THE QUADRATIC FORM E₈ AND EXOTIC HOMOLOGY MANIFOLDS

Washington Mio (Tallahassee) Andrew Ranicki (Edinburgh)

 The Bryant-Mio-Ferry-Weinberger construction of 2n-dimensional exotic homology manifolds for 2n ≥ 6 with Quinn index 9 starts with

$$E_8 \times T^{2n} \neq 0 \in L_{2n}(\mathbb{Z}[\mathbb{Z}^{2n}])$$

and proceeds by controlled Wall realization.

• Edwards challenge: find an <u>explicit</u> $(-)^n$ -quadratic form over $\mathbb{Z}[\mathbb{Z}^{2n}]$ realizing the non-zero element $E_8 \times T^{2n}$.

The surgery obstruction groups

 Wall (1970) defined the surgery obstruction groups L_m(Λ) of a ring with involution Λ, with

$$L_m(\Lambda) = L_{m+4}(\Lambda)$$
.

• The surgery obstruction of an *m*-dimensional normal map $(f, b) : M \to X$ is an element

$$\sigma_*(f,b) \in L_m(\mathbb{Z}[\pi_1(X)])$$

with $\sigma_*(f,b) = 0$ if (and for $m \ge 5$ only if) (f,b) is normal bordant to a homotopy equivalence.

$L_{2n}(\Lambda)$

• $L_{2n}(\Lambda)$ = the Witt group of nonsingular (-)ⁿ-quadratic forms (K, λ, μ) over Λ , with K a f.g. free Λ -module,

 $\lambda = (-)^n \lambda^* : K \to K^* = \operatorname{Hom}_{\Lambda}(K, \Lambda)$ and μ a $(-)^n$ -quadratic refinement of λ .

• For *n*-connected $(f, b) : M^{2n} \to X$

 $\sigma_*(f,b) = (K_n(M), \lambda, \mu) \in L_{2n}(\mathbb{Z}[\pi_1(X)])$ with $K_n(M) = \ker(\widetilde{f}_* : H_n(\widetilde{M}) \to H_n(\widetilde{X}))$ the kernel (stably) f.g. free $\mathbb{Z}[\pi_1(X)]$ -module.

- For a finitely presented group π every form (K, λ, μ) over $\mathbb{Z}[\pi]$ is realized as $\sigma_*(f, b)$ for some $(f, b) : M^{2n} \to X$ with $\pi_1(X) = \pi$.
- If π has no 2-torsion and n is even, then λ determines μ .

• Nonsingular quadratic form (\mathbb{Z}^8, E_8) over \mathbb{Z}

$$E_8 = \begin{pmatrix} 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

Positive definite, rank = signature = 8.

• For $m \ge 2 E_8$ is realized in the PL category as the surgery obstruction

 $\sigma_*(f_0, b_0) = (\mathbb{Z}^8, E_8) = 1 \in L_{4m}(\mathbb{Z}) = \mathbb{Z}$

of 2m-connected 4m-dimensional normal map

$$(f_0, b_0) : M_0^{4m} \to S^{4m}$$

with M_0 the Milnor E_8 -plumbing of 8 $\tau_{S^{2m}}$'s.

$$\mathbf{E}_8 \times \mathbf{T}^{2n}$$

• $E_8 \times T^{2n}$ is the surgery obstruction of the 2m-connected (4m + 2n)-dimensional normal map

 $(g,c) = (f_0,b_0) \times 1 : M_0^{4m} \times T^{2n} \to S^{4m} \times T^{2n} .$ $E_8 \times T^{2n} = \sigma_*(g,c) = (0,\ldots,0,1) \neq 0$ $\in L_{4m+2n}(\mathbb{Z}[\mathbb{Z}^{2n}]) = L_{2n}(\mathbb{Z}[\mathbb{Z}^{2n}]) =$ $L_{2n}(\mathbb{Z}) \oplus \cdots \oplus {\binom{2n}{k}} L_{2n-k}(\mathbb{Z}) \oplus \cdots \oplus L_0(\mathbb{Z}).$

