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Introduction

» The talk will describe:
» the localization X71A of a ring A inverting a set X of
A-module morphisms,

» the exact sequences relating the algebraic K- and
[-groups of A and XA,

» the applications to manifolds with fundamental group
a generalized free product or an HNN extension, and
to submanifolds of codimension 1 and 2.
» These topics have been studied for nearly 50 years by many
authors — notably Pierre Vogel.




Absolute and relative K- and L-groups

» The absolute algebraic K- and L-groups K.(A), L.(A) of a
ring A are defined using the subcategory

Proj(A) = {f.g. projective A-modules} C Mod(A) = {A-modules} .

Need an involution on A for L-theory.

» For a ring morphism f : A — B use the (B, A)-bimodule
structure on B

BxBxA—B; (bx,a)— bx.f(a).
to define the change of rings functor
B®a— : Mod(A) = Mod(B) ; M— B®a M

» Can use B ®4 — : Proj(A) — Proj(B) to define the relative
K- and L-groups K.(f), Li(f) with long exact sequences

o ——= Kp(A) — Ki(B) —— Ki(f) — Kn-1(A) —— -
oo ——Lp(A) ——=L(B) ——=Ly(f) ——= Lp—1(A) —— - - - -



The universal localization |.

» A =ring, ¥ = a set of morphisms s : P — Q in Proj(A).
» A ring morphism A — B is 2-inverting if the induced
morphisms in Proj(B)

1®s : BRaAP—>B®aQ (s€X)

are isomorphisms.

» A universal localization of A is a 2-inverting morphism
A — Y1 A with the universal property : for any X-inverting
morphism A — B there is a unique factorization

A\ZlA/ B

If A— Y 1A exists, it is unique up to isomorphism.
> In general Proj(A) — Proj(¥X7!A) is not a localization of
categories in the sense of Verdier, Zisman etc.




Localization in algebraic K- and L-theory

» A — Y 1A induces the change of rings functor
> 1 : Mod(A) = Mod(ZtA); M= X M =3x"1AcyA.

» (Milnor, Bass, Quillen, Karoubi, Pardon, R., Vogel, Schofield,
Neeman-R., ..., 1960's — now) For certain A — Y 1A

KiA—= X tA) = K_1(T(A X)), L(A—= T tA) = L(T(A X))

with T (A, X) the torsion exact category of homological
dimension 1 A-modules M with

Y IM = 0.

Such expressions of relative K- and L-groups as absolute K-
and L-groups are always interesting!

> Pierre Vogel (1980's) pioneered the use of noncommutative
localization in study of knots and links. Motivated by the Wall
surgery obstruction L-theory, the Cappell-Shaneson homology
surgery [-theory and the algebraic theory of surgery (R.).



Some applications of the torsion
K- and L-groups to topology |I.

» A=Z Y 1A=Q, T(A X) = {finite abelian groups}.
Q/Z-valued linking forms in T(A, X) for arbitrary manifolds
M, on T,(M) = torsion(H.(M)) (Seifert, deRham 1930’s).

» A=Z[t,t71] = X1 A = quotient field : the Reidemeister
torsion of knots S” C $"™2 (Milnor), and the Blanchfield
linking form for knot complement $"72\S" (1950-1960's).

» A map h: M™ — X™ of m-dimensional manifolds can be
made transverse at an n-dimensional submanifold Y" C X,
with N" = h=1(Y) C M also an n-dimensional submanifold.
If his a homotopy equivalence the restriction h| : N — Y will
not in general be a homotopy equivalence.

» Surgery splitting obstruction theory for m—n=1or 2 is
closely related to the K- and L-groups of appropriate universal
localizations A = Z[r1(X)] — X tA. (1970 — ..., still work
in progress).



Some applications of the torsion
K- and L-groups to topology II.

m — n = 2. The computation of the cobordism groups C, of
knots S” C S™2 in dimensions high (n > 2 Kervaire, Levine
1970) and low (Cochran-Orr-Teichner 2001, n = 1).
Homology surgery theory (Cappell-Shaneson, 1970’s)

The computation of the high-dimensional boundary link
cobordism groups (Duval 1984, Sheiham 2003).
m—n=1.If Y"C X" is 2-sided 71(X) has the structure
of a generalized free product or an HNN extension

m(Y) —__ m(X\Y).

