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Abstract

The algebraic theory of surgery on chain complexes C with Poincaré duality

H∗(C) ∼= Hn−∗(C)

describes geometric surgeries on the chain level. The algebraic effect of a geometric
surgery on an n-dimensional manifold M is an algebraic surgery on the n-dimensional
symmetric Poincaré complex (C,φ) over Z[π1(M)] with the homology of the universal
cover M̃

H∗(C) = H∗(M̃) .

The algebraic effect of a geometric surgery on an n-dimensional normal map (f, b) :
M → X is an algebraic surgery on the kernel n-dimensional quadratic Poincaré complex
(C,ψ) over Z[π1(X)] with homology

H∗(C) = K∗(M) = ker(f∗ : H∗(M̃)→ H∗(X̃)) .

For n > 4 and i-connected (f, b) with 2i ≤ n there is a one-one correspondence between
geometric surgeries on (f, b) killing elements x ∈ Ki(M) and algebraic surgeries on
(C,ψ) killing x ∈ Hi(C). The Wall surgery obstruction of an n-dimensional normal
map (f, b) : M → X

σ∗(f, b) ∈ Ln(Z[π1(X)])

was originally defined by first making (f, b) [n/2]-connected by geometric surgery below
the middle dimension, using forms for even n and automorphisms of forms for odd n.
The algebraic theory of surgery identifies σ∗(f, b) with the cobordism class of the kernel
quadratic Poincaré complex (C,ψ), so the algebraic surgery obstruction has the same
formulation for odd and even n. The identification is used for n = 2i (resp. 2i + 1)
to find a representative form (resp. automorphism) without preliminary geometric
surgeries.
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1 Introduction

We compare the homology and chain level descriptions of surgery on a manifold, using a
minimum of algebraic development.

Manifolds M are to be finite-dimensional, compact, and oriented (unless stated other-
wise), with C(M) denoting the cellular chain complex for some CW structure on M .

Cobordisms (W ;M,M ′) are to be oriented (unless stated otherwise) with ∂W = M ∪
−M ′, where −M ′ denotes M ′ with the opposite orientation.

1.1 Background

The surgery method of classifying manifolds within a homotopy type was first applied by
Kervaire and Milnor [2] to exotic spheres, using exact sequences to describe the homology
effect of geometric surgery. Homology was quite adequate for the subsequent development
of surgery theory on simply-connected manifolds (Browder [1], Novikov). Wall [10] used
a combination of topology and homology to describe the effect of surgery on non-simply-

connected manifolds. In general, the homology Z[π1(M)]-modules H∗(M̃) of the universal

cover M̃ of a compact manifold M are not finitely generated, so a chain level approach is
indicated. The algebraic theory of surgery of Ranicki [4],[5] provided a model for surgery
using chain complexes with Poincaré duality.

Surgery was originally developed for differentiable manifolds, but has since been extended
to PL and topological manifolds. The algebraic theory of surgery applies to all categories
of manifolds.

1.2 The algebraic effect of a geometric surgery

Let M be an n-dimensional manifold. Surgery on Si×Dn−i ⊂M results in an n-dimensional
manifold

M ′ = (M\Si ×Dn−i) ∪Di+1 × Sn−i−1 .

The trace of the surgery is the cobordism (W ;M,M ′) given by attaching a (i+ 1)-handle at
Si ×Dn−i ⊂M

W = M × I ∪Di+1 ×Dn−i .

The trace of the surgery on Di+1 × Sn−i−1 ⊂M ′ is the cobordism (W ′;M ′,M) with

W ′ = −W = M ′ × I ∪Di+1 ×Dn−i .

In fact, every cobordism of manifolds is a union of the traces of surgeries.

In terms of homotopy theory the trace W is obtained from M by attaching an (i+1)-cell,
and M ′ is then obtained from W by detaching an (n− i)-cell, with homotopy equivalences

W ' M ∪x Di+1 ' M ′ ∪x′ Dn−i ,
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with x : Si →M the inclusion Si×{0} ⊂ Si×Dn−i ⊂M , and similarly for x′ : Sn−i−1 →M ′.
The immediate homology effect of the surgery is to kill x ∈ Hi(M),

Hi(W ) = Hi(M)/〈x〉

with 〈x〉 ⊆ Hi(M) the subgroup generated by x. On the chain level

(i) C(W ) is chain equivalent to the algebraic mapping cone C(x) of a chain map x : SiZ→
C(M) representing x ∈ Hi(M), where

SiZ : · · · → 0→ Z→ 0→ . . . (concentrated in degree i) ,

and similarly for C(W ) ' C(x′ : Sn−i−1Z→ C(M ′)),

(ii) there is defined a commutative braid of chain homotopy exact sequences of chain
complexes

SiZ
((QQQQQQQQQ

x

''
C(M)

((QQQQQQQQ

x∗

&&
Sn−iZ

C(W,M ∪M ′)∗+1

66mmmmmmmm

((QQQQQQQQ
C(W )

y 66mmmmmmmmm

y′ ((QQQQQQQQQ

Sn−i−1Z

66mmmmmmmm

x′

77
C(M ′)

66mmmmmmmm

x′
∗

88S
i+1Z

with x∗ : C(M) → Sn−iZ a chain map representing the Poincaré dual x∗ ∈ Hn−i(M)
of x ∈ Hi(M), and similarly for x′∗,

(iii) C(M ′) is chain equivalent to the dimension shifted algebraic mapping cone C(y)∗+1 of
a chain map y : C(W ) → Sn−iZ representing a cohomology class y ∈ Hn−i(W ) with
image the Poincaré dual x∗ ∈ Hn−i(M) of x ∈ Hi(M), and similarly for C(M).

