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Introduction

I In 1829 Sturm proved a theorem calculating the number of
real roots of a non-zero real polynomial P(X ) ∈ R[X ] in an
interval [a, b] ⊂ R, using the Euclidean algorithm in R[X ] and
counting sign changes.

I In 1853 Sylvester interpreted Sturm’s theorem using continued
fractions and the signature of a tridiagonal quadratic form.

I The survey paper of Étienne Ghys and A.R.
http://arxiv.org/abs/1512.09258 Signatures in algebra,
topology and dynamics includes a modern interpretation of the
results of Sturm and Sylvester in terms of the “Witt group” of
stable isomorphism classes of invertible symmetric matrices.

http://arxiv.org/abs/1512.09258
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Jacques Charles François Sturm (1803-1855)
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Sturm’s problem

I Problem How many real roots of P(X ) ∈ R[X ] are there in
an interval [a, b] ⊂ R? At the time, this was a major problem
in analysis, algebra and numerical mathematics.

I Sturm’s formula The Euclidean algorithm in R[X ] for finding
the greatest common divisor of P0(X ) = P(X ) and
P1(X ) = P ′(X ) gives the Sturm sequences of polynomials

(P∗(X ),Q∗(X )) = ((P0(X ), . . . ,Pn(X )), (Q1(X ), . . . ,Qn(X )))

with remainders Pj(X ) and quotients Qj(X ), such that

deg(Pj+1(X )) < deg(Pj(X )) 6 n − j (0 6 j 6 n) ,

Pj−1(X ) + Pj+1(X ) = Pj(X )Qj(X ) (1 6 j 6 n) .

I Sturm’s formula expressed the number of real roots of P(X )
in [a, b] in terms of the variation (= number of sign changes)
in P∗(a) and P∗(b), assuming regularity.
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The Euclidean algorithm

I The Euclidean algorithm for the greatest common divisor of
integers π0 > π1 > 1 is the sequence pair

π0 > π1 > · · · > πn > πn+1 = 0 , ρ0, ρ1, . . . , ρn > 0

with

πj−1 = πjρj + πj+1 (1 6 j 6 n) ,

ρj = ⌊πj−1/πj⌋ = quotient when dividing πj−1 by πj ,

πj+1 = remainder , πn = g.c.d.(π0, π1) .

I The sequences (π0/π1, π1/π2, . . . , πn−1/πn), (ρ1, ρ2, . . . , ρn)
determine each other by

πj−1

πj
= ρj +

1

ρj+1 +
1

ρj+2 +
.. .

+
1

ρn

, ρj =
πj−1

πj
−

πj+1

πj
.
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Euclidean pairs

I Definition A sequence p∗ = (p0, p1, . . . , pn) of pj ∈ R is
regular if pj ̸= 0 ∈ R for 0 6 j 6 n.

I Definition A Euclidean pair (p∗, q∗) consists of two regular
sequences p∗ = (p0, p1, . . . , pn), q∗ = (q1, q2, . . . , qn) in R
satisfying the identities

pj−1 + pj+1 = pjqj ∈ R (1 6 j 6 n, pn+1 = 0) .

I Example For integers π0 > π1 > 1 the Euclidean algorithm
sequences (π0, π1, . . . , πn), (ρ1, ρ2, . . . , ρn) determine a
Euclidean pair (p∗, q∗) by

pj = (−1)j(j−1)/2πj , qj = ρj .
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Variation and regularity

I Definition The variation of a regular sequence
p∗ = (p0, p1, . . . , pn) in R is

var(p∗) = number of changes of sign in p∗

=
(
n −

n∑
j=1

sign(pj−1/pj)
)
/2 ∈ {0, 1, . . . , n} .

I Definition A polynomial P(X ) ∈ R[X ] is regular if it has no
repeated roots.

I Definition A point t ∈ R is regular for P(X ) ∈ R[X ] if

P∗(t) = (P0(t),P1(t), . . . ,Pn(t)) ,

is a regular sequence in R.
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Sturm’s Theorem (1829)

I Theorem The number of real roots of a regular P(X ) ∈ R[X ]
in [a, b] ⊂ R for regular a < b is

|{x ∈ [a, b] |P(x) = 0 ∈ R}| = var(P∗(a))− var(P∗(b)) .

I Idea of proof Let a = t0 < t1 < t2 < · · · < tN−1 < tN = b
be the partition of [a, b] at the points t1 < t2 < · · · < tN−1

which are not regular. For each i ∈ {1, 2, . . . ,N − 1} there is
a unique ji ∈ {0, 1, . . . , n − 1} such that

Pji (ti ) = 0 , Pk(ti ) ̸= 0 for k ̸= ji .