If m71(Y) — m1(X) is injective Waldhausen and Cappell
(1970's) have decomposed K, (Z[m1(X)]) and L.(Z[r1(X)]),
with splitting obstructions in Nil- and UNil-groups for n > 5.
Can interpret decompositions in terms of the K- and L-groups
of a certain universal localization A — ¥ ~1A, with the Nil-
and UNil-obstructions living in the torsion K- and L-groups.



Commutative localization of rings

The localization of a ring A inverting a multiplicatively closed
subset S C A of central non-zero divisors with 1 € S is the
ring ST1A of fractions a/s (a € A,s € S), where

a/s = b/t if and only if at = bs .
Usual addition and multiplication
a/s+ b/t = (at+ bs)/(st), (a/s)(b/t) = (as)/(bt) .

» The canonical morphism A — S71A; 2+ a/1 is injective.
» Localization is a direct limit, with an isomorphism of rings

: S = _
Im;(A%A%---) —> S71A; [a]— a/s .
sE

If A is commutative and P8 € spec(A) is a prime ideal the
localization (A\)*A = Ag is a local ring, corresponding to
the "localization” of an algebraic variety at the point ‘.



The classical ring of noncommutative fractions

Let A be a ring. A multiplicatively closed subset > C A of
non-zero divisors satisfies the Ore condition if for all a € A,
sE€ Y thereexist be A, t € X with ta= bs € A.

The classical ring of fractions or Ore localization ¥ 1A is
the ring of noncommutative fractions

YTIA = (ExA)/ ~
with (s, a) ~ (t, b) iff there exist u, v € A that
us = vtex , ua = vbeA.

> ~1A is the universal localization of A inverting X.
Injective canonical ring morphism

A=Y A a—(1,a).

Ore localization can be used to construct quotient skewfield
S—1A of certain noncommutative " integral domain” A.
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The universal localization II.

» Theorem (P.M. Cohn, 1971, G.M. Bergman 1974)
A universal localization A — ¥ 1A exists for any ring A and
any set ¥ of morphisms in Proj(A).

» Proof By generators and relations.
» Example Let ¥ = {s: A" — A"}, with

s = (sj)i<ij<n »Sij EA.

The universal localization X1 A is defined by adding to A the
n> entries sfj of a formal inverse s’ = s~!, and setting the

relations given by

» In general, A— Y ~1Ais not injective, and it is even possible
that LA =0, eg if0€X.
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The normal form |I.

» (Gerasimov, Malcolmson, 1981) Assume % consists of all the
morphisms s : P — Q in Proj(A) such that
1®s: X 1P — ¥71Q is an isomorphism in Proj(X~1A).
(Can enlarge any ¥ to have this). Then every element
x € ¥ 1A is (non-uniquely) of the form x = fs~1g for some

(s:P—=>Q)eX, f:P—-A g:A=>Q).

» For f.g. projective A-modules M, N every ¥ ! A-module
morphism x : ¥ 1M — Y71 N is of the form x = fs—1g for
some

(s:P—=>Q)ex, f:P>N,g-M—=Q).

NN

Addition by fs7lg + s’ lg = (fo f)(sds) Hgdg) .
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The normal form IlI.

» For f.g. projective M, N, a ¥ "1 A-module morphism
fslg: Y IM — 71N is such that fs~'g = 0 if and only if
there is a commutative diagram of A-module morphisms

/s 0 0 g
0 s1 0 O
0 0 s &
\f 1 0 0
PeoPie P& M RERQLP QBN
(p p1 p2 m) (0 &1 a0 n)
L

. T
with s,s1,9,(p p1 P2),(¢ q1 q) €L
(Exercise: check that diagram = fs~1g = 0).
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Noncommutative localization via chain complexes

For any A-module chain complexes C, D let [C, D] be the
group of chain homotopy classes of chain maps C — D.
(Vogel 1982, Neeman+R 2001) For any A, ¥ and finite chain
complex C in Proj(A) define the A-module chain complex
E(C) = “ﬂ B
with C — B chain maps in Proj(A) such that B is finite and
H (X 'C) = H.(Z7'B).

There is a canonical chain homotopy class of A-module chain
maps E(C) — X71C. In general, the A-module morphisms
H.(E(C)) = lim H.(B) — H.(X~1C) are not isomorphisms.
Universal coefficient spectral sequence

E? = Tor (X 7'A H/(E(A))) =

H (X 1E(A) = {g’O(E(A)) =2 1A : i i (1).
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Chain complex interpretation of the normal form

» fs~lg € ¥71Ais a chain homotopy class of chain maps
(f,s,g): A— E(A).