Algebraic surgery gives a precise algebraic model for a chain complex in the chain homotopy
type of C(M ′), which is obtained from C(M) by attaching x and detaching y.

The homology groups H∗(M), H∗(M
′), H∗(W ) are related by the long exact sequences

· · · → Hr(M)→ Hr(W )→ Hr(W,M)→ Hr−1(M)→ . . . ,

· · · → Hr(M
′)→ Hr(W )→ Hr(W,M

′)→ Hr−1(M ′)→ . . . .

It now follows from the excision isomorphisms

Hr(W,M) = Hr(D
i+1, Si) =

{
Z for r = i+ 1

0 otherwise ,

Hr(W,M
′) = Hr(D

n−i, Sn−i−1) =

{
Z for r = n− i
0 otherwise
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that
Hr(M) = Hr(W ) = Hr(M

′) for r 6= i, i+ 1, n− i− 1, n− i .
The relationship between Hr(M), Hr(M

′), Hr(W ) for r = i, i + 1, n − i − 1, n − i is more
complicated, especially in the middle dimensional cases n = 2i, 2i+ 1.

Here are some of the advantages of chain complexes over homology in describing the
algebraic effects of surgery on manifolds. The chain complex method :

(•) makes it easier to follow the passage from the embedding Si × Dn−i ⊂ M to the
homology H∗(M

′) on the chain level;

(•) provides a uniform description for all n, i ;

(•) avoids the indeterminacies inherent in exact sequences;

(•) works just as well in the non-simply connected case;

(•) keeps track of the effect of successive surgeries.

Surgery on manifolds is described algebraically by surgery on chain complexes with sym-
metric Poincaré duality. The applications of surgery to the classification of manifolds involve
a normal map (f, b) : M → X, and only surgeries with an extension of (f, b) to a normal
map on the trace

((g, c); (f, b), (f ′, b′)) : (W ;M,M ′)→ X × ([0, 1]; {0}, {1})

are considered. Surgery on normal maps is described algebraically by surgery on chain
complexes with quadratic Poincaré duality. The quadratic refinement corresponds to the
additional information carried by the bundle map b : νM → νX . The formulae for algebraic
surgery on symmetric Poincaré complexes are entirely analogous to the formulae for quadratic
Poincaré complexes.

1.3 The Principle of Algebraic Surgery

In its simplest form, the Principle states that for a cobordism of n-dimensional manifolds
(W ;M,M ′) the chain homotopy type of C(M ′) and the Poincaré duality chain equivalence

[M ′] ∩ − : C(M ′)n−∗ ' C(M ′)

can be obtained from

(i) the chain homotopy type of C(M),

(ii) the Poincaré duality chain equivalence

φ0 = [M ] ∩ − : C(M)n−∗ ' C(M)

and the chain homotopy

φ1 : (φ0)∗ ' φ0 : C(M)n−∗ → C(M)

determined up to higher chain homotopies by topology,
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(iii) the chain homotopy class of the chain map j : C(M) → C(W,M ′) induced by the
inclusion M ⊂W ,

(iv) the chain homotopy

δφ0 : jφ0j
∗ ' 0 : C(W,M ′)n−∗ → C(W,M ′)

determined up to higher chain homotopies by topology.

The chain complex C(M ′) is chain equivalent to the chain complex C ′ obtained from C(M)
by algebraic surgery, with

C ′r = Cr(M)⊕ Cr+1(W,M ′)⊕ Cn−r−1(W,M ′) .

See §3 for formulae for the differentials and Poincaré duality of C ′.

In particular, if (W ;M,M ′) is the trace of a surgery on Si ×Dn−i ⊂ M as in §1.2 then
C(W,M ′) is chain equivalent to Sn−iZ, and replacing C(W,M ′) by Sn−iZ in the formula for
C ′r gives a smaller chain complex (also denoted by C ′)

C ′ : Cn(M)→ · · · → Cn−i(M)
d⊕y−−→ Cn−i−1(M)⊕ Z d⊕0−−→ Cn−i−2(M)→ . . .

→ Ci+2(M)
d⊕0−−→ Ci+1(M)⊕ Z d⊕x−−→ Ci(M)→ · · · → C0(M)

chain equivalent to C(M ′). The attaching chain map x : SiZ → C(M) and the chain
map j : C(M) → C(W,M ′) ' Sn−iZ in (iii) are determined by the homotopy class of
the core embedding Si × {0} ⊂ M . The detaching chain map y : C(x) → Sn−iZ and the
chain homotopy δφ0 in (iv) are determined by the framing of the core, and are much more
subtle. (See the Examples below). In this case the algebraic surgery kills the homology class
x ∈ Hi(M). In the general algebraic context surgery kills entire subcomplexes rather than
just individual homology classes.