The function

[a, b] → {0, 1, . . . , n} ; t 7→ var(P∗(a))− var(P∗(t))

is constant for t ∈ (ti , ti+1). The jump is 1 at ti with ji = 0,
i.e. at the real roots of P(X ). The jump is 0 at ti with ji > 1,
since pji−1(ti ) + pji+1(ti ) = pji (ti )qji (ti ) = 0 with the first two
terms ̸= 0.
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James Joseph Sylvester (1814-1897)
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Sylvester’s papers related to Sturm’s theorem

I On the relation of Sturm’s auxiliary functions to the roots of
an algebraic equation. (1841)

I A demonstration of the theorem that every homogeneous
quadratic polynomial is reducible by real orthogonal
substitutions to the form of a sum of positive and negative
squares. (1852)

I On a remarkable modification of Sturm’s Theorem (1853)

I On a theory of the syzygetic relations of two rational integral
functions, comprising an application to the theory of Sturm’s
functions, and that of the greatest algebraical common
measure. (1853)

I Sylvester used continued fractions to express Sturm’s formula
in terms of the signatures of tridiagonal symmetric forms.
In fact, the signature was developed for just this purpose!
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Cauchy’s Spectral Theorem (1829)

I Definition The transpose of an n × n matrix A = (aij) is

A∗ = (aji ) .

I Definition The symmetric n × n matrices S ,T in R are
orthogonally congruent if

T = A∗SA

for an n × n matrix A which is orthogonal, A∗A = In.

I Spectral Theorem
(i) The eigenvalues of symmetric S are real.
(ii) Symmetric S ,T are orthogonally congruent if and only if
they have the same eigenvalues.
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Sylvester’s Law of Inertia

I Definition Let S be a symmetric n × n matrix in R.
(i) The positive index τ+(S) > 0 of S is the dimension of a
maximal subspace V+ ⊆ Rn such that S(x , x) > 0 for all
x ∈ V+\{0}.
(ii) The negative index τ−(S) > 0 of S is the dimension of a
maximal subspace V− ⊆ Rn such that S(x , x) < 0 for all
x ∈ V−\{0}.

I Definition Symmetric n × n matrices S ,T are linearly
congruent if

T = A∗SA

for an invertible n × n matrix A.

I Law of Inertia (1852) S ,T are linearly congruent if and only
if

(τ+(S), τ−(S)) = (τ+(T ), τ−(T )) .
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The signature

I Definition The signature of a symmetric n× n matrix S in R
is

τ(S) = τ+(S)− τ−(S) ∈ {−n,−n + 1, . . . , n − 1, n} .

I The following conditions on S are equivalent:
I S is invertible,
I τ+(S) + τ−(S) = n
I the eigenvalues constitute a regular sequence

λ∗ = (λ1, λ2, . . . , λn), i.e. each λj ̸= 0.

I Proposition For invertible S

τ(S) =
n∑

j=1

sign(λj) = n − 2 var(µ∗)

with µj = λ1λ2 . . . λj (1 6 j 6 n) and µ0 = 1.
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The principal minors and the
Sylvester-Jacobi-Gundelfinger-Frobenius Theorem

I Definition The principal minors of an n × n matrix
S = (sij)16i ,j6n in R are the determinants of the principal
submatrices S(k) = (sij)16i ,j6k

µk(S) = det(S(k)) ∈ R (1 6 k 6 n) .

For k = 0 set µ0(S) = 1.
I Theorem (Sylvester (1853), Jacobi (1857), Gundelfinger

(1881), Frobenius (1895))
The signature of a symmetric n × n matrix S in R with the
principal minors µk = µk(S) constituting a regular sequence
µ∗ = (µ0, µ1, . . . , µn) is

τ(S) =
n∑

k=1

sign(µk/µk−1) = n − 2 var(µ∗) .

I There is a proof in the survey, using “plumbing” of matrices.
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The tridiagonal symmetric matrix

I Definition The tridiagonal symmetric matrix of a sequence
q∗ = (q1, q2, . . . , qn) in R is

Tri(q∗) =


q1 1 0 . . . 0
1 q2 1 . . . 0
0 1 q3 . . . 0
...

...
...

. . .
...

0 0 0 . . . qn


I Sylvester observed that every continued fraction is the ratio of

successive principal minors µk = µk(Tri(q∗))

µk/µk−1 = qk −
1

qk−1 −
1

qk−2 −
. . .

− 1

q1
and τ(Tri(q∗)) =

n∑
k=1

sign(µk/µk−1) = n − 2 var(µ∗).
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Sylvester’s mathematical inspiration

I For a Euclidean pair (p∗, q∗) the regular sequences
(p0/p1, p1/p2, . . . , pn−1/pn) and q∗ determine each other by

pj−1

pj
= qj −

1

qj+1 −
1

qj+2 −
. . .

− 1

qn

, qj =
pj−1

pj
+

pj+1

pj
.

