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Introduction

I The talk will describe:

I the localization Σ−1A of a ring A inverting a set Σ of
A-module morphisms,

I the exact sequences relating the algebraic K - and
L-groups of A and Σ−1A,

I the applications to manifolds with fundamental group
a generalized free product or an HNN extension, and
to submanifolds of codimension 1 and 2.

I These topics have been studied for nearly 50 years by many
authors – notably Pierre Vogel.
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Absolute and relative K - and L-groups

I The absolute algebraic K - and L-groups K∗(A), L∗(A) of a
ring A are defined using the subcategory

Proj(A) = {f.g. projective A-modules} ⊂ Mod(A) = {A-modules} .
Need an involution on A for L-theory.

I For a ring morphism f : A→ B use the (B,A)-bimodule
structure on B

B × B × A→ B ; (b, x , a) 7→ b.x .f (a) .

to define the change of rings functor

B ⊗A − : Mod(A)→ Mod(B) ; M 7→ B ⊗A M

I Can use B ⊗A − : Proj(A)→ Proj(B) to define the relative
K - and L-groups K∗(f ), L∗(f ) with long exact sequences

. . . // Kn(A) // Kn(B) // Kn(f ) // Kn−1(A) // . . . ,

. . . // Ln(A) // Ln(B) // Ln(f ) // Ln−1(A) // . . . .
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The universal localization I.

I A = ring, Σ = a set of morphisms s : P → Q in Proj(A).
I A ring morphism A→ B is Σ-inverting if the induced

morphisms in Proj(B)

1⊗ s : B ⊗A P → B ⊗A Q (s ∈ Σ)

are isomorphisms.
I A universal localization of A is a Σ-inverting morphism

A→ Σ−1A with the universal property : for any Σ-inverting
morphism A→ B there is a unique factorization

A //

$$HHH
HHH

HH B

Σ−1A

::vvvvvvvv

If A→ Σ−1A exists, it is unique up to isomorphism.
I In general Proj(A)→ Proj(Σ−1A) is not a localization of

categories in the sense of Verdier, Zisman etc.



5

Localization in algebraic K - and L-theory

I A→ Σ−1A induces the change of rings functor

Σ−1 : Mod(A)→ Mod(Σ−1A) ; M 7→ Σ−1M = Σ−1A⊗MA .

I (Milnor, Bass, Quillen, Karoubi, Pardon, R., Vogel, Schofield,
Neeman-R., . . . , 1960’s – now) For certain A→ Σ−1A

K∗(A→ Σ−1A) = K∗−1(T (A,Σ)) , L∗(A→ Σ−1A) = L∗(T (A,Σ))

with T (A,Σ) the torsion exact category of homological
dimension 1 A-modules M with

Σ−1M = 0 .

Such expressions of relative K - and L-groups as absolute K -
and L-groups are always interesting!

I Pierre Vogel (1980’s) pioneered the use of noncommutative
localization in study of knots and links. Motivated by the Wall
surgery obstruction L-theory, the Cappell-Shaneson homology
surgery Γ-theory and the algebraic theory of surgery (R.).
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Some applications of the torsion
K - and L-groups to topology I.

I A = Z→ Σ−1A = Q, T (A,Σ) = {finite abelian groups}.
Q/Z-valued linking forms in T (A,Σ) for arbitrary manifolds
M, on T∗(M) = torsion(H∗(M)) (Seifert, deRham 1930’s).

I A = Z[t, t−1]→ Σ−1A = quotient field : the Reidemeister
torsion of knots Sn ⊂ Sn+2 (Milnor), and the Blanchfield
linking form for knot complement Sn+2\Sn (1950-1960’s).

I A map h : Mm → Xm of m-dimensional manifolds can be
made transverse at an n-dimensional submanifold Y n ⊂ X ,
with Nn = h−1(Y ) ⊂ M also an n-dimensional submanifold.
If h is a homotopy equivalence the restriction h| : N → Y will
not in general be a homotopy equivalence.

I Surgery splitting obstruction theory for m − n = 1 or 2 is
closely related to the K - and L-groups of appropriate universal
localizations A = Z[π1(X )]→ Σ−1A. (1970 – . . . , still work
in progress).
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Some applications of the torsion
K - and L-groups to topology II.