P E(A)l

5 )

A—=QOA——=E(A)——=1 1A
(fs_l —1)
» fslg =0€c X 1A if and only if there exists chain homotopy
m:(f,s,g)~0:A— E(A). Take P1 =P, =@Q1 = Q=0
for simplicity:

p—P E(A);

AR 1 N O

A/ QEA——Qd A—— E(A)
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Homology and cohomology with coefficients

» Given a connected CW complex X let A = Z[mr1(X)], and let
C(X) be the free A-module cellular chain complex of the
universal cover X.

» Given a ring morphism f : A = Z[m1(X)] — B define the
B-coefficient homology and cohomology of X to be the
B-modules

H.(X;B) = H.(B@a C(X)),
H*(X; B) = H,(Homg(B ®a C(X),B)) .

» Ifi: Y — X is a map of connected CW complexes which
induces an isomorphism of B-coefficient homology
ix © He(Y;B) =2 Hi(X;B)
the relative A-module chain complex

C = algebraic mapping cone(i : C(Y) — C(X))
is B-contractible, with Y = i*X the pullback cover of Y.
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The universal localization of a ring morphism

» Example (Vogel, 1982) Given a ring morphism f : A — B let
Y be the set of morphisms s: P — Q@ in Proj(A) such that

1®s : BRIaP — B®aQ
is an isomorphism in Proj(B). Then f factorizes as

f+ Ay 1A B,

» In favourable circumstances a finite chain complex C in
Proj(A) has H,(B®4 C) =0 if and only if H,(X"1C) = 0.

» Proposition (Dicks-Sontag 1978, Farber-Vogel 1992,
Ara-Dicks 2007) For > 1 let f : A =Z[F,] = B = Z be the
augmentation F, — 1, and let

Y = {s:A* 5 AK|1®s: BX — B¥invertible} .

Then T 7'Z[F,] is such that a finite chain complex C in
Proj(A) has H,(B®4 C) =0 if and only if H,(X"1C) =0,
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Noncommutative localization and codimension 2 knotting

» Let i : N" C M™?2 be a codimension 2 embedding with
exterior P = M\ N. Assume a factorization

A = Z[r(P)] = X A= B = Z[ri(M)]
such that a finite chain complex C in Proj(A) has

H.(B®4 C) =0 if and only if H,(X 1C) = 0.
» The Alexander duality isomorphisms

H.(P; B) = H" *(M,N; B)

show that H,(P; B) depends only on the homotopy class of /,
and does not detect knotting.

» The fundamental group 71(P) detects unknotting using group
theory. The homology H,(P; X ~1A) detects unknotting using
homological algebra.

» Example For boundary links N" = | JS" € M2 = §"+2 yse

7

A=ZF]—-X'A-B = 7.
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Modules over a universal localization

Proposition A ¥ ' A-module M is an A-module such that the
A-module morphism

M%Z_lM; x—1® x

IS an isomorphism.

Proof The A-module morphism
SIAS T AT A x = 1@ x

IS an isomorphism.

Definition A ¥ 1A-module N is induced if N = X1 M for
an A-module M.

In favourable cases it is possible to express the algebraic K-
and L-theory of ¥ 1A in terms of A-modules.
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An Ore localization A — Y 1A is flat

» Proposition (i) For any induced ¥ ! A-module chain complex
D there exists an A-module chain complex C with D =¥ ~1C.
(ii) D is chain contractible if and only if there exist A-module
morphisms I : C, — C,1 with the ¥ 1 A-module morphisms

1 (dr+rd) : ¥ ¢, - ¥71¢

isomorphisms.
» Corollary 1 ¥ 1A is a flat A-module: the functor
> 1 :Mod(A) — Mod(X71A) is exact. In fact, an A-module
sequence M — M’ — M" is exact if and only if the
¥ 1 A-module sequence ¥ M — ¥ IM' — ¥=IM" is exact.

» Corollary 2 For any A-module M
TorM(ZAM) = 0(i>1).
» Corollary 3 For any A-module chain complex C
H (X 'C) = ¥ 'H,.(C) .
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A universal localization A — Y 1A need not be flat

» In general, if M is an A-module and C is an A-module chain
complex

Tor (XA M) #£0, H(Z71C) # X7 1H,(C) .

