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The algebraic theory of surgery

» “The chain complex theory offers many advantages . ..

a simple and satisfactory algebraic version of the whole setup.
| hope it can be made to work.”
C.T.C. Wall, Surgery on Compact Manifolds (1970)

» The chain complex theory developed in The algebraic theory
of surgery (R., 1980) expressed surgery obstruction of a
normal map (f, b) : M — X from an m-dimensional manifold
M to an m-dimensional geometric Poincaré complex X as the
cobordism class of a quadratic Poincaré complex (C, )

ou(f,b) = (C,¢) € Lin(Z[m(X)])
with C a f.g. free Z[m1(X)]-module chain complex such that
Hi(C) = Ki(M) = ker(f. : H.(M) — H.(X))

and ¢ : H*(C) = H—«(C) an algebraic Poincaré duality.
» Originally, it was necessary to make (f, b) highly-connected by
preliminary surgeries below the middle dimension.
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Advantages and a disadvantage

The algebraic theory of surgery did indeed offer the
advantages predicted by Wall in 1970.
However, the identification o.(f, b) = (C, 1) was not as nice
as could have been wished for!
The chain homotopy theoretic treatment of the Wall
self-intersection function counting double points

Z[m (M)]
{x = (=) x € m(M)}
was too indirect, making use of Wall's result that for n > 3
u(g) = 0 if and only if g is regular homotopic to an
embedding — proved by the Whitney trick for removing double
points.
Need to count double points of immersions using
m1(M) X Zp-equivariant homotopy theory, specifically an
equivariant version of the geometric Hopf invariant.

(g : S" % M?") €



Unstable vs. stable homotopy theory

The stabilization map

X, Y] = {X; Y} = lim[Z*X, Y] = [X,Q°L>Y]

k
is in general not an isomorphism!
Terminology: for any space X let X™ = X U {+} (disjoint
union) and X* = X U {oo} (one point compactification).
QXY /Y is filtered, with kth filtration quotient
Fk(Y) = EZ;{r /\zk (/k\ Y) .

The Thom space of a j-plane bundle R/ — E(v) — M is
T(v) = E(v)*®, and Fi(T(v)) = T(ex(v)) with
R* — E(ex(v)) = ESk x5, [[E(v) = EXic x5, [[M .
K

k
For an immersion f : M™ & N" with vf : M — BO(n — m)
and Umkehr map F : Z°NT — ¥°°T(vf) the adjoint
NT — QYT (vr) sends k-tuple points of f to Fi(T (vf)).



The Hopf invariant (1.)

> (Hopf, 1931) Isomorphism H : 73(S2) = Z via linking
numbers of St L ST« S3.

» (Freudenthal, 1937) Suspension map for pointed space X
E : ma(X) = w1 (EX); (F:S" — X) — (Xf : S"T1 = ¥X).

(E for Einhangung). If X is (m — 1)-connected then E is an
isomorphism for n < 2m — 2 and surjective for n = 2m — 1.

» (G.W.Whitehead, 1950) EHP exact sequence

E H P
= p(X) = 1 (EX) = (X A X) = mp_1(X) — - -

for any (m — 1)-connected space X, with n < 3m — 2.
» For X =5 n=2m

H = Hopf invariant : ﬂ2m+1(5’"+1) — Tom(S"AS™ =7 .
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The quadratic construction

Given an inner product space V let LV = V with Zy-action
T :LV—=LV; vi>—v
with restriction T : S(LV) — S(LV).
The quadratic construction on pointed space X is
Qv(X) = S(LV)* Az, (X A X)

with T: X A X — X A X;(x,y) — (y,x). The projection
Quv(X) = S(LV)T A (X AX) — Qu(X)

is a double cover away from the base point.

Qro(X) = {pt.}, Qri(X) = XA X.

Qr(S°) = S(LR¥)* /Zy = (RPK1)+.
For V = R write
QR(X) = Qre(X) = lim Qp«(X) .

—
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The Hopf invariant (11.)

» (James, 1955) Stable homotopy equivalence for connected X

o0
QrX ~; \/(XA--AX).
k=1

> (Snaith, 1974) Stable homotopy equivalence
QT®X ~; \/ ESf As, (X A= AX).
k=1

for connected X. Group completion for disconnected X.
» For k = 2 a stable homotopy projection

QPE®X - Q(X) = EXS As, (X AX).

However, until now it was only defined for connected X, and
was not natural in X.



The stable Z,-equivariant homotopy groups

Given pointed Zp-spaces X, Y let [X, Y]z, be the set of
Zo-equivariant homotopy classes of Zjy-equivariant maps
X =Y.
The stable Z,-equivariant homotopy group is
{X: Y}z, = lim[ZREX, 2R Y]y,
k

with

T @ kX = SKASKAX — ZREX; (s,t,x) = (t,5,x) ,

T ZRKYAY) = EY AY) S (sitoynye) = (t s, y2.0) -

Example By the Z,-equivariant Pontrjagin-Thom
isomorphism {S9; S%}7, = the cobordism group of
O-dimensional framed Z,-manifolds (= finite Zp-sets).