I m − n = 2. The computation of the cobordism groups Cn of
knots Sn ⊂ Sn+2 in dimensions high (n > 2 Kervaire, Levine
1970) and low (Cochran-Orr-Teichner 2001, n = 1).

I Homology surgery theory (Cappell-Shaneson, 1970’s)
I The computation of the high-dimensional boundary link

cobordism groups (Duval 1984, Sheiham 2003).
I m − n = 1. If Y n ⊂ X n+1 is 2-sided π1(X ) has the structure

of a generalized free product or an HNN extension

π1(Y )
//
// π1(X\Y ) .

If π1(Y )→ π1(X ) is injective Waldhausen and Cappell
(1970’s) have decomposed K∗(Z[π1(X )]) and L∗(Z[π1(X )]),
with splitting obstructions in Nil- and UNil-groups for n > 5.

I Can interpret decompositions in terms of the K - and L-groups
of a certain universal localization A→ Σ−1A, with the Nil-
and UNil-obstructions living in the torsion K - and L-groups.
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Commutative localization of rings

I The localization of a ring A inverting a multiplicatively closed
subset S ⊂ A of central non-zero divisors with 1 ∈ S is the
ring S−1A of fractions a/s (a ∈ A, s ∈ S), where

a/s = b/t if and only if at = bs .

Usual addition and multiplication

a/s + b/t = (at + bs)/(st) , (a/s)(b/t) = (as)/(bt) .

I The canonical morphism A→ S−1A; a 7→ a/1 is injective.
I Localization is a direct limit, with an isomorphism of rings

lim−→
s∈S

( A
s // A // . . . )

∼= // S−1A ; [a] 7→ a/s .

I If A is commutative and P ∈ spec(A) is a prime ideal the
localization (A\P)−1A = AP is a local ring, corresponding to
the ”localization” of an algebraic variety at the point P.
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The classical ring of noncommutative fractions

I Let A be a ring. A multiplicatively closed subset Σ ⊂ A of
non-zero divisors satisfies the Ore condition if for all a ∈ A,
s ∈ Σ there exist b ∈ A, t ∈ Σ with ta = bs ∈ A.

I The classical ring of fractions or Ore localization Σ−1A is
the ring of noncommutative fractions

Σ−1A = (Σ× A)/ ∼

with (s, a) ∼ (t, b) iff there exist u, v ∈ A that

us = vt ∈ Σ , ua = vb ∈ A .

I Σ−1A is the universal localization of A inverting Σ.
Injective canonical ring morphism

A→ Σ−1A ; a 7→ (1, a) .

I Ore localization can be used to construct quotient skewfield
S−1A of certain noncommutative ”integral domain” A.
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The universal localization II.

I Theorem (P.M. Cohn, 1971, G.M. Bergman 1974)
A universal localization A→ Σ−1A exists for any ring A and
any set Σ of morphisms in Proj(A).

I Proof By generators and relations.

I Example Let Σ = {s : An → An}, with

s = (sij)16i ,j6n , sij ∈ A .

The universal localization Σ−1A is defined by adding to A the
n2 entries s ′ij of a formal inverse s ′ = s−1, and setting the
relations given by

ss ′ = s ′s = In .

I In general, A→ Σ−1A is not injective, and it is even possible
that Σ−1A = 0, e.g. if 0 ∈ Σ.
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The normal form I.

I (Gerasimov, Malcolmson, 1981) Assume Σ consists of all the
morphisms s : P → Q in Proj(A) such that
1⊗ s : Σ−1P → Σ−1Q is an isomorphism in Proj(Σ−1A).
(Can enlarge any Σ to have this). Then every element
x ∈ Σ−1A is (non-uniquely) of the form x = fs−1g for some

( (s : P → Q) ∈ Σ , f : P → A , g : A→ Q ) .

I For f.g. projective A-modules M,N every Σ−1A-module
morphism x : Σ−1M → Σ−1N is of the form x = fs−1g for
some

( (s : P → Q) ∈ Σ , f : P → N , g : M → Q ) .