Example. The effect of surgery on S0 × D1 ⊂ M = S1 is a double cover of S1. There are
two possibilities:
(i) If the two paths S0 × D1 ⊂ S1 move in opposite senses the effect of the surgery is the
trivial double cover M ′ = S1∪S1 of S1, and the trace (W ;M,M ′) is given by the orientable

W = cl.(S2\(D2 ∪D2 ∪D2)) .

(ii) If the two paths S0 × D1 ⊂ S1 move in the same sense the effect of the surgery is
the nontrivial double cover M ′′ = S1 of S1, and the trace (W ′;M,M ′′) is given by the
nonorientable

W ′ = cl.(Möbius band\D2) . �

More generally:

Example. As usual, let O(j) be the orthogonal group of Rj. For any map ω : Si → O(j)
write n = i+ j, and define an embedding

eω : Si ×Dj → Sn = Si ×Dj ∪Di+1 × Sj−1 ; (x, y) 7→ (x, ω(x)(y)) .
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Surgery on M = Sn killing eω has effect the (j − 1)-sphere bundle over Si+1 = Di+1 ∪Di+1

M ′ = S(ω) = Di+1 × Sj−1 ∪ω Di+1 × Sj−1

of the j-plane vector bundle over Si+1

E(ω) = Di+1 ×Rj ∪ω Di+1 × Rj

classified by ω ∈ πi(O(j)) = πi+1(BO(j)). The trace of the surgery is

W = cl.(D(ω)\Dn+1) ,

with
D(ω) = Di+1 ×Dj ∪ω Di+1 ×Dj

the j-disk bundle of ω, which fits into a fibre bundle

(Dj, Sj−1)→ (D(ω), S(ω))→ Si+1 .

Exercise: work out the algebraic effect of the surgery! �

2 Forms and formations

The quadratic L-groups L∗(A) were originally defined by Wall, with L2i(A) a Witt-type group
of stable isomorphism classes of nonsingular (−)i-quadratic forms over a ring with involution
A, and L2i+1(A) a Whitehead-type group of automorphisms of (−)i-quadratic forms over A
(now replaced by formations). The surgery obstruction of a normal map (f, b) : M → X
from an n-dimensional manifold M to an n-dimensional Poincaré complex X

σ∗(f, b) ∈ Ln(Z[π1(X)])

was defined by first making (f, b) i-connected for n = 2i (resp. 2i+ 1) by surgery below the
middle dimension. The surgery obstruction is such that σ∗(f, b) = 0 if (and for n > 4 only
if) (f, b) is normal bordant to a homotopy equivalence.

Let A be an associative ring with 1, and with an involution A→ A; a 7→ a satisfying

a+ b = a+ b , ab = ba , a = a , 1 = 1 .

In the applications to topology A = Z[π] is a group ring with the involution

Z[π]→ Z[π] ; x =
∑
g∈π

ngg 7→ x =
∑
g∈π

ngg
−1 .

The dual of a left A-module is the left A-module

K∗ = HomA(K,A) , A×K∗ → K∗ ; (a, f) 7→ (x 7→ f(x)a) .



6 Algebraic surgery

The dual of an A-module morphism f : K → L is the A-module morphism

f ∗ : L∗ → K∗ ; g 7→ (x 7→ g(f(x))) .

For f.g. free K,L identify

f ∗∗ = f : K∗∗ = K → L∗∗ = L ,

using the isomorphism K → K∗∗; x 7→ (f 7→ f(x)) to identify K = K∗∗, and similarly for L.

A (−)i-quadratic form (K,λ, µ) is a f.g. free A-module K together with a (−)i-symmetric
form

λ = (−)iλ∗ : K → K∗

and a function
µ : K → Q(−)i(A) = A/{a− (−)ia | a ∈ A}

such that

λ(x)(x) = µ(x) + (−)iµ(x) , µ(ax) = aµ(x)a , µ(x+ y) = µ(x) + µ(y) + λ(x, y) .

The form is nonsingular if λ : K → K∗ is an isomorphism.

A lagrangian for a nonsingular (−)i-quadratic form (K,λ, µ) is a f.g. free direct summand
L ⊂ K such that λ(L)(L) = 0, µ(L) = 0, and L = L⊥, where

L⊥ = {x ∈ K | λ(x)(L) = 0} .

A nonsingular form admits a lagrangian if and only if it is isomorphic to the hyperbolic form

H(−)i(L) = (L⊕ L∗,
(

0 1
(−)i 0

)
, µ)

with µ(x, f) = f(x).

The 2i-dimensional quadratic L-group L2i(A) is the Witt group of stable isomorphism
classes of nonsingular (−)i-quadratic forms (K,λ, µ) over A, where stability is with respect
to the hyperbolic forms.

As in Chapter 5 of Wall [10] the surgery obstruction of an i-connected 2i-dimensional
normal map (f, b) : M → X is the Witt class

σ∗(f, b) = (Ki(M), λ, µ) ∈ L2i(Z[π1(X)])

of the kernel nonsingular (−)i-quadratic form (Ki(M), λ, µ) over Z[π1(X)], with λ, µ defined
by geometric intersection numbers. An algebraic surgery on (f, b) removing Sj×D2i−j ⊂M
for j = i−1 (resp. i) correspond to the algebraic surgery of the addition (resp. subtraction)
of the hyperbolic form H(−)i(Z[π1(X)]) to (resp. from) the kernel form.