The decomposition of finite Zy-sets as fixed U free determines

0.0V ~ p_ pZe A2 7o, |D| = |D™]
(8% 5%, = 28Z; D = D™ U(D-D%) > (D7), =



The relative difference

» For any inner product space V there is a cofibration
SO ={0}" — v>® = v>/{0}" = ZS(V)T
with S(V) ={v € V||v|| =1} and
TS(V)F —Za VR/{0)F; (6 u) e [t 0] = %
» For maps p,q: V*° A X — Y such that p(0,x) = q(0,x) € Y
(x € X) define the relative difference map
5(p,q) : TS(V)TAX =Y ;
p([1 —2t,ul,x) ifO<t
q([2t — 1,u],x) if1l/2<
» The homotopy class of §(p, q) is the obstruction to the

existence of a rel 0°° A X homotopy p~q: VCAX — Y.
Barratt-Puppe sequence

= [ZS(V)TAX, Y] = [V AX,Y] = [X,Y]

<1/2
(t,u,x) — 1/
t <

1.
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Zy-equivariant stable homotopy theory
= fixed-point + fixed-point-free
» Theorem For any pointed spaces X, Y there is a split short
exact sequence of abelian groups

0— {X;QY)} (X YA Yl 2= {X;Y} -0

with an S-duality isomorphism

{X;Q()r=  lim  [ES(LV)FAVEAX, VEALVEA(YAY )]z,
V,dim(V)<oo

» pis given by the Zo-fixed points, split by
o {X; Y} = {X;YAY}z, F— AyF.
» The injection 1 + T is induced by projection S(LR>®)* — 0>
14T 0GQON}E = (GO}, — (X Y A Y,
split by
0 {XsYAY}z, = {X;Q(Y)}: G— 0(G,op(G)) .
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The geometric Hopf invariant h(F) (1.)

Let X, Y be pointed spaces. The geometric Hopf invariant
of a stable map F : X*°X — ¥°°Y is the stable map

h(F) = 6((F AF)Ax,AyF) : X — £®Q(Y) .

The injection 1+ T : {X; Q(Y)} — {X; Y A Y}z, sends the
stable homotopy class of h(F) to the stable Zy-equivariant
homotopy class of

(1+ T)h(F) = AyF—(FAF)Ax : X > YAY.

The stable homotopy class of h(F) is the primary obstruction
to the desuspension of F.

Good naturality properties: if 7 is a group, X, Y are m-spaces
and F is m-equivariant then h(F) is m-equivariant.



The geometric Hopf invariant h(F) (Il.)
Proposition The geometric Hopf invariant of
F:¥X®X - X>®Y
h(F) € ker(p : {X; Y ANY}z, = {X;Y})
= im1l+T:{X;QY)} —={X;YAY}z)

has the following properties:
(i) If Feim([X,Y]— {X;Y}) then h(F) =0.
(i) For Fi,Fp : T°X — XY

h(F1+ F2) = h(F1) + h(F2) + (FL A F2)Ax .
(iii) For F:X®X — XY, G : LY — ¥X>*Z
h(GF) = (G A G)h(F) + h(G)F .
(iv) If X =82 Y = 8m, F:§2m+ee _, §m+oo then

12

h(F) = mod 2 Hopf invariant (F) € {S*™; Q(S™)} = Z, .
(V) h:{X;Y} = {X;Q(Y)}; F— h(F) is the James-Hopf double

point map.
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The Main Theorem

» Theorem The quadratic Poincaré complex (C, ) of an
m-dimensional normal map (f,b) : M — X has

¥ = (e@e)(h(F)/m)[X]
€ Qm(C) = Hm(C(S(LR™)) @zjz,) (C @z C))
with m = m1(X), [X] € Hm(X) the fundamental class, and
h(F)/m = Hmn(X) = Hn(S(LR®) xz, (M x M))

the m-equivariant geometric Hopf invariant. Here
F:¥%®X* — Y°MT is the stable m-equivariant map
inducing the Umkehr f' : C(X) — CL/\~4) determined by
b:vpm — vx, and e = inclusion : C(M) — C = C(f").

» The m-dimensional quadratic Poincaré complex (C, ) has a
direct connection with double points of immersions
5" 9% M™, particularly for m = 2n.
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The difference of diagonals
For any space X the diagonal map
Ax : X = XAX; x— (x,x)

is Zy-equivariant.
For any inner product space V define the Zj,-equivariant
homeomorphism

Ry @ LV AV 5 VAV, (x,y)— (x+y,—x+y).
Given amap F: V® A X — V*® AY define the
noncommutative square of Zy-equivariant maps

1ANAx

LV AV AX LV AVEAXAX

IAF (k' AL)(F A F)(ky A1)

1ANAy
LV AVEAY ————— LV AVAYAY
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The unstable geometric Hopf invariant hy(F) (I.)