M
g

$$JJJJJJJJJJJ P
s

zzuuuuuuuuuuu
f

$$IIIIIIIIIII

Q N

Addition by fs−1g + f ′s ′−1g ′ = (f ⊕ f ′)(s ⊕ s ′)−1(g ⊕ g ′) .
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The normal form II.

I For f.g. projective M,N, a Σ−1A-module morphism
fs−1g : Σ−1M → Σ−1N is such that fs−1g = 0 if and only if
there is a commutative diagram of A-module morphisms

P ⊕ P1 ⊕ P2 ⊕M


s 0 0 g
0 s1 0 0
0 0 s2 g2
f f1 0 0


//

(
p p1 p2 m

)
""FFFFFFFFFFFFFFFFF Q ⊕ Q1 ⊕ Q2 ⊕ N

L

(
q q1 q2 n

)T
;;xxxxxxxxxxxxxxxxx

with s, s1, s2,
(
p p1 p2

)
,
(
q q1 q2

)T ∈ Σ.

(Exercise: check that diagram =⇒ fs−1g = 0).
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Noncommutative localization via chain complexes

I For any A-module chain complexes C ,D let [C ,D]A be the
group of chain homotopy classes of chain maps C → D.

I (Vogel 1982, Neeman+R 2001) For any A,Σ and finite chain
complex C in Proj(A) define the A-module chain complex

E (C ) = lim−→B

with C → B chain maps in Proj(A) such that B is finite and

H∗(Σ−1C ) ∼= H∗(Σ−1B) .

I There is a canonical chain homotopy class of A-module chain
maps E (C )→ Σ−1C . In general, the A-module morphisms
H∗(E (C )) = lim−→H∗(B)→ H∗(Σ−1C ) are not isomorphisms.

I Universal coefficient spectral sequence

E 2
i ,j = TorAi (Σ−1A,Hj(E (A))) =⇒

Hk(Σ−1E (A)) =

{
H0(E (A)) = Σ−1A if k = 0

0 if k > 1 .
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Chain complex interpretation of the normal form

I fs−1g ∈ Σ−1A is a chain homotopy class of chain maps
(f , s, g) : A→ E (A).

Ps
f


��

// E (A)1

��
A

g
0


// Q ⊕ A //(

fs−1 −1
) 88E (A)0 // Σ−1A

I fs−1g = 0 ∈ Σ−1A if and only if there exists chain homotopy
m : (f , s, g) ' 0 : A→ E (A). Take P1 = P2 = Q1 = Q2 = 0
for simplicity:

Ps
f


��

p // Lq
n


��

// E (A)1

��
A

m

555u5u5u5u5u5u5u5u5u5u5u5u5u5u5u

g
0


// Q ⊕ A Q ⊕ A // E (A)0
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Homology and cohomology with coefficients

I Given a connected CW complex X let A = Z[π1(X )], and let
C (X̃ ) be the free A-module cellular chain complex of the
universal cover X̃ .

I Given a ring morphism f : A = Z[π1(X )]→ B define the
B-coefficient homology and cohomology of X to be the
B-modules

H∗(X ;B) = H∗(B ⊗A C (X̃ )) ,

H∗(X ;B) = H∗(HomB(B ⊗A C (X̃ ),B)) .

I If i : Y → X is a map of connected CW complexes which
induces an isomorphism of B-coefficient homology

i∗ : H∗(Y ;B) ∼= H∗(X ;B)

the relative A-module chain complex

C = algebraic mapping cone(i : C (Ỹ )→ C (X̃ ))

is B-contractible, with Ỹ = i∗X̃ the pullback cover of Y .
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The universal localization of a ring morphism

I Example (Vogel, 1982) Given a ring morphism f : A→ B let
Σ be the set of morphisms s : P → Q in Proj(A) such that

1⊗ s : B ⊗A P → B ⊗A Q

is an isomorphism in Proj(B). Then f factorizes as

f : A→ Σ−1A→ B .

I In favourable circumstances a finite chain complex C in
Proj(A) has H∗(B ⊗A C ) = 0 if and only if H∗(Σ−1C ) = 0.

