AN INTRODUCTION TO EXOTIC SPHERES AND SINGULARITIES

Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/~aar

Edinburgh, 4 May, 2012

The original papers

- ► J. Milnor, **On manifolds homeomorphic to the 7-sphere**, Annals of Maths. 64, 399-405 (1956)
- M. Kervaire and J. Milnor, Groups of homotopy spheres I., Annals of Maths. 77, 504–537 (1963)
- F. Pham, Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. France 93, 333-367 (1965)
- E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Inventiones math. 2, 1–14 (1966)
- F. Hirzebruch, Singularities and exotic spheres, Seminaire Bourbaki 314, 1966/67
- J. Milnor, Singular points of complex hypersurfaces, Annals of Maths. Study 61 (1968)

Homotopy spheres

- A homotopy m-sphere Σ^m is a differentiable oriented m-dimensional manifold which is homotopy equivalent to S^m.
- For $m \ge 5 \Sigma^m$ is homeomorphic to S^m .
- Σ^m is **standard** if it is diffeomorphic to S^m .
- Σ^m is **exotic** if it is not diffeomorphic to S^m .
- In this lecture will describe the construction and main properties of the Brieskorn spheres, which arise as the links of the isolated singularities of complex hypersurfaces.

The original exotic spheres

The original exotic 7-spheres Σ⁷ of Milnor (1956) were constructed as boundaries Σ⁷ = ∂F of the (D⁴, S³)-bundles over S⁴

$$(D^4, S^3) \to (F, \partial F) \to S^4$$

of the 4-plane vector bundles over S^4 classified by particular elements in

$$\pi_4(BSO(4)) = \mathbb{Z} \oplus \mathbb{Z}$$
 .

• The exotic nature of Σ^7 detected by the defect

$$\operatorname{signature}(F) - \langle \mathcal{L}(F), [F] \rangle \in \mathbb{Q}$$

of the Hirzebruch signature theorem for an 8-dimensional manifold F with $\partial F = \Sigma^7$.

 Kervaire and Milnor (1963) showed that there are 28 differentiable structures on S⁷.

Bounding exotic spheres

- A homotopy *m*-sphere Σ^m bounds if Σ^m = ∂F for a framed (m+1)-dimensional manifold F.
- Pairs (F, ∂F), (F', ∂F') are cobordant if there exists an orientation-preserving diffeomorphism ∂F ≅ ∂F' such that F ∪∂ −F' is a framed boundary. The cobordism classes constitute a group bP_{m+1} under connected sum.
- Kervaire-Milnor (1963) computed bP_{m+1} to be a quotient of the simply-connected surgery obstruction group

$$P_{m+1} = L_{m+1}(\mathbb{Z}) .$$

No obstruction to simply-connected odd-dimensional surgery, P_{2n-1} = L_{2n-1}(ℤ) = 0, so that bP_{2n-1} = 0: every bounding homotopy (2n − 2)-sphere Σ^{2n−2} is standard.

The bounding odd-dimensional homotopy spheres I.

Every bounding homotopy (2n - 3)-sphere is the boundary Σ²ⁿ⁻³ = ∂F of an (n - 2)-connected framed (2n - 2)-dimensional manifold F²ⁿ⁻² constructed by plumbing together μ copies of τ_{Sⁿ⁻¹} using a nonsingular (-1)ⁿ⁻¹-quadratic form (H_{n-1}(F) = Z^μ, b, q) over Z.
 The rel ∂ surgery obstruction of (F, ∂F) → (D²ⁿ⁻², S²ⁿ⁻³) is

$$\sigma(F) = \begin{cases} \text{signature}(F)/8\\ \text{Kervaire}(F)\\ \in P_{2n-2} = L_{2n-2}(\mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } n \text{ is odd}\\ \mathbb{Z}_2 & \text{if } n \text{ is even} \end{cases}.$$

- ► Kervaire(F) = Arf(H_{n-1}(F; Z₂), q) is the Arf invariant of the quadratic form q determined by the framing.
- The surjection b : P_{2n-2} → bP_{2n-2}; σ(F) → ∂F is a precursor of the Wall realization of surgery obstructions.
- The groups bP_{2n-2} are cyclic finite.

