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Traditional Morse theory deals with
differentiable real-valued functions
f: M — R and ordinary homology H.«(M).

Circle-valued Morse theory deals with
differentiable circle-valued functions

f: M — S! and Novikov homology HNOV(M).
T he circle-valued theory is newer and harder!

The circle-valued theory has applications

to the structure theory of non-simply-connected
manifolds, dynamical systems, symplectic
topology, Floer theory, Seiberg-Witten

theory etc.



Novikov

S.P.Novikov (1938 —), one of the founding
fathers of surgery theory.

Proved the topological invariance of
rational Pontrjagin classes for differentiable
manifolds (1965), for which he was awarded
the Fields Medal in 1970.

Last paper in surgery theory (1969)
formulated the Novikov conjecture.

Introduced circle-valued Morse theory in 1981,
motivated by physical problems in electro-
magnetism and fluid mechanics.

Author of " Topology” (Volume 12 of
Encyclopedia of Mathematical Sciences,
Springer, 1996) — the best introduction to
high-dimensional manifold topology!



The programme

The geometrically defined Morse-Smale chain
complex CMS(f) of a real-valued Morse
function f : M — R is well-understood.
The geometrically defined Novikov chain
complex CNov(f) of a circle-valued Morse
function f : M — S1is not so well-understood.

Objective: make the Novikov complex as
well-understood as the Morse-Smale com-
plex! Feed algebra back into topology.

The strategy: lift f : M — S1 to infi-
nite cyclic covers f : M — R and compare
CNov(f) to CM3(fy), with

fN=7:My=7 "0,1] — [0,1]

T he general theory works for arbitrary w1 (M).
Will concentrate on the 'simply-connected’
special case mi(M) =7Z, m1 (M) = {1}.
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Real-valued Morse functions

e A critical point of a differentiable function
f:M—Risazerope M of Vf 1ty — .

e A critical point p € M is nondegenerate if

f(p—l—(.CU]_,a?Q,.. xm))
= f(p) — (33])2 + Z (33])2 near p
]— 1=14+1
with 7 the index of f. Write Crit;(f) for
the set of index ¢ critical points of f.

e A function f: M — R is Morse if every crit-
ical point is nondegenerate. If M is com-
pact and non-empty then a Morse f: M —
R has a finite number

c;(f) = [Crit;(f)| =20
of critical points with index 7. Note that
co(f) >0, em(f) > 0 (minimax principle).
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Where do real-valued Morse functions
come from?

e Nature (= geometry)

e Morse functions f : M — R are dense in the
space of all differentiable functions on M.

e Morse theory investigates the relationship
between the algebraic topology of M and
the Morse functions on M. Typical prob-
lem: given M, what are the minimum num-
ber of critical points of a Morse function
f M — R? As usual, it is easier to find
answer for dim(M) > 5.



Gradient flow

e A vector field v : M — 7 is gradient-like
for a Morse function f : M — R if there
exists a Riemannian metric (, ) on M with

(v,w)y = Vf(w) eR (w € T1yy) .

e A downward v-gradient flow line~vy : R — M
satisfies

Yt = —v(y(®) € () (tER).

A v-gradient flow line starts at a critical
point of index 1

im = pe Crit;(f)

t——0o0

and ends at a critical point of index 7 — 1

im = qe Crit;_1(f) .

t—00



Morse theory and surgery

e A critical value of Morse f : M — R is
f(p) € R for critical point p € M. Can
assume the critical values are distinct, and

that index(p) < index(p’) if f(p) < f(p).

e Write N, = f~1(a) ¢ M for any regular (=
non-critical) value a € R.

e Theorem (Thom, 1949) (i) If f : M — [a, b]
has no critical values then
(M; N&7Nb) = Ng X ([07 1]; {0}7 {1}) .

(ii) If f : M — [a,b] has only one critical
value c € [a,b], of index 4, then (M; Na, Np)
is the trace of surgery on St~ 1x pm—t - N,
with

Ny = (N\S" 1 x D")u Dt x sm—i—1
M = N, x[0,1]UD!x D™




e A Morse function f: M — R determines a
handlebody decomposition of M

m
M= (J |JDxD™",
1=0¢;(f)

The Morse-Smale transversality condition

e Theorem (Smale, 1962) For every Morse
f: M — Rthereis aclass G7 (f) of gradient-
like vector fields v for f such that there is
only a finite number n(p,q) of v-gradient
flow lines from p to g whenever

index(q) = index(p) —1 .

g7 (f) is dense in the space of all gradient-
like vector fields on M.