A nonsingular (−)i-quadratic formation (K,λ, µ;F,G) is a nonsingular (−)i-quadratic
form (K,λ, µ) together with an ordered pair of lagrangians F,G.

The (2i+ 1)-dimensional quadratic L-group L2i+1(A) is the group of stable isomorphism
classes of nonsingular (−)i-quadratic formations (K,λ, µ;F,G) over A, where stability is
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with respect to the formations such that either F,G are direct complements in K or share a
common lagrangian complement in K.

The surgery obstruction of an i-connected (2i+ 1)-dimensional normal map (f, b) : M →
X

σ∗(f, b) = (K,λ, µ;F,G) ∈ L2i+1(Z[π1(X)])

is the Witt-type equivalence class of a kernel (−)i-quadratic formation over Z[π1(X)] with

F ∩G = Ki+1(M) , K/(F +G) = Ki(M) .

As in Chapter 6 of Wall [10] such a kernel formation (K,λ, µ;F,G) is obtained by realizing
any finite set {x1, x2, . . . , xk} ⊂ Ki(M) of Z[π1(X)]-module generators by a high-dimensional
Heegaard-type decomposition of (f, b) as a union of normal maps

(f, b) = (f0, b0) ∪ (g, c) : M = M0 ∪ U → X = X0 ∪D2i+1

with
(g, c) : (U, ∂U) = (#kS

i ×Di+1,#kS
i × Si)→ (D2i+1, S2i) ,

F = im(Ki+1(U, ∂U)→ Ki(∂U)) = Z[π1(X)]k ,

G = im(Ki+1(M0, ∂U)→ Ki(∂U)) ∼= Z[π1(X)]k ,

K = Ki(∂U) = F ⊕ F ∗ , (λ, µ) = hyperbolic (−)i-quadratic form .

3 Surgery on symmetric Poincaré complexes

Symmetric Poincaré complexes are chain complexes with the Poincaré duality properties
of manifolds. A manifold M determines a symmetric Poincaré complex (C, φ), such that
a surgery on M determines an algebraic surgery on (C, φ). However, not every algebraic
surgery on (C, φ) can be realized by a surgery on M .

Given a f.g. free A-module chain complex

C : · · · → Cr+1
d−→Cr

d−→Cr−1 → . . .

write the dual f.g. free A-modules as

Cr = (Cr)
∗ .

For any n ≥ 0 let Cn−∗ be the f.g. free A-module chain complex with

dCn−∗ = (−)rd∗C : (Cn−∗)r = Cn−r → (Cn−∗)r−1 = Cn−r+1 .

The duality isomorphisms

T : HomA(Cp, Cq)→ HomA(Cq, Cp) ; φ 7→ (−)pqφ∗

are involutions with the property that the dual of a chain map f : Cn−∗ → C is a chain map
Tf : Cn−∗ → C, with T (Tf) = f .
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The algebraic mapping cone C(f) of a chain map f : C → D is the chain complex with

dC(f) =

(
dD (−1)rf
0 dC

)
: C(f)r = Dr ⊕ Cr−1 → C(f)r−1 = Dr−1 ⊕ Cr−2 .

An n-dimensional symmetric complex (C, φ) over A is a f.g. free A-module chain complex

C : Cn
dC−→ Cn−1 → · · · → C1

dC−→ C0

together with a collection of A-module morphisms

φ = {φs : Cn−r+s → Cr | s ≥ 0}

such that

dCφs + (−1)rφsd
∗
C + (−1)n+s−1(φs−1 + (−1)sTφs−1) = 0 : Cn−r+s−1 → Cr

(s ≥ 0, φ−1 = 0) .

Thus φ0 : Cn−∗ → C is a chain map, φ1 is a chain homotopy φ1 : φ0 ' Tφ0 : Cn−∗ → C, and
so on . . . . More intrinsically, φ is an n-dimensional cycle in the Z-module chain complex

HomZ[Z2](W,HomA(C∗, C))

with
W : · · · → Z[Z2]

1+T−−→ Z[Z2]
1−T−−→ Z[Z2]

1+T−−→ Z[Z2]
1−T−−→ Z[Z2]

the free Z[Z2]-module resolution of Z. The symmetric complex (C, φ) is Poincaré if the chain
map φ0 : Cn−∗ → C is a chain equivalence.

Example. (Mishchenko [3]) An n-dimensional manifold M and a regular covering M̃ with
group of covering translations π determine an n-dimensional symmetric Poincaré complex

over Z[π] (C(M̃), φ) with

φ0 = [M ] ∩− : C(M̃)n−∗ → C(M̃)

the Poincaré duality chain equivalence. The higher chain homotopies φ1, φ2, . . . are deter-
mined by an equivariant analogue of the construction of the Steenrod squares. �

An (n+1)-dimensional symmetric pair (j : C → D, (δφ, φ)) is an n-dimensional symmet-
ric complex (C, φ) together with a chain map j : C → D to an (n+ 1)-dimensional f.g. free
A-module chain complex D and A-module morphisms δφ = {δφs : Dn+1−r+s → Dr | s ≥ 0}
such that

jφsj
∗ = dDδφs + (−)rδφsd

∗
D + (−)n+s+1(δφs−1 + (−)sTδφs−1) : Dn+1−r−s → Dr

(s ≥ 0, δφ−1 = 0) .

