
CIRCLE-VALUED MORSE
THEORY AND NOVIKOV

HOMOLOGY

ANDREW RANICKI (Edinburgh)

http://www.maths.ed.ac.uk/ ˜aar
• Traditional Morse theory deals with

di�erentiable real-valued functions

f :M → R and ordinary homology H∗(M).

• Circle-valued Morse theory deals with

di�erentiable circle-valued functions

f :M → S1 and Novikov homology HNov
∗ (M).

The circle-valued theory is newer and harder!

• The circle-valued theory has applications

to the structure theory of non-simply-connected

manifolds, dynamical systems, symplectic

topology, Floer theory, Seiberg-Witten

theory etc.
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Novikov

• S.P.Novikov (1938 {), one of the founding
fathers of surgery theory.

• Proved the topological invariance of
rational Pontrjagin classes for di�erentiable
manifolds (1965), for which he was awarded

the Fields Medal in 1970.

• Last paper in surgery theory (1969)
formulated the Novikov conjecture.

• Introduced circle-valued Morse theory in 1981,
motivated by physical problems in electro-
magnetism and 
uid mechanics.

• Author of "Topology" (Volume 12 of
Encyclopedia of Mathematical Sciences,
Springer, 1996) { the best introduction to
high-dimensional manifold topology!
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The programme

• The geometrically de�ned Morse-Smale chain
complex CMS(f) of a real-valued Morse
function f : M → R is well-understood.
The geometrically de�ned Novikov chain
complex CNov(f) of a circle-valued Morse
function f :M → S1 is not so well-understood.

• Objective: make the Novikov complex as
well-understood as the Morse-Smale com-
plex! Feed algebra back into topology.

• The strategy: lift f : M → S1 to in�-
nite cyclic covers f : M → R and compare
CNov(f) to CMS(fN), with

fN = f | :MN = f
−1
[0,1]→ [0,1]

• The general theory works for arbitrary π1(M).
Will concentrate on the 'simply-connected'
special case π1(M) = Z, π1(M) = {1}.
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Real-valued Morse functions

• A critical point of a di�erentiable function

f :M → R is a zero p ∈M of ∇f : τM → τR.

• A critical point p ∈M is nondegenerate if

f(p+ (x1, x2, . . . , xm))

= f(p)−
i∑

j=1
(xj)

2+
m∑

j=i+1
(xj)

2 near p

with i the index of f . Write Criti(f) for

the set of index i critical points of f .

• A function f :M → R is Morse if every crit-

ical point is nondegenerate. If M is com-

pact and non-empty then a Morse f :M →
R has a �nite number

ci(f) = |Criti(f)| ≥ 0

of critical points with index i. Note that

c0(f) > 0, cm(f) > 0 (minimax principle).
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Where do real-valued Morse functions

come from?

• Nature (= geometry)

• Morse functions f :M → R are dense in the

space of all di�erentiable functions on M .

• Morse theory investigates the relationship

between the algebraic topology of M and

the Morse functions on M . Typical prob-

lem: given M , what are the minimum num-

ber of critical points of a Morse function

f : M → R? As usual, it is easier to �nd

answer for dim(M) ≥ 5.
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Gradient 
ow

• A vector �eld v : M → τM is gradient-like

for a Morse function f : M → R if there

exists a Riemannian metric 〈 , 〉 on M with

〈v,w〉 = ∇f(w) ∈ R (w ∈ τM) .

• A downward v-gradient 
ow line γ : R→M

satis�es

γ′(t) = − v(γ(t)) ∈ τM(γ(t)) (t ∈ R) .

A v-gradient 
ow line starts at a critical

point of index i

lim
t→−∞

= p ∈ Criti(f)

and ends at a critical point of index i− 1

lim
t→∞

= q ∈ Criti−1(f) .
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Morse theory and surgery

• A critical value of Morse f : M → R is

f(p) ∈ R for critical point p ∈ M . Can

assume the critical values are distinct, and

that index(p) ≤ index(p′) if f(p) < f(p′).