The Morse-Smale complex

The Morse-Smale complex C = CMS(M, f,v)
for Morse f : M — R and v € G7(f) is a
based f.g. free Z-module chain complex
with C; = Z[Crit;(f)].

The differentials are given by the signed
numbers of v-gradient flow lines

d: C,—C,_1; p— Z n(p,q)q -
qeCrit;_1(f)

The Morse-Smale complex is the cellular
chain complex of the CW structure on M
with one i-cell for each critical point of f
of index i, CMS(M, f,v) = C(M), so

H.(CMS5(M, £,0)) = H(M) .

Can also define CM5 for Morse f: (M; N,N') —
([0,1]; {0}, {1}), with CM5(M, f,v) = C(M, N).
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The Morse inequalities

e [ he Betti numbers of a finite CW complex
M are defined by

bi(M) = dimz(H;(M)/T;(M)) ,
¢;(M) = minimum no. generators of T;(M)
with

T,(M) ={x € H;(M) |nx =0 for somen #* 0 € Z}
the torsion subgroup of H;(M).

e Theorem (Morse, 1927) The number ¢;(f)
of index ¢ critical points of a Morse function
f: M — R is bounded below by

ci(f) > b;(M) + q;(M) + q;—1(M) .

Proof A f.g. free Z-module chain complex
C with H.(C) = H«(M) must have

dimz(C;) > b;(M) + ¢;(M) + g;—1(M) .
In particular, this applies to C = CMS(M, f,v).
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T he Morse inequalities are sharp for
T (M) = {1}

e Theorem (Smale, 1962) An m-dimensional
manifold M with m > 5 and =1 (M) = {1}
admits a Morse function f: M — R with

c;(f) = b(M)+ q;(M) 4+ g;—1(M) .

e Proved by handle cancellation.

e [ he situation is much more complicated
for m¢ (M) # {1}. Need algebraic K-theory
of the Z[x1(M)]-module version of CMS(M, f,v)
to give sharp bounds on minimum num-
ber of critical points of Morse f: M — R
(Sharko).
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Circle-valued Morse functions

e A critical point of a differentiable function
f:M— St iszerope M of Vf i1y — 7q1.

e A critical point p € M is nondegenerate if

f(p + (.CU]_, 372,.. .- 7xm))
= f(p) — 'Zl(xj)z +
j=

™m
> (z;)? near p
—it1

J
with ¢ the index of f. A function f is Morse
If every critical point is hondegenerate.

o If M is compact and non-empty then a
Morse f : M — S! has a finite number
c;(f) > 0 of critical points with index 1.

e Can define gradient-like v : M — 77, G7 (f)
etc., as for the real-valued case.
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Where do circle-valued Morse functions
come from??

e Nature, cohomology, and knot theory.

e Morse functions f : M — S are dense in
the space of all differentiable functions on
M representing fixed ¢ € H1(M) = [M, S1].

e Typical problem: given ¢ € HY(M) what
are the minimum numbers ¢;(f) of critical
points of a Morse function f : M — S1 with
f*(1) =ce H(M)?

e Form > 6 can apply the cancellation method
of real-valued Morse theory, but the alge-
braic book-keeping is much harder.

e Circle-valued Morse theory extends to the
Morse theory of closed 1-forms, represent-
ing classes c € H1(M: R).
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Fibre bundles over S1

e T he mapping torus of a map h: N — N is
T(h) = N x[0,1]/{(z,0) ~ (h(x),1)} ,

with canonical projection

p:T(h) — S*=1[0,1]/(0~ 1) ; [z,t]— [t] .

e Ifh: N — N isadiffetomorphism of a closed
(m — 1)-dimensional manifold then T'(h) is
a closed m-dimensional manifold. The pro-
jection p: T(h) — Sl is a fibre bundle, such
that p~1(a) &2 N for each a € S1. The infi-
nite cyclic cover of T'(h)

p’R = T(h) =N xR

IS homotopy equivalent to N.

e A fibre bundle f: M — Sl is a Morse map
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Fibering obstruction theory

If f: M — S is homotopic to fibre bundle
then M = f*R is homotopy equivalent to
a finite CW complex (= fibre). Stallings
(1962): partial converse for 3-manifolds M.

