NONCOMMUTATIVE LOCALIZATION Andrew Ranicki (Edinburgh and MPIM, Bonn) http://www.maths.ed.ac.uk/~aar

> Journées en l'honneur de Pierre Vogel Paris, 27–28 October, 2010

Introduction

The talk will describe:

- the localization Σ⁻¹A of a ring A inverting a set Σ of A-module morphisms,
- ► the exact sequences relating the algebraic K- and L-groups of A and Σ⁻¹A,
- the applications to manifolds with fundamental group a generalized free product or an HNN extension, and to submanifolds of codimension 1 and 2.
- These topics have been studied for nearly 50 years by many authors – notably Pierre Vogel.

Absolute and relative *K***- and** *L***-groups**

The absolute algebraic K- and L-groups K_{*}(A), L_{*}(A) of a ring A are defined using the subcategory

 $\operatorname{Proj}(A) = \{ \text{f.g. projective } A \text{-modules} \} \subset \operatorname{Mod}(A) = \{ A \text{-modules} \} .$

Need an involution on A for L-theory.

For a ring morphism f : A → B use the (B, A)-bimodule structure on B

$$B \times B \times A \rightarrow B$$
; $(b, x, a) \mapsto b.x.f(a)$.

to define the change of rings functor

 $B \otimes_A - : \operatorname{Mod}(A) \to \operatorname{Mod}(B) ; M \mapsto B \otimes_A M$

Can use B ⊗_A − : Proj(A) → Proj(B) to define the relative K- and L-groups K_{*}(f), L_{*}(f) with long exact sequences

$$\cdots \longrightarrow K_n(A) \longrightarrow K_n(B) \longrightarrow K_n(f) \longrightarrow K_{n-1}(A) \longrightarrow \cdots$$

$$\cdots \longrightarrow L_n(A) \longrightarrow L_n(B) \longrightarrow L_n(f) \longrightarrow L_{n-1}(A) \longrightarrow \cdots$$

The universal localization I.

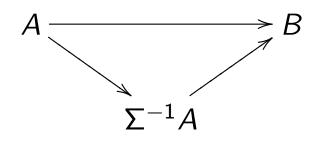
• $A = \operatorname{ring}, \Sigma = \operatorname{a} \operatorname{set} \operatorname{of} \operatorname{morphisms} s : P \to Q \text{ in } \operatorname{Proj}(A).$

A ring morphism A → B is Σ-inverting if the induced morphisms in Proj(B)

$$1 \otimes s : B \otimes_{\mathcal{A}} P \to B \otimes_{\mathcal{A}} Q \ (s \in \Sigma)$$

are isomorphisms.

A universal localization of A is a Σ-inverting morphism A → Σ⁻¹A with the universal property : for any Σ-inverting morphism A → B there is a unique factorization



If $A \rightarrow \Sigma^{-1}A$ exists, it is unique up to isomorphism.

In general Proj(A) → Proj(Σ⁻¹A) is not a localization of categories in the sense of Verdier, Zisman etc.

Localization in algebraic *K*- and *L*-theory

• $A \rightarrow \Sigma^{-1}A$ induces the change of rings functor

 Σ^{-1} : Mod(A) \rightarrow Mod($\Sigma^{-1}A$); $M \mapsto \Sigma^{-1}M = \Sigma^{-1}A \otimes_M A$.

► (Milnor, Bass, Quillen, Karoubi, Pardon, R., Vogel, Schofield, Neeman-R., ..., 1960's – now) For certain $A \rightarrow \Sigma^{-1}A$

 $K_*(A \rightarrow \Sigma^{-1}A) = K_{*-1}(T(A,\Sigma)), \ L_*(A \rightarrow \Sigma^{-1}A) = L_*(T(A,\Sigma))$

with $T(A, \Sigma)$ the **torsion** exact category of homological dimension 1 *A*-modules *M* with

$$\Sigma^{-1}M = 0.$$

Such expressions of relative K- and L-groups as absolute Kand L-groups are always interesting!

Pierre Vogel (1980's) pioneered the use of noncommutative localization in study of knots and links. Motivated by the Wall surgery obstruction *L*-theory, the Cappell-Shaneson homology surgery Γ-theory and the algebraic theory of surgery (R.).

Some applications of the torsion *K*- and *L*-groups to topology I.

- A = Z → Σ⁻¹A = Q, T(A, Σ) = {finite abelian groups}.
 Q/Z-valued linking forms in T(A, Σ) for arbitrary manifolds
 M, on T_{*}(M) = torsion(H_{*}(M)) (Seifert, deRham 1930's).
- ► $A = \mathbb{Z}[t, t^{-1}] \rightarrow \Sigma^{-1}A =$ quotient field : the Reidemeister torsion of knots $S^n \subset S^{n+2}$ (Milnor), and the Blanchfield linking form for knot complement $S^{n+2} \setminus S^n$ (1950-1960's).
- A map h : M^m → X^m of m-dimensional manifolds can be made transverse at an n-dimensional submanifold Yⁿ ⊂ X, with Nⁿ = h⁻¹(Y) ⊂ M also an n-dimensional submanifold. If h is a homotopy equivalence the restriction h| : N → Y will not in general be a homotopy equivalence.
- Surgery splitting obstruction theory for m − n = 1 or 2 is closely related to the K- and L-groups of appropriate universal localizations A = Z[π₁(X)] → Σ⁻¹A. (1970 − ..., still work in progress).