The pair is Poincaré if the chain map(
δφ0

φ0j
∗

)
: Dn+1−∗ → C(j)

aar
Typewritten Text
CORRECTION: D^{n-r-s}
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is a chain equivalence, in which case (C, φ) is a n-dimensional symmetric Poincaré complex.

A cobordism of n-dimensional symmetric Poincaré complexes (C, φ), (C ′, φ′) is an (n+1)-
dimensional symmetric Poincaré pair of the type (C ⊕ C ′ → D, (δφ, φ⊕−φ′)). Symmetric
complexes (C, φ), (C ′, φ′) are homotopy equivalent if there exists a cobordism with C → D,
C ′ → D chain equivalences.

Example. A 0-dimensional symmetric complex (C, φ) is a f.g. free A-module C0 together with
a symmetric form φ0 on C0. The complex is Poincaré if and only if the form is nonsingular.
Two 0-dimensional symmetric Poincaré complexes (C, φ), (C ′, φ′) are cobordant if and only
if the forms (C0, φ0), (C ′0, φ′0) are Witt-equivalent, i.e. become isomorphic after stabilization

with metabolic forms (L⊕ L∗,
(
λ 1
1 0

)
). �

Example. An (n + 1)-dimensional manifold with boundary (W, ∂W ) and cover (W̃ , ∂W̃ )

determines an (n + 1)-dimensional symmetric Poincaré pair (j : C(∂W̃ ) → C(W̃ ), (δφ, φ))
over Z[π] with(

δφ0

φ0j
∗

)
= [W ] ∩− : Dn+1−∗ = C(W̃ )n−∗ → C(j) = C(W̃ , ∂W̃ )

the Poincaré-Lefschetz duality chain equivalence. �
The data for algebraic surgery on an n-dimensional symmetric Poincaré complex (C, φ)

is an (n + 1)-dimensional symmetric pair (j : C → D, (δφ, φ)). The effect of the algebraic
surgery is the n-dimensional symmetric Poincaré complex (C ′, φ′) with

dC′ =

 dC 0 (−)n+1φ0j
∗

(−)rj dD (−)rδφ0

0 0 d∗D

 :

C ′r = Cr ⊕Dr+1 ⊕Dn−r+1 → C ′r−1 = Cr−1 ⊕Dr ⊕Dn−r+2 ,

φ′0 =

 φ0 0 0
(−)n−rjTφ1 (−)n−rTδφ1 0

0 1 0

 :

C ′n−r = Cn−r ⊕Dn−r+1 ⊕Dr+1 → C ′r = Cr ⊕Dr+1 ⊕Dn−r+1 ,

φ′s =

 φs 0 0
(−)n−rjTφs+1 (−)n−r+sTδφs+1 0

0 0 0

 :

C ′n−r+s = Cn−r+s ⊕Dn−r+s+1 ⊕Dr−s+1 → C ′r = Cr ⊕Dr+1 ⊕Dn−r+1 (s ≥ 1) .

Remark. The appearance of the chain homotopy φ1 : φ0 ' Tφ0 in the formula for the
Poincaré duality chain equivalence φ′0 is a reason for taking account of φ1. The appearance
of the higher chain homotopy φ2 : φ1 ' Tφ1 in the formula for φ′1 is a reason for taking
account of φ2. And so on . . . . �

The trace of an algebraic surgery is the (n+1)-dimensional symmetric Poincaré cobordism
between (C, φ) and (C ′, φ′)

((f f ′) : C ⊕ C ′ → D′, (0, φ⊕−φ′))
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defined by

dD′ =

(
dC (−)n+1φ0j

∗

0 d∗D

)
: D′r = Cr ⊕Dn−r+1 → D′r−1 = Cr−1 ⊕Dn−r+2 ,

f =

(
1
0

)
: Cr → D′r = Cr ⊕Dn−r+1 ,

f ′ =

(
1 0 0
0 0 1

)
: C ′r = Cr ⊕Dr+1 ⊕Dn−r+1 → D′r = Cr ⊕Dn−r+1 .

Theorem. (Ranicki [4]) The cobordism of symmetric Poincaré complexes is the equivalence
relation generated by homotopy equivalence and algebraic surgery.
Proof. Homotopy equivalent complexes are cobordant, by definition. Surgery equivalent
complexes are cobordant by the trace construction.

Conversely, suppose given a cobordism of n-dimensional symmetric Poincaré complexes

Γ = ((f f ′) : C ⊕ C ′ → D, (δφ, φ⊕−φ′)) .

