CIRCLE-VALUED MORSE THEORY AND NOVIKOV HOMOLOGY

ANDREW RANICKI (Edinburgh) http://www.maths.ed.ac.uk/~aar

- Traditional Morse theory deals with differentiable real-valued functions $f: M \to \mathbb{R}$ and ordinary homology $H_*(M)$.
- Circle-valued Morse theory deals with differentiable circle-valued functions $f: M \to S^1$ and Novikov homology $H^{Nov}_*(M)$. The circle-valued theory is newer and harder!
- The circle-valued theory has applications to the structure theory of non-simply-connected manifolds, dynamical systems, symplectic topology, Floer theory, Seiberg-Witten theory etc.

Novikov

- S.P.Novikov (1938 –), one of the founding fathers of surgery theory.
- Proved the topological invariance of rational Pontrjagin classes for differentiable manifolds (1965), for which he was awarded the Fields Medal in 1970.
- Last paper in surgery theory (1969) formulated the Novikov conjecture.
- Introduced circle-valued Morse theory in 1981, motivated by physical problems in electromagnetism and fluid mechanics.
- Author of "Topology" (Volume 12 of Encyclopedia of Mathematical Sciences, Springer, 1996) – the best introduction to high-dimensional manifold topology!

The programme

- The geometrically defined Morse-Smale chain complex $C^{MS}(f)$ of a real-valued Morse function $f : M \to \mathbb{R}$ is well-understood. The geometrically defined Novikov chain complex $C^{Nov}(f)$ of a circle-valued Morse function $f : M \to S^1$ is not so well-understood.
- Objective: make the Novikov complex as well-understood as the Morse-Smale complex! Feed algebra back into topology.
- The strategy: lift $f : M \to S^1$ to infinite cyclic covers $\overline{f} : \overline{M} \to \mathbb{R}$ and compare $C^{Nov}(f)$ to $C^{MS}(f_N)$, with $f_N = \overline{f}|: M_N = \overline{f}^{-1}[0, 1] \to [0, 1]$
- The general theory works for arbitrary $\pi_1(M)$. Will concentrate on the 'simply-connected' special case $\pi_1(M) = \mathbb{Z}, \ \pi_1(\overline{M}) = \{1\}.$

Real-valued Morse functions

- A critical point of a differentiable function $f: M \to \mathbb{R}$ is a zero $p \in M$ of $\nabla f: \tau_M \to \tau_{\mathbb{R}}$.
- A critical point $p \in M$ is <u>nondegenerate</u> if

$$f(p + (x_1, x_2, \dots, x_m))$$

= $f(p) - \sum_{j=1}^{i} (x_j)^2 + \sum_{j=i+1}^{m} (x_j)^2$ near p

with *i* the <u>index</u> of *f*. Write $Crit_i(f)$ for the set of index *i* critical points of *f*.

• A function $f: M \to \mathbb{R}$ is <u>Morse</u> if every critical point is nondegenerate. If M is compact and non-empty then a Morse $f: M \to \mathbb{R}$ has a finite number

$$c_i(f) = |\operatorname{Crit}_i(f)| \ge 0$$

of critical points with index *i*. Note that $c_0(f) > 0$, $c_m(f) > 0$ (minimax principle).

Where do real-valued Morse functions come from?

- Nature (= geometry)
- Morse functions $f: M \to \mathbb{R}$ are dense in the space of all differentiable functions on M.
- Morse theory investigates the relationship between the algebraic topology of M and the Morse functions on M. Typical problem: given M, what are the minimum number of critical points of a Morse function $f: M \to \mathbb{R}$? As usual, it is easier to find answer for dim $(M) \ge 5$.

Gradient flow

• A vector field $v : M \to \tau_M$ is gradient-like for a Morse function $f : M \to \mathbb{R}$ if there exists a Riemannian metric \langle , \rangle on M with

$$\langle v,w\rangle = \nabla f(w) \in \mathbb{R} \ (w \in \tau_M)$$
.