Some applications of the torsion *K*- and *L*-groups to topology II.

- *m* − *n* = 2. The computation of the cobordism groups *C_n* of knots *Sⁿ* ⊂ *Sⁿ⁺²* in dimensions high (*n* ≥ 2 Kervaire, Levine 1970) and low (Cochran-Orr-Teichner 2001, *n* = 1).
- Homology surgery theory (Cappell-Shaneson, 1970's)
- The computation of the high-dimensional boundary link cobordism groups (Duval 1984, Sheiham 2003).
- *m* − *n* = 1. If Yⁿ ⊂ Xⁿ⁺¹ is 2-sided π₁(X) has the structure of a generalized free product or an HNN extension

$$\pi_1(Y) \xrightarrow{\longrightarrow} \pi_1(X \setminus Y) .$$

If $\pi_1(Y) \to \pi_1(X)$ is injective Waldhausen and Cappell (1970's) have decomposed $K_*(\mathbb{Z}[\pi_1(X)])$ and $L_*(\mathbb{Z}[\pi_1(X)])$, with splitting obstructions in Nil- and UNil-groups for $n \ge 5$.

Can interpret decompositions in terms of the K- and L-groups of a certain universal localization A → Σ⁻¹A, with the Niland UNil-obstructions living in the torsion K- and L-groups.

Commutative localization of rings

The localization of a ring A inverting a multiplicatively closed subset S ⊂ A of central non-zero divisors with 1 ∈ S is the ring S⁻¹A of fractions a/s (a ∈ A, s ∈ S), where

$$a/s = b/t$$
 if and only if $at = bs$

Usual addition and multiplication

$$a/s + b/t = (at + bs)/(st) , (a/s)(b/t) = (as)/(bt) .$$

- The canonical morphism $A \rightarrow S^{-1}A$; $a \mapsto a/1$ is injective.
- Localization is a direct limit, with an isomorphism of rings

$$\lim_{s \in S} (A \xrightarrow{s} A \longrightarrow \cdots) \xrightarrow{\cong} S^{-1}A ; [a] \mapsto a/s .$$

If A is commutative and 𝔅 ∈ spec(A) is a prime ideal the localization (A\𝔅)⁻¹A = A𝔅 is a local ring, corresponding to the "localization" of an algebraic variety at the point 𝔅.

The classical ring of noncommutative fractions

- Let A be a ring. A multiplicatively closed subset Σ ⊂ A of non-zero divisors satisfies the Ore condition if for all a ∈ A, s ∈ Σ there exist b ∈ A, t ∈ Σ with ta = bs ∈ A.
- The classical ring of fractions or Ore localization Σ⁻¹A is the ring of noncommutative fractions

$$\Sigma^{-1}A \;=\; (\Sigma imes A)/\sim$$

with $(s, a) \sim (t, b)$ iff there exist $u, v \in A$ that

$$us = vt \in \Sigma$$
, $ua = vb \in A$.

Σ⁻¹A is the universal localization of A inverting Σ.
 Injective canonical ring morphism

$$A
ightarrow \Sigma^{-1} A$$
 ; $a \mapsto (1,a)$.

Ore localization can be used to construct quotient skewfield S⁻¹A of certain noncommutative "integral domain" A.

The universal localization II.

- Theorem (P.M. Cohn, 1971, G.M. Bergman 1974) A universal localization A → Σ⁻¹A exists for any ring A and any set Σ of morphisms in Proj(A).
- Proof By generators and relations.
- **Example** Let $\Sigma = \{s : A^n \to A^n\}$, with

$$s = (s_{ij})_{1\leqslant i,j\leqslant n}, s_{ij}\in A$$
.

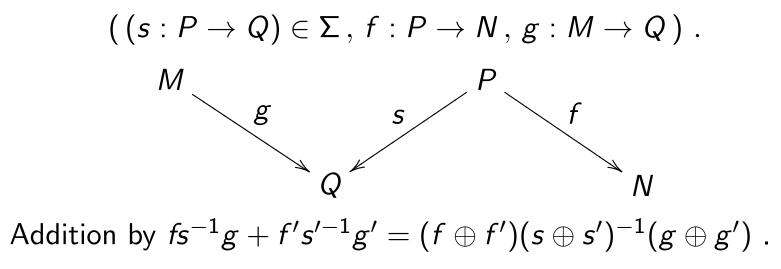
The universal localization $\Sigma^{-1}A$ is defined by adding to A the n^2 entries s'_{ij} of a formal inverse $s' = s^{-1}$, and setting the relations given by

$$ss' = s's = I_n$$

▶ In general, $A \rightarrow \Sigma^{-1}A$ is not injective, and it is even possible that $\Sigma^{-1}A = 0$, e.g. if $0 \in \Sigma$.