Let
Γ = ((f f

′
) : C ⊕ C ′ → D, (0, φ⊕−φ′))

be the trace of the algebraic surgery on (C, φ) with data (j : C → C(f ′), (δφ/φ′, φ)) given by

j =

(
f
0

)
: Cr → C(f ′)r = Dr ⊕ C ′r−1 ,

(δφ/φ′)s =

(
δφs (−)sf ′φ′s
0 (−)n−r+sTφ′s−1

)
:

C(f ′)n−r+s+1 = Dn−r+s+1 ⊕ C ′n−r+s → C(f ′)r = Dr ⊕ C ′r−1 (s ≥ 0, φ′−1 = 0) .

The A-module morphisms

g = (0 0 1 0 0) : C
′
r = Cr ⊕Dr+1 ⊕ C ′r ⊕Dn−r+1 ⊕ C ′n−r → C ′r ,

h = (f δφ0 f
′φ′0) : Dr = Cr ⊕Dn−r+1 ⊕ C ′n−r → Dr

define a homotopy equivalence (h, 1C ⊕ g) : Γ→ Γ. �
Symmetric Surgery Principle. For any (n+1)-dimensional cobordism (W ;M,M ′) and regular

cover (W̃ ; M̃, M̃ ′) with group π the symmetric Poincaré complex (C(M̃ ′), φ′) is homotopy

equivalent to the effect of algebraic surgery on (C(M̃), φ) with data

(j : C(M̃)→ C(W̃ , M̃ ′), (δφ′, φ)) .

Proof. The manifold cobordism determines a cobordism of n-dimensional symmetric Poincaré
complexes over Z[π]

Γ = (C(M̃)⊕ C(M̃ ′)→ C(W̃ ), (δφ, φ⊕−φ′)) .

Now apply the Theorem to Γ, with δφ′ = δφ/φ′. �
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Example. If (W ;M,M ′) is the trace of a surgery on Si ×Dn−i ⊂M then

C(W̃ , M̃ ′) ' Sn−iZ[π]

is concentrated in dimension (n− i), and the effect is to kill the spherical (co)homology class

j = [Si] ∈ Hn−i(M̃) ∼= Hi(M̃) .

The embedding Si ⊂M determines j : C(M̃)→ Sn−iZ[π], and the choice of extension to an
embedding Si ×Dn−i ⊂M determines δφ′. �

The cobordism groups Ln(A) (n ≥ 0) start with the symmetric Witt group L0(A). The
symmetric signature map from manifold bordism to symmetric Poincaré bordism

σ∗ : Ωn(X)→ Ln(Z[π1(X)]) ; M 7→ (C(M̃), φ)

is a generalization of the signature map

σ∗ : Ω4k → L4k(Z) = Z ; M 7→ signature(H2k(M), intersection form) .

Although the symmetric signature maps σ∗ are not isomorphisms in general, they do provide
many invariants. The symmetric and quadratic L-groups only differ in 8-torsion :

(i) the symmetrization maps

1 + T : Ln(A)→ Ln(A) ; (C,ψ) 7→ (C, (1 + T )ψ)

are isomorphisms modulo 8-torsion,

(ii) if 1/2 ∈ A the symmetrization maps are isomorphisms.

4 Surgery on quadratic Poincaré complexes

Quadratic Poincaré complexes are chain complexes with the Poincaré duality properties
of kernels of normal maps. The quadratic Poincaré analogues of cobordism and surgery
are defined by analogy with the symmetric case. Although there are many similarities
between the quadratic and symmetric theories, there is one essential difference : the quadratic
Poincaré cobordism groups are the Wall surgery obstruction groups L∗(A), so for A = Z[π]
every element is geometrically significant.

An n-dimensional quadratic complex (C,ψ) over A is a f.g. free A-module chain complex
C together with a collection of A-module morphisms

ψ = {ψs : Cn−r−s → Cr | s ≥ 0}

such that

dCψs + (−1)rψsd
∗
C + (−1)n−s−1(ψs+1 + (−1)s+1Tψs+1) = 0 : Cn−r−s−1 → Cr (s ≥ 0) .
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More intrinsically, ψ is an n-dimensional cycle in the Z-module chain complex

W ⊗Z[Z2] HomA(C∗, C)

with W the free Z[Z2]-module resolution of Z (as above). The quadratic complex (C,ψ) is
Poincaré if the chain map (1+T )ψ0 : Cn−∗ → C is a chain equivalence. A quadratic complex
(C,ψ) determines the symmetric complex (C, φ) with φ0 = (1 + T )ψ0, φs = 0 (s ≥ 1).

Example. ([5]) An n-dimensional normal map (f, b) : M → X and a regular covering X̃ of X
with group of covering translations π determine a kernel n-dimensional quadratic Poincaré
complex (C,ψ) over Z[π] with C = C(f !) the algebraic mapping cone of the Umkehr chain
map

f ! : C(X̃) ' C(X̃)n−∗
f∗−→ C(M̃)n−∗ ' C(M̃)

and (1 + T )ψ0 = [M ] ∩ − : Cn−∗ → C the Poincaré duality chain equivalence. It follows
from f∗[M ] = [X] ∈ Hm(X) (f is degree 1) that there exists a chain homotopy ff ! ' 1 :

C(X̃)→ C(X̃). The homology Z[π]-modules of C are thus the kernels of f

H∗(C) = K∗(M) = ker(f∗ : H∗(M̃)→ H∗(X̃)) ,

such that
H∗(M̃) = K∗(M)⊕H∗(X̃) . �

An (n+1)-dimensional quadratic pair (j : C → D, (δψ, ψ)) is an n-dimensional quadratic
complex (C,ψ) together with a chain map j : C → D to an (n + 1)-dimensional f.g. free
A-module chain complex D and A-module morphisms

δψ = {δψs : Dn+1−r−s → Dr | s ≥ 0}

such that

jψsj
∗ = dDδψs + (−)rδψsd

∗
D + (−)n+s+1(δψs+1 + (−)sTδψs+1) : Dn+1−r−s → Dr (s ≥ 0) .