Browder-Levine (1965) : for m > 6 a func-
tion f : M™ — S1 with fi : m(M) £ Z
IS homotopic to fibre bundle if and only if
M = f*R is homotopy equivalent to a finite
CW complex.

Farrell (1967) and Siebenmann (1970) :
for m > 6 a function f : M — S is ho-
motopic to the projection of a fibre bun-
dle if and only if M finitely dominated and
a Whitehead group obstruction ®(M) €
Wh(m1(M)) is (M) = 0.

Proved by handle cancellation and exchanges.
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The Novikov ring

e The ring Z[[z]] consists of the power series

oo

p(z) = Z njzj (n; €Z) .

j=0

Note that p(z) € Z[[z]] is a unit if and only
if p(0) =ng € Zis a unit (= £+1). Example:
l1—z.

e T he Novikov ring

Z((z)) = Z[[2]l[z""]

©.@) .
consists of the power series | > nsz with
J=—00
coefficients n; € Z, such that for some k € Z

n; = 0 for 3 <k.
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The real-valued lift of a circle-valued
Morse function

e Given Morse f: M — S, v e GT(f) lift to
Morse f: M — R, v € GT(f). Lift each
p e Crit;,(f) top e Cl’iti(?).

e Choose the generating covering translation
z: M — M to be the one parallel to v :
M — 17, {(dz,v) > 0. In the universal ex-
ample

2 S = RoR: t—t—1.

e For any p € Crit;(f), q € Crit,_1(f) let

k= [f(p)-f@]€Z.
The signed numbers n; = n(p, 27g) € Z of
v-gradient flow lines are such that

n; = 0 for 3 <k.
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The Novikov complex

The Novikov complex C = CNov(M, f,v)
for Morse f : M — S and v € GT(f) is
defined geometrically to be the based f.g.
free Z((z))-module chain complex with

Ci = Z((2))[Crit;(f)] .

The differentials are given by the signed
numbers of v-gradient flow lines

d: Ci—Ci1;p— Y n@I9I7.
qeCrit;_1(f)

Example CNoV(M, f,v) = O for fibre bundle.

Exercise Work out CNov(sl £ v) for

£t 58t 1] — [4t—9t°4613] (0<t<1).
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Novikov homology

e T he Novikov homology of a finite CW com-
plex M with a map f: M — Sl is defined

by
HY(M, f) = HJ(Z((2)) ®g, .1 C(3D))

with M = f*R. The Novikov homology
depends only on the cohomology class

c = f(1)e[M, S = HI(M) .

e Theorem For any map f: M — S on a fi-
nite CW complex M the Novikov homology
is HNov(M, f) = 0 if (and for n1 (M) = {1}
only if) M is homotopy equivalent to a fi-
nite CW complex.

e Example If f:T(2:S! — s1) = sl is the
canonical projection then

HY(T(2), f) = Z((2))/(2=2) = Q2 #0.
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The Novikov complex has Novikov
homology

e Theorem (Novikov, 1982) The Novikov com-
plex CNov( M, f,v) of a Morse function f :
M — S1is chain equivalent to Z((2))®z, -1
C(M), so that

H*(CNOU(M7]C7U)) = H>I{VOU(M7]C) .

e [ he Novikov complex is directly constructed
from f: M — S1.

e [ he Novikov homology uses the structure
of M as a CW complex, which in general
will have many more cells than there are
critical points in f.
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The Morse-Novikov inequalities

e T he Novikov numbers of a finite CW com-
plex M with f € H1(M) are defined by

bNOV(M, f) = dimg ) (HN(M, f)/TN(M, f))
gNov(M, f) = min. no. of generators of T/N°V(M, f
with
TNV (M, f) = {z € H¥*"(M, f) |
nx = 0 for some n# 0 € Z((z))}
the torsion Z((z))-submodule of H;¥oU(M, f).

e Theorem (Novikov, 1982) The number ¢;(f)
of index ¢ critical points of a Morse func-
tion f: M — Sl is bounded below by

ci(f) = b (M, f)+al 7 (M, /)44 7 (M, [) .
Proof Since Z((z)) is a principal ideal do-

main, a f.g. free Z((z))-module chain com-
plex C with H«(C) = HN°V(M, f) must have
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The Morse-Novikov inequalities are sharp
for mi{(M) =27

e Theorem (Farber, 1985) An m-dimensional
manifold M with m > 6 and mi(M) = Z
admits a Morse function f: M — St with

ci(f) = bNOV(M, f)+q (M, £)+¢N (M, f) .

