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e Geometric transversality = cutting and
pasting manifolds.

e Algebraic transversality = cutting and
pasting algebraic Poincaré complexes.

e Success/failure of geometric transversality
for homotopy equivalences of manifolds =
success/failure of algebraic transversality.

e Codimension 1 transversality is the key to
everything!



Geometric transversality

Let (X,Y C X) be a codimension k pair of
spaces, meaning that Y has a k-dimensional
bundle neighbourhood E in X

X = FEUZ.

E = k-plane vector bundle Y — BO(k) or
TOP analogue, with zero section Y C F.

Transversality Theorem (Sard, Thom, 1952)
Every map from an n-dimensional manifold
f:M" — X is homotopic to a map which
IS transverse at Y C X, with

a codimension k submanifold.

Extreme example: X = simplicial complex,
Y = dual cell D(o,X) of k-simplex o € X.
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Codimension k splitting

A homotopy equivalence f: M™ — X splits
along Y C X if it is homotopic to one with

fl =9 Nvh=f1y)->Y,
fl © M\N = f~1(X\Y) - X\Y
homotopy equivalences.

For n — k > 5 splitting obstruction sy (f)
entirely in algebraic K- and L-theory, which
keep track of changesin N C M by ambient
surgeries (= handle exchanges).

(Browder-Casson-Sullivan 1969) For k > 3
splitting obstruction = surgery obstruction

sy(f) = ox(g9) € Ly_p(Z[r1(Y)]) .

(Cappell-Shaneson 1974) For £k = 1,2 ho-
mology splitting obstructions = knot and
link cobordism invariants.



Codimension 1 splitting in manifold
topology

Splitting along codimension 1 submanifolds
N1 < M™ and Bass-Heller-Swan computa-
tion Wh(Z"™) = 0 essential for all topological
applications using torus T, including :

e Novikov’s proof of topological invariance of
the rational Pontrjagin classes (1966)

e Kirby-Siebenmann structure theory of high
dimensional topological manifolds (1969)

e Chapman's proof of topological invariance
of Whitehead torsion (1974)

e bounded and controlled topology (1978—)
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Quadratic complexes

Quadratic structure group of chain com-
plex C' in additive chain duality category

Y € Qn(C) = Hp(Zy; Hom(C*,C)) .

An element i € Qn(C) represented by s :
C" — Cp_r_s (s >0) such that up to signs

d¢s+¢sd*+¢s—l—l+wz—|—1 =0:C" = Cy_p_s5-1-

An n-dimensional quadratic complex (C, )
is a pair (C,v € Qn(C)). The complex
is Poincaré if the chain map (1 4+ T)vg :
C"™* — (C is a chain equivalence — alge-
braic mimicry of manifold duality.

Quadratic Poincaré pair (C — D, (0vy,1))
with P.-Lefschetz (D/C)*T1=* ~ D — alge-
braic mimicry of manifold with boundary.
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T he philosophy of algebraic transversality

e Regard quadratic Poincaré complexes as
geometric objects in their own right, as al-
gebraic analogues of manifolds.

e Investigate cut and paste properties of
quadratic Poincaré complexes.

e Apply this algebra to the topology of man-
ifolds.

e Algebraic transversality applies in various
contexts: over a single ring with involution
A, a commutative square, amalgamated
free products and HN N extensions, a space
X, bounded/controlled algebra, ...



Codimension 1 transversality

e Let (X,Y C X) be a codimension 1 pair
X = (Y xRuUZ.

e A generalized homology theory h is a
homotopy invariant functor with a
Mayer-Vietoris exact sequence

s hn(Y) = hn(Z) — hn(X) S by (V) — ...

with 0 sending an n-dimensional h-cycle x
in X to (n — 1)-dimensional cycle y in Y
obtained by h-transversality, splitting x
along Y C X.

e A homotopy invariant functor is a gener-
alized homology theory if and only if it
has codimension 1 transversality, i.e. if
and only if it has Mayer-Vietoris exact se-
quences.