The pair is Poincaré if the chain map(
(1 + T )δψ0

(1 + T )ψ0j
∗

)
: Dn+1−∗ → C(j)

is a chain equivalence, in which case (C,ψ) is a n-dimensional quadratic Poincaré complex.

A cobordism of n-dimensional quadratic Poincaré complexes (C,ψ), (C ′, ψ′) is an (n+1)-
dimensional quadratic Poincaré pair of the type (C ⊕ C ′ → D, (δψ, ψ ⊕ −ψ′)). Quadratic
complexes (C,ψ), (C ′, ψ′) are homotopy equivalent if there exists a cobordism with C → D,
C ′ → D chain equivalences.

Example. An (n+1)-dimensional normal map of pairs (g, c) : (W, ∂W )→ (Y, ∂Y ) determines
a kernel (n+ 1)-dimensional quadratic Poincaré pair over Z[π] (j : C(∂g !)→ C(g !), (δψ, ψ))
with (

(1 + T )δψ0j
∗

(1 + T )ψ0

)
= [W ] ∩− : C(g !)n+1−∗ → C(j)
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the Poincaré-Lefschetz duality chain equivalence. �
The data for algebraic surgery on an n-dimensional quadratic Poincaré complex (C,ψ)

is an (n + 1)-dimensional quadratic pair (j : C → D, (δψ, ψ)). The effect of the algebraic
surgery is the n-dimensional quadratic Poincaré complex (C ′, ψ′) with

dC′ =

 dC 0 (−)n+1(1 + T )ψ0j
∗

(−)rj dD (−)r(1 + T )δψ0

0 0 d∗D

 :

C ′r = Cr ⊕Dr+1 ⊕Dn−r+1 → C ′r−1 = Cr−1 ⊕Dr ⊕Dn−r+2 ,

ψ′0 =

ψ0 0 0
0 0 0
0 1 0

 :

C ′n−r = Cn−r ⊕Dn−r+1 ⊕Dr+1 → C ′r = Cr ⊕Dr+1 ⊕Dn−r+1 ,

ψ′s =

ψs (−)r+sTψs−1j
∗ 0

0 (−)n−r−s+1Tδψs−1 0
0 0 0

 :

C ′n−r−s = Cn−r−s ⊕Dn−r−s+1 ⊕Dr+s+1 → C ′r = Cr ⊕Dr+1 ⊕Dn−r+1 (s ≥ 1) .

The trace of the algebraic surgery is an (n + 1)-dimensional quadratic Poincaré cobordism
((f f ′) : C ⊕ C ′ → D′, (δψ′, ψ ⊕ −ψ′)) defined by analogy with the symmetric case. As in
the symmetric case :

Theorem. (Ranicki [4]) The cobordism of quadratic Poincaré complexes is the equivalence
relation generated by homotopy equivalence and algebraic surgery. �
Quadratic Surgery Principle. For a bordism of n-dimensional normal maps

((g, c); (f, b), (f ′, b′)) : (W ;M,M ′)→ X × ([0, 1]; {0}, {1})

the quadratic Poincaré complex (C(f ′ !), ψ′) is homotopy equivalent to the effect of algebraic

surgery on (C(f !), ψ) with data (C(f !)→ C(g !, f ′ !), (δψ, ψ)). �
Example. If ((g, c); (f, b), (f ′, b′)) is the trace of a surgery on Si ×Dn−i ⊂M then

C(g !, f ′
!
) ' Sn−iZ[π]

is concentrated in dimension (n− i). �
A n-dimensional quadratic Poincaré complex (C,ψ) is highly-connected if it is homotopy

equivalent to a complex (also denoted (C,ψ)) with

C : · · · → 0→ Ci → 0→ . . . if n = 2i

C : · · · → 0→ Ci+1 → Ci → 0→ . . . if n = 2i+ 1.

Example. (i) The quadratic kernel (C,ψ) of an n-dimensional normal map (f, b) : M → X
is highly-connected if and only if f : M → X is i-connected, that is πr(f) = 0 for r ≤ i.
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(ii) The quadratic Poincaré kernel (C,ψ) of an i-connected 2i-dimensional normal map
(f, b) : M → X is essentially the same as the geometric (−)i-quadratic intersection form
(Ki(M), λ, µ) of Wall [10], with

λ = (1 + T )ψ0 : H i(C) = Ki(M)→ Hi(C) = Ki(M) ∼= H i(C)∗ ,

µ(x) = ψ0(x)(x) ∈ Q(−)i(Z[π1(X)]) .