e Proved by handle cancellation and handle
exchanges.

e [ he situation is much more complicated
for my (M) # Z. Need algebraic K-theory of
the Z[71(M)]-module version of CNOV(M, f,v)
to give sharp bounds on minimum number
of critical points of Morse f : M — S1,
with Z[W}] the Novikov completion of
Zm1(M)] (Pajitnov).
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Geometric fundamental domains

e Given Morse f: M — S! and regular value
a € Sllifttoa e R. Cut M along f~1(a) =
N C M to get fundamental domain

(My; N,z"'N) = 7 '(la,a+1]; {a}, {a+1})

for the infinite cyclic cover

o0 .

j=—00

e [ he restriction

fn =7 (My; N, 27 tN) — ([a,a+1]; {a}, {a+1})
IS a real-valued Morse function with the
same numbers of critical points as f

ci(fn) = c(f) .

e The Morse theory of circle-valued f is the
Morse theory of real-valued fj for all possible
choices of N.
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Handle exchanges

e Suppose given a map f: M — St on an m-
dimensional manifold M and a fundamental
domain (My; N,z 1N) for M = f*R, with
N = f—1(a) for a regular value a € St

e A handle exchange uses an embedding

(D' x D™, 81 x D™ %) ¢ (My\z" 1N, N)
to obtain another fundamental domain
(Mpy+ N, z7IN") for M by

N' = (N\S*~1 x D) u Dt x sm—i—1
Mpyr = (MN\D* x D) U 2z~ 1(D* x D™7%) .

Any two fundamental domains for M are
related by a sequence of handle exchanges.
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Handle cancellation

e Given f: M — S1 and a choice of funda-
mental domain (My; N,z 1N) can try to
cancel as many handle pairs in fy : My —
R as possible. Handle cancellations cor-
respond to homotopies f ~ f’ to another
Morse function f': M — S1 with fewer crit-
ical points, keeping N = f~1(a) C M fixed.

e In order to decide if there exists a homo-
topy f ~ f’ to a Morse f’ with fewer critical
points need to have algebraic description of
all possible choices of V.

e T he algebraic theory of surgery has a de-
partment dealing with the algebraic theory
of handle exchanges.
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T he algebraic construction of the
Novikov complex (I)

e [ he Novikov complex can be constructed
algebraically from the Morse-Smale com-
plex of a fundamental domain.

e Given Morse f: M — S, v e GT(f), a reg-
ular value a € S, let N = f~1(a) c M. Let
(Mpy; N, 2~1N) be the corresponding fun-
damental domain for M = f*R with Morse
fn=1fl: My —R, vy =7| € GT(fn).

e [ he handlebody structure

m . .
My = Nx|[0,1]u |J |J D*xD™™"
1=0¢;(f)
gives (Mpy,N) the structure of a relative
CW pair with ¢;(f) i-cells.

26



T he algebraic construction of the
Novikov complex (II)

e Given CW structure on N with ¢;(N) i-cells
obtain CW structures on M with

c;(My) = c;(N) +c;(f) i-cells
and a CW structure on M with

c;(M) = ¢;(N)+c;—1(N) + ¢;(f) i-cells.

o Let g : C(N) — C(Mp) be the inclusion
of chain complexes induced by N C My
which is the inclusion of a subcomplex. Let
h:C(z"IN) - C(My) be the chain map
induced by the inclusion z=1N C My which
IS not the inclusion of a subcomplex.

e The cellular chain complex of M is the al-
gebraic mapping cone C(M) = C(¢) of the
Z[z, z—1]-module chain map

¢ = g—zh : C(N)[z,27 ] — C(Mn)[z,271]
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T he algebraic construction of the
Novikov complex (III)

e The Z[z, z~1]-module chain map ¢ induces
a Z((z))-module chain map

AN

¢ = g—zh 1 C(N)((2)) = C(Mp)((2))
which is a split injection in each degree,

with contractible kernel (= algebraic model
for closed v-gradient flow lines in M).

e [ heorem The Novikov complex of a Morse
f: M — Sl for appropriate v € GT(f) is
cNov(M, f,0) = coker(d) .
The projection
C(MZ((2))) = C(¢) i
— CNOY(M, f,v) = coker(¢)

IS @ chain equivalence: the v-gradient flow
lines in M are pieced together from the way
they cross /My C M (5 € 7).
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