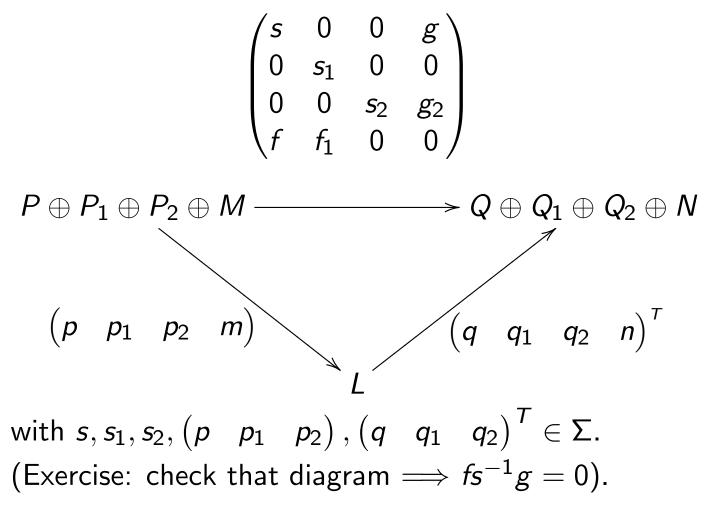
The normal form I.

- (Gerasimov, Malcolmson, 1981) Assume Σ consists of all the morphisms s : P → Q in Proj(A) such that 1 ⊗ s : Σ⁻¹P → Σ⁻¹Q is an isomorphism in Proj(Σ⁻¹A). (Can enlarge any Σ to have this). Then every element x ∈ Σ⁻¹A is (non-uniquely) of the form x = fs⁻¹g for some ((s : P → Q) ∈ Σ, f : P → A, g : A → Q).
- For f.g. projective A-modules M, N every Σ⁻¹A-module morphism x : Σ⁻¹M → Σ⁻¹N is of the form x = fs⁻¹g for some



The normal form II.

For f.g. projective M, N, a Σ⁻¹A-module morphism fs⁻¹g : Σ⁻¹M → Σ⁻¹N is such that fs⁻¹g = 0 if and only if there is a commutative diagram of A-module morphisms



Noncommutative localization via chain complexes

- For any A-module chain complexes C, D let $[C, D]_A$ be the group of chain homotopy classes of chain maps $C \rightarrow D$.
- (Vogel 1982, Neeman+R 2001) For any A, Σ and finite chain complex C in Proj(A) define the A-module chain complex

$$E(C) = \varinjlim B$$

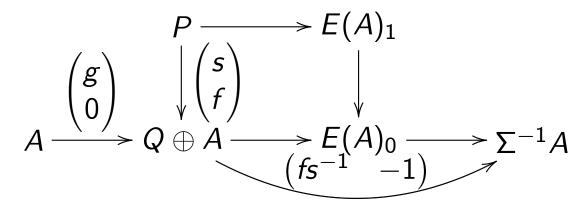
with $C \to B$ chain maps in $\operatorname{Proj}(A)$ such that B is finite and $H_*(\Sigma^{-1}C) \cong H_*(\Sigma^{-1}B)$.

There is a canonical chain homotopy class of A-module chain maps E(C) → Σ⁻¹C. In general, the A-module morphisms H_{*}(E(C)) = lim H_{*}(B) → H_{*}(Σ⁻¹C) are not isomorphisms.
 Universal coefficient spectral sequence

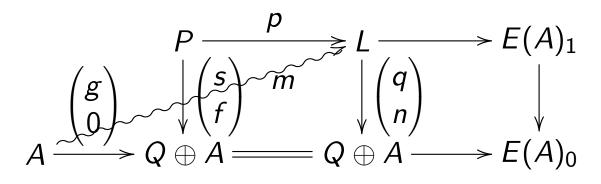
$$\begin{split} E_{i,j}^2 &= \operatorname{Tor}_i^A(\Sigma^{-1}A, H_j(E(A))) \Longrightarrow \\ H_k(\Sigma^{-1}E(A)) &= \begin{cases} H_0(E(A)) = \Sigma^{-1}A & \text{if } k = 0 \\ 0 & \text{if } k \geqslant 1 \end{cases}. \end{split}$$

Chain complex interpretation of the normal form

► $fs^{-1}g \in \Sigma^{-1}A$ is a chain homotopy class of chain maps $(f, s, g) : A \to E(A)$.



 fs⁻¹g = 0 ∈ Σ⁻¹A if and only if there exists chain homotopy m: (f, s, g) ≃ 0 : A → E(A). Take P₁ = P₂ = Q₁ = Q₂ = 0 for simplicity:



Homology and cohomology with coefficients

- Given a connected CW complex X let A = ℤ[π₁(X)], and let C(X̃) be the free A-module cellular chain complex of the universal cover X̃.
- ► Given a ring morphism f : A = Z[π₁(X)] → B define the B-coefficient homology and cohomology of X to be the B-modules

$$H_*(X;B) = H_*(B \otimes_A C(\widetilde{X})) ,$$

$$H^*(X;B) = H_*(\operatorname{Hom}_B(B \otimes_A C(\widetilde{X}),B))$$

If i : Y → X is a map of connected CW complexes which induces an isomorphism of B-coefficient homology

$$i_*$$
 : $H_*(Y;B) \cong H_*(X;B)$

the relative A-module chain complex

 $C = \text{algebraic mapping cone}(i : C(\widetilde{Y}) \to C(\widetilde{X}))$ is *B*-contractible, with $\widetilde{Y} = i^*\widetilde{X}$ the pullback cover of *Y*.