- $E_8 \times T^{2n}$ is represented by the kernel $(-)^n$ quadratic form $(K_{2m+n}(M_1), \lambda, \mu)$ of any bordant (2m+n)-connected normal map $(g_1, c_1) : M_1^{4m+2n} \to S^{4m} \times T^{2n}$.
- In order to find an explicit form (K, λ, μ) for $E_8 \times T^{2n}$ need to work out $(K_{2m+n}(M_1), \lambda, \mu)$ by <u>algebraic</u> surgery below the middle dimension.

The algebraic theory of surgery

• <u>Theorem</u> (R., 1980) $L_m(\Lambda)$ is isomorphic to the cobordism group of *m*-dimensional quadratic Poincaré complexes over Λ . The surgery obstruction of $(f, b) : M^m \to X$ is the cobordism class

 $\sigma_*(f,b) = (C,\psi) \in L_m(\mathbb{Z}[\pi_1(X)])$

of an *m*-dimensional quadratic Poincaré complex (C, ψ) .

- $C = \mathcal{C}(f^! : C(\widetilde{X}) \to C(\widetilde{M}))$ with $f^! : C(\widetilde{X}) \simeq C(\widetilde{X})^{m-*} \xrightarrow{f^*} C(\widetilde{M})^{m-*} \simeq C(\widetilde{M})$
- \widetilde{X} = universal cover of X, $\widetilde{M} = f^*\widetilde{X}$
- $H_*(C) = K_*(M) = \ker(f_* : H_*(\widetilde{M}) \to H_*(\widetilde{X}))$
- $(1+T)\psi_0: C^{m-*} = \operatorname{Hom}_{\Lambda}(C,\Lambda) \xrightarrow{\simeq} C.$

The instant surgery obstruction

• <u>Corollary</u> The surgery obstruction of a 2ndimensional normal map $(f,b) : M \to X$ is given by

$$\sigma_*(f,b) = (K,\lambda,\mu) \in L_{2n}(\mathbb{Z}[\pi_1(X)])$$

with

$$K = \operatorname{coker}\left(\begin{pmatrix} d^* & 0\\ (-)^{n+1}(1+T)\psi_0 & d \end{pmatrix} \right) :$$
$$C^{n-1} \oplus C_{n+2} \to C^n \oplus C_{n+1} \end{pmatrix}$$
$$\lambda = \begin{pmatrix} (1+T)\psi_0 & d\\ (-)^n d^* & 0 \end{pmatrix}, \mu = \begin{pmatrix} \psi_0 & d\\ 0 & 0 \end{pmatrix}$$

the $(-)^n$ -quadratic form determined by (C, ψ) .

- If (f, b) is *n*-connected the usual Wall kernel form (λ, μ) on $K = K_n(M)$.
- In general, (f, b) is not *n*-connected.

Almost $(-)^n$ symmetric forms

- Clauwens.
- An almost $(-)^n$ -symmetric form (A, α) over a ring with involution Λ is a f.g. free Λ module A together with a nonsingular sesquilinear pairing $\alpha : A \to A^*$ such that $1 + (-)^{n+1} \alpha^{-1} \alpha^* : A \to A$ is nilpotent.
- A 2n-dimensional manifold N with a Poincaré duality cellular chain isomorphism on the universal cover \widetilde{N}

$$\phi_0 = [N] \cap - : C(\widetilde{N})^{2n-*} \cong C(\widetilde{N})$$

has an almost $(-)^n$ -symmetric form over $\mathbb{Z}[\pi_1(N)]$

$$(C^n(\widetilde{N}), \alpha = \phi_0 + d\phi_1)$$

with $\phi_1 : \phi_0 \simeq \phi_0^*$ a chain homotopy and $d : C_{n+1}(\widetilde{N}) \to C_n(\widetilde{N})$ the differential.