• Write Na = f−1(a) ⊂M for any regular (=

non-critical) value a ∈ R.

• Theorem (Thom, 1949) (i) If f :M → [a, b]

has no critical values then

(M ;Na,Nb)
∼= Na × ([0,1]; {0}, {1}) .

(ii) If f : M → [a, b] has only one critical

value c ∈ [a, b], of index i, then (M ;Na,Nb)

is the trace of surgery on Si−1×Dm−i ⊂ Na
with

Nb = (Na\Si−1 ×Dm−i) ∪Di × Sm−i−1 ,
M = Na × [0,1] ∪Di ×Dm−i .
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• A Morse function f : M → R determines a

handlebody decomposition of M

M =
m⋃
i=0

⋃
ci(f)

Di ×Dm−i .

The Morse-Smale transversality condition

• Theorem (Smale, 1962) For every Morse

f :M → R there is a class GT (f) of gradient-
like vector �elds v for f such that there is

only a �nite number n(p, q) of v-gradient


ow lines from p to q whenever

index(q) = index(p)− 1 .

GT (f) is dense in the space of all gradient-

like vector �elds on M .
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The Morse-Smale complex

• The Morse-Smale complex C = CMS(M,f, v)
for Morse f : M → R and v ∈ GT (f) is a

based f.g. free Z-module chain complex

with Ci = Z[Criti(f)].

• The di�erentials are given by the signed

numbers of v-gradient 
ow lines

d : Ci → Ci−1 ; p 7→
∑

q∈Criti−1(f)
n(p, q)q .

• The Morse-Smale complex is the cellular

chain complex of the CW structure on M
with one i-cell for each critical point of f
of index i, CMS(M,f, v) = C(M), so

H∗(CMS(M,f, v)) = H∗(M) .

• Can also de�ne CMS for Morse f : (M ;N,N ′)→
([0,1]; {0}, {1}), with CMS(M,f, v) = C(M,N).
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The Morse inequalities

• The Betti numbers of a �nite CW complex

M are de�ned by

bi(M) = dimZ(Hi(M)/Ti(M)) ,

qi(M) = minimum no. generators of Ti(M)

with

Ti(M) = {x ∈ Hi(M) |nx= 0 for some n 6= 0 ∈ Z}
the torsion subgroup of Hi(M).

• Theorem (Morse, 1927) The number ci(f)

of index i critical points of a Morse function

f :M → R is bounded below by

ci(f) ≥ bi(M) + qi(M) + qi−1(M) .

Proof A f.g. free Z-module chain complex

C with H∗(C) = H∗(M) must have

dimZ(Ci) ≥ bi(M) + qi(M) + qi−1(M) .

In particular, this applies to C = CMS(M,f, v).
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The Morse inequalities are sharp for

π1(M) = {1}

• Theorem (Smale, 1962) An m-dimensional

manifold M with m ≥ 5 and π1(M) = {1}
admits a Morse function f :M → R with

ci(f) = bi(M) + qi(M) + qi−1(M) .

• Proved by handle cancellation.

• The situation is much more complicated

for π1(M) 6= {1}. Need algebraic K-theory

of the Z[π1(M)]-module version of CMS(M,f, v)

to give sharp bounds on minimum num-

ber of critical points of Morse f : M → R
(Sharko).
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Circle-valued Morse functions

• A critical point of a di�erentiable function

f :M → S1 is zero p ∈M of ∇f : τM → τS1.

• A critical point p ∈M is nondegenerate if

f(p+ (x1, x2, . . . , xm))

= f(p)−
i∑

j=1
(xj)

2+
m∑

j=i+1
(xj)

2 near p

with i the index of f . A function f is Morse

if every critical point is nondegenerate.