Codimension 1 algebraic transversality
over A

e The algebraic glueing of (n4+1)-dimensional
quadratic Poincaré pairs b = (C — D, (6, 1)),
b = (C — D/, (6¢',7)) is (n+1)-dimensional
quadratic Poincaré complex

bU—b = (DUcg D', Uy —6v') .

e Theorem (R., 1980) For any (n4+1)-dimensional
quadratic Poincaré complex (£, 0) and chain
map f : D — E there exist b, with D' =
C(Ff)"*T1—* and homotopy equivalence

bub ~ (E.Q) .

e T his is the algebraic key to the controlled
splitting theorem of Yamasaki (1987)



Codimension 1 algebraic transversality
over ¢

e Given a commutative square of rings &
A — B

| |

C — D
want Mayer-Vietoris exact sequences

— in algebraic K-theory
- — Kn(A) — Kn(B) ® Kn(C)

o)
— Kn(D) — Kp_1(A) — ...
— in algebraic L-theory
T Ln(A) - Ln(B) > Ln(c)
—Ly(D) S L, _1(A) — ...
e [ he Mayer-Vietoris exact sequences of carte-

Sian and arithmetic squares obtained in 1970’s
early instances of algebraic transversality.
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Algebraic K-theory transversality over
Alz, z71]

e Higman (1940) trick for stabilizing matri-
ces over Z[z, 2~ 1] to get linear entries only.

e Theorem (Bass-Heller-Swan ¢ = 0, 1964,
Bass i1 < —1, 1969, Quillen 1 > 2, 1972)

Ki(Alz, 27 1]) = K;(A)@K;_1(A)@Nil;(A)®Nil;(A)

e Jump from K4 to K corresponds to the
use of noncompact manifolds in understand-
ing the topology of compact manifolds.

e Every finite f.g. free A[z, z—1]-module chain
complex C has algebraic fundamental do-
main D C C, a finite f.g. free A-module
chain complex, with linear presentation

0 — (DNzD)[z, 2~ 11 2=%% D[z, 211 — € — 0
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Algebraic L-theory transversality over
Alz, 2~ 1]

e Theorem (Shaneson i = 2, Novikov 7 = 1,
1969 R.2<0, 1972, 1992) For —co <1< 2

(Al 2 ) = L@ e L7l

W|th L<>—LS LY =rh O =[P and
(A) = Ly4i+1(Cprit1(A)) lower L-groups.

e Geometric proof used Farrell-Hsiang (1968)
splitting theorem: a homotopy equivalence
h: M — X x S splits along X ¢ X x Sl iff

7(h) € m(Wh(71(X)) — Wh(r1(XxS1))) .

e Algebraic proof used algebraic transversal-
ity: every quadratic complex (C,1) over
Alz,z~1] has fundamental domain D C C,
and if (C, ) is simple Poincaré can arrange
for (D;DNz"1D, 2D N D) to be finite n-
dimensional quadratic Poincaré cobordism.
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Amalgamated free products and HNN
extensions

e X, Y connected, ¥ xR C X.

e Case A: The complement X\Y = X7 U X5
IS disconnected.

X X1 Y X5

e Case B: The complement X\Y is connected.

X\Y
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T he Mayer—Vietoris exact sequence

e The homology of X is determined by the
homologies of Y, X\Y by the Mayer—Vietoris
exact sequence.

— Case A: X = X1 Uy X>
" Hn(Y) - Hn(Xl) D Hn(XQ)
0
— Hy(X) = H,,_1(Y) — ... .
— Case B:
11—12
- — Hp(Y) —= Hnp(X\Y)

— Ho(X) L H, 1 (V) — ...

with i1,ip 1 Y — X\Y the two inclusions.

e Proved by codimension 1 transversality on
cycle level.
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The Seifert—van Kampen Theorem

The fundamental group of codimension 1
(X,Y C X) with injective m1(Y) — 71 (X)
given by generalized free products of the
fundamental groups of Y, X\Y, amalga-
mated along injections.

Case A: amalgamated free product

m1(X) = m(X1) % (y) T1(X2)

Case B: HNN extension

m1(X) = m(X\Y) *, vy {t}
with iq1,ip @ m1(Y) — m1(X\Y), i1t = tio.