The universal localization of a ring morphism

Example (Vogel, 1982) Given a ring morphism f : A → B let Σ be the set of morphisms s : P → Q in Proj(A) such that

$$1\otimes s$$
 : $B\otimes_A P \to B\otimes_A Q$

is an isomorphism in Proj(B). Then f factorizes as

$$f : A \to \Sigma^{-1}A \to B$$
.

- ► In favourable circumstances a finite chain complex C in Proj(A) has $H_*(B \otimes_A C) = 0$ if and only if $H_*(\Sigma^{-1}C) = 0$.
- Proposition (Dicks-Sontag 1978, Farber-Vogel 1992, Ara-Dicks 2007) For µ≥1 let f : A = Z[F_µ] → B = Z be the augmentation F_µ → 1, and let

$$\Sigma = \{s : A^k
ightarrow A^k \, | \, 1 \otimes s : B^k
ightarrow B^k ext{ invertible} \} \; .$$

Then $\Sigma^{-1}\mathbb{Z}[F_{\mu}]$ is such that a finite chain complex C in Proj(A) has $H_*(B \otimes_A C) = 0$ if and only if $H_*(\Sigma^{-1}C) = 0$,

Noncommutative localization and codimension 2 knotting

• Let $i : N^n \subset M^{n+2}$ be a codimension 2 embedding with exterior $P = M \setminus N$. Assume a factorization

$$A = \mathbb{Z}[\pi_1(P)] \to \Sigma^{-1}A \to B = \mathbb{Z}[\pi_1(M)]$$

such that a finite chain complex C in Proj(A) has $H_*(B \otimes_A C) = 0$ if and only if $H_*(\Sigma^{-1}C) = 0$.

The Alexander duality isomorphisms

$$H_*(P;B) \cong H^{n+2-*}(M,N;B)$$

show that $H_*(P; B)$ depends only on the homotopy class of *i*, and does not detect knotting.

The fundamental group π₁(P) detects unknotting using group theory. The homology H_{*}(P; Σ⁻¹A) detects unknotting using homological algebra.

• **Example** For boundary links $N^n = \bigcup_{\mu} S^n \subset M^{n+2} = S^{n+2}$ use $A = \mathbb{Z}[F_{\mu}] \to \Sigma^{-1}A \to B = \mathbb{Z}$.

Modules over a universal localization

Proposition A Σ⁻¹A-module M is an A-module such that the A-module morphism

$$M o \Sigma^{-1}M$$
 ; $x \mapsto 1 \otimes x$

is an isomorphism.

Proof The A-module morphism

$$\Sigma^{-1}A o \Sigma^{-1}A \otimes_{\mathcal{A}} \Sigma^{-1}A$$
 ; $x \mapsto 1 \otimes x$

is an isomorphism.

- **Definition** A $\Sigma^{-1}A$ -module *N* is **induced** if $N = \Sigma^{-1}M$ for an *A*-module *M*.
- In favourable cases it is possible to express the algebraic Kand L-theory of Σ⁻¹A in terms of A-modules.

An Ore localization $A \rightarrow \Sigma^{-1}A$ is flat

Proposition (i) For any induced Σ⁻¹A-module chain complex D there exists an A-module chain complex C with D = Σ⁻¹C.
 (ii) D is chain contractible if and only if there exist A-module morphisms Γ : C_r → C_{r+1} with the Σ⁻¹A-module morphisms

$$1 \otimes (d\Gamma + \Gamma d) : \Sigma^{-1}C_r \rightarrow \Sigma^{-1}C_r$$

isomorphisms.

- Corollary 1 $\Sigma^{-1}A$ is a flat *A*-module: the functor Σ^{-1} : Mod(A) \rightarrow Mod($\Sigma^{-1}A$) is exact. In fact, an *A*-module sequence $M \rightarrow M' \rightarrow M''$ is exact if and only if the $\Sigma^{-1}A$ -module sequence $\Sigma^{-1}M \rightarrow \Sigma^{-1}M' \rightarrow \Sigma^{-1}M''$ is exact.
- Corollary 2 For any A-module M

$$\operatorname{\mathsf{Tor}}^{\mathcal{A}}_i(\Sigma^{-1}A,M) \;=\; 0 \; (i \geqslant 1) \;.$$

Corollary 3 For any A-module chain complex C

$$H_*(\Sigma^{-1}C) = \Sigma^{-1}H_*(C) .$$

A universal localization $A \rightarrow \Sigma^{-1}A$ need not be flat

In general, if M is an A-module and C is an A-module chain complex

$$\operatorname{\mathsf{Tor}}^{\mathcal{A}}_*(\Sigma^{-1}A,M)
eq 0 \;,\; H_*(\Sigma^{-1}C)
eq \Sigma^{-1}H_*(C) \;.$$