» Example The universal cover of the complement St v St of
the trivial link S* U St C S3. Let xq, xo be noncommuting
indeterminates over Z. The universal localization ¥ 1A of
A = Z(x1, xp) inverting ¥ = {x1} is not flat. The
1-dimensional f.g. free A-module chain complex

dC:(X1X2) - (G4 = ApA—->C = A
is a resolution of Hy(C) = Z, with H;(C) = 0 and
Hi(X71C) = Tor (XA Ho(C)) = A4S 1H(C) = 0.

» Proposition X 1A is a flat A-module if and only if ¥"*A is
an Ore localization (Beachy, Teichner, 2003).
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Chain complex lifting

A lift of a f.g. free ¥ 1 A-module chain complex D is a
f.g. projective A-module chain complex C with a chain
equivalence ¥~1C ~ D.

For an Ore localization £¥~1A one can lift every n-dimensional
fg. free Y1 A-module chain complex D, for any n > 0.

For a universal localization X1 A one can only lift for n < 2 in
general.

Proposition (Neeman+R 2001) For n > 3 there are lifting
obstructions in Tor? (X 1A, X "1A) for i > 2.

Tor (1A, X71A) = 0 always.

(Krause, 2005) General result characterizing the localizations
such that
chain complex lifting = localization of triangulated categories
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Stable flatness

Definition A universal localization X! A is stably flat if
TorM(Z 1A T7IA) =0 (i>2).

> ~1A is stably flat if and only if H;(E(A)) =0 for all i > 0, if
and only if E(C) — X ~1C is a homology equivalence for
every finite chain complex C in Proj(A).

For stably flat X 1A have stable exactness:

Ho(X7'C) = H.(E(C)) = lim T H.(B) .
B
with the limit taken over all the chain maps C — B in
Proj(A) such that B is finite and H,(X1C) = H, (X !B).
Flat = stably flat. If ¥"1A is flat (i.e. an Ore localization)
TorM(ZAM) =0 (i>1)

for every A-module M. The special case M = ¥ 1A gives
that ¥~ !A is stably flat.
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A universal localization which is not stably flat

» Given a ring extension R C S and an S-module M let
K(M) = ker(S®@r M — M) .

» Theorem (Neeman, R. and Schofield, 2005)
(i) The universal localization of the ring

R S S
A= |0 R S| = P1®P,® Ps3(columns)
0 0 R

inverting ¥ = {P; C P>, P, C P3}is L71A = Mz(S).
(ii) If S is a flat R-module then

Tord (X71A Z71A) = ML(K"(S)) (n>3).
(iii) If R is a field and dimg(S) = d then

K"(S) = K(K(...K(5)...)) = R-1"d
If d > 2, eg. S = R[x]/(x%), then ~1A is not stably flat.
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Change of rings in algebraic K-theory

K.(A) = K.(Proj(A)) (Bass, Quillen).
A finite chain complex C in Proj(A) has a projective class

©@,

[C] = Z(—)r[Cr] € Ko(A) = {projective class group} .
r=0

For a contractible finite chain complex C in Proj(A) a choice

of bases determines the Whitehead torsion using any chain
contraction [ :0~1:C — C

T(C) = T(d—I— [ Codd — Ceven) - Kl(A) .

For f : A— B a B-contractible finite chain complex C in
Proj(A) with [C] =0 € Ky(A) has a Reidemeister torsion

T(B@AC) - im(Kl(B) — Kl(f)) = coker(f* : Kl(A) — Kl(B))

using any choice of bases for C.
(Milnor 1966) Algebraic K-theory interpretation of the
Reidemeister torsion of a knot using A = Z[t, t71] — B = Q°.
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The algebraic K-theory localization exact sequence |.

Assume each (s: P — Q) € X is injective and A — Y 1A is
injective. The torsion exact category T (A, %) has objects
A-modules T with 71T = 0, hom.dim.(T) = 1.

Example T = coker(s) for s € ¥.

Theorem (Bass, 1968 for central, Schofield, 1985 for
universal ¥ 1 A). Exact sequence

Ki(A) — Ki(X71A) 9 Ko(T(A, X)) — Ko(A) — Ko(X7tA)
O(r(fs~lg : X7IM — T7IN)) (M, N based f.g. free)

= [coker( (Z 2) PO®M — N® Q)| — |coker(s: P — Q)] .