• A downward <u>v-gradient flow line</u> $\gamma : \mathbb{R} \to M$ satisfies

$$\gamma'(t) = -v(\gamma(t)) \in \tau_M(\gamma(t)) \quad (t \in \mathbb{R}) .$$

A v-gradient flow line starts at a critical point of index i

$$\lim_{t \to -\infty} = p \in \operatorname{Crit}_i(f)$$

and ends at a critical point of index i-1

$$\lim_{t\to\infty} = q \in \operatorname{Crit}_{i-1}(f) .$$

Morse theory and surgery

- A <u>critical value</u> of Morse $f : M \to \mathbb{R}$ is $f(p) \in \mathbb{R}$ for critical point $p \in M$. Can assume the critical values are distinct, and that $index(p) \leq index(p')$ if f(p) < f(p').
- Write $N_a = f^{-1}(a) \subset M$ for any regular (= non-critical) value $a \in \mathbb{R}$.
- <u>Theorem</u> (Thom, 1949) (i) If $f : M \rightarrow [a, b]$ has no critical values then

 $(M; N_a, N_b) \cong N_a \times ([0, 1]; \{0\}, \{1\})$. (ii) If $f : M \to [a, b]$ has only one critical value $c \in [a, b]$, of index i, then $(M; N_a, N_b)$ is the trace of surgery on $S^{i-1} \times D^{m-i} \subset N_a$ with

$$N_b = (N_a \setminus S^{i-1} \times D^{m-i}) \cup D^i \times S^{m-i-1} ,$$

$$M = N_a \times [0, 1] \cup D^i \times D^{m-i} .$$

7

• A Morse function $f: M \to \mathbb{R}$ determines a handlebody decomposition of M

$$M = \bigcup_{i=0}^{m} \bigcup_{c_i(f)} D^i \times D^{m-i}$$

The Morse-Smale transversality condition

• <u>Theorem</u> (Smale, 1962) For every Morse $f: M \to \mathbb{R}$ there is a class $\mathcal{GT}(f)$ of gradientlike vector fields v for f such that there is only a finite number n(p,q) of v-gradient flow lines from p to q whenever

index(q) = index(p) - 1.

 $\mathcal{GT}(f)$ is dense in the space of all gradientlike vector fields on M.

The Morse-Smale complex

- The Morse-Smale complex $C = C^{MS}(M, f, v)$ for Morse $f : M \to \mathbb{R}$ and $v \in \mathcal{GT}(f)$ is a based f.g. free \mathbb{Z} -module chain complex with $C_i = \mathbb{Z}[\operatorname{Crit}_i(f)].$
- The differentials are given by the signed numbers of *v*-gradient flow lines

$$d : C_i \to C_{i-1} ; p \mapsto \sum_{q \in \operatorname{Crit}_{i-1}(f)} n(p,q)q .$$

• The Morse-Smale complex is the cellular chain complex of the CW structure on Mwith one *i*-cell for each critical point of fof index *i*, $C^{MS}(M, f, v) = C(M)$, so

$$H_*(C^{MS}(M, f, v)) = H_*(M)$$
.

• Can also define C^{MS} for Morse $f: (M; N, N') \rightarrow ([0, 1]; \{0\}, \{1\})$, with $C^{MS}(M, f, v) = C(M, N)$.

The Morse inequalities

• The <u>Betti numbers</u> of a finite CW complex M are defined by

 $b_i(M) = \dim_{\mathbb{Z}}(H_i(M)/T_i(M))$,

 $q_i(M) =$ minimum no. generators of $T_i(M)$ with

 $T_i(M) = \{x \in H_i(M) \mid nx = 0 \text{ for some } n \neq 0 \in \mathbb{Z}\}$ the torsion subgroup of $H_i(M)$.

• <u>Theorem</u> (Morse, 1927) The number $c_i(f)$ of index *i* critical points of a Morse function $f: M \to \mathbb{R}$ is bounded below by

 $c_i(f) \ge b_i(M) + q_i(M) + q_{i-1}(M)$.