Example The universal cover of the complement S¹ ∨ S¹ of the trivial link S¹ ∪ S¹ ⊂ S³. Let x₁, x₂ be noncommuting indeterminates over Z. The universal localization Σ⁻¹A of A = Z⟨x₁, x₂⟩ inverting Σ = {x₁} is not flat. The 1-dimensional f.g. free A-module chain complex

$$d_C = (x_1 x_2) : C_1 = A \oplus A \rightarrow C_0 = A$$

is a resolution of $H_0(C) = \mathbb{Z}$, with $H_1(C) = 0$ and $H_1(\Sigma^{-1}C) = \operatorname{Tor}_1^A(\Sigma^{-1}A, H_0(C)) = \Sigma^{-1}A \neq \Sigma^{-1}H_1(C) = 0$.

Proposition Σ⁻¹A is a flat A-module if and only if Σ⁻¹A is an Ore localization (Beachy, Teichner, 2003).

Chain complex lifting

- A lift of a f.g. free Σ⁻¹A-module chain complex D is a f.g. projective A-module chain complex C with a chain equivalence Σ⁻¹C ≃ D.
- For an Ore localization Σ⁻¹A one can lift every n-dimensional f.g. free Σ⁻¹A-module chain complex D, for any n ≥ 0.
- For a universal localization Σ⁻¹A one can only lift for n ≤ 2 in general.
- Proposition (Neeman+R., 2001) For n≥ 3 there are lifting obstructions in Tor^A_i(Σ⁻¹A, Σ⁻¹A) for i≥ 2.
- Tor₁^A($\Sigma^{-1}A, \Sigma^{-1}A$) = 0 always.
- (Krause, 2005) General result characterizing the localizations such that

chain complex lifting = localization of triangulated categories

Stable flatness

• **Definition** A universal localization $\Sigma^{-1}A$ is stably flat if

$$\operatorname{Tor}_{i}^{A}(\Sigma^{-1}A,\Sigma^{-1}A) = 0 \quad (i \geq 2)$$

- ∑⁻¹A is stably flat if and only if H_i(E(A)) = 0 for all i > 0, if and only if E(C) → Σ⁻¹C is a homology equivalence for every finite chain complex C in Proj(A).
- For stably flat $\Sigma^{-1}A$ have stable exactness:

$$H_*(\Sigma^{-1}C) = H_*(E(C)) = \varinjlim_B \Sigma^{-1}H_*(B)$$

with the limit taken over all the chain maps $C \to B$ in Proj(A) such that B is finite and $H_*(\Sigma^{-1}C) \cong H_*(\Sigma^{-1}B)$. Flat \implies stably flat. If $\Sigma^{-1}A$ is flat (i.e. an Ore localization)

$$\operatorname{\mathsf{Tor}}^{\mathcal{A}}_i(\Sigma^{-1}A,M) \ = \ 0 \quad (i \geqslant 1)$$

for every A-module M. The special case $M = \Sigma^{-1}A$ gives that $\Sigma^{-1}A$ is stably flat.

A universal localization which is not stably flat

• Given a ring extension $R \subset S$ and an S-module M let

$$K(M) = \ker(S \otimes_R M \to M)$$
.

Theorem (Neeman, R. and Schofield, 2005)
 (i) The universal localization of the ring

$$A = \begin{pmatrix} R & S & S \\ 0 & R & S \\ 0 & 0 & R \end{pmatrix} = P_1 \oplus P_2 \oplus P_3 \text{ (columns)}$$

inverting $\Sigma = \{P_1 \subset P_2, P_2 \subset P_3\}$ is $\Sigma^{-1}A = M_3(S)$. (ii) If S is a flat R-module then

$$\operatorname{Tor}_{n-1}^{A}(\Sigma^{-1}A,\Sigma^{-1}A) = M_{n}(K^{n}(S)) \ (n \geq 3).$$

(iii) If R is a field and $\dim_R(S) = d$ then

$$K^n(S) = K(K(\ldots K(S) \ldots)) = R^{(d-1)^n d}$$

If $d \ge 2$, e.g. $S = R[x]/(x^d)$, then $\Sigma^{-1}A$ is not stably flat.

Change of rings in algebraic *K*-theory

- $K_*(A) = K_*(\operatorname{Proj}(A))$ (Bass, Quillen).
- A finite chain complex C in Proj(A) has a projective class

$$[C] = \sum_{r=0}^{\infty} (-)^r [C_r] \in K_0(A) = \{ ext{projective class group} \}$$
 .

For a contractible finite chain complex C in Proj(A) a choice of bases determines the Whitehead torsion using any chain contraction Γ : 0 ≃ 1 : C → C

$$au(C) = au(d + \Gamma : C_{odd} \rightarrow C_{even}) \in K_1(A) .$$

- For f : A → B a B-contractible finite chain complex C in Proj(A) with [C] = 0 ∈ K₀(A) has a **Reidemeister torsion** τ(B⊗_AC) ∈ im(K₁(B) → K₁(f)) = coker(f_{*} : K₁(A) → K₁(B)) using any choice of bases for C.
- (Milnor 1966) Algebraic K-theory interpretation of the Reidemeister torsion of a knot using A = Z[t, t⁻¹] → B = Q[•].