• If M is compact and non-empty then a

Morse f : M → S1 has a �nite number

ci(f) ≥ 0 of critical points with index i.

• Can de�ne gradient-like v :M → τM , GT (f)
etc., as for the real-valued case.
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Where do circle-valued Morse functions
come from?

• Nature, cohomology, and knot theory.

• Morse functions f : M → S1 are dense in
the space of all di�erentiable functions on
M representing �xed c ∈ H1(M) = [M,S1].

• Typical problem: given c ∈ H1(M) what
are the minimum numbers ci(f) of critical
points of a Morse function f :M → S1 with
f∗(1) = c ∈ H1(M)?

• Form ≥ 6 can apply the cancellation method
of real-valued Morse theory, but the alge-
braic book-keeping is much harder.

• Circle-valued Morse theory extends to the
Morse theory of closed 1-forms, represent-
ing classes c ∈ H1(M ;R).
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Fibre bundles over S1

• The mapping torus of a map h : N → N is

T(h) = N × [0,1]/{(x,0) ∼ (h(x), 1)} ,
with canonical projection

p : T(h)→ S1 = [0,1]/(0 ∼ 1) ; [x, t] 7→ [t] .

• If h : N → N is a di�eomorphism of a closed

(m− 1)-dimensional manifold then T(h) is

a closed m-dimensional manifold. The pro-

jection p : T(h)→ S1 is a �bre bundle, such

that p−1(a) ∼= N for each a ∈ S1. The in�-
nite cyclic cover of T(h)

p∗R = T(h) = N × R
is homotopy equivalent to N .

• A �bre bundle f : M → S1 is a Morse map

with c∗(f) = 0.
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Fibering obstruction theory

• If f : M → S1 is homotopic to �bre bundle

then M = f∗R is homotopy equivalent to

a �nite CW complex (= �bre). Stallings

(1962): partial converse for 3-manifolds M .

• Browder-Levine (1965) : for m ≥ 6 a func-

tion f : Mm → S1 with f∗ : π1(M) ∼= Z
is homotopic to �bre bundle if and only if

M = f∗R is homotopy equivalent to a �nite

CW complex.

• Farrell (1967) and Siebenmann (1970) :

for m ≥ 6 a function f : M → S1 is ho-

motopic to the projection of a �bre bun-

dle if and only if M �nitely dominated and

a Whitehead group obstruction �(M) ∈
Wh(π1(M)) is �(M) = 0.

• Proved by handle cancellation and exchanges.
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The Novikov ring

• The ring Z[[z]] consists of the power series

p(z) =
∞∑
j=0

njz
j (nj ∈ Z) .

Note that p(z) ∈ Z[[z]] is a unit if and only

if p(0) = n0 ∈ Z is a unit (= ±1). Example:

1− z.

• The Novikov ring

Z((z)) = Z[[z]][z−1]

consists of the power series
∞∑

j=−∞
njz

j with

coe�cients nj ∈ Z such that for some k ∈ Z

nj = 0 for j < k .
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The real-valued lift of a circle-valued

Morse function

• Given Morse f : M → S1, v ∈ GT (f) lift to
Morse f : M → R, v ∈ GT (f). Lift each

p ∈ Criti(f) to p ∈ Criti(f).

• Choose the generating covering translation
z : M → M to be the one parallel to v :

M → τM , 〈dz, v〉 > 0. In the universal ex-

ample

z : S
1
= R→ R ; t 7→ t− 1 .

• For any p ∈ Criti(f), q ∈ Criti−1(f) let

k = [f(p)− f(q)] ∈ Z .

The signed numbers nj = n(p, zjq) ∈ Z of

v-gradient 
ow lines are such that

nj = 0 for j < k .

17



The Novikov complex

• The Novikov complex C = CNov(M,f, v)

for Morse f : M → S1 and v ∈ GT (f) is

de�ned geometrically to be the based f.g.

free Z((z))-module chain complex with

Ci = Z((z))[Criti(f)] .