<u>Proof</u> A f.g. free \mathbb{Z} -module chain complex C with $H_*(C) = H_*(M)$ must have

 $\dim_{\mathbb{Z}}(C_i) \ge b_i(M) + q_i(M) + q_{i-1}(M) .$ In particular, this applies to $C = C^{MS}(M, f, v).$ The Morse inequalities are sharp for $\pi_1(M) = \{1\}$

• <u>Theorem</u> (Smale, 1962) An *m*-dimensional manifold *M* with $m \ge 5$ and $\pi_1(M) = \{1\}$ admits a Morse function $f: M \to \mathbb{R}$ with

$$c_i(f) = b_i(M) + q_i(M) + q_{i-1}(M)$$
.

- Proved by handle cancellation.
- The situation is much more complicated for $\pi_1(M) \neq \{1\}$. Need algebraic K-theory of the $\mathbb{Z}[\pi_1(M)]$ -module version of $C^{MS}(M, f, v)$ to give sharp bounds on minimum number of critical points of Morse $f: M \to \mathbb{R}$ (Sharko).

Circle-valued Morse functions

- A critical point of a differentiable function $f: M \to S^1$ is zero $p \in M$ of $\nabla f: \tau_M \to \tau_{S^1}$.
- A critical point $p \in M$ is <u>nondegenerate</u> if

$$f(p + (x_1, x_2, \dots, x_m))$$

= $f(p) - \sum_{j=1}^{i} (x_j)^2 + \sum_{j=i+1}^{m} (x_j)^2$ near p

with i the <u>index</u> of f. A function f is <u>Morse</u> if every critical point is nondegenerate.

- If M is compact and non-empty then a Morse $f : M \to S^1$ has a finite number $c_i(f) \ge 0$ of critical points with index i.
- Can define gradient-like $v : M \to \tau_M$, $\mathcal{GT}(f)$ etc., as for the real-valued case.

Where do circle-valued Morse functions come from?

- Nature, cohomology, and knot theory.
- Morse functions $f : M \to S^1$ are dense in the space of all differentiable functions on M representing fixed $c \in H^1(M) = [M, S^1]$.
- Typical problem: given $c \in H^1(M)$ what are the minimum numbers $c_i(f)$ of critical points of a Morse function $f: M \to S^1$ with $f^*(1) = c \in H^1(M)$?
- For $m \ge 6$ can apply the cancellation method of real-valued Morse theory, but the algebraic book-keeping is much harder.
- Circle-valued Morse theory extends to the Morse theory of closed 1-forms, representing classes $c \in H^1(M; \mathbb{R})$.

Fibre bundles over S^1

- The mapping torus of a map $h: N \to N$ is $T(h) = N \times [0,1]/\{(x,0) \sim (h(x),1)\}$, with canonical projection $p: T(h) \to S^1 = [0,1]/(0 \sim 1)$; $[x,t] \mapsto [t]$.
- If h: N → N is a diffeomorphism of a closed (m 1)-dimensional manifold then T(h) is a closed m-dimensional manifold. The projection p: T(h) → S¹ is a <u>fibre bundle</u>, such that p⁻¹(a) ≅ N for each a ∈ S¹. The infinite cyclic cover of T(h)

$$p^*\mathbb{R} = \overline{T(h)} = N \times \mathbb{R}$$

is homotopy equivalent to N.

• A fibre bundle $f: M \to S^1$ is a Morse map with $c_*(f) = 0$.

Fibering obstruction theory

- If $f: M \to S^1$ is homotopic to fibre bundle then $\overline{M} = f^*\mathbb{R}$ is homotopy equivalent to a finite CW complex (= fibre). Stallings (1962): partial converse for 3-manifolds M.
- Browder-Levine (1965) : for $m \ge 6$ a function $f : M^m \to S^1$ with $f_* : \pi_1(M) \cong \mathbb{Z}$ is homotopic to fibre bundle if and only if $\overline{M} = f^*\mathbb{R}$ is homotopy equivalent to a finite CW complex.
- Farrell (1967) and Siebenmann (1970) : for $m \ge 6$ a function $f : M \to S^1$ is homotopic to the projection of a fibre bundle if and only if \overline{M} finitely dominated and a Whitehead group obstruction $\Phi(M) \in$ $Wh(\pi_1(M))$ is $\Phi(M) = 0$.
- Proved by handle cancellation and exchanges.