I Proposition (Dicks-Sontag 1978, Farber-Vogel 1992,
Ara-Dicks 2007) For µ > 1 let f : A = Z[Fµ]→ B = Z be the
augmentation Fµ 7→ 1, and let

Σ = {s : Ak → Ak | 1⊗ s : Bk → Bk invertible} .

Then Σ−1Z[Fµ] is such that a finite chain complex C in
Proj(A) has H∗(B ⊗A C ) = 0 if and only if H∗(Σ−1C ) = 0,
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Noncommutative localization and codimension 2 knotting

I Let i : Nn ⊂ Mn+2 be a codimension 2 embedding with
exterior P = M\N. Assume a factorization

A = Z[π1(P)]→ Σ−1A→ B = Z[π1(M)]

such that a finite chain complex C in Proj(A) has
H∗(B ⊗A C ) = 0 if and only if H∗(Σ−1C ) = 0.

I The Alexander duality isomorphisms

H∗(P;B) ∼= Hn+2−∗(M,N;B)

show that H∗(P;B) depends only on the homotopy class of i ,
and does not detect knotting.

I The fundamental group π1(P) detects unknotting using group
theory. The homology H∗(P; Σ−1A) detects unknotting using
homological algebra.

I Example For boundary links Nn =
⋃
µ
Sn ⊂ Mn+2 = Sn+2 use

A = Z[Fµ]→ Σ−1A→ B = Z .
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Modules over a universal localization

I Proposition A Σ−1A-module M is an A-module such that the
A-module morphism

M → Σ−1M ; x 7→ 1⊗ x

is an isomorphism.

I Proof The A-module morphism

Σ−1A→ Σ−1A⊗A Σ−1A ; x 7→ 1⊗ x

is an isomorphism.

I Definition A Σ−1A-module N is induced if N = Σ−1M for
an A-module M.

I In favourable cases it is possible to express the algebraic K -
and L-theory of Σ−1A in terms of A-modules.
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An Ore localization A→ Σ−1A is flat

I Proposition (i) For any induced Σ−1A-module chain complex
D there exists an A-module chain complex C with D = Σ−1C .
(ii) D is chain contractible if and only if there exist A-module
morphisms Γ : Cr → Cr+1 with the Σ−1A-module morphisms

1⊗ (dΓ + Γd) : Σ−1Cr → Σ−1Cr

isomorphisms.
I Corollary 1 Σ−1A is a flat A-module: the functor

Σ−1 : Mod(A)→ Mod(Σ−1A) is exact. In fact, an A-module
sequence M → M ′ → M ′′ is exact if and only if the
Σ−1A-module sequence Σ−1M → Σ−1M ′ → Σ−1M ′′ is exact.

I Corollary 2 For any A-module M

TorAi (Σ−1A,M) = 0 (i > 1) .

I Corollary 3 For any A-module chain complex C

H∗(Σ−1C ) = Σ−1H∗(C ) .
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A universal localization A→ Σ−1A need not be flat

I In general, if M is an A-module and C is an A-module chain
complex

TorA∗ (Σ−1A,M) 6= 0 , H∗(Σ−1C ) 6= Σ−1H∗(C ) .

I Example The universal cover of the complement S1 ∨ S1 of
the trivial link S1 ∪ S1 ⊂ S3. Let x1, x2 be noncommuting
indeterminates over Z. The universal localization Σ−1A of
A = Z〈x1, x2〉 inverting Σ = {x1} is not flat. The
1-dimensional f.g. free A-module chain complex

dC = (x1 x2) : C1 = A⊕ A −→ C0 = A

is a resolution of H0(C ) = Z, with H1(C ) = 0 and

H1(Σ−1C ) = TorA1 (Σ−1A,H0(C )) = Σ−1A 6= Σ−1H1(C ) = 0 .

I Proposition Σ−1A is a flat A-module if and only if Σ−1A is
an Ore localization (Beachy, Teichner, 2003).
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Chain complex lifting

I A lift of a f.g. free Σ−1A-module chain complex D is a
f.g. projective A-module chain complex C with a chain
equivalence Σ−1C ' D.