For i ≥ 3 an element x ∈ Ki(M) can be killed by a geometric surgery if and only if µ(x) = 0,
if and only if there exists algebraic surgery data (x : C → SiZ[π1(X)], (δψ, ψ)). The effect of
the surgery is a normal map (f ′, b′) : M ′ → X with quadratic Poincaré kernel (C ′, ψ′) such
that

C ′ : · · · → 0→ Z[π1(X)]
x−→Ki(M)

x∗λ−−→ Z[π1(X)]→ 0→ . . . . �

Theorem. (Ranicki [4])
(i) Every n-dimensional quadratic Poincaré complex (C,ψ) is cobordant to a highly-connected
complex.
(ii) The cobordism group of n-dimensional quadratic complexes over A is isomorphic to
Ln(A), with the 4-periodicity isomorphisms given by

Ln(A)→ Ln+4(A) ; (C,ψ) 7→ (C∗−2, ψ) .

Proof: (i) Let n = 2i or 2i + 1. Let D be the quotient complex of C with Dr = Cr for
r > n − i, and let j : C → D be the projection. The effect of algebraic surgery on (C,ψ)
with data (j : C → D, (0, ψ)) is homotopy equivalent to a highly-connected complex (C ′, ψ′).
(ii) (n = 2i) A highly-connected 2i-dimensional quadratic Poincaré complex (C,ψ) is essen-
tially the same as a nonsingular (−)i-quadratic form (C0, ψ0). The relative version of (i)
shows that a null-cobordism of (C,ψ) is essentially the same as an isomorphism of forms

(C0, ψ0)⊕ hyperbolic ∼= hyperbolic ,

which is precisely the condition for (C0, ψ0) = 0 ∈ L2i(A).
(ii) (n = 2i+ 1) A highly-connected (2i+ 1)-dimensional quadratic Poincaré complex (C,ψ)
is essentially the same as a nonsingular (−)i-quadratic formation. See [4] for further details.

�
Instant surgery obstruction for n = 2i. A 2i-dimensional quadratic Poincaré complex (C,ψ)
is cobordant to the highly-connected complex (C ′, ψ′) with

(C ′
i
, ψ′0) =

(
coker

(( d∗ 0
(−)i+1(1 + T )ψ0 d

)
: Ci−1 ⊕ Ci+2 → Ci ⊕ Ci+1

)
,

(
ψ0 d
0 0

))
.

Thus if (C,ψ) is the quadratic Poincaré kernel of a 2i-dimensional normal map (f, b) : M →
X then (C ′i, ψ′0) is a nonsingular (−)i-quadratic form representing the surgery obstruction
σ∗(f, b) ∈ L2i(Z[π1(X)]) (without preliminary geometric surgeries below the middle dimen-
sion). �

See §I.4 of [4] for the instant surgery obstruction formation in the case n = 2i+ 1.
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5 The localization exact sequence

For any morphism of rings with involution f : A→ B there is defined an exact sequence of
L-groups

· · · → Ln(A)
f−→Ln(B)→ Ln(f)→ Ln−1(A)→ . . .

with the relative L-group Ln(f) the cobordism groups of pairs

((n− 1)-dimensional quadratic Poincaré complex (C,ψ) over A,

n-dimensional quadratic Poincaré pair (B ⊗A C → D, (δψ, 1⊗ ψ)) over B) .

Algebraic surgery provides a particularly useful expression for the relative L-groups L∗(A→
S−1A) of the localization map A → S−1A inverting a multiplicatively closed subset S ⊂ A
of central non-zero divisors.

Localization exact sequence. (Ranicki [6]) The relative L-group Ln(A→ S−1A) is isomorphic
to the cobordism group Ln(A, S) of (n− 1)-dimensional quadratic Poincaré complexes over
A which are S−1A-acyclic.
Proof Clearing denominators it is possible to lift every quadratic Poincaré pair over S−1A
as above to an n-dimensional quadratic pair (C → D′, (δψ′, ψ)) over A. This is the data for
algebraic surgery on (C,ψ) with effect a cobordant (n− 1)-dimensional quadratic Poincaré
complex (C ′, ψ′) over A which is S−1A-acyclic (i.e. H∗(S

−1A⊗A C ′) = 0). �
The localization exact sequence

· · · → Ln(A)→ Ln(S−1A)→ Ln(A, S)→ Ln−1(A)→ . . .

and its extensions to noncommutative localization and to symmetric L-theory have many
applications to the computation of L-groups, as well as to surgery on submanifolds (cf.
Ranicki [7]).

Example. The localization of A = Z inverting S = Z\{0} ⊂ A is S−1A = Q. See Chapter 4
of [6] for detailed accounts of the way in which the classification of quadratic forms over Q
is combined with the localization exact sequence

· · · → Ln(Z)→ Ln(Q)→ Ln(Z, S)→ Ln−1(Z)→ . . . ,

· · · → Ln(Z)→ Ln(Q)→ Ln(Z, S)→ Ln−1(Z)→ . . .

to give

Ln(Z) =


Z (signature)

Z2 (deRham invariant)

0

0

if n ≡


0

1

2

3

(mod 4) ,

Ln(Z) =


Z (signature)/8

0

Z2 (Arf invariant)

0

if n ≡


0

1

2

3

(mod 4) .

�
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