Amalgamated free products and HNN ex-
tensions are the groups which act on trees
with quotient I and S! (Bass-Serre).
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Waldhausen’s theorem

e Theorem (1976) The higher Whitehead groups
Whs(X) = Why(mw1(X)) for codimension 1
pair (X,Y C X) with m1(Y) — 71(X) injec-
tive fit into MV-type exact sequences :

— Case A: X\Y disconnected X = XUy X5
- — Whp(Y) — Whp(X1) @ Whp(X5)
— Whn(X) 2 Wh,_1(Y) & Nil, — ...
— Case B: X\Y connected
C— Whan(Y) 222, Why, (X\Y)
— Whn(X) 2 Wh,_1(Y) & Nil, — ...
e Corollary If = is the fundamental group of
a Haken 3-manifold then Wh.(w) = 0.

Motivated by absence of Whitehead torsion
in rigidity theorem for Haken 3-manifolds.
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Cappell’s theorem

e Theorem (1976) The algebraic L-groups
L«(X) = L«(m1(X)) for codimension 1 pair
(X,Y C X) with m1(Y) — m1(X) injective
fit into MV type exact sequences :

— Case A: X\Y disconnected X = XUy X5
- — Lp(Y) — Lp(X1) @ Ln(X>2)

— Ln(X) 2 L, _1(Y) @& UNily, — ...
— Case B: X\Y connected
1112

— Ln(X) 2 L, _1(Y) @& UNily, — ...

e Originally proved by geometry - still need
algebraic proof!

e Nowadays also a version for the S-groups.
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Cappell’s Theorem (contd.)

e Corollary 1 (C., 1976) For n > 6 simple
homotopy equivalence f : M"™ — X splits
along Y C X if and only if

sy (f) 0 € UNil,11(f) @ H"(Z2; K) .

e Corollary 2 (C., 1976) The UNil-groups are
2-primary. The Novikov conjecture holds
for the class of finitely presented groups
7w obtained from {1} by amalgamated free
products and HN N extensions along injec-
tions.

e Much progress on the Novikov-Borel Con-
jectures since then.

e Corollary 3 (Roushon, 2000) If M is a Haken
3-manifold with 9M %= () then UNil, = 0O
and A : Hy(M;LLe) — Ln(Z[r1(M)]) is an
iIsomorphism for n > 3.
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Algebraic transversality for generalized
free products

e Chain complexes C over the group ring Z| ]
of a group 7 which is an amalgamated free
product w1 xp mp Or an HNN extension
T1 *p {t} have the transversality properties
of manifolds with these fundamental groups.
C has fundamental domains D C C' and

Qn(C) = lim Qn(D)
D

[C,¢] € UNil, is the quadratic Poincaré
splitting obstruction.

e On the Novikov conjecture (Proc. 1993 Ober-
wolfach meeting on Novikov conjectures,
LMS Lecture Notes 226 (1995)) includes
survey of codimension 1 splitting theorems.

e Can S«(Bm) for torsion-free m be expressed
entirely in terms of UNil,7
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Algebraic transversality over simplicial
complex X

e Algebraic surgery exact sequence
A
+— Hp(X;Le) — Ln(Z[r1(X)])

e Theorem (R., 1992) Every quadratic Poincaré
complex (C,vy) over Z[r1(X)] is cobordant
to assembly A(B,0) of quadratic complex
(B,0) over (Z,X).

e Algebraic generalization of Wall m-n the-
orem and the realization theorems of al-
gebraic L-groups as geometric surgery ob-
struction groups.

e Warning: (B, 60) need not be Poincaré over
(Z,X): the image s(C,vy) € S, (X) is the al-
gebraic Poincaré transversality obstruction.
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Past, present and future

e [ he Novikov-Borel Conjectures have been
verified for what is still a relatively small
class of infinite groups, using a wonderful
mixture of controlled algebra and differen-
tial geometry (Farrell-Jones).

e T he algebraic surgery exact sequence gives
purely algebraic formulation of NBC. Ver-
ification for = = Z™ by pure algebra. To
what extent can NBC be verified for other
groups w by pure algebra?

e Gromov believes that there are many groups
out there, and that there is no reason to
believe the conjectures to be true in gen-
eral. In any case, we shall need power-
ful combination of algebra and topology to
decide NBC in general, if this is at all pos-
sible.
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