I For an Ore localization Σ−1A one can lift every n-dimensional
f.g. free Σ−1A-module chain complex D, for any n > 0.

I For a universal localization Σ−1A one can only lift for n 6 2 in
general.

I Proposition (Neeman+R., 2001) For n > 3 there are lifting
obstructions in TorAi (Σ−1A,Σ−1A) for i > 2.

I TorA1 (Σ−1A,Σ−1A) = 0 always.

I (Krause, 2005) General result characterizing the localizations
such that
chain complex lifting = localization of triangulated categories
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Stable flatness

I Definition A universal localization Σ−1A is stably flat if

TorAi (Σ−1A,Σ−1A) = 0 (i > 2) .

I Σ−1A is stably flat if and only if Hi (E (A)) = 0 for all i > 0, if
and only if E (C )→ Σ−1C is a homology equivalence for
every finite chain complex C in Proj(A).

I For stably flat Σ−1A have stable exactness:

H∗(Σ−1C ) = H∗(E (C )) = lim−→
B

Σ−1H∗(B) .

with the limit taken over all the chain maps C → B in
Proj(A) such that B is finite and H∗(Σ−1C ) ∼= H∗(Σ−1B).

I Flat =⇒ stably flat. If Σ−1A is flat (i.e. an Ore localization)

TorAi (Σ−1A,M) = 0 (i > 1)

for every A-module M. The special case M = Σ−1A gives
that Σ−1A is stably flat.
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A universal localization which is not stably flat

I Given a ring extension R ⊂ S and an S-module M let

K (M) = ker(S ⊗R M → M) .

I Theorem (Neeman, R. and Schofield, 2005)
(i) The universal localization of the ring

A =

R S S
0 R S
0 0 R

 = P1 ⊕ P2 ⊕ P3 (columns)

inverting Σ = {P1 ⊂ P2,P2 ⊂ P3} is Σ−1A = M3(S).
(ii) If S is a flat R-module then

TorAn−1(Σ−1A,Σ−1A) = Mn(Kn(S)) (n > 3).

(iii) If R is a field and dimR(S) = d then

Kn(S) = K (K (. . .K (S) . . . )) = R(d−1)nd .

If d > 2, e.g. S = R[x ]/(xd), then Σ−1A is not stably flat.
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Change of rings in algebraic K -theory

I K∗(A) = K∗(Proj(A)) (Bass, Quillen).
I A finite chain complex C in Proj(A) has a projective class

[C ] =
∞∑
r=0

(−)r [Cr ] ∈ K0(A) = {projective class group} .

I For a contractible finite chain complex C in Proj(A) a choice
of bases determines the Whitehead torsion using any chain
contraction Γ : 0 ' 1 : C → C

τ(C ) = τ(d + Γ : Codd → Ceven) ∈ K1(A) .

I For f : A→ B a B-contractible finite chain complex C in
Proj(A) with [C ] = 0 ∈ K0(A) has a Reidemeister torsion

τ(B⊗AC ) ∈ im(K1(B)→ K1(f )) = coker(f∗ : K1(A)→ K1(B))

using any choice of bases for C .
I (Milnor 1966) Algebraic K -theory interpretation of the

Reidemeister torsion of a knot using A = Z[t, t−1]→ B = Q•.
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The algebraic K -theory localization exact sequence I.

I Assume each (s : P → Q) ∈ Σ is injective and A→ Σ−1A is
injective. The torsion exact category T (A,Σ) has objects
A-modules T with Σ−1T = 0, hom. dim. (T ) = 1.

I Example T = coker(s) for s ∈ Σ.
I Theorem (Bass, 1968 for central, Schofield, 1985 for

universal Σ−1A). Exact sequence

K1(A)→ K1(Σ−1A)
∂ // K0(T (A,Σ)) → K0(A)→ K0(Σ−1A) ,

∂
(
τ(fs−1g : Σ−1M → Σ−1N)

)
(M,N based f.g. free)

=
[
coker(

(
f 0
s g

)
: P ⊕M → N ⊕ Q)

]
−
[
coker(s : P → Q)

]
.

