MANIFOLDS AND DUALITY ANDREW RANICKI

- Classification of manifolds
- Uniqueness Problem
- Existence Problem
- Quadratic algebra
- Applications

Manifolds

• An <u>*n*-dimensional manifold</u> M^n is a topological space which is locally homeomorphic to \mathbb{R}^n .

- compact, oriented, connected.

• Classification of manifolds up to homeomorphism.

- For
$$n = 1$$
: circle

- For n = 2: sphere, torus, ..., handlebody.
- For $n \ge 3$: in general impossible.

The Uniqueness Problem

• Is every homotopy equivalence of *n*-dimensional manifolds

$$f : M^n \rightarrow N^n$$

homotopic to a homeomorphism?

- For n = 1, 2: Yes.

- For $n \ge 3$: in general No.

The Poincaré conjecture

• Every homotopy equivalence $f : M^3 \to S^3$ is homotopic to a homeomorphism.

- Stated in 1904 and still unsolved!

• Theorem

 $(n \ge 5$: Smale, 1960, n = 4: Freedman, 1983)

Every homotopy equivalence $f: M^n \to S^n$ is homotopic to a homeomorphism.

Old solution of the Uniqueness Problem

• Surgery theory works best for $n \ge 5$.

- From now on let $n \geq 5$.

• Theorem

(Browder, Novikov, Sullivan, Wall, 1970) A homotopy equivalence $f : M^n \rightarrow N^n$ is homotopic to a homeomorphism if and only if two obstructions vanish.

- The 2 obstructions of surgery theory:
 - 1. In the topological K-theory of vector bundles over N.
 - 2. In the <u>algebraic L-theory</u> of quadratic forms over the fundamental group ring $\mathbb{Z}[\pi_1(N)]$.

Traditional surgery theory

- Advantage:
 - Suitable for <u>computations</u>.
- Disadvantages:
 - Inaccessible.
 - A <u>complicated</u> mix of topology and algebra.
 - Passage from a homotopy equivalence to the obstructions is <u>indirect</u>.
 - Obstructions are <u>not independent</u>.

Wall's programme

- "The theory of quadratic structures on chain complexes should provide a simple and satisfactory algebraic version of the whole setup."
 - C.T.C.Wall, Surgery on compact manifolds, 1970
- Such a theory is now available.
 - Ranicki, Algebraic L-theory and topological manifolds, 1992

Siebenmann's theorem

• The kernel groups of a map $f: M \to N$ are the relative homology groups

$$K_r(x) = H_{r+1}(f^{-1}(x) \to \{x\}) \ (x \in N) \ .$$

• Exact sequence

$$\cdots \to K_r(x) \to H_r(f^{-1}(x)) \to H_r(\{x\})$$
$$\to K_{r-1}(x) \to \dots$$

- $K_*(x) = 0$ for a homeomorphism f.
- Theorem (Siebenmann, 1972) A homotopy equivalence $f: M^n \to N^n$ with

$$K_*(x) = 0 \ (x \in N)$$

is homotopic to a homeomorphism.

New solution of the Uniqueness Problem

- The total surgery obstruction s(f) of a homotopy equivalence $f: M^n \to N^n$ is the cobordism class of
 - the sheaf of $\mathbb Z\text{-module}$ chain complexes
 - with *n*-dimensional Poincaré duality

- over N

- with stalk homology $K_*(x)$ $(x \in N)$.
- Cobordism and Poincaré duality are algebraic.
- Theorem A homotopy equivalence f is homotopic to a homeomorphism if and only if s(f) = 0.

Poincaré duality

• Theorem (Poincaré, 1895) The homology and cohomology of a compact oriented *n*-dimensional manifold *M* are isomorphic:

 $H^{n-r}(M) \cong H_r(M) \ (r = 0, 1, 2, ...) .$

 Definition (Browder, 1962)
An <u>n-dimensional duality space</u> X is a space with isomorphisms:

 $H^{n-r}(X) \cong H_r(X) \ (r = 0, 1, 2, ...)$.

The Existence Problem

- Is an *n*-dimensional duality space X homotopy equivalent to an *n*-dimensional manifold?
 - For n = 1, 2: Yes.
 - For $n \ge 3$: in general No.

Old solution of the Existence Problem

• Theorem

(Browder, Novikov, Sullivan, Wall, 1970) An n-dimensional duality space X is homotopy equivalent to an n-dimensional manifold if and only if 2 obstructions vanish.

- The 2 obstructions (as for Uniqueness):
 - 1. In the topological K-theory of vector bundles over X.
 - 2. In the <u>algebraic L-theory</u> of quadratic forms over the fundamental group ring $\mathbb{Z}[\pi_1(X)].$
- Same (dis)advantages as for the old solution of the Uniqueness Problem.

