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e [ he Bryant-Mio-Ferry-Weinberger construc-
tion of 2n-dimensional exotic homology man-
ifolds for 2n > 6 with Quinn index 9 starts
with

Eg X T?" # 0 € Lo, (Z[Z°™])

and proceeds by controlled Wall realiza-
tion.

e Edwards challenge: find an explicit
(—)"-quadratic form over Z[Z2"]
realizing the non-zero element Eg x T2".
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The surgery obstruction groups

e Wall (1970) defined the surgery obstruc-
tion groups L, (A) of a ring with involution
N\, with

Li(N) = Lm—|—4(/\)~

e T he surgery obstruction of an m-dimensional
normal map (f,b) : M — X is an element

ox(f,b) € Lm(Z[m1(X)])

with ox(f,b) = 0 if (and for m > 5 only
if) (f,b) is normal bordant to a homotopy
equivalence.



I—2n(/\)

L>,(N) = the Witt group of nonsingular
(—)"-quadratic forms (K, X\, n) over A, with
K a f.g. free A-module,

A= (=)"\*: K — K* = Homp(K, )
and pu a (—)™-quadratic refinement of \.

For n-connected (f,b) : M2" — X

ox(f,b) = (Kn(M), A, p) € Lop(Z[m1(X)])
with Kn,(M) = ker(fx : Hpo(M) — Hp(X))
the kernel (stably) f.g. free Z[xr1(X)]-module.

For a finitely presented group m every form
(K, \, n) over Z[x] is realized as o«(f,b) for
some (f,b) : M?"™ — X with 71(X) = 7.

If # has no 2-torsion and n is even, then A\
determines u.



Es

e Nonsingular quadratic form (Z8, Eg) over Z

(2 0010 0 0 0)
02100000
01210000
E.—|10121000
8~ looo0o12100
00001210
00000121
\00000012)

Positive definite, rank = signature = 8.

e Form > 2 Eg is realized in the PL category
as the surgery obstruction

o+ (fo,b0) = (Z°,Eg) =1 € Lay(Z) = Z
of 2m-connected 4m-dimensional normal map
(fo,bo) : ME™ — S*™
with Mg the Milnor Eg-plumbing of 8 7¢om'S.
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EgxT2"

Eg x T?" is the surgery obstruction of the
2m-connected (4m + 2n)-dimensional nor-
mal map

(9,¢) = (fo,bo)x1 : MG™XT?" — S4MxT2" .

Eg X T?" = g4(g,¢) = (0,...,0,1) # 0
€ Lam42n(ZIZ2M) = Lon(Z[Z27]) =
Lon(Z) & -+ & (5) Lon—k(Z) & - & Lo(Z).

Eg x T2" is represented by the kernel (—)"-
quadratic form (Kpp,4,(M1), A, 1) of any
bordant (2m + n)-connected normal map
(gl,cl) : Milm—I—Qn — S4m x T2,

In order to find an explicit form (K, A\, u) for
EgxT?" need to work out (Ko, 4n(M1), A, 1)
by algebraic surgery below the middle
dimension.




T he algebraic theory of surgery

e Theorem (R., 1980) Ly, (A) is isomorphic
to the cobordism group of m-dimensional
quadratic Poincaré complexes over A. The
surgery obstruction of (f,b) : M™ — X is
the cobordism class

ox(f,b) = (C,v) € Lm(Z[m1(X)])
of an m-dimensional quadratic Poincaré com-
plex (C, ).

e C=C(f':C(X)— C(M)) with

ooX) ~ o)™ L o™ ~ (M)

—_—

e X = universal cover of X, M = f*X

o H.(C) = Ki(M) = ker(fx : Hi(M) — Hi(X))

o (14 T)g: C™* = Homu(C,A) = C.
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The instant surgery obstruction

Corollary The surgery obstruction of a 2n-
dimensional normal map (f,b) : M — X is
given by

ox(f,0) = (K, A\ p) € Lop(Z[r1(X)])
with

d* 0\
o= COKe“((—)nH(l + T)o d> -

C" 1@ Cprio—C"®Chyq)

(A +T)yYyg d __ (Yo d
r= (Gt 8)m=(% o)

the (—)"™-quadratic form determined by (C,v).

If (f,b) is n-connected the usual Wall kernel
form (\,n) on K = K,(M).

In general, (f,b) is not n-connected.