The algebraic *K*-theory localization exact sequence I.

- Assume each (s : P → Q) ∈ Σ is injective and A → Σ⁻¹A is injective. The torsion exact category T(A, Σ) has objects A-modules T with Σ⁻¹T = 0, hom. dim. (T) = 1.
- **Example** $T = \operatorname{coker}(s)$ for $s \in \Sigma$.
- Theorem (Bass, 1968 for central, Schofield, 1985 for universal Σ⁻¹A). Exact sequence

$$\begin{split} & \mathcal{K}_{1}(A) \to \mathcal{K}_{1}(\Sigma^{-1}A) \xrightarrow{\partial} \mathcal{K}_{0}(\mathcal{T}(A,\Sigma)) \to \mathcal{K}_{0}(A) \to \mathcal{K}_{0}(\Sigma^{-1}A) \ , \\ & \partial \big(\tau(fs^{-1}g:\Sigma^{-1}M \to \Sigma^{-1}N) \big) \ (M,N \text{ based f.g. free}) \\ & = \big[\operatorname{coker} (\begin{pmatrix} f & 0 \\ s & g \end{pmatrix} : P \oplus M \to N \oplus Q) \big] - \big[\operatorname{coker}(s:P \to Q) \big] \ . \end{split}$$

• **Example** If $A = \mathbb{Z}$, $\Sigma = \mathbb{Z} \setminus \{0\}$ then

 $\Sigma^{-1}A = \mathbb{Q}$, $T(A, \Sigma) = \{$ finite abelian groups $\}$,

 $\partial : \operatorname{coker}(K_1(A) \to K_1(\Sigma^{-1}A)) = \mathbb{Q}^{\bullet}/\{\pm 1\} \xrightarrow{\cong} K_0(T(A,\Sigma)) = \bigoplus_{p \text{ prime}} \mathbb{Z} ; p^n \mapsto (0,\ldots,0,n,0,\ldots) .$

The algebraic *K*-theory localization exact sequence II.

• **Example** The boundary map in the Schofield exact sequence for an injective universal localization $A \rightarrow \Sigma^{-1}A$

$$\partial : K_1(\Sigma^{-1}A) \to K_0(T(A,\Sigma)); \tau(D) \mapsto [C]$$

sends the Whitehead torsion $\tau(D)$ of a contractible based f.g. free $\Sigma^{-1}A$ -module chain complex D to the projective class [C] of any f.g. projective A-module chain complex C such that $\Sigma^{-1}C \simeq D$.

 Theorem (Quillen, 1972, Grayson, 1980) Higher K-theory localization exact sequence for Ore localization Σ⁻¹A, by flatness

$$\cdots \rightarrow K_n(A) \rightarrow K_n(\Sigma^{-1}A) \rightarrow K_{n-1}(T(A,\Sigma)) \rightarrow K_{n-1}(A) \rightarrow \ldots$$

The algebraic *K*-theory localization exact sequence III.

- Theorem (Neeman + R., 2001) If $A \rightarrow \Sigma^{-1}A$ is injective and stably flat then :
 - there is a 'fibration sequence of exact categories'

$$T(A, \Sigma)
ightarrow \mathsf{Proj}(A)
ightarrow \mathsf{Proj}(\Sigma^{-1}A)$$

(actually need chain complexes)

- every induced f.g. projective Σ⁻¹A-module chain complex can be lifted,
- there is a localization exact sequence

 $\cdots \to K_n(A) \to K_n(\Sigma^{-1}A) \to K_{n-1}(T(A,\Sigma)) \to K_{n-1}(A) \to \ldots$

e-print RA.0109118, Geometry and Topology (2004)

Algebraic *L*-theory

• Let A be an associative ring with 1, and with an involution $A \rightarrow A$; $a \mapsto \overline{a}$ used to identify

left A-modules = right A-modules .

- **Example** A group ring $A = \mathbb{Z}[\pi]$ with $\overline{g} = g^{-1}$ for $g \in \pi$.
- The quadratic L-group L_n(A) is the abelian group of cobordism classes (C, \u03c6) of n-dimensional f.g. free A-module chain complexes C with an n-dimensional quadratic Poincaré duality

$$\psi$$
 : $H^{n-*}(C) \cong H_*(C)$.

- ► L_{*}(A) = L_{*+4}(A) are the Wall (1970) surgery obstruction groups.
- L_{2i}(A) = Witt group of (-)ⁱ-hermitian forms on f.g. free A-modules.