I Example If A = Z, Σ = Z\{0} then

Σ−1A = Q , T (A,Σ) = {finite abelian groups} ,
∂ : coker(K1(A)→ K1(Σ−1A)) = Q•/{±1}

∼= //

K0(T (A,Σ)) =
⊕

p prime Z ; pn 7→ (0, . . . , 0, n, 0, . . . ) .
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The algebraic K -theory localization exact sequence II.

I Example The boundary map in the Schofield exact sequence
for an injective universal localization A→ Σ−1A

∂ : K1(Σ−1A)→ K0(T (A,Σ)) ; τ(D) 7→ [C ]

sends the Whitehead torsion τ(D) of a contractible based
f.g. free Σ−1A-module chain complex D to the projective class
[C ] of any f.g. projective A-module chain complex C such
that Σ−1C ' D.

I Theorem (Quillen, 1972, Grayson, 1980) Higher K -theory
localization exact sequence for Ore localization Σ−1A, by
flatness

· · · → Kn(A)→ Kn(Σ−1A)→ Kn−1(T (A,Σ))→ Kn−1(A)→ . . .
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The algebraic K -theory localization exact sequence III.

I Theorem (Neeman + R., 2001)
If A→ Σ−1A is injective and stably flat then :

I there is a ’fibration sequence of exact categories’

T (A,Σ)→ Proj(A)→ Proj(Σ−1A)

(actually need chain complexes)
I every induced f.g. projective Σ−1A-module chain complex can

be lifted,
I there is a localization exact sequence

· · · → Kn(A)→ Kn(Σ−1A)→ Kn−1(T (A,Σ))→ Kn−1(A)→ . . .

I e-print RA.0109118, Geometry and Topology (2004)
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Algebraic L-theory

I Let A be an associative ring with 1, and with an involution
A→ A; a 7→ ā used to identify

left A-modules = right A-modules .

I Example A group ring A = Z[π] with ḡ = g−1 for g ∈ π.

I The quadratic L-group Ln(A) is the abelian group of
cobordism classes (C , ψ) of n-dimensional f.g. free A-module
chain complexes C with an n-dimensional quadratic Poincaré
duality

ψ : Hn−∗(C ) ∼= H∗(C ) .

I L∗(A) = L∗+4(A) are the Wall (1970) surgery obstruction
groups.

I L2i (A) = Witt group of (−)i -hermitian forms on f.g. free
A-modules.
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The algebraic L-theory localization exact sequence

I Theorem (Karoubi, Pardon (1970’s) for commutative
localization, R. (1980) for Ore localization, Vogel (1982) for
universal localization)
For any injective universal localization A→ Σ−1A of rings
with involution T (A,Σ)→ P(A)→ P(Σ−1A) determines an
exact localization sequences

· · · → Ln(A)→ Ln(Σ−1A)→ Ln(T (A,Σ))→ Ln−1(A)→ . . .

I Suppose that A→ Σ−1A→ B is such that a finite chain
complex C in Proj(A) has H∗(B ⊗A C ) = 0 if and only if
H∗(Σ−1C ) = 0. Then L∗(Σ−1A) = Γ∗(A→ B) are the
Cappell-Shaneson homology surgery obstruction groups.

I L2i (T (A,Σ)) = Witt group of Σ−1A/A-valued (−)i -hermitian
linking forms on modules in T (A,Σ).



30

Morita theory

I For any ring R and k > 1 let Mk(R) be the ring of k × k
matrices in R.

I Proposition The functors

{R-modules} → {Mk(R)-modules} ; M 7→


R
R
...
R

⊗R M ,

{Mk(R)-modules} → {R-modules} ;

N 7→ (R R . . . R)⊗Mk (R) N

are inverse equivalences of categories.

I Proposition K∗(Mk(R)) = K∗(R), and for a ring with
involution L∗(Mk(R)) = L∗(R).
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Triangular matrix rings

I Given rings A1,A2 and an (A1,A2)-bimodule B define the
triangular matrix ring

A =

(
A1 B
0 A2

)
.

I Proposition 1 The A-module category Mod(A) is equivalent
to the category of triples M = (M1,M2, µ) with M1 an
A1-module, M2 an A2-module and µ : B ⊗A2 M2 → M1 an
A1-module morphism.