Quadratic \otimes almost symmetric

• In a $(-)^m$ -quadratic form (K, λ, μ) over Λ the $(-)^m$ -quadratic function μ corresponds to an equivalence class of Λ -module morphisms $\psi : K \to K^*$ such that

$$\lambda = \psi + (-)^m \psi^* : K \to K^*$$

with $\psi \sim \psi'$ if $\psi' = \psi + \chi + (-)^{m+1} \chi^*$.

• The <u>product</u> of (K, λ, μ) and an almost $(-)^{n}$ symmetric form (A, α) over Λ' is the $(-)^{m+n}$ quadratic form over $\Lambda \otimes_{\mathbb{Z}} \Lambda'$

$$(K, \lambda, \mu) \otimes (A, \alpha) = (K \otimes_{\mathbb{Z}} A, \lambda', \mu')$$
$$\lambda' = \psi' + (-)^{m+n} \psi'^*, \ \psi' = \psi \otimes \alpha.$$

• Product of Witt groups

 $L_{2m}(\Lambda) \otimes AL^{2n}(\Lambda') \to L_{2m+2n}(\Lambda \otimes \Lambda')$ with $AL^{2n}(\Lambda')$ the Witt group of almost $(-)^n$ -symmetric forms over Λ' .

The surgery product formula

 <u>Theorem</u> (R., Clauwens, 1979)
The surgery obstruction of a product normal map

 $(g,c) = (f,b) \times 1 : M^{2m} \times N^{2n} \to X \times N$

is the product

$$\sigma_*(g,c) = \sigma_*(f,b) \otimes_{\mathbb{Z}} (C_n(N),\alpha)$$

$$\in L_{2m+2n}(\mathbb{Z}[\pi_1(X) \times \pi_1(N)])$$

of surgery obstruction $\sigma_*(f, b) \in L_{2m}(\mathbb{Z}[\pi_1(X)])$ and the almost $(-)^n$ -symmetric Witt class

$$(C_n(\widetilde{N}), \alpha) \in AL^{2n}(\mathbb{Z}[\pi_1(N)])$$
.

• <u>Proof</u> The instant surgery obstruction of (g,c) is cobordant to the product $(K,\lambda,\mu)\otimes$ $(C_n(\widetilde{N}),\alpha)$, with (K,λ,μ) the instant surgery obstruction of (f,b).

The almost $(-)^n$ -symmetric form of T^{2n}

- The standard CW structure on T^m has $C(\tilde{T}^m)^{m-*} \cong C(\tilde{T}^m)$, $C_n(\tilde{T}^m) = \binom{m}{n} \mathbb{Z}[\mathbb{Z}^m]$ with $\mathbb{Z}[\pi_1(T^m)] = \mathbb{Z}[\mathbb{Z}^m] = \mathbb{Z}[t_1, t_1^{-1}, \dots, t_m, t_m^{-1}].$
- For m = 2n the almost $(-)^n$ -symmetric form $(C_n(\tilde{T}^{2n}), \alpha)$ has rank $\binom{2n}{n}$, so that $E_8 \times T^{2n}$ is represented by a form of rank $8\binom{2n}{n}$. For n = 1

$$\alpha = \begin{pmatrix} 1 - t_1 & 1 \\ t_1 t_2 - t_1 - t_2 & 1 - t_2 \end{pmatrix}$$

• The rank $\binom{2n}{n}$ almost $(-1)^n$ -symmetric form of T^{2n} is a lot of work to write down for n > 1. Luckily $T^{2n} = T^2 \times \cdots \times T^2$ determines the Witt-equivalent form $\bigotimes_{i=1}^{n} \alpha_i$ of i=1rank 2^n , with α_i the rank 2 form of ith T^2 .