Example If A=7, ¥ = Z\{0} then
Y 1A = Q, T(AX) = {finite abelian groups} ,
0 : coker(Ki(A) — Ki(Z71A)) = Q°/{£1} —~
Ko(T(A L) = @D, imeZ: P" = (0,...,0,n,0,...) .
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The algebraic K-theory localization exact sequence Il.

» Example The boundary map in the Schofield exact sequence
for an injective universal localization A — ¥ 1A

0+ Ki(ZtA) = Ko(T(A, X)) ; 7(D)— [C]

sends the Whitehead torsion 7(D) of a contractible based
f.g. free ¥ "1 A-module chain complex D to the projective class

[C] of any f.g. projective A-module chain complex C such
that ¥~1C ~ D.

» Theorem (Quillen, 1972, Grayson, 1980) Higher K-theory
localization exact sequence for Ore localization X1 A, by
flatness

oo = Kp(A) = Ka(Z72A) = K1 (T(A X)) = Ko (A) — ..
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The algebraic K-theory localization exact sequence lll.

» Theorem gNeeman + R., 2001)
If A— 27"A s injective and stably flat then :

» there is a 'fibration sequence of exact categories’
T(A,X) — Proj(A) — Proj(X~'A)

(actually need chain complexes)

» every induced f.g. projective X "1 A-module chain complex can
be lifted,
» there is a localization exact sequence

o= Kn(A) = Ka(Z71A) = K1 (T(A D)) = Kao1(A) — ..

» e-print RA.0109118, Geometry and Topology (2004)
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Algebraic L-theory

Let A be an associative ring with 1, and with an involution
A — A;a+— 3 used to identify

left A-modules = right A-modules .

Example A group ring A = Z[r] with g = g1 for g € 7.
The quadratic L-group L,(A) is the abelian group of
cobordism classes (C, 1) of n-dimensional f.g. free A-module
chain complexes C with an n-dimensional quadratic Poincaré

duality
Y - H'*(C) = H,(C).

Li(A) = Li.14(A) are the Wall (1970) surgery obstruction
groups.

L,;(A) = Witt group of (—)'-hermitian forms on f.g. free
A-modules.
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The algebraic L-theory localization exact sequence

» Theorem (Karoubi, Pardon (1970’s) for commutative
localization, R. (1980) for Ore localization, Vogel (1982) for
universal localization)

For any injective universal localization A — £ ~1A of rings
with involution T(A,X) — P(A) — P(X"1A) determines an
exact localization sequences

o= Lp(A) = Ly(Z7YA) = Ly(T(A X)) = Looi(A) — ...

» Suppose that A — ¥ 1A — B is such that a finite chain
complex C in Proj(A) has H,(B ®4 C) = 0 if and only if
H (X 1C)=0. Then L, (X A) =T,(A — B) are the
Cappell-Shaneson homology surgery obstruction groups.

> L5;(T(A X)) = Witt group of Y1 A/A-valued (—)'-hermitian
linking forms on modules in T(A,X).



Morita theory
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» For any ring R and k > 1 let Mi(R) be the ring of k x k

matrices in R.

» Proposition The functors

i

{R-modules} — {My(R)-modules} ; M —

\#,

{M(R)-modules} — {R-modules} ;

®RM7

N—(RR ... R)®ur) N

are inverse equivalences of categories.

» Proposition K,(M,(R)) = K.(R), and for a ring with

involution L(Mx(R)) = L.(R).
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Triangular matrix rings

Given rings A1, A> and an (Az, Az)-bimodule B define the
triangular matrix ring

(AL B
A_(O A2>'

Proposition 1 The A-module category Mod(A) is equivalent
to the category of triples M = (My, M, i) with M; an
Ai-module, M> an Ay-module and p: B ®a, Mo — My an
Ai-module morphism.

Proposition 2 The functor

Proj(A) — Proj(Al) X Proj(Ag) . M = (Ml, MQ,,u) >
((A1 B) ®@a M, (0 A2) ®a M) = (coker(u), Mz)
induces isomorphisms

K(A) = Ki(A)© Ki(A) .



32

The universal localizations of a triangular matrix ring |I.

» The columns of A = (’L(\)l f) are f.g. projective A-modules
2

Pl — (l?)l) — (A17070)7

Py = (Z) (B, Ay, 1)

such that P; ¢ P, = A.