The bounding odd-dimensional homotopy spheres II.

•
$$bP_{4m}$$
 is cyclic of order $\sigma_m/8$ with

$$\sigma_m = \epsilon_m 2^{2m-2} (2^{2m-1} - 1) \operatorname{numerator}(B_m/4m)$$

where B_m is the *m*th Bernoulli number, and $\epsilon_m = 2$ or 1, according as to whether *m* is odd or even.

▶ $bP_8 = \mathbb{Z}_{28}$, generated by one of the Milnor 1956 examples.

$$bP_{4m+2} = \begin{cases} 0 & \text{if there exists a framed} \\ & (4m+2)\text{-dimensional manifold} \\ \mathbb{Z}_2 & \text{otherwise} \end{cases}$$
$$= \begin{cases} 0 & \text{for } m = 0, 1, 3, 7, 15 \\ \mathbb{Z}_2 & \text{for } m \neq 0, 1, 3, 7, 15, 31 . \end{cases}$$

• $bP_{126} = \mathbb{Z}_2$ or 0.

The Brieskorn-Hirzebruch-Pham-Milnor construction

▶ For any
$$a = (a_1, a_2, ..., a_n)$$
 with $a_1, a_2, ..., a_n \ge 2$ the map

$$P_a : \mathbb{C}^n \to \mathbb{C} ; (z_1, z_2, \dots, z_n) \mapsto z_1^{a_1} + z_2^{a_2} + \dots + z_n^{a_n}$$

has an isolated singularity at

 $(0,0,\ldots,0)\in P_a^{-1}(0)\ =\ {
m complex\ hypersurface}\subset {\mathbb C}^n$.

- The '(star,link)'-pair of the singularity is a framed (2n − 2)-dimensional manifold with boundary (F, ∂F) ⊂ Cⁿ constructed near the singular point. The complexity of the singularity is measured by the differential topology of (F, ∂F).
- A Brieskorn sphere is a link ∂F = Σ²ⁿ⁻³ which happens to be a homotopy (2n 3)-sphere, necessarily bounding.
 Σ²ⁿ⁻³ can be exotic.

The hypersurface $\Xi_a(t)$

- Terminology of Brieskorn (1966)
- For $t \in \mathbb{C}$ define the hypersurface

$$\begin{aligned} \Xi_a(t) &= P_a^{-1}(t) \\ &= \{(z_1, z_2, \dots, z_n) \in \mathbb{C}^n \, | \, z_1^{a_1} + z_1^{a_1} + \dots + z_n^{a_n} = t\} \subset \mathbb{C}^n \end{aligned}$$

- $\Xi_a(t)$ is non-compact if $n \ge 2$.
- For t ≠ 0 Ξ_a(t) is nonsingular, an open (2n − 2)-dimensional manifold, with a diffeomorphism

$$\Xi_a(t) \cong \Xi_a(1)$$
.

• Write $\Xi_a(1) = \Xi_a$.

The star F_a and link Σ_a of the singular point $(0,0,\ldots,0)\in \Xi_a(0)$

Ξ_a(0) has an isolated singularity at (0,0,...,0), with Ξ_a(0)\{(0,0,...,0)} an open (2n - 2)-dimensional manifold
 For t ≠ 0 the star of the singularity is the compact framed

$$(2n-2)$$
-dimensional manifold

$$F_{a}(t) = \Xi_{a}(t) \cap D^{2n} \subset D^{2n}$$

 $(F_a(t) \text{ denoted } M_a(t) \text{ by Brieskorn}).$

The link of the singularity is

$$\Sigma_a(t) = \partial F_a(t) = \Xi_a(t) \cap S^{2n-1} \subset S^{2n-1}$$

For t ≠ 0 with |t| sufficiently small the (star, link) pair is independent of t, and written

$$(F_a(t), \Sigma_a(t)) = (F_a, \Sigma_a),$$

with a diffeomorphism $F_a \setminus \partial F_a \cong \Xi_a$.