• The di�erentials are given by the signed

numbers of v-gradient 
ow lines

d : Ci → Ci−1 ; p 7→
∑

q∈Criti−1(f)
n(p, zjq)zjq .

• Example CNov(M,f, v) = 0 for �bre bundle.

• Exercise Work out CNov(S1, f, v) for

f : S1 → S1 ; [t] 7→ [4t−9t2+6t3] (0 ≤ t ≤ 1) .
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Novikov homology

• The Novikov homology of a �nite CW com-

plex M with a map f : M → S1 is de�ned

by

HNov
∗ (M,f) = H∗(Z((z))⊗Z[z,z−1] C(M))

with M = f∗R. The Novikov homology

depends only on the cohomology class

c = f∗(1) ∈ [M,S1] = H1(M) .

• Theorem For any map f :M → S1 on a �-

nite CW complex M the Novikov homology

is HNov
∗ (M,f) = 0 if (and for π1(M) = {1}

only if) M is homotopy equivalent to a �-

nite CW complex.

• Example If f : T(2 : S1 → S1) → S1 is the

canonical projection then

HNov
∗ (T(2), f) = Z((z))/(2−z) = Q̂2 6= 0 .
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The Novikov complex has Novikov

homology

• Theorem (Novikov, 1982) The Novikov com-

plex CNov(M,f, v) of a Morse function f :

M → S1 is chain equivalent to Z((z))⊗Z[z,z−1]
C(M), so that

H∗(CNov(M,f, v)) ∼= HNov
∗ (M,f) .

• The Novikov complex is directly constructed

from f :M → S1.

• The Novikov homology uses the structure

of M as a CW complex, which in general

will have many more cells than there are

critical points in f .
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The Morse-Novikov inequalities

• The Novikov numbers of a �nite CW com-

plex M with f ∈ H1(M) are de�ned by

bNovi (M,f) = dimZ((z))(H
Nov
i (M,f)/TNovi (M,f)) ,

qNovi (M,f) = min. no. of generators of TNovi (M,f)

with

TNovi (M,f) = {x ∈ HNov
i (M,f) |

nx= 0 for some n 6= 0 ∈ Z((z))}
the torsion Z((z))-submodule of HNov

i (M,f).

• Theorem (Novikov, 1982) The number ci(f)
of index i critical points of a Morse func-

tion f :M → S1 is bounded below by

ci(f) ≥ bNovi (M,f)+qNovi (M,f)+qNovi−1 (M,f) .

Proof Since Z((z)) is a principal ideal do-

main, a f.g. free Z((z))-module chain com-

plex C with H∗(C) = HNov
∗ (M,f) must have

dimZ((z))(Ci) ≥ bi(M,f)+qi(M,f)+qi−1(M,f) .

21



The Morse-Novikov inequalities are sharp

for π1(M) = Z

• Theorem (Farber, 1985) An m-dimensional

manifold M with m ≥ 6 and π1(M) = Z
admits a Morse function f :M → S1 with

ci(f) = bNovi (M,f)+qNovi (M,f)+qNovi−1 (M,f) .

• Proved by handle cancellation and handle

exchanges.

• The situation is much more complicated

for π1(M) 6= Z. Need algebraic K-theory of
the ̂Z[π1(M)]-module version of CNov(M,f, v)

to give sharp bounds on minimum number

of critical points of Morse f : M → S1,

with ̂Z[π1(M)] the Novikov completion of

Z[π1(M)] (Pajitnov).
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Geometric fundamental domains

• Given Morse f : M → S1 and regular value

a ∈ S1 lift to a ∈ R. Cut M along f−1(a) =
N ⊂M to get fundamental domain

(MN ;N, z
−1N) = f

−1
([a, a+1]; {a}, {a+1})

for the in�nite cyclic cover

M = f∗R =
∞⋃

j=−∞
zjMN .