» Proposition If A — C is a ring morphism such that there is a
C-module isomorphism C ®4 P;1 =2 C ®4 P> then C = M(R)
is the 2 x 2 matrix ring of R = End¢(C ®4 P1). The change
of rings A — C = M,(R) is the assembly functor

Mod(A) — Mod(C) ~ Mod(R) ; M— (R R)®a M

= coker(R XA, B XA, M; — (R XA, Ml) D (R XA, Mz)) :
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The universal localizations of a triangular matrix ring Il.

» Theorem (Schofield, Bergman, R., Sheiham 1974-2005)

Let A = (/(\)1 f) s € B. The universal localization of A
2

= () ne(5)n-(2)

Y 1A = My(R)

with R the ring with one generator x;, for each b € B, and
relations

> Xp + Xpr = Xp+b/ for all b, b € B,

Inverting

> X.sXp = Xop for all a € Ay, b € B,

» X. = 1.
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The stable flathess theorem

Theorem If B, R are flat A;-modules and B is a flat right
A>-module then the universal localization

_ (A1 B 1,
A = (o A2>%z A = My(R)

is stably flat.

R

Proof The A-module M = <R

) has a 1-dimensional flat

A-module resolution

0 (5 24, R — Al a4, R & 5 ®a, R— M — 0
0 0 A

and hence so does Y 1A= Mo M.

Remark Tor{((A; 0), M) = ker(B ®4, R — R), so in general
Y LA is not flat.
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HNN extensions

» The HNN extension ring of ring morphisms i1,/ : S — R is
Rxi i, {t} = R*xZ/{i(x)t=ti(x)|xe S}.
For j = 1,2 let R = R with (R, S)-bimodule structure
Rx R xS—=Rj; (q,r,s)— gqrii(s) .

» The universal localization of A = (Ig R ? R2> inverting

S = 5,5 (’3’) R (RlQ;R?)} s

SIA = Mo(Rxyp, {t)) .

» Proposition If i1,i> : S — R are split injections and Ry, R»
are flat S-modules then A — ¥ ~1A is injective and stably flat.
The algebraic K-theory localization exact sequence has

Kn(A) — Kn(R) D Kn(s) ; Kn(z_lA) — Kn(R *i1, i {t}) ;
Ka(T(A X)) = Kn(S)® K,(S) ® Waldhausen- Nil,, .
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Amalgamated free products

The amalgamated free product R; x5 R» is defined for ring
morphisms S — R;, $ — R».

R 0 R
The universal localizationof A= | 0 R, R, | inverting
o 0 S
R R 0 R
> = {512 0 — R2 , SO Rz — R2 }
0 S 0 S

is Y 1A= M3(R1 *g RQ).
Proposition If S — Ry, S — R» are split injections with
Ri, R> flat S-modules then A — ¥ ~1A is injective and stably
flat. The algebraic K-theory localization exact sequence has
Kn(A) — Kn(Rl) D Kn(RZ) S> Kn(S) )
Ko(X7'A) = K,(Ry*s Ro) ,

Ka(T(A, X)) = Ka(S) @ Kn(S) & Waldhausen-Nil,, .
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The algebraic L-theory of a triangular ring

» |If A1, A>, B have involutions then A = (lé(\)l f) may not
2

have an involution.

» Involutions on A;, Ap and a symmetric isomorphism
B : B — Homgu, (B, A1) give a "chain duality” involution on
the derived category of A-module chain complexes.

» The dual of an A-module M = (My, My, 1) is the A-module
chain complex

d=(B"tu*0) : G = (M} 0,0)—= C=(BRa,Ms M;,1).

» The quadratic L-groups of A are just the relative L-groups in
the sequence

Cee Ln(Al) ®(B.f) Ln(AQ) — Ln(A) — Ln—l(Al) — ...
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The algebraic L-theory of amalgamated free products and
HNN extensions

» Theorem Let R = R; x5 R> be the amalgamated free product
of split injections S — Ry, S — Ry of rings with involution,
and let A — ¥ "1A = Ms(R) be the universal localization of
triangular A, as before. If Ry, Ry are flat S-modules then

Ln(z_lA) — Ln(R) — Ln(A)@Ln(T(sz))a
L.(T(A X)) = Cappell-UNil (R; 51, 5) .

» Similarly for the UNil-groups of an HNN extension R x*; ;, {t}
of split injective morphisms i1, /> : S — R of rings with
involution with Rq, Ry flat S-modules, and universal
localization 1A = Ma(R ;. ;, {t}).



