ(x) | x ∈ F} ∈ Z2 = {0, 1} .
I Formula 4 (E.H.Brown, 1972) Gauss sum

Arf(F , λ, µ) =
(∑
x∈F

eπiµ(x)
)
/
√
|F | ∈ Z2 = {1,−1} .

I Formula 5 (Lannes, 1981) If v ∈ F is such that

µ(x) = λ(x , v) ∈ Z2 (x ∈ L)

then
Arf(F , λ, µ) = µ(v) ∈ Z2 .
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Framed manifolds

I A framing of an m-dimensional differentiable manifold Mm is an
embedding M × Rj ⊂ Rm+j (j large). Equivalent to a stable
trivialization of the tangent bundle τM as given by a vector bundle
isomorphism

δτM : τM ⊕ εj ∼= εm+j .

I Slogan 7 Framed manifolds have ±-quadratic forms.
I Theorem (Pontrjagin, 1955) (i) Isomorphism between the

m-dimensional framed cobordism group Ωfr
m and the stable

homotopy group

πSm = lim−→
j

πm+j(S
j)
∼= // Ωfr

m ; (f : Sm+j → S j) 7→ Mm = f −1(pt.) .

I (ii) Ωfr
0 = Z, Ωfr

1 = Z2 (Hopf invariant), Ωfr
2 = Z2 (Arf invariant).

I (iii) The Arf invariant of M2 × Rj ⊂ Rj+2 was defined using the
quadratic form (H1(M;Z2), λ, µ) over Z2 with

µ(S1 ⊂ M) = Hopf(S1 × R× Rj ⊂ M × Rj ⊂ Rj+2) ∈ Ωfr
1 = Z2 .
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Michel Kervaire (1927-2007)

I French topologist, student of Hopf in Zürich.
I Worked in New York and Geneva.
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The quadratic form of a framed (4k + 2)-manifold

I Theorem (Kervaire, K-Milnor, Browder, Brown, . . . , 1960’s)
A framed (4k + 2)-dimensional manifold (M4k+2, δτM) has a
nonsingular 1-quadratic form (H2k+1(M;Z2), λ, µ) over Z2, with µ
determined by δτM

I General construction uses the embedding M4k+2 × Rj ⊂ Rj+4k+2, the
Umkehr map

(Rj+4k+2)∞ = S j+4k+2 → (M4k+2 × Rj)∞ = ΣjM+

and functional Steenrod squares.
I The normal bundle of an embedding x : S2k+1 ⊂ M4k+2 is a

(2k + 1)-plane vector bundle νx over S2k+1 with a stable trivialization
δνx : νx ⊕ εj ∼= εj+2k+1. Such pairs are classified by a Z2-invariant, and

µ(x) = (δνx , νx) ∈ π2k+2(BO(j + 2k + 1),BO(2k + 1)) = Z2 .

I Can also define µ(x) ∈ Z2 geometrically using the self-intersections of
immersions x : S2k+1 # M4k+2 determined by the framing.
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The Kervaire invariant of a framed (4k + 2)-manifold

I Definition The Kervaire invariant of (M4k+2, δτM) is

Kervaire(M, δτM) = Arf(H2k+1(M;Z2), λ, µ) ∈ Z2

defining a function

K = Kervaire : Ωfr
4k+2 = πS4k+2 → L4k+2(Z, 1) = L0(Z2, 1) = Z2 .

I Example For k = 0, 1, 3 K is onto: there exists a framing δτM of
M = S2k+1 × S2k+1 with K (M) = 1.

I Theorem (K, 1960) For k = 2 K = 0 and there exists a 10-dimensional
PL (= piecewise linear) manifold without differentiable structure.

I Theorem (K-Milnor, 1963) (i) For k > 2 every framed 4k-manifold M
has signature(M) = 0 and is framed cobordant to an exotic sphere.
(ii) A framed (4k + 2)-manifold M is framed cobordant to an exotic
sphere if and only if K (M) = 0 ∈ Z2. Thus K (M) is a surgery
obstruction.

I Google: 4,500 hits for Arf invariant, and 4,000 hits for Kervaire
invariant.
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The Kervaire invariant problem

I Problem (1963) For which dimensions 4k + 2 is the function
K : Ωfr

4k+2 → Z2 onto?
I Slogan 8 The Kervaire invariant problem is a key to understanding the

homotopy groups of spheres.
I K is onto for 4k + 2 = 2, 6, 14, 30, 62.
I Browder (1969) If K is onto then

4k + 2 = 2i − 2 for some i > 2 .

I Two independent solutions have been announced:
I Akhmetev (2008): heavy duty geometry, K is onto for a finite number of

dimensions.
I Hopkins-Hill-Ravenel (2009): heavy duty algebraic topology, if K is onto

then 4k + 2 ∈ {2, 6, 14, 30, 62, 126}. The case 4k + 2 = 126 is still
unresolved.