I For his modification of Sturm’s theorem Sylvester needed an
expression for τ(Tri(q∗)) in terms of p∗. He could not obtain
it directly, so he reversed q∗ = (q1, q2, . . . , qn) to define

q′∗ = (qn, qn−1, . . . , q1)

with
pj−1

pj
=

µn−j+1(Tri(q
′
∗))

µn−j(Tri(q′∗))
and τ(Tri(q′∗)) = n − 2 var(p∗).

He then observed that Tri(q∗), Tri(q
′
∗) are linearly congruent,

so that τ(Tri(q∗)) = τ(Tri(q′∗)) = n − 2 var(p∗).
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Sylvester’s modification of Sturm

I Theorem (1853) For a Euclidean pair (p∗, q∗) =
((p0, p1, . . . , pn), (q1, q2, . . . , qn))

τ(Tri(q∗)) =
n∑

k=1

sign(pk/pk−1) = n − 2 var(p∗) .

For regular P(X ) ∈ R[X ] and regular a < b with Sturm
sequences (P∗(X ),Q∗(X )) the number of real roots in [a, b] is

|{x ∈ [a, b] |P(x) = 0 ∈ R}|
= var(P∗(a))− var(P∗(b))

=
(
τ(Tri(Q∗(b)))− τ(Tri(Q∗(a)))

)
/2 .
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Proof of Sylvester’s Theorem I.

I (i) The principal minors µ′
k = µk(Tri(q

′
∗)) of the tridiagonal

symmetric n × n matrix

Tri(q′∗) =


qn 1 0 . . . 0
1 qn−1 1 . . . 0
0 1 qn−2 . . . 0
...

...
...

. . .
...

0 0 0 . . . q1


constitute a regular sequence (µ′

1, µ
′
2, . . . , µ

′
n) such that

µ′
j−1

µ′
j

=
pn−j+1

pn−j
(1 6 j 6 n) .

(ii) The signature of Tri(q′∗) is

τ(Tri(q′∗)) = n − 2 var(µ′
∗) = n − 2 var(p∗) .
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Proof of Sylvester’s Theorem II.

I (iii) The invertible n × n matrix

A =


0 0 . . . 1
...

...
. . . 0

0 1 . . . 0
1 0 . . . 0


is such that

Tri(q∗) = A∗Tri(q′∗)A ,

so that by the Law of Inertia

τ(Tri(q∗)) = τ(Tri(q′∗)) = n − 2 var(p∗) .
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Sylvester’s musical inspiration

616 On a remarkahle Modification oj Sturm's Theorem. [61 

As an artist delights in recalling the particular time and atmospheric 
effects under which he has composed a favourite sketch, so I hope to be 
excused putting upon record that it was in listening to one of the magnificent 
choruses in the' Israel in Egypt' that, unsought and unsolicited, like a ray 
of light, silently stole into my mind the idea (simple, but previously un-
perceived) of the equivalence of the Sturmian residues to the denominator 
series formed by the reverse convergents. The idea was just what was 
wanting,-the key-note to the due and perfect evolution of the theory. 

Postscript. 

Immediately after leaving the foregoing matter in the hands of the printer, 
a most simple and complete proof has occurred to me of the theorem left 
undemonstrated in the text Cp. 610]. 

Suppose that we have any series of terms u" U z, U 3 ... Un, where 

ｾ＠ = A" U z= A,Az -1, U3 = A,AzA3 - A, - A3, &c. 

and in general 

then u" uz, u3 ... Un will be the successive principal coaxal determinants 
of a symmetrical matrix. Thus suppose n = 5; if we write down the matrix 

A" 1, 0, 0, 0, 

1, A2 , 1, 0, 0, 

0, 1, 11.3, 1, 0, 

0, 0, 1, A4, 1, 

0, 0, 0, 1, A5, 

(the mode of formation of which is self-apparent), these succeSSIve coaxal 
determinants will be 

1 1 A, 1\ A" 1 I A" 1, ° A" 1, 0, ° A" 1, 0, 0, ° 1, .A z 1, 11.2 , 1 1, Az, 1, ° 1, A 2 , 1, 0, ° 0, 1, 11.3 0, 1, A3, 1 0, 1, A3, 1, ° 0, 0, 1, A4 0, 0, 1, A4, 1 

0, 0, 
that is 

0, 1, 11.5 

1, A" A,A2 -1, 11.,11.211.3 - A, - 11.3, A,AzA3A4 - A,Az - 11.,11.4 - AaA4 + 1, 

A,A2AaA4A5 - A,AzA5 - 11.111.411.5 - A3A4A5 - A,AzA3 + 11.5 + A3 + A,. 

It is proper to introduce the unit because it is, in fact, the value of a deter-
minant of zero places, as I have observed elsewhere. Now I have demon-

A magnificent chorus from Israel in Egypt

Israel-in-Egypt.mp4