The algebraic *L*-theory localization exact sequence

Theorem (Karoubi, Pardon (1970's) for commutative localization, R. (1980) for Ore localization, Vogel (1982) for universal localization)
 For any injective universal localization A → Σ⁻¹A of rings with involution T(A, Σ) → P(A) → P(Σ⁻¹A) determines an exact localization sequences

$$\cdots \rightarrow L_n(A) \rightarrow L_n(\Sigma^{-1}A) \rightarrow L_n(T(A,\Sigma)) \rightarrow L_{n-1}(A) \rightarrow \ldots$$

- Suppose that A → Σ⁻¹A → B is such that a finite chain complex C in Proj(A) has H_{*}(B ⊗_A C) = 0 if and only if H_{*}(Σ⁻¹C) = 0. Then L_{*}(Σ⁻¹A) = Γ_{*}(A → B) are the Cappell-Shaneson homology surgery obstruction groups.
- L_{2i}(T(A,Σ)) = Witt group of Σ⁻¹A/A-valued (−)ⁱ-hermitian linking forms on modules in T(A,Σ).

Morita theory

- For any ring R and k ≥ 1 let M_k(R) be the ring of k × k matrices in R.
- Proposition The functors

$$\{R\text{-modules}\} \to \{M_k(R)\text{-modules}\} ; M \mapsto \begin{pmatrix} R \\ R \\ \vdots \\ R \end{pmatrix} \otimes_R M ,$$
$$\{M_k(R)\text{-modules}\} \to \{R\text{-modules}\} ;$$

 $\{M_k(R) - \text{modules}\} \rightarrow \{R - \text{modules}\},$ $N \mapsto (R R \dots R) \otimes_{M_k(R)} N$

are inverse equivalences of categories.

• **Proposition** $K_*(M_k(R)) = K_*(R)$, and for a ring with involution $L_*(M_k(R)) = L_*(R)$.

Triangular matrix rings

Given rings A₁, A₂ and an (A₁, A₂)-bimodule B define the triangular matrix ring

$$A = \begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix}$$

- ▶ Proposition 1 The A-module category Mod(A) is equivalent to the category of triples M = (M₁, M₂, µ) with M₁ an A₁-module, M₂ an A₂-module and µ : B ⊗_{A₂} M₂ → M₁ an A₁-module morphism.
- Proposition 2 The functor

$$\operatorname{Proj}(A) o \operatorname{Proj}(A_1) imes \operatorname{Proj}(A_2) ; M = (M_1, M_2, \mu) \mapsto$$

 $((A_1 \ B) \otimes_A M, (0 \ A_2) \otimes_A M) = (\operatorname{coker}(\mu), M_2)$

induces isomorphisms

$$K_*(A) \cong K_*(A_1) \oplus K_*(A_2)$$
.

The universal localizations of a triangular matrix ring I.

• The columns of $A = \begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix}$ are f.g. projective A-modules

$$P_1 = \begin{pmatrix} A_1 \\ 0 \end{pmatrix} = (A_1, 0, 0) ,$$

$$P_2 = \begin{pmatrix} B \\ A_2 \end{pmatrix} = (B, A_2, 1)$$

such that $P_1 \oplus P_2 = A$.

• **Proposition** If $A \to C$ is a ring morphism such that there is a *C*-module isomorphism $C \otimes_A P_1 \cong C \otimes_A P_2$ then $C = M_2(R)$ is the 2 × 2 matrix ring of $R = \text{End}_C(C \otimes_A P_1)$. The change of rings $A \to C = M_2(R)$ is the **assembly** functor

 $\mathsf{Mod}(A) \to \mathsf{Mod}(C) \approx \mathsf{Mod}(R) \; ; \; M \mapsto (R \; R) \otimes_A M$ $= \operatorname{coker}(R \otimes_{A_2} B \otimes_{A_1} M_1 \to (R \otimes_{A_1} M_1) \oplus (R \otimes_{A_2} M_2)) \; .$

The universal localizations of a triangular matrix ring II.

• **Theorem** (Schofield, Bergman, R., Sheiham 1974–2005) Let $A = \begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix}$, $s \in B$. The universal localization of A

inverting

$$\Sigma = \{ \begin{pmatrix} s \\ 0 \end{pmatrix} : P_1 = \begin{pmatrix} A_1 \\ 0 \end{pmatrix} \to P_2 = \begin{pmatrix} B \\ A_2 \end{pmatrix} \}$$

is

$$\Sigma^{-1}A = M_2(R)$$

with *R* the ring with one generator x_b for each $b \in B$, and relations

- $x_b + x_{b'} = x_{b+b'}$ for all $b, b' \in B$,
- $x_{as}x_b = x_{ab}$ for all $a \in A_1$, $b \in B$,
- $x_s = 1$.

The stable flatness theorem

Theorem If B, R are flat A₁-modules and B is a flat right A₂-module then the universal localization

$$A = \begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix}
ightarrow \Sigma^{-1}A = M_2(R)$$

is stably flat.

• **Proof** The *A*-module $M = \begin{pmatrix} R \\ R \end{pmatrix}$ has a 1-dimensional flat *A*-module resolution

$$0 \to \begin{pmatrix} B \\ 0 \end{pmatrix} \otimes_{A_2} R \to \begin{pmatrix} A_1 \\ 0 \end{pmatrix} \otimes_{A_1} R \oplus \begin{pmatrix} B \\ A_2 \end{pmatrix} \otimes_{A_2} R \to M \to 0$$

and hence so does $\Sigma^{-1}A = M \oplus M$.