I http://www.maths.ed.ac.uk/̃ aar/atiyah80.htm
I http://www.math.rochester.edu/u/faculty/doug/kervaire.html
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ε-quadratic and ε-symmetric structures on chain complexes

I Define the ε-symmetric and ε-quadratic forms on an A-module F

Sym(F , ε) = ker(1− Tε : HomA(F ,F ∗)→ HomA(F ,F ∗)) ,

Quad(F , ε) = coker(1− Tε : HomA(F ,F ∗)→ HomA(F ,F ∗))

with Tε the ε-duality involution Tελ(x)(y) = ελ(y)(x).
I Slogan 9 Use chain complexes to model manifolds in algebra!
I Given an A-module chain complex C define the Z2-hypercohomology

and Z2-hyperhomology

Qn(C , ε) = Hn(Z2;C ⊗A C ) = Hn(HomZ[Z2](W ,C ⊗A C )) ,

Qn(C , ε) = Hn(Z2;C ⊗A C ) = Hn(W ⊗Z[Z2] (C ⊗A C ))

with T (x ⊗ y) = εy ⊗ x and W the free Z[Z2]-resolution of Z

W : . . . // Z[Z2]
1−T // Z[Z2]

1+T // Z[Z2]
1−T // Z[Z2]

I Example If Cr = 0 for r 6= 0

Q0(C , ε) = Sym(C ∗0 , ε) , Q0(C , ε) = Quad(C ∗0 , ε) .
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The generalized ε-symmetric Witt groups Ln(A, ε)

I The ε-symmetric L-groups Ln(A, ε) are the algebraic cobordism
groups of n-dimensional f.g. free A-module chain complexes C with a
class φ ∈ Qn(C , ε) inducing a Poincaré duality

Hn−∗(C ) ∼= H∗(C ) .

I Example L0(A, ε) is the Witt group of nonsingular ε-symmetric forms.

I L∗(A, 1) = the Mishchenko symmetric L-groups

I Example An oriented n-dimensional manifold M with universal cover
M̃ has a symmetric signature

σ∗(M) = (C (M̃), φ) ∈ Ln(Z[π1(M)], 1) .

I Generalization of the signature: the special case n = 4k, π1(M) = {1}

σ∗(M) = signature(M) ∈ L4k(Z, 1) = Z .
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The generalized ε-quadratic Witt groups Ln(A, ε)

I The ε-quadratic L-groups Ln(A) are the algebraic cobordism groups of
n-dimensional f.g. free A-module chain complexes C with a class
ψ ∈ Qn(C , ε) inducing a Poincaré duality

Hn−∗(C ) ∼= H∗(C ) .

I L∗(A, 1) = the Wall surgery obstruction groups.
I Example L0(A, ε) is the Witt group of nonsingular ε-symmetric forms.
I Example A degree 1 map of n-dimensional manifolds f : M → X with

normal bundle map b has a quadratic signature

σ∗(f , b) = (C (f̃ : C (M̃ → X̃ ))∗+1, ψ) ∈ Ln(Z[π1(X )], 1) ,

the Wall surgery obstruction.
I Generalization of the Arf-Kervaire invariant: in the special case

n = 4k + 2, X = S4k+2, (M, δτM)= framed manifold

σ∗(f , b) = Kervaire(M, δτM) ∈ L4k+2(Z, 1) = Z2 .
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The L-groups L∗(A, ε), L∗(A, ε) and L̂∗(A, ε)

I Slogan 10 The ε-symmetric and ε-quadratic L-groups are related by
the exact sequence

· · · → Ln+1(A, ε)→ L̂n+1(A, ε)→ Ln(A, ε)→ Ln(A, ε)→ L̂n(A, ε)→ . . . .

The relative groups L̂∗(A, ε) (of exponent 8) are homological
invariants of the ring A, not just Grothendieck-Witt groups.

I Example For a perfect field A of characteristic 2

L̂1(A, 1) = coker(1− ψ2 : A→ A) = A/{a− a2 | a ∈ A} ,

L̂0(A, 1) = ker(1− ψ2 : A→ A) = {a ∈ A | a2 = a} = Z2 .

I Example For A = Z recover van der Blij’s theorem

coker(L0(Z, 1)→ L0(Z, 1)) = coker(8 : Z→ Z)
∼= // L̂0(Z, 1) = Z8 ;

(F , λ) 7→ λ(v , v) ≡ signature(F , λ) (λ(v , x) ≡ λ(x , x) (mod 2)∀x ∈ F ).
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The generalized Arf invariant

I Definition (Banagl and R., 2006) Given a (−ε)-symmetric form (L, α)
over a ring with involution A define the generalized Arf group

Arf(L, α) =
{β ∈ HomA(L∗, L) |β∗ = −εβ}

{φ− φαφ∗ + (χ− εχ∗) |φ∗ = −εφ, χ ∈ HomA(L∗, L)}
I Proposition (i) The function β 7→ Hε(L, α, β) defines a one-one

correspondence between Arf(L, α) and the isomorphism classes of
nonsingular ε-quadratic forms (F , λ, µ) over A with a lagrangian L for
the ε-symmetric form (F , λ) such that µ|L = α, with

F = L⊕ L∗ , µ(x , y) = α(x)(x) + β(y)(y) + y(x) ∈ Qε(A) .

I (ii) The map Arf(L, α)→ ker(L0(A, ε)→ L0(A, ε));β 7→ Hε(L, α, β) is
an isomorphism if A is a perfect field of characteristic 2 and
(L, α) = (A, 1), with Arf(L, α) = coker(1− ψ2 : A→ A).

I The generalized Arf invariant can be used to compute L∗(Z[D∞]) with
D∞ = Z2 ∗ Z2 the infinite dihedral group.
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