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Mission statement

I To provide a guided tour of some of the more elementary aspects of the
work of Hirzebruch and Atiyah involving quadratic forms.

I The tour will visit the connections between

(i) the algebraic theory of quadratic forms,

(ii) the geometric theory of manifolds and singular spaces,

(iii) the number theory of Dedekind sums,

(iv) index theory.

I Somewhat like doing all of Europe in a day!

I Will travel in time and mathematics rather than space, starting in the
19th century.
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James Joseph Sylvester (1814–1897)

Honorary Fellow of the RSE, 1874
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Sylvester’s 1852 paper

I Fundamental insight: the invariance of the numbers of positive and
negative eigenvalues of a symmetric matrix S under linear congruence.

I Impact statement: the Sylvester crater on the Moon
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Linear congruence, the indices of inertia and the signature

I Symmetric n× n matrices S ,T are linearly congruent if S = A∗TA for
an invertible n × n matrix A = (aij) with A∗ = (aji ) the transpose.

I The eigenvalues λ1, λ2, . . . , λn of a symmetric matrix S are real.

I The positive and negative index of inertia of a symmetric n × n
matrix S are

σ+(S) = (no. of eigenvalues λk > 0) ,

σ−(S) = (no. of eigenvalues λk < 0) ∈ {0, 1, 2, . . . , n} .

I The signature (= index of inertia) of S is the difference

σ(S) = σ+(S)− σ−(S)

=
n∑

k=1

sign(λk) ∈ {−n, . . . ,−1, 0, 1, . . . , n} .

I Linearly congruent S ,T have the same indices of inertia.
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Sylvester’s Law of Inertia (1852)

I A symmetric n × n symmetric matrix S is linearly congruent to the
diagonal matrix

D(sign(λ1), sign(λ2), . . . , sign(λn)) =

Ip 0 0
0 −Iq 0
0 0 0


with σ+(S) = p, σ−(S) = q, σ(S) = p − q.

I Law of Inertia Symmetric n× n matrices S ,T are linearly congruent if
and only if they have eigenvalues of the same signs, i.e. same indices

σ+(S) = σ+(T ) and σ−(S) = σ−(T ) ∈ {0, 1, . . . , n} .

I Important special case Invertible symmetric n × n matrices S ,T are
linearly congruent if and only if they have the same signature

σ(S) = σ(T ) ∈ {−n,−n + 1, . . . ,−1, 0, 1, . . . , n} .

.
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Regular symmetric matrices

I The principal k × k minor of an n × n matrix S = (sij)16i ,j6n is

µk(S) = det(Sk) ∈ R

with Sk = (sij)16i ,j6k the principal k × k submatrix

S =

(
Sk . . .
...

. . .

)
.

I An n × n matrix S is regular if µk(S) 6= 0 ∈ R (1 6 k 6 n), that is if
each Sk is invertible. In particular, Sn = S is invertible.

I Theorem (Sylvester 1852, Gundelfinger 1881, Frobenius 1895)
The eigenvalues λ1(S), λ2(S), . . . , λn(S) of a regular symmetric n × n
matrix S have the same signs as the minor quotients

sign(λk(S)) = sign(
µk(S)

µk−1(S)
) ∈ {−1, 1} (k = 1, 2, . . . , n)

with µ0(S) = 1.



8

Tridiagonal matrices

I The tridiagonal symmetric n× n matrix of χ = (χ1, χ2, . . . , χn) ∈ Rn

Tri(χ) =



χ1 1 0 . . . 0 0
1 χ2 1 . . . 0 0
0 1 χ3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . χn−1 1
0 0 0 . . . 1 χn


I A vector χ = (χ1, χ2, . . . , χn) ∈ Rn is regular if

χk 6= 0 , µk(Tri(χ)) 6= 0 (k = 1, 2, . . . , n)

so that the tridiagonal symmetric matrix Tri(χ) is regular.
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Tridiagonal matrices and continued fractions