The Milnor fibration

► The codimension 2 submanifold (F_a, Σ_a) ⊂ (D²ⁿ, S²ⁿ⁻¹) is framed, i.e. extends to an embedding

$$(F_a, \Sigma_a) imes D^2 \subset (D^{2n}, S^{2n-1})$$
.

► Define the (2n - 1)-dimensional manifold with boundary $(E_a, \partial E_a) = (cl.(S^{2n-1} \setminus \Sigma_a \times D^2), \Sigma_a \times S^1).$

The Milnor fibration map

$$p : E_a \to S^1 ; (z_1, z_2, \dots, z_n) \mapsto \frac{z_1^{a_1} + z_2^{a_2} + \dots + z_n^{a_n}}{\|z_1^{a_1} + z_2^{a_2} + \dots + z_n^{a_n}\|}$$

is the projection of a fibre bundle with fibre $p^{-1}(1) = F_a$. • The **monodromy** automorphism $h: F_a \to F_a$ is such that

$$\begin{split} E_a &= F_a \times I / \{ (x,0) \sim (h(x),1) \, | \, x \in F_a \} \\ \text{with } p : E_a \to S^1; [x,\theta] \mapsto e^{2\pi i \theta} \text{ and} \\ h| &= \text{id.} : \partial F_a = \Sigma_a \to \Sigma_a \,, \, p| = \text{ proj.} : \partial E_a = \Sigma_a \times S^1 \to S^1 \end{split}$$

The join

The join of topological spaces A, B is the space

 $A*B = (A \times I \times B) / \{(a_1, 0, b) \sim (a_2, 0, b), (a, 0, b_1) \sim (a, 0, b_2)\}$

for all $a, a_1, a_2 \in A$, $b, b_1, b_2 \in B$.

► If the reduced homology groups H
_{*}(A), H
_{*}(B) are without torsion then

$$ilde{H}_{r+1}(A * B) = \sum_{i+j=r} ilde{H}_i(A) \otimes ilde{H}_j(B) \; .$$

- If A is non-empty, and B is path-connected, then A * B is simply-connected.
- The join is associative, with a homeomorphism

$$(A * B) * C \cong A * (B * C)$$
.

The algebraic and differential topology of (F_a, Σ_a) I.

- Pham, Brieskorn, Hirzebruch and Milnor determined the algebraic and differential topology of (F_a, Σ_a), in particular the conditions under which Σ_a is a homotopy sphere, and determined the differentiable structure.
- ► The subspace of Ξ_a

$$\Xi_a^{real} = \{(z_1, \dots, z_n) \in \Xi_a \mid z_j^{a_j} \text{ is real for } j = 1, 2, \dots, n\}$$

has the following properties.

Ξ^{real}_a is a compact deformation retract of Ξ_a = F_a\Σ_a.
 Ξ^{real}_a = G₁ * G₂ * · · · * G_n is the join of the cyclic groups G_j = ℤ_{aj} of order a_j, regarded as discrete spaces with a_j elements.

►
$$\Xi_a^{real}$$
 is $(n-2)$ -connected, with homotopy equivalences
 $\Xi_a^{real} \simeq \Xi_a \simeq F_a \simeq S^{n-1} \lor S^{n-1} \lor ... \lor S^{n-1}$
involving $\mu = (a_1 - 1)(a_2 - 1) ... (a_n - 1)$ copies of S^{n-1} .
 μ is called the **Milnor number**, with $H_{n-1}(F_a) = \mathbb{Z}^{\mu}$.

The algebraic and differential topology of (F_a, Σ_a) II.