Almost (—)" symmetric forms
e Clauwens.

e An almost (—)"symmetric form (A, a) over
a ring with involution A is a f.g. free A-
module A together with a nonsingular sesquilin-
ear pairing o : A — A* such that
1+ (=)"Tla—1la*: A — A is nilpotent.

e A 2n-dimensional manifold N with a Poincaré
duality cellular chain isomorphism on the
universal cover N

do = [N]N—: C(N)*"* 2 O(N)

has an almost (—)"-symmetric form over
Z[m1(N)]

(C™(N), e = ¢g + do1)

with ¢1 @ ¢g =~ gbéi chain homotopy and
d:Cht1(N) — Cn(N) the differential.
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Quadratic ® almost symmetric

In a (—)™-quadratic form (K, \, u) over A
the (—)™-quadratic function p corresponds
to an equivalence class of A-module mor-
phisms ¢ : K — K* such that

A=v+ (—)™p* K — K*
with o ~ o’ if o = + x + ()T 1y

The product of (K, A\, 1) and an almost (—)"-
symmetric form (A, a) over A is the (=)™ tn-
quadratic form over A @7z N

(K A 1) @ (A, a) = (K @7 AN, 1)
)\/ — wl _I_ (_)m—l—nwl* ’ w/ — ,¢ R a.

Product of Witt groups

Lom(N) @ AL?"(N') — Lopyon(A®N)

with AL2"(A") the Witt group of almost
(—)"-symmetric forms over A.



The surgery product formula

e Theorem (R., Clauwens, 1979)
The surgery obstruction of a product nor-
mal map

(g,0) = (f,b) x 1: M2 x N°* — X x N
IS the product

0’*(9, C) — J*(f) b) ®Z (Cn(ﬁ)7 Oé)

€ Lopmion(Zr1(X) X m1(N)])
of surgery obstruction o«(f,b) € Lo, (Z]71(X)])
and the almost (—)"-symmetric Witt class

(Cn(N),@) € AL*™(Z[r1(N)]) -

e Proof The instant surgery obstruction of
(g, c) is cobordant to the product (K, \, u)®
(Cn(N), a), with (K, A\, u) the instant surgery
obstruction of (f,b).
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The almost (—)"symmetric form of T2"

e [ he standard CW structure on T" has
C(Im™™* =2 o(T™) , Cu(T™) = () Z[Z™]
n

with Z[r1(T™)] = Z[Z™] = Z[t1,t71, ... tm, t1].

e For m = 2n the almost (—)"-symmetric
form (Cn(T2™),a) has rank (an) so that

Ee x T?" is represented by a form of rank
852”) For n =1

n
1 —1 1
o =
t1ito —t1 —to 1 —1to

e Therank (an) almost (—1)"-symmetric form

of T2" is a lot of work to write down for
n> 1. Luckily T2" = T2 x ... x T% deter-

mines the Witt-equivalent form ® «; of
i=1

rank 27, with a; the rank 2 form of ith T2.
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An explicit form for Egx T2

e [heorem The surgery obstruction

Eg X T?™ € Lo, (Z[Z°™])

is represented by the (—)"™-quadratic form
of rank 213

(8, Eg) ® (Z[Z*"?", & o)

=1
over

—1 —1
Z[ZQ%] :Z[tlatl ,...,th,th]

n —1 —1

= ® ZLltoj—1,t5,"1,t2i,t5.]

=1

with
1 —t2-1 1
o; =
toj—1to; —toi—1 —l2; 1 —to;
the almost (—1)-symmetric form of the ith

T2 in T2 =T2x T2 x...x T2
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A commission

e The nonsingular (—1)-quadratic form of the
torus T2 over Z[1/2][Z%] = Z[1/2][t1, 7 *, to, t5 ']

a—ao*
— =
( 71—ty 1— 75 a7 465t
2 2
—14t1to —t1 — to t;l—tz
2 2 )

was commissioned by Gromov in 1995.
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The algebraic cobordism relation is stronger than the geometric one as it
includes homotopy equivalences and so the group HBrd, BII happily maps into
Witt,. (See [Mis], [Kas], [Ran]arT, [Ran]krr and [Ran]nc for details and
further references).

Ezample. Let I1 = Z & Z where Q(II) equals the Laurent polynomial
ring in the variables t,-il i = 1,2. Then the (symplectic) form over Q(II)
corresponding to the 2-torus, (i.e. the Poincaré complex of this torus) can be
given by the following invertible matrix A

A= ( ((t2)~! —t2)/2 1+ t) =t + (tl)"ltz)/Z)
TRl =t (B2) 7 = ta(t2) ") /2 ((t2)~? = t1)/2

kindly communicated to me by Andrew Ranicki. It is not at all obvious that
the class of A does not vanish in Witt; Q(IT); but it is known to be non-zero
even in C(IT) O Q(II) and in the C*-algebra C*(II) D C(II) as follows, for
example, from Lusztig’s theorem (see 8%).

from p.120 of

M. Gromov, Positive Curvature, Macroscopic Dimension, Spectral Gaps, and Higher
Signatures, in Functional Analysis on the Eve of the 21st Century, Vol. 2, Birkhaiiser,
1995, 1-213.