The Novikov ring

• The ring $\mathbb{Z}[[z]]$ consists of the power series

$$p(z) = \sum_{j=0}^{\infty} n_j z^j \ (n_j \in \mathbb{Z}) \ .$$

Note that $p(z) \in \mathbb{Z}[[z]]$ is a unit if and only if $p(0) = n_0 \in \mathbb{Z}$ is a unit $(= \pm 1)$. Example: 1 - z.

• The Novikov ring

 $\mathbb{Z}((z)) = \mathbb{Z}[[z]][z^{-1}]$ consists of the power series $\sum_{j=-\infty}^{\infty} n_j z^j$ with coefficients $n_j \in \mathbb{Z}$ such that for some $k \in \mathbb{Z}$

$$n_j = 0$$
 for $j < k$.

The real-valued lift of a circle-valued Morse function

- Given Morse $f : M \to S^1$, $v \in \mathcal{GT}(f)$ lift to Morse $\overline{f} : \overline{M} \to \mathbb{R}$, $\overline{v} \in \mathcal{GT}(\overline{f})$. Lift each $p \in \operatorname{Crit}_i(f)$ to $\overline{p} \in \operatorname{Crit}_i(\overline{f})$.
- Choose the generating covering translation $z : \overline{M} \to \overline{M}$ to be the one parallel to $v : M \to \tau_M$, $\langle dz, v \rangle > 0$. In the universal example

$$z$$
 : \overline{S}^1 = $\mathbb{R} \to \mathbb{R}$; $t \mapsto t-1$.

• For any $p \in \operatorname{Crit}_i(f)$, $q \in \operatorname{Crit}_{i-1}(f)$ let

$$k = [\overline{f}(\overline{p}) - \overline{f}(\overline{q})] \in \mathbb{Z}$$
.

The signed numbers $n_j = n(\overline{p}, z^j \overline{q}) \in \mathbb{Z}$ of \overline{v} -gradient flow lines are such that

$$n_j = 0$$
 for $j < k$.

17

The Novikov complex

• The Novikov complex $C = C^{Nov}(M, f, v)$ for Morse $f : M \to S^1$ and $v \in \mathcal{GT}(f)$ is defined geometrically to be the based f.g. free $\mathbb{Z}((z))$ -module chain complex with

$$C_i = \mathbb{Z}((z))[\operatorname{Crit}_i(f)]$$
.

- The differentials are given by the signed numbers of \overline{v} -gradient flow lines
 - $d : C_i \to C_{i-1} ; \overline{p} \mapsto \sum_{q \in \mathsf{Crit}_{i-1}(f)} n(\overline{p}, z^j \overline{q}) z^j \overline{q} .$
- Example $C^{Nov}(M, f, v) = 0$ for fibre bundle.
- <u>Exercise</u> Work out $C^{Nov}(S^1, f, v)$ for $f : S^1 \to S^1$; $[t] \mapsto [4t - 9t^2 + 6t^3]$ $(0 \le t \le 1)$.

Novikov homology

• The Novikov homology of a finite CW complex M with a map $f: M \to S^1$ is defined by

 $H^{Nov}_{*}(M,f) = H_{*}(\mathbb{Z}((z)) \otimes_{\mathbb{Z}[z,z^{-1}]} C(\overline{M}))$ with $\overline{M} = f^{*}\mathbb{R}$. The Novikov homology depends only on the cohomology class

$$c = f^*(1) \in [M, S^1] = H^1(M)$$
.

- <u>Theorem</u> For any map $f: M \to S^1$ on a finite CW complex M the Novikov homology is $H^{Nov}_*(M, f) = 0$ if (and for $\pi_1(\overline{M}) = \{1\}$ only if) \overline{M} is homotopy equivalent to a finite CW complex.
- Example If $f : T(2 : S^1 \to S^1) \to S^1$ is the canonical projection then

 $H_*^{Nov}(T(2), f) = \mathbb{Z}((z))/(2-z) = \widehat{\mathbb{Q}}_2 \neq 0.$

The Novikov complex has Novikov homology

• <u>Theorem</u> (Novikov, 1982) The Novikov complex $C^{Nov}(M, f, v)$ of a Morse function f: $M \to S^1$ is chain equivalent to $\mathbb{Z}((z)) \otimes_{\mathbb{Z}[z,z^{-1}]}$ $C(\overline{M})$, so that

$$H_*(C^{Nov}(M, f, v)) \cong H^{Nov}_*(M, f)$$

- The Novikov complex is directly constructed from $f: M \to S^1$.
- The Novikov homology uses the structure of *M* as a *CW* complex, which in general will have many more cells than there are critical points in *f*.