An explicit form for $E_8 \times T^{2n}$

• Theorem The surgery obstruction

$$E_8 \times T^{2n} \in L_{2n}(\mathbb{Z}[\mathbb{Z}^{2n}])$$

is represented by the $(-)^n$ -quadratic form of rank 2^{n+3}

$$(\mathbb{Z}^8, E_8) \otimes (\mathbb{Z}[\mathbb{Z}^{2n}]^{2^n}, \bigotimes_{i=1}^n \alpha_i)$$

over

$$\mathbb{Z}[\mathbb{Z}^{2n}] = \mathbb{Z}[t_1, t_1^{-1}, \dots, t_{2n}, t_{2n}^{-1}] \\ = \bigotimes_{i=1}^n \mathbb{Z}[t_{2i-1}, t_{2i-1}^{-1}, t_{2i}, t_{2i}^{-1}]$$

with

$$\alpha_i = \begin{pmatrix} 1 - t_{2i-1} & 1 \\ t_{2i-1}t_{2i} - t_{2i-1} - t_{2i} & 1 - t_{2i} \end{pmatrix}$$

the almost (-1)-symmetric form of the *i*th T^2 in $T^{2n} = T^2 \times T^2 \times \cdots \times T^2$.

12

9076024 IHES ue hall be dealing with net a U. Taud a dishinguished 24-dimensional manifeld dans dividing "I in the following rense. There is a proper function 2: U -> IR such that hV canhained in the image of the inclusion home rand hence For Hgh (P⁻¹[4,6]) -+ H (U) for each) how - emply segment [m,6], p - 0 = a = 8 = + 0. Given meh an h and a U(p, g) - flat hundle ever W, we define the cup - pairing of H²ⁿ (W:X) an he and lende it by 6(h;X). (in the obvious way) Localization Let U CU be an

DE

A commission

• The nonsingular (-1)-quadratic form of the torus T^2 over $\mathbb{Z}[1/2][\mathbb{Z}^2] = \mathbb{Z}[1/2][t_1, t_1^{-1}, t_2, t_2^{-1}]$

$$\begin{aligned} \frac{\alpha - \alpha^*}{2} &= \\ \begin{pmatrix} \frac{t_1^{-1} - t_1}{2} & \frac{1 - t_1^{-1} t_2^{-1} + t_1^{-1} + t_2^{-1}}{2} \\ \frac{-1 + t_1 t_2 - t_1 - t_2}{2} & \frac{t_2^{-1} - t_2}{2} \end{pmatrix} \end{aligned}$$

was commissioned by Gromov in 1995.

The algebraic cobordism relation is stronger than the geometric one as it includes homotopy equivalences and so the group $HBrd_{*}B\Pi$ happily maps into Witt_{*}. (See [Miš], [Kas], [Ran]_{ALT}, [Ran]_{LKLT} and [Ran]_{NC} for details and further references).

Example. Let $\Pi = \mathbb{Z} \oplus \mathbb{Z}$ where $\mathbb{Q}(\Pi)$ equals the Laurent polynomial ring in the variables $t_i^{\pm 1}$, i = 1, 2. Then the (symplectic) form over $\mathbb{Q}(\Pi)$ corresponding to the 2-torus, (i.e. the Poincaré complex of this torus) can be given by the following invertible matrix A

$$A = \begin{pmatrix} ((t_2)^{-1} - t_2)/2 & (1 + (t_1)^{-1} - t_2 + (t_1)^{-1}t_2)/2 \\ (-1 - t_1 + (t_2)^{-1} - t_1(t_2)^{-1})/2 & ((t_1)^{-1} - t_1)/2 \end{pmatrix}$$

kindly communicated to me by Andrew Ranicki. It is not at all obvious that the class of A does not vanish in Witt₂ Q(II); but it is known to be non-zero even in $\mathbb{C}(\Pi) \supset \mathbb{Q}(\Pi)$ and in the C^* -algebra $C^*(\Pi) \supset \mathbb{C}(\Pi)$ as follows, for example, from Lusztig's theorem (see $8\frac{5}{8}$).

from p.120 of

M. Gromov, Positive Curvature, Macroscopic Dimension, Spectral Gaps, and Higher Signatures, in Functional Analysis on the Eve of the 21st Century, Vol. 2, Birkhaüser, 1995, 1–213.