Definition The unstable geometric Hopf invariant of a
map F: V® AX — V*® AY is the Zy-equivariant relative
difference map

hv(F) = d(p,q) : ZS(LV)TAVEOAX — LVCAVPAYAY
of the Zy-equivariant maps
p = (LAAY)YAAF), g = (K, ANL)(FAF)(ky AAx) -
LV AVEAX - LVCAVEAYAY
with

p(0,v,x) = ¢q(0,v,x) = (0,w,y,y) (F(v,x)=(w,y)),
TS(LV)T = LV®/0™ = (LV\{0})™ .
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The unstable geometric Hopf invariant hy(F) (l11.)

Proposition The unstable geometric Hopf invariant
hy @ [VCAX,VXAY]—
{ES(LV)T AV AX LV AV AY AY}z, =4{X;Qu(Y)}

has the following properties:
(i) If F €im([X, Y] — [V A X, V= A Y]) then hy(F) = 0.
(i) For Fi,F: VS AX > VOAY

hv(Fi + F) = hv(F)+ hv(F) + (FL A F2)Ax .
(iii) For F: VAX S5 VRAY, G:VXAY 5 VOAZ
hv(GF) = (G A G)hy(F)+ hy(G)F .
(iv) h(F) = lim hyepe(E4F) for F: Vo AX — VoA Y.

—
k

(V) If V=R, X =82 Y =8m F:Sm+l _, Gm+l thep
hg(F) = Hopf invariant (F) € {S*™; Qz(S™)} =Z (m > 0) .
For m=0 hg(F)=d(d —1)/2 € Z, d = deg(F : S* — S').



The unstable geometric Hopf invariant hy(F) (l11.)

» The Zjy-equivariant cofibration sequence
S(LV)T — {0}t — Lv™
induces the Barratt-Puppe exact sequence
= {XQu(Y)} =X S(LV) T Az, (Y A YY)z,
—{X;YAY}z, = {X;LVCAYAY}z, — ...
» Forany F: VX AX - VXAY
AyF —(FAF)Ax = [hv(F)]
e im({X; Qu(Y)} = {X; Y AY}z,)
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= ker({X; YAY}z, = {X;LVCAY AY}z,) .
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The universal example of a k-stable map

For any pointed space X evaluation defines a k-stable map
e @ TKQFERX) = XEX ; (5,w) — w(s)
with adj(e) = 1: Q¥T*X — QKTkX. The unstable geometric
Hopf invariant of e defines a stable map
hgi(e) + QFIRX — Qre(X) = S(LRF)T Az, (X A X)
which is a stable splitting of the Dyer-Lashof map
Qre(X) — QFXFX .

For any k-stable map F : XY — ¥¥X the stable homotopy
class of the composite

ha(F) ¥ ) sy 200 )

is the primary obstruction to a k-fold desuspension of F, i.e.
to the compression of adj(F) into X C QkTkX.
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Double points

» The ordered double point set of a map f : M — N is the
free Zo-set

Da(f) = {(x,y)[x#y €M, f(x)=f(y) = N}

with

T : Dy(f) — Da(f) ; (x,y) — (y,x) .
» The unordered double point set is

Dy(f) = Daff)/Z2 .

» f is an embedding if and only if Do(f) = 0.



20

The Umkehr map of an immersion (1.)

> Let f: M™ 9 N" be a generic immersion of closed manifolds
with normal bundle vf : M — BO(m — n). By the tubular
neighbourhood theorem f extends to a codimension 0
immersion f': E(v¢) & N. For V = R¥ with k >2m —n+1
there exists a map e : V x E(vf) — V such that
g = (e,f") : VXE(v)— VxN;
(v, x) = (e(v, x), f'(x))

is an open codimension 0 embedding.
» The Umkehr map of f is the stable map

Fo(Vx N)® = VAN = (Vx E(ur))® = V© A T(v) ;

W N (V7X) if(W,y):g(V,X)
(w.y) {oo if (w,y) & im(g) .
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The Umkehr map of an immersion (I1.)
> Let
G : VEAVEANT = V®AVEAT(vr x velBy))

be the Umkehr map of the Zj-equivariant codimension 0
embedding

gxg\:V><V><E(fo1/f|52(f))f—>VXV><N.
G represents an element
G € {N"; T(vr x vrlg, )tz = {NT; T(vr % ve|pyr))} -

» The map

H : Dz(f) — S(L\/) X7, ( )
e - e(0or)
(9 = (e = e

induces a map of Thom spaces

H: T(vexve|p,ry) — T(S(LV)xz,(E(ve)xE(vf))) = Qu(T(

vf)) .
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Capturing double points with homotopy theory

» Theorem The unstable geometric Hopf invariant of the
Umkehr map F : VANt — V> A T(vf) of an immersion
f: M™q- N" factors through the double point set D»(f)

hv(F) = HG € {N*; Qu(T(vf))}

with
. n+ G _H,
hy(F) : N*—== T(vr X vflpyr)) Qu(T(vf)) -

» There is also a 71 (M)-equivariant version!

» Corollary If f : M & N is regular homotopic to an embedding
fo : M — N with Umkehr map Fo : NT — T(vf) then F is
stably homotopic to Fy, and hy/(F) is stably null-homotopic.

» The geometric Hopf invariant is the primary homotopy
theoretic method of capturing Dy(f).



23

Manifolds are hot!

New ‘98 Model, with More Recipes per Galfon

The One! The Only!
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