• The restriction

fN = f | : (MN ;N, z
−1N)→ ([a, a+1]; {a}, {a+1})

is a real-valued Morse function with the

same numbers of critical points as f

ci(fN) = ci(f) .

• The Morse theory of circle-valued f is the

Morse theory of real-valued fN for all possible

choices of N .
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Handle exchanges

• Suppose given a map f :M → S1 on an m-

dimensional manifoldM and a fundamental

domain (MN ;N, z
−1N) for M = f∗R, with

N = f−1(a) for a regular value a ∈ S1.

• A handle exchange uses an embedding

(Di×Dm−i, Si−1×Dm−i) ⊂ (MN\z−1N,N)

to obtain another fundamental domain

(MN ′;N
′, z−1N ′) for M by

N ′ = (N\Si−1 ×Dm−i) ∪Di × Sm−i−1 ,
MN ′ = (MN\Di ×Dm−i) ∪ z−1(Di ×Dm−i) .

Any two fundamental domains for M are

related by a sequence of handle exchanges.
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Handle cancellation

• Given f : M → S1 and a choice of funda-

mental domain (MN ;N, z
−1N) can try to

cancel as many handle pairs in fN : MN →
R as possible. Handle cancellations cor-

respond to homotopies f ' f ′ to another

Morse function f ′ :M → S1 with fewer crit-

ical points, keeping N = f−1(a) ⊂M �xed.

• In order to decide if there exists a homo-

topy f ' f ′ to a Morse f ′ with fewer critical
points need to have algebraic description of

all possible choices of N .

• The algebraic theory of surgery has a de-

partment dealing with the algebraic theory

of handle exchanges.
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The algebraic construction of the

Novikov complex (I)

• The Novikov complex can be constructed

algebraically from the Morse-Smale com-

plex of a fundamental domain.

• Given Morse f :M → S1, v ∈ GT (f), a reg-

ular value a ∈ S1, let N = f−1(a) ⊂M . Let

(MN ;N, z
−1N) be the corresponding fun-

damental domain for M = f∗R with Morse

fN = f | :MN → R, vN = v| ∈ GT (fN).

• The handlebody structure

MN = N × [0,1] ∪
m⋃
i=0

⋃
ci(f)

Di ×Dm−i

gives (MN,N) the structure of a relative

CW pair with ci(f) i-cells.
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The algebraic construction of the
Novikov complex (II)

• Given CW structure on N with ci(N) i-cells
obtain CW structures on MN with

ci(MN) = ci(N) + ci(f) i-cells

and a CW structure on M with

ci(M) = ci(N) + ci−1(N) + ci(f) i-cells.

• Let g : C(N) → C(MN) be the inclusion

of chain complexes induced by N ⊂ MN
which is the inclusion of a subcomplex. Let

h : C(z−1N) → C(MN) be the chain map

induced by the inclusion z−1N ⊂MN which

is not the inclusion of a subcomplex.

• The cellular chain complex of M is the al-

gebraic mapping cone C(M) = C(φ) of the
Z[z, z−1]-module chain map

φ = g−zh : C(N)[z, z−1]→ C(MN)[z, z
−1]
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The algebraic construction of the

Novikov complex (III)

• The Z[z, z−1]-module chain map φ induces

a Z((z))-module chain map

φ̂ = g − zh : C(N)((z))→ C(MN)((z))

which is a split injection in each degree,

with contractible kernel (= algebraic model

for closed v-gradient 
ow lines in M).

• Theorem The Novikov complex of a Morse

f :M → S1 for appropriate v ∈ GT (f) is

CNov(M,f, v) = coker(φ̂) .

The projection

C
(
M ;Z((z))

)
= C(φ̂)

→ CNov(M,f, v) = coker(φ̂)

is a chain equivalence: the v-gradient 
ow

lines in M are pieced together from the way

they cross zjMN ⊂M (j ∈ Z).
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