I Theorem (Sylvester, 1853) The minor quotients of the tridiagonal
matrix Tri(χ) of a regular χ ∈ Rn are continued fractions

µk(Tri(χ))

µk−1(Tri(χ))
= [χk , χk−1, . . . , χ1]

= χk −
1

χk−1 −
1

χk−2 −
. . .
− 1

χ1

I The signature of Tri(χ) is

σ(Tri(χ)) =
n∑

k=1

sign([χk , χk−1, . . . , χ1]) ∈ {−n,−n + 1, . . . , n} .
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”Aspiring to these wide generalizations, the analysis of quadratic
functions soars to a pitch from whence it may look proudly down on

the feeble and vain attempts of geometry proper to rise to its level or
to emulate it in its flights.” (1850)

Savilian Professor of Geometry, Oxford, 1883-1894
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From a 2`-manifold to a (−)`-symmetric form

I A (−)`-symmetric form (K , φ) is a vector space K with a
(−)`-symmetric bilinear pairing φ : K × K → R

φ(x , y) = (−)`φ(y , x) .

For K = Rn essentially same as (−)`-symmetric n × n matrix
S = (−)`S∗.

I Will only consider oriented manifolds.
I The intersection form of a 2`-manifold with boundary (M, ∂M) is the

(−)`-symmetric form

φM : H`(M;R)×H`(M;R)→ R ; (a[P], b[Q]) 7→ ab[P∩Q] (a, b ∈ R)

with [P ∩ Q] ∈ Z the intersection number of transverse `-submanifolds
P`,Q` ⊂ M. The adjoint linear map

φM : K = H`(M;R)→ K ∗ = HomR(K ,R) ; x 7→ (y 7→ φM(x , y))

has ker(φM) = im(H`(∂M;R)) ⊆ K . If ∂M = ∅ the form is
nonsingular, with φM the Poincaré duality isomorphism.
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The signature and index theorems

I Weyl (1923) The signature of a 4k-manifold with boundary (M, ∂M)
is the signature of the intersection symmetric matrix SM

σ(M) = σ(SM) ∈ Z .

I Hirzebruch, On Steenrod’s reduced powers, the index of inertia and the
Todd genus (1953)
The signature theorem for a closed 4k-manifold M states that

σ(M) =

∫
M
L(M) ∈ Z ⊂ R

with L(M) ∈ H4k(M;Q) the L-genus, a rational polynomial in the
Pontrjagin classes pj(τM) ∈ H4j(M;Z) of the tangent bundle τM .

I Atiyah and Singer, The index of elliptic operators (1968)
The index of an elliptic operator is a K -theoretic generalization of the
signature. The A-S theorem for an operator over a closed manifold
expressed the index in terms of characteristic classes. For the signature
operator recovers the Hirzebruch signature theorem.
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The signature defect

I The signature defect of a 4k-manifold with boundary (M, ∂M)
measures the extent to which the Hirzebruch signature formula holds

def(M) =

∫
M
L(M, ∂M)− σ(M) ∈ R .

This depends on the existence and choice of a cohomology class
L(M, ∂M) ∈ H4k(M, ∂M;R) with image L(M) ∈ H4k(M;R).

I Exotic spheres of Milnor (1956) detected by signature defect.
I Computed by Hirzebruch and Zagier in particular cases (60’s,70’s).
I Atiyah, Patodi and Singer, Spectral asymmetry and Riemannian

geometry (1974). Index theorem identifies def(M) with a spectral
invariant η(∂M) which depends on the Riemannian structure of ∂M.
Generalization of the Hirzebruch signature theorem for closed manifolds.