• **Remark** $\operatorname{Tor}_{1}^{A}((A_{1} \ 0), M) = \ker(B \otimes_{A_{2}} R \to R)$, so in general $\Sigma^{-1}A$ is not flat.

HNN extensions

- ▶ The *HNN* extension ring of ring morphisms $i_1, i_2 : S \to R$ is $R *_{i_1,i_2} \{t\} = R * \mathbb{Z} / \{i_1(x)t = ti_2(x) | x \in S\}$. For j = 1, 2 let $R_i = R$ with (R, S)-bimodule structure $R \times R_i \times S \rightarrow R_i$; $(q, r, s) \mapsto qri_i(s)$. • The universal localization of $A = \begin{pmatrix} R & R_1 \oplus R_2 \\ 0 & S \end{pmatrix}$ inverting $\Sigma = \{s_1, s_2 : {R \choose 0} \rightarrow {R_1 \oplus R_2 \choose S}\}$ is $\Sigma^{-1}A = M_2(R *_{i_1 i_2} \{t\}).$
- **Proposition** If $i_1, i_2 : S \to R$ are split injections and R_1, R_2 are flat S-modules then $A \to \Sigma^{-1}A$ is injective and stably flat. The algebraic K-theory localization exact sequence has $K_n(A) = K_n(R) \oplus K_n(S)$, $K_n(\Sigma^{-1}A) = K_n(R *_{i_1,i_2} \{t\})$, $K_n(T(A, \Sigma)) = K_n(S) \oplus K_n(S) \oplus Waldhausen-\widetilde{Nil}_n$.

Amalgamated free products

► The amalgamated free product R₁ *_S R₂ is defined for ring morphisms S → R₁, S → R₂.

The universal localization of $A = \begin{pmatrix} R_1 & 0 & R_1 \\ 0 & R_2 & R_2 \\ 0 & 0 & S \end{pmatrix}$ inverting

$$\Sigma = \{ s_1 : \begin{pmatrix} R_1 \\ 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} R_1 \\ R_2 \\ S \end{pmatrix} , s_2 : \begin{pmatrix} 0 \\ R_2 \\ 0 \end{pmatrix} \to \begin{pmatrix} R_1 \\ R_2 \\ S \end{pmatrix} \}$$

is $\Sigma^{-1}A = M_3(R_1 *_S R_2).$

• **Proposition** If $S \to R_1$, $S \to R_2$ are split injections with R_1, R_2 flat S-modules then $A \to \Sigma^{-1}A$ is injective and stably flat. The algebraic K-theory localization exact sequence has

$$\begin{split} & \mathcal{K}_n(A) \ = \ \mathcal{K}_n(R_1) \oplus \mathcal{K}_n(R_2) \oplus \mathcal{K}_n(S) \ , \\ & \mathcal{K}_n(\Sigma^{-1}A) \ = \ \mathcal{K}_n(R_1 *_S R_2) \ , \\ & \mathcal{K}_n(T(A,\Sigma)) \ = \ \mathcal{K}_n(S) \oplus \mathcal{K}_n(S) \oplus \text{Waldhausen-}\widetilde{\text{Nil}}_n \end{split}$$

The algebraic *L*-theory of a triangular ring

- If A_1, A_2, B have involutions then $A = \begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix}$ may not have an involution.
- Involutions on A₁, A₂ and a symmetric isomorphism β : B → Hom_{A1}(B, A₁) give a "chain duality" involution on the derived category of A-module chain complexes.
- The dual of an A-module M = (M₁, M₂, µ) is the A-module chain complex

$$d = (\beta^{-1}\mu^*, 0) : C_1 = (M_1^*, 0, 0) \to C_0 = (B \otimes_{A_2} M_2^*, M_2^*, 1)$$

The quadratic L-groups of A are just the relative L-groups in the sequence

$$\cdots \rightarrow L_n(A_1) \rightarrow^{\otimes(B,\beta)} L_n(A_2) \rightarrow L_n(A) \rightarrow L_{n-1}(A_1) \rightarrow \cdots$$

The algebraic *L*-theory of amalgamated free products and *HNN* extensions

Theorem Let R = R₁ ∗_S R₂ be the amalgamated free product of split injections S → R₁, S → R₂ of rings with involution, and let A → Σ⁻¹A = M₃(R) be the universal localization of triangular A, as before. If R₁, R₂ are flat S-modules then

$$L_n(\Sigma^{-1}A) = L_n(R) = L_n(A) \oplus L_n(T(A, \Sigma)) ,$$

$$L_n(T(A, \Sigma)) = \text{Cappell-UNil}_n(R; S_1, S_2) .$$

Similarly for the UNil-groups of an HNN extension R *_{i1}, i₂ {t} of split injective morphisms i₁, i₂ : S → R of rings with involution with R₁, R₂ flat S-modules, and universal localization Σ⁻¹A = M₂(R *_{i1}, i₂ {t}).