The Morse-Novikov inequalities

• The <u>Novikov numbers</u> of a finite CW complex M with $f \in H^1(M)$ are defined by $b_i^{Nov}(M, f) = \dim_{\mathbb{Z}((z))}(H_i^{Nov}(M, f)/T_i^{Nov}(M, f))$, $q_i^{Nov}(M, f) = \min$. no. of generators of $T_i^{Nov}(M, f)$ with $T_i^{Nov}(M, f) = \{x \in H_i^{Nov}(M, f) \mid nx = 0 \text{ for some } n \neq 0 \in \mathbb{Z}((z))\}$

the torsion $\mathbb{Z}((z))$ -submodule of $H_i^{Nov}(M, f)$.

• <u>Theorem</u> (Novikov, 1982) The number $c_i(f)$ of index i critical points of a Morse function $f: M \to S^1$ is bounded below by $c_i(f) \ge b_i^{Nov}(M, f) + q_i^{Nov}(M, f) + q_{i-1}^{Nov}(M, f)$. <u>Proof</u> Since $\mathbb{Z}((z))$ is a principal ideal domain, a f.g. free $\mathbb{Z}((z))$ -module chain complex C with $H_*(C) = H_*^{Nov}(M, f)$ must have $\dim_{\mathbb{Z}((z))}(C_i) \ge b_i(M, f) + q_i(M, f) + q_{i-1}(M, f)$.

The Morse-Novikov inequalities are sharp for $\pi_1(M) = \mathbb{Z}$

• <u>Theorem</u> (Farber, 1985) An *m*-dimensional manifold M with $m \ge 6$ and $\pi_1(M) = \mathbb{Z}$ admits a Morse function $f: M \to S^1$ with

 $c_i(f) = b_i^{Nov}(M, f) + q_i^{Nov}(M, f) + q_{i-1}^{Nov}(M, f)$.

- Proved by handle cancellation and handle exchanges.
- The situation is much more complicated for $\pi_1(M) \neq \mathbb{Z}$. Need algebraic K-theory of the $\mathbb{Z}[\pi_1(M)]$ -module version of $C^{Nov}(M, f, v)$ to give sharp bounds on minimum number of critical points of Morse $f : M \to S^1$, with $\mathbb{Z}[\pi_1(M)]$ the Novikov completion of $\mathbb{Z}[\pi_1(M)]$ (Pajitnov).

Geometric fundamental domains

• Given Morse $f: M \to S^1$ and regular value $a \in S^1$ lift to $\overline{a} \in \mathbb{R}$. Cut M along $f^{-1}(a) =$ $N \subset M$ to get fundamental domain $(M_N; N, z^{-1}N) = \overline{f}^{-1}([\overline{a}, \overline{a}+1]; \{\overline{a}\}, \{\overline{a}+1\})$ for the infinite cyclic cover

$$\overline{M} = f^* \mathbb{R} = \bigcup_{j=-\infty}^{\infty} z^j M_N .$$

• The restriction

 $f_N = \overline{f}|: (M_N; N, z^{-1}N) \to ([\overline{a}, \overline{a}+1]; \{\overline{a}\}, \{\overline{a}+1\})$ is a real-valued Morse function with the same numbers of critical points as f

$$c_i(f_N) = c_i(f) .$$

• The Morse theory of circle-valued f is the Morse theory of real-valued f_N for all possible choices of N.