The Theorem of Galewski and Stern

• The kernel groups $K_r(x)$ of an *n*-dimensional duality space X fit into the exact sequence

$$\cdots \to K_r(x) \to H^{n-r}(\{x\}) \to H_r(X, X \setminus \{x\})$$
$$\to K_{r-1}(x) \to \dots$$

- $K_*(x) = 0$ for a manifold.
- **Theorem** (Galewski and Stern, 1977) A polyhedral duality space X with

 $K_*(x) = 0 \ (x \in X)$ (a homology manifold) is homotopy equivalent to a manifold.

New solution of the Existence Problem

- The <u>total surgery obstruction</u> s(X) of and *n*-dimensional duality space X is the cobordism class of
 - the sheaf of $\mathbb Z\text{-}module$ chain complexes
 - with (n-1)-dimensional Poincaré duality
 - over X
 - with stalk homology $K_*(x)$ $(x \in X)$.
- Cobordism and Poincaré duality are algebraic.
- Theorem A duality space X is homotopy equivalent to a manifold if and only if s(X) = 0.

Quadratic algebra

- Chain complexes with the homological properties of manifolds and duality spaces.
- An <u>n-dimensional duality complex</u> is a chain complex

$$C_n \xrightarrow{d} C_{n-1} \xrightarrow{d} C_{n-2} \rightarrow \ldots \rightarrow C_0 \ (d^2 = 0)$$

with isomorphisms

$$H^{n-r}(C) \cong H_r(C) \ (r = 0, 1, 2, ...)$$

- generalized quadratic forms

• <u>cobordism</u> of duality complexes

Local and global duality complexes

X = connected space

• The global surgery group $L_n(\mathbb{Z}[\pi_1(X)])$ of Wall is the cobordism group of *n*-dimensional duality complexes of $\mathbb{Z}[\pi_1(X)]$ -modules.

- Generalized Witt groups.

- The local surgery group $H_n(X; \mathbb{L}(\mathbb{Z}))$ is the cobordism group of *n*-dimensional duality complexes of \mathbb{Z} -module sheaves over *X*.
 - Generalized homology with coefficients $L_*(\mathbb{Z})$.

The surgery exact sequence

• **Theorem** The local and global surgery groups are related by the exact sequence

$$\dots \to H_n(X; \mathbb{L}(\mathbb{Z})) \xrightarrow{A} L_n(\mathbb{Z}[\pi_1(X)])$$
$$\to \mathbb{S}_n(X) \to H_{n-1}(X; \mathbb{L}(\mathbb{Z})) \to \dots$$

- The assembly map A is the passage from local to global duality.
- The structure group $S_n(X)$ is the cobordism group of (n-1)-dimensional local duality complexes over X which are globally underlinetrivial.

The total surgery obstructions

• Uniqueness: the total surgery obstruction of a homotopy equivalence $f: M^n \to N^n$

$$s(f) \in \mathbb{S}_{n+1}(N)$$
.

- s(f) is the cobordism class of the *n*-dimensional globally trivial local duality complex with stalk homology the kernels $K_*(x)$ ($x \in N$).
- Existence: the total surgery obstruction of an *n*-dimensional duality space X

$$s(X) \in \mathbb{S}_n(X)$$

- s(X) is the cobordism class of the (n - 1)-dimensional globally trivial local duality complex with stalk homology the kernels $K_*(x)$ $(x \in X)$.

Topology and homotopy theory

 The difference between the <u>topology</u> of manifolds and the <u>homotopy theory</u> of duality spaces = the difference between the cobordism theories of the <u>local</u> and <u>global</u> duality complexes.

 <u>Converse of Poincaré duality</u>: A duality space with sufficient local duality is homotopy equivalent to a manifold.

The Novikov and Borel conjectures

• The Novikov conjecture on the homotopy invariance of the higher signatures is <u>algebraic</u>:

 $-A : H_*(B\pi; \mathbb{L}(\mathbb{Z})) \to L_*(\mathbb{Z}[\pi]) \text{ is ratio-}$ nally injective, for every group π .

• The Borel conjecture on the existence and uniqueness of aspherical manifolds is algebraic:

- $A : H_*(B\pi; \mathbb{L}(\mathbb{Z})) \to L_*(\mathbb{Z}[\pi])$ is an isomorphism if $B\pi$ is a duality space.

- The various solution methods can now be turned into <u>algebra</u>:
 - topology, geometry, analysis (C^* -algebra), index theorems, ...

Applications

• algebraic computations of the *L*-groups

number theory

• singular spaces

- algebraic varieties

• differential geometry

hyperbolic geometry

- non-compact manifolds
 - controlled topology
- 3- and 4-dimensional manifolds