I Atiyah, Donnelly and Singer, η-invariants, signature defects of cusps,
and values of L-functions (1983) Topological proof of Hirzebruch’s
interpretation of the values of L-functions of totally real number fields.
(Continued fractions!)
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Realizing matrices by manifolds

I (Milnor 1959, Hirzebruch 1961)
For ` > 2 every integer (−)`-symmetric n × n matrix S = (sij ∈ Z) is
realized as the intersection matrix of a 2`-manifold with boundary
(M, ∂M)

(H`(M;R), φM) = (Rn, S) .

Constructed by the ”plumbing” of n `-plane bundles over S` with Euler
numbers χi = sii ∈ Z, required to be even for ` = 2k with k 6= 1, 2, 4
(as the Hopf invariant 6= 1 in these dimensions).

I The weighted adjacency graph of S is the graph with n vertices
1, 2, . . . , n and |sij | edges joining i to j (i 6= j) with weight sii ∈ Z at i .

I If the adjacency graph of S is a tree then
I for ` > 2 M is (`− 1)-connected, with Hr (M) = 0 (1 6 r 6 `− 1),
I for ` > 3 M and ∂M are both (`− 1)-connected.
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The realization of a tridiagonal matrix

I The weighted adjacency graph of Tri(χ) =


χ1 1 0 . . .
1 χ2 1 . . .
0 1 χ3 . . .
...

...
...

. . .

 is the

weighted An-tree

An :
χ1
•

χ2
•

χ3
• . . .

χn−1
•

χn
•

I A regular χ = (χ1, χ2, . . . , χn) ∈ Zn is realized by a 4-manifold
(M(χ), ∂M(χ)) obtained by the An-plumbing together of n 2-plane
bundles over S2 with Euler numbers χi . The symmetric intersection
form is

(H2(M(χ);R), φM(χ)) = (Rn,Tri(χ)) .

I The 4-manifolds (M(χ), ∂M(χ)) have many interesting geometric
properties!



16

From a (2`+ 1)-manifold with boundary to a lagrangian

I A lagrangian of a (−)`-symmetric form (K , φ) is a subspace L ⊆ K
such that L = L⊥, i.e.

φ(L, L) = {0} and L = {x ∈ K |φ(x , y) = 0 ∈ R for all y ∈ L} .

I 1-symmetric = symmetric, (−1)-symmetric = symplectic.

I A nonsingular symmetric form (K , φ) admits a lagrangian if and only if
it has signature σ(K , φ) = 0 ∈ Z, if and only if it is isomorphic to

H+(Rn) = (Rn ⊕ Rn,

(
0 In
In 0

)
) with n = dimR(K )/2.

I Every nonsingular symplectic form (K , φ) admits a lagrangian, and is

isomorphic to H−(Rn) = (Rn ⊕ Rn,

(
0 In
−In 0

)
) with n = dimR(K )/2.

I A (2`+ 1)-manifold with boundary (M, ∂M) determines a lagrangian
L = ker(H`(∂M;R)→ H`(M;R)) of the (−)`-symmetric intersection
form (H`(∂M;R), φ∂M).
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Cobordism

I An m-dimensional cobordism (M; N,N ′; P) is an m-manifold M with
the boundary decomposed as ∂M = N ∪P −N ′ for (m − 1)-manifolds
N, N ′ with the same boundary ∂N = ∂N ′ = P, and −N ′ = N ′ with the
opposite orientation. In the diagram P = P+ t P−.

M

�

�

N �N
0

P+

P�

1

I Theorem (Thom 1952 for P = ∅, Novikov 1967 in general)
For m = 4k + 1 the signature is a cobordism invariant:

σ(N)− σ(N ′) = σ(∂M) = 0 ∈ Z .

The signature of the intersection symmetric form (H2k(∂M;R), φ∂M) is
0 because L = ker(H2k(∂M;R)→ H2k(M;R)) is a lagrangian.
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The symplectic group Sp(2n) and automorphisms of the surfaces Σn

I The symplectic group Sp(2n) = Aut(H−(Rn)) (n > 1) consists of the

invertible 2n × 2n matrices A such that A∗
(

0 In
−In 0

)
A =

(
0 In
−In 0

)
.

Similarly for Sp(2n;Z) ⊂ Sp(2n).
I The surface of genus n is Σn = #

n
S1 × S1.

Σ1
Σ2

Σ3

I The mapping class group Γn = π0(Aut(Σn)) is the group of
automorphisms of Σn, modulo isotopy. Canonical group morphism

γn : Γn → Sp(2n;Z) ; (A : Σn → Σn) 7→ (A∗ : H1(Σn)→ H1(Σn)) .

Isomorphism for n = 1. Surjection for n > 2.
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The modular group SL2(Z)

I Dedekind, Erläuterungen zu den vorstehenden Fragmenten, 1876.
Commentary on Riemann’s work on elliptic functions.

I The modular group SL2(Z) = Sp(2;Z) is the group of 2× 2 integer
matrices

A =

(
a b
c d

)
such that

det(A) = ad − bc = 1 ∈ Z .

I Every element A ∈ SL2(Z) is induced by an automorphism of the torus

A : Σ1 = S1 × S1 → S1 × S1 ; (e ix , e iy ) 7→ (e i(ax+by), e i(cx+dy)) .

I SL2(Z) = Γ1 is the mapping class group of the torus Σ1.
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The lens spaces

I Tietze, Über die topologischen Invarianten mehrdimensionaler
Mannigfaltigkeiten (1908)

I The lens spaces are the closed 3-manifolds

L(a, c) = S3/Zc

defined for coprime a, c ∈ Z, c > 0, with

S3 = {(u, v) ∈ C2 | |u|2 + |v |2 = 1} ,

Zc × C2 → C2 ; (m, (u, v)) 7→ (ζamu, ζmv) where ζ = e2πi/c ∈ C .

I π1(L(c , a)) = Zc , H∗(L(c, a);R) = H∗(S3;R).
I The lens space has a genus 1 Heegaard decomposition

L(c , a) = S1 × D2 ∪A S1 × D2

for any A =

(
a b
c d

)
∈ SL2(Z).
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The Hirzebruch-Jung resolution of cyclic surface singularities I.

I For A ∈ SL2(Z) with c 6= 0 the Euclidean algorithm gives a regular
χ ∈ Zn with |χk | > 1, such that

A =

(
a b
c d

)
=

(
0 −1
1 0

)(
χ1 −1
1 0

)(
χ2 −1
1 0

)
. . .

(
χn −1
1 0

)
,

a/c = [χ1, χ2, . . . , χn] = χ1 −
1

χ2 −
1

χ3 −
. . .
− 1

χn

,

(H2(M(χ);R), φM(χ)) = (Rn,Tri(χ)) , ∂M(χ) = L(c, a) .

I The signature of the An-plumbed 4-manifold M(χ) is

σ(M(χ)) = σ(Tri(χ)) =
n∑

k=1

sign([χk , χk−1, . . . , χ1]) =
n∑

k=1

sign(χk) ∈ Z.
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The Hirzebruch-Jung resolution of cyclic surface singularities II.

I The 4-manifold M(χ) resolves the singularity at (0, 0, 0) of the
2-dimensional complex space

{(w , z1, z2) ∈ C3 |w c = z1(z2)c−a} .

I Jung, Darstellung der Funktionen eines algebraischen Körpers zweier
unabhängigen Veränderlichen x , y in der Umgebung x =a, y =b (1909)

I Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger
analytischer Funktionen von zwei komplexen Veränderlichen (1952).

I Hirzebruch and Mayer, O(n)-Mannigfaltigkeiten, exotische Sphären und
Singularitäten (1968)

I Hirzebruch, Neumann and Koh, Differentiable manifolds and quadratic
forms (1971)

I The signature of M(χ) is closely related to Dedekind sums!
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The sawtooth function (( ))

I Used by Dedekind (1876) to count ±2π jumps in the complex logarithm

log(re iθ) = log(r) + i(θ + 2nπ) ∈ C (n ∈ Z) .

I The sawtooth function (( )) : R→ [−1/2, 0) is defined by

((x)) =

{
{x} − 1/2 if x ∈ R\Z
0 if x ∈ Z

with {x} ∈ [0, 1) the fractional part of x ∈ R. Nonadditive:

((x)) + ((y))− ((x + y)) =


−1/2 if 0 < {x}+ {y} < 1

1/2 if 1 < {x}+ {y} < 2

0 if x ∈ Z or y ∈ Z or x + y ∈ Z .

x�2 �1 0 1 2 3 4

0:5

�0:5

� �� � � ��

1
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Dedekind sums and signatures

I The Dedekind sum for a, c ∈ Z with c 6= 0 is

s(a, c) =

|c|−1∑
k=1

((k

c

))((ka

c

))
=

1

4|c |

|c|−1∑
k=1

cot
(kπ

c

)
cot
(kaπ

c

)
∈ Q .

I Theorem For any regular sequence χ = (χ1, χ2, . . . , χn) ∈ Zn the
signature defect of (M(χ), ∂M(χ)) is

σ(Tri(χ))− (
n∑

j=1

χj)/3 =

{
b/3d if c = 0

(a + d)/3− 4sign(c)s(a, c) if c 6= 0 .

I Hirzebruch, The signature theorem: reminiscences and recreations
(1971) and Hilbert modular surfaces (1973)

I Hirzebruch and Zagier, The Atiyah-Singer theorem and elementary
number theory (1974)

I Kirby and Melvin, Dedekind sums, µ-invariants and the signature
cocycle (1994)
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The tailoring of topological pants

I Universal cobordism cocycle construction.
Geometric key to the signature defect.

I Input: Three n-manifolds N0,N1,N2 with ∂N0 = ∂N1 = ∂N2 = P.
Diffeomorphisms fj : ∂Nj → ∂Nj−1 (j(mod 3)) satisfy f1f2f3 = Id.

I Output: The pair of pants (n + 1)-manifold

Q = Q(P,N0,N1,N2) = (N0 × I t N1 × I t N2 × I )/ ∼ ,

(aj , bj) ∼ (fj(aj), 1− bj) (aj ∈ ∂Nj , bj ∈ [0, 1/2])

with boundary ∂Q = (N0 ∪P −N1) t (N1 ∪P −N2) t (N2 ∪P −N0).
I Standard pair of 2-dimensional pants (Q(S0,D1,D1,D1), S1 t S1 t S1)

used in Atiyah, Topological quantum field theory (1988).
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The Wall non-additivity of the signature I.

I Wall The non-additivity of the signature (1969).
The signature of the union M = M0 ∪N1 M1 of 4k-dimensional
cobordisms (M0; N0,N1; P), (M1; N1,N2; P) is

σ(M) = σ(M0) + σ(M1) + σ(Q) ∈ Z

with Q = Q(P,N0,N1,N2) the pair of pants in the middle.

M0 M1N1 N2N0

�

P+

�

P�

M 0

1M 0

0 Q

M = M0 [M1 = M
0

0 [Q [M 0

1

1

I The nonadditivity invariant σ(Q) ∈ Z is the ”triple signature”
σ(K , φ; L0, L1, L2) of the nonsingular symplectic form
(K , φ) = (H2k−1(P;R), φP) with respect to the three lagrangians

Lj = ker(K → H2k−1(Nj ;R)) (j = 0, 1, 2) .
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The Wall non-additivity of the signature II.

I The triple signature σ(K , φ; L0, L1, L2) = σ(V , ψ) ∈ Z is the signature
of the nonsingular symmetric form (V , ψ) defined by

V =
{(x , y , z) ∈ L0 ⊕ L1 ⊕ L2 | x + y + z = 0 ∈ K}

{(a− b, b − c , c − a) | a ∈ L2 ∩ L0, b ∈ L0 ∩ L1, c ∈ L1 ∩ L2}
,

ψ(x , y , z)(x ′, y ′, z ′) = φ(x , y ′) ∈ R .

I Triple signature = Maslov index (Arnold, Leray, . . . ).

I Example The lagrangians of H−(R) are the 1-dimensional subspaces

L(θ) = {(r cos θ, r sin θ) | r ∈ R} ⊂ R2 (θ ∈ [0, π)) .

The triple signature jumps by ±1 at θj − θj+1 ∈ πZ, for j(mod 3)

σ(H−(R); L(θ0), L(θ1), L(θ2)) = sign(sin(θ0−θ1)sin(θ1−θ2)sin(θ2−θ0))
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The non-multiplicativity of the signature I.

I The multiplicativity σ(X × F ) = σ(X )σ(F ) was a key ingredient of the
1953 proof of the Hirzebruch signature theorem.

I Chern, Hirzebruch and Serre, On the index of a fibered manifold (1957).

σ(M) = σ(X )σ(F )

for any fibre bundle F → M4k → X with π1(X ) acting trivially on
H∗(F ;R).

I Kodaira, A certain type of irregular algebraic surfaces (1967)
First examples of fibre bundles F 2 → M4 → X 2 with

σ(M)− σ(X )σ(F ) 6= 0 ∈ Z .

I Hirzebruch, The signature of ramified coverings (1969)
Analysis of non-multiplicativity using the signature of branched covers,
and the Atiyah-Singer G -signature theorem.
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The non-multiplicativity of the signature II.

I Atiyah, The signature of fibre-bundles (1969) A characteristic class
formula for the signature of a fibre bundle F 2` → M4k → X 4k−2`

σ(M) = 〈ch(Sign) ∪ L̃(X ), [X ]〉 ∈ Z ⊂ R

with Sign = {σK (H`(Fx ;C), φFx ) | x ∈ X} the virtual bundle of the
topological K -theory signatures of hermitian forms, such that

(H∗(M;C), φM) = (H∗(X ; Sign), φX )

with ch(Sign) ∈ H2∗(X ;C) the Chern character, and
L̃(X ) ∈ H4∗(X ;Q) a modified L-genus.

I All the examples are multiplicative mod 4. In fact:
Hambleton, Korzeniewski and Ranicki, The signature of a fibre bundle
is multiplicative mod 4 (2007) For any fibre bundle F → M4k → X

σ(M) ≡ σ(X )σ(F ) (mod 4) .
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The Meyer signature cocycle

I Let (K , φ) = H−(Rn). For A,B ∈ Aut(K , φ) = Sp(2n) let

σ(A,B) = σ(K⊕K , φ⊕−φ; (1⊕A)∆K , (1⊕B)∆K , (1⊕AB)∆K ) ∈ Z .

For A,B : Σn → Σn σ(A,B) = σ(M) is the signature of the Σn-bundle
Σn → M4 → Q2 over a standard pair of pants Q, with ∂M the union
of the mapping tori of A,B,AB.

I W.Meyer Die Signatur von lokalen Koeffizientensystem und
Faserbündeln (1972) The triple signature function

cn : Sp(2n)× Sp(2n)→ Z ; (A,B) 7→ σ(A,B)

is a cocycle for a group cohomology class [cn] ∈ H2(Sp(2n);Z)

classifying the signature central extension Z→ Ŝp(2n)→ Sp(2n).
I The signature of the total space of a Σn-bundle Σn → M4 → X 2 with

canonical map γ : π1(X )→ Aut(H−(Rn)) = Sp(2n) is

σ(M) = 〈γ∗[cn], [X ]〉 ∈ Z .
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The Atiyah signature cocycle I.

I Atiyah, The logarithm of the Dedekind η-function (1987)
Geometric interpretation of the Meyer cocycle, connection with
Dedekind η-function as well as the Atiyah-Patodi-Singer η-invariant.

I The characteristic class formula for the signature of a fibre bundle was
generalized by Lusztig (1972): for any surface with boundary (X ,Y )
and group morphism

γ : π1(X )→ U(p, q) = Aut(Cp+q,

(
Ip 0
0 −Iq

)
)

there is a signature with local coefficients

σ(X , γ) = σ(H1(X ; γ), φX ) ∈ Z .

I Let Q2 be the standard 2-dimensional pair of pants, with boundary
∂Q = S1 t S1 t S1. The morphisms

γ : π1(Q) = Z ∗ Z→ U(p, q)

are in one-one correspondence with A,B ∈ U(p, q).
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The Atiyah signature cocycle II.

I The function defined for A,B ∈ U(p, q) by

cp,q(A,B) = σ(H1(Q; γ(A,B)), φQ) ∈ Z

is a cocycle for a group cohomology signature class

[cp,q] ∈ H2(U(p, q);Z) .

such that for any surface X and γ : π1(X )→ U(p, q)

σ(X , γ) = 〈γ∗(cp,q), [X ]〉 ∈ Z .

I The signature class [cp,q] ∈ H2(U(p, q);Z) = Hom(π1(U(p, q)),Z)
is given by

π1(U(p, q)) = π1(U(p))×π1(U(q)) = Z⊕Z→ Z ; (x , y) 7→ 2x−2y .

I cn,n restricts on Sp(2n) ⊂ U(n, n) to the Meyer cocycle cn.
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The Atiyah signature cocycle III.

I c1,0 is the cocycle on U(1, 0) = U(1) = S1

c1,0 : S1 × S1 → Z ; (e2πix , e2πiy ) 7→
σ(H−(R); L(0), L(2πx), L(2π(x + y))) = 2(((x)) + ((y))− ((x + y)))

with L(θ) = {(r cos θ, r sin θ) | r ∈ R} ⊂ R2 the lagrangian of H−(R)
determined by e iθ/2 ∈ S1.

I c1,0 classifies the signature central extension Z→ R× Z2 → S1

Z→ R× Z2 ; m 7→ (m/2,m(mod 2)) ,

R× Z2 → S1 ; (x , r) 7→ e2πi(x−r/2) (r = 0, 1) .

I c1,0 = dη is the coboundary of the function

η : S1 → R ; e2πix 7→ −2((x)) =

{
1− 2{x} if x /∈ Z
0 if x ∈ Z .

This is the simplest evaluation of the Atiyah-Patodi-Singer η-invariant.
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2-framings and the signature extension

I Atiyah, On framings of 3-manifolds (1990) Every closed 3-manifold N
has a canonical 2-framing, i.e. a trivialization of τN ⊕ τN , characterized
by the property that for any 4-manifold M with ∂M = N the signature
defect is def(M) = 0.

I Recall the mapping class group Γn = π0(Aut(Σn)) and the canonical
morphism γn : Γn → Sp(2n) ⊂ U(n, n). The pullback
γ∗n(cn) ∈ H2(Γn;Z) classifies the signature extension Z→ Γ̂n → Γn.

I Geometric interpretation of Γ̂n in terms of the canonical 2-framing.

I The case n = 1, Γ1 = SL2(Z) of particular importance in string theory
and Jones-Witten theory.

I 2-framings and the signature extension have many applications to knots
and links.
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Conclusion

I The full range of the work of Hirzebruch and Atiyah has been a major
influence on the mathematics of the 20th and 21st centuries, with roots
in the 19th century.

I In his 1998 lecture in Warsaw for Hirzebruch’s 70th birthday (1997)
Atiyah posed a problem for the following generation:

Find a successor to Fritz Hirzebruch!

I This is of course only half the problem. The full problem is:

Find successors to Fritz Hirzebruch and Michael Atiyah!