Handle exchanges

- Suppose given a map $f: M \to S^1$ on an mdimensional manifold M and a fundamental domain $(M_N; N, z^{-1}N)$ for $\overline{M} = f^*\mathbb{R}$, with $N = f^{-1}(a)$ for a regular value $a \in S^1$.
- A <u>handle exchange</u> uses an embedding $(D^i \times D^{m-i}, S^{i-1} \times D^{m-i}) \subset (M_N \setminus z^{-1}N, N)$ to obtain another fundamental domain $(M_{N'}; N', z^{-1}N')$ for \overline{M} by $N' = (N \setminus S^{i-1} \times D^{m-i}) \cup D^i \times S^{m-i-1}$, $M_{N'} = (M_N \setminus D^i \times D^{m-i}) \cup z^{-1}(D^i \times D^{m-i})$. Any two fundamental domains for \overline{M} are related by a sequence of handle exchanges.

Handle cancellation

- Given $f: M \to S^1$ and a choice of fundamental domain $(M_N; N, z^{-1}N)$ can try to cancel as many handle pairs in $f_N: M_N \to$ \mathbb{R} as possible. Handle cancellations correspond to homotopies $f \simeq f'$ to another Morse function $f': M \to S^1$ with fewer critical points, keeping $N = f^{-1}(a) \subset M$ fixed.
- In order to decide if there exists a homotopy f ~ f' to a Morse f' with fewer critical points need to have algebraic description of all possible choices of N.
- The algebraic theory of surgery has a department dealing with the algebraic theory of handle exchanges.

The algebraic construction of the Novikov complex (I)

- The Novikov complex can be constructed algebraically from the Morse-Smale complex of a fundamental domain.
- Given Morse $f: M \to S^1$, $v \in \mathcal{GT}(f)$, a regular value $a \in S^1$, let $N = f^{-1}(a) \subset M$. Let $(M_N; N, z^{-1}N)$ be the corresponding fundamental domain for $\overline{M} = f^*\mathbb{R}$ with Morse $f_N = \overline{f}|: M_N \to \mathbb{R}, v_N = \overline{v}| \in \mathcal{GT}(f_N)$.
- The handlebody structure

$$M_N = N \times [0, 1] \cup \bigcup_{i=0}^m \bigcup_{c_i(f)} D^i \times D^{m-i}$$

gives (M_N, N) the structure of a relative CW pair with $c_i(f)$ *i*-cells.

The algebraic construction of the Novikov complex (II)

• Given CW structure on N with $c_i(N)$ *i*-cells obtain CW structures on M_N with

$$c_i(M_N) = c_i(N) + c_i(f)$$
 i-cells

and a CW structure on M with

 $c_i(M) = c_i(N) + c_{i-1}(N) + c_i(f)$ *i*-cells.

- Let $g : C(N) \to C(M_N)$ be the inclusion of chain complexes induced by $N \subset M_N$ which is the inclusion of a subcomplex. Let $h : C(z^{-1}N) \to C(M_N)$ be the chain map induced by the inclusion $z^{-1}N \subset M_N$ which is <u>not</u> the inclusion of a subcomplex.
- The cellular chain complex of \overline{M} is the algebraic mapping cone $C(\overline{M}) = C(\phi)$ of the $\mathbb{Z}[z, z^{-1}]$ -module chain map

$$\phi = g - zh : C(N)[z, z^{-1}] \to C(M_N)[z, z^{-1}]$$

The algebraic construction of the Novikov complex (III)

• The $\mathbb{Z}[z, z^{-1}]$ -module chain map ϕ induces a $\mathbb{Z}((z))$ -module chain map

 $\widehat{\phi} = g - zh : C(N)((z)) \rightarrow C(M_N)((z))$

which is a split injection in each degree, with contractible kernel (= algebraic model for closed v-gradient flow lines in M).

• <u>Theorem</u> The Novikov complex of a Morse $f: M \to S^1$ for appropriate $v \in \mathcal{GT}(f)$ is

$$C^{Nov}(M, f, v) = \operatorname{coker}(\widehat{\phi})$$
.

The projection

$$C(\overline{M}; \mathbb{Z}((z))) = C(\widehat{\phi}) \\ \rightarrow C^{Nov}(M, f, v) = \operatorname{coker}(\widehat{\phi})$$

is a chain equivalence: the \overline{v} -gradient flow lines in \overline{M} are pieced together from the way they cross $z^j M_N \subset \overline{M}$ $(j \in \mathbb{Z})$.