The characteristic polynomial of the monodromy automorphism h_∗ : H_{n-1}(F_a) → H_{n-1}(F_a) is

$$\begin{aligned} \Delta_a(z) &= \det(z - h_* : H_{n-1}(F_a)[z] \to H_{n-1}(F_a)[z]) \\ &= \prod_{k=1}^n \prod_{0 < i_k < a_k} (z - \omega_1^{i_1} \omega_2^{i_2} \dots \omega_n^{i_n}) \in \mathbb{Z}[z] \end{aligned}$$

with $\omega_j = e^{2\pi i/a_j} \in S^1$. For $n \ge 4 \Sigma_a$ is (n-3)-connected, with exact sequence

$$0 o H_{n-1}(\Sigma_{\mathfrak{a}}) o H_{n-1}(F_{\mathfrak{a}}) \stackrel{1-h_*}{\longrightarrow} H_{n-1}(F_{\mathfrak{a}}) o H_{n-2}(\Sigma_{\mathfrak{a}}) o 0$$
 .

Thus Σ_a is a homotopy (2n - 3)-sphere if and only if

$$\Delta_{a}(1) \;=\; 1 \in \mathbb{Z}$$
 .

The Kervaire invariants of Brieskorn (4m + 1)-spheres

- ► J. Levine, Polynomial invariants of codimension two, Annals of Maths. 84, 537–554 (1966)
- For m≥ 1 let a = (a₁, a₂,..., a_{2m+2}) be such that Σ_a is a homotopy (4m + 1)-sphere. The Kervaire invariant of F_a in L_{4m+2}(ℤ) = {0,1} is

$$\sigma(F_a) = \operatorname{Arf}(H_{2m+1}(F_a; \mathbb{Z}_2), q)$$
$$= \begin{cases} 0 & \text{if } \Delta_a(-1) \equiv \pm 1 \mod 8\\ 1 & \text{if } \Delta_a(-1) \equiv \pm 3 \mod 8 \end{cases}$$

Brieskorn (4m+1)-spheres with Kervaire invariant 1

► The Brieskorn (4m+1)-sphere Σ_a for a = (2, 2, ..., 2, 3) has Kervaire invariant

$$\sigma(F_a) = 1 \in L_{4m+2}(\mathbb{Z}) = \mathbb{Z}_2 = \{0,1\}$$

- ▶ If $bP_{4m+2} = \mathbb{Z}_2$ then $\Sigma_a \in bP_{4m+2}$ is the generator.
- ► The exotic 9-sphere Σ_(2,2,2,2,3) generates bP₁₀ = Z₂. Diffeomorphic to the exotic Kervaire 9-sphere, originally constructed by plumbing together 2 copies of τ_{S⁵} using the quadratic form of Arf invariant 1.

The signatures of Brieskorn (4m - 1)-spheres

- For m≥ 1 let a = (a₁, a₂,..., a_{2m+1}) be such that Σ_a is a homotopy (4m − 1)-sphere.
- Hirzebruch (1966) computed the signature of F_a to be

$$\sigma(F_{a}) = \sigma_{a}^{+} - \sigma_{a}^{-} \in \mathbb{Z}$$

with σ_a^+ the number of (2m + 1)-tuples $j = (j_1, j_2, \dots, j_{2m+1})$ of integers with $0 < j_k < a_k$ such that

$$0 < \sum_{k=1}^{2m+1} \frac{j_k}{a_k} < 1 \mod 2$$
,

and σ_a^- the number of (2m+1)-tuples j such that

$$-1 < \sum_{k=1}^{2m+1} \frac{j_k}{a_k} < 0 \mod 2$$
 .

Brieskorn (4m - 1)-spheres with non-zero signatures

The signatures/8 of the Brieskorn (4m − 1)-spheres Σ_a for a = (2,...,2,3,6k − 1) are given by

$$\sigma(F_a)/8 = (-1)^m k \in L_{4m}(\mathbb{Z}) = \mathbb{Z}$$

- ► The Brieskorn spheres Σ_a for $k = 1, 2, ..., \sigma_m/8$ represent the $\sigma_m/8$ bounded differentiable structures in $bP_{4m} = \mathbb{Z}_{\sigma_m/8}$.
- In particular, Σ_(2,2,2,3,5) is one of the original 1956 exotic 7-spheres of Milnor, generating bP₈ = ℤ₂₈.