I Proposition 2 The functor

Proj(A)→ Proj(A1)× Proj(A2) ; M = (M1,M2, µ) 7→
((A1 B)⊗A M, (0 A2)⊗A M) = (coker(µ),M2)

induces isomorphisms

K∗(A) ∼= K∗(A1)⊕ K∗(A2) .
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The universal localizations of a triangular matrix ring I.

I The columns of A =

(
A1 B
0 A2

)
are f.g. projective A-modules

P1 =

(
A1

0

)
= (A1, 0, 0) ,

P2 =

(
B
A2

)
= (B,A2, 1)

such that P1 ⊕ P2 = A.
I Proposition If A→ C is a ring morphism such that there is a

C -module isomorphism C ⊗A P1
∼= C ⊗A P2 then C = M2(R)

is the 2× 2 matrix ring of R = EndC (C ⊗A P1). The change
of rings A→ C = M2(R) is the assembly functor

Mod(A)→ Mod(C ) ≈ Mod(R) ; M 7→ (R R)⊗A M

= coker(R ⊗A2 B ⊗A1 M1 → (R ⊗A1 M1)⊕ (R ⊗A2 M2)) .
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The universal localizations of a triangular matrix ring II.

I Theorem (Schofield, Bergman, R., Sheiham 1974–2005)

Let A =

(
A1 B
0 A2

)
, s ∈ B. The universal localization of A

inverting

Σ = {
(
s
0

)
: P1 =

(
A1

0

)
→ P2 =

(
B
A2

)
}

is
Σ−1A = M2(R)

with R the ring with one generator xb for each b ∈ B, and
relations

I xb + xb′ = xb+b′ for all b, b′ ∈ B ,

I xasxb = xab for all a ∈ A1, b ∈ B ,

I xs = 1.
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The stable flatness theorem

I Theorem If B,R are flat A1-modules and B is a flat right
A2-module then the universal localization

A =

(
A1 B
0 A2

)
→ Σ−1A = M2(R)

is stably flat.

I Proof The A-module M =

(
R
R

)
has a 1-dimensional flat

A-module resolution

0→
(
B
0

)
⊗A2 R →

(
A1

0

)
⊗A1 R ⊕

(
B
A2

)
⊗A2 R → M → 0

and hence so does Σ−1A = M ⊕M.

I Remark TorA1 ((A1 0),M) = ker(B ⊗A2 R → R), so in general
Σ−1A is not flat.
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HNN extensions

I The HNN extension ring of ring morphisms i1, i2 : S → R is

R ∗i1,i2 {t} = R ∗ Z/{i1(x)t = ti2(x) | x ∈ S} .
For j = 1, 2 let Rj = R with (R, S)-bimodule structure

R × Rj × S → Rj ; (q, r , s) 7→ qrij(s) .

I The universal localization of A =

(
R R1 ⊕ R2

0 S

)
inverting

Σ = {s1, s2 :

(
R
0

)
→
(
R1 ⊕ R2

S

)
} is

Σ−1A = M2(R ∗i1,i2 {t}) .
I Proposition If i1, i2 : S → R are split injections and R1,R2

are flat S-modules then A→ Σ−1A is injective and stably flat.
The algebraic K -theory localization exact sequence has

Kn(A) = Kn(R)⊕ Kn(S) , Kn(Σ−1A) = Kn(R ∗i1,i2 {t}) ,
Kn(T (A,Σ)) = Kn(S)⊕ Kn(S)⊕Waldhausen- Ñiln .
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Amalgamated free products

I The amalgamated free product R1 ∗S R2 is defined for ring
morphisms S → R1, S → R2.

I The universal localization of A =

R1 0 R1

0 R2 R2

0 0 S

 inverting

Σ = {s1 :

R1

0
0

→
R1

R2

S

 , s2 :

 0
R2

0

→
R1

R2

S

}
is Σ−1A = M3(R1 ∗S R2).

I Proposition If S → R1, S → R2 are split injections with
R1,R2 flat S-modules then A→ Σ−1A is injective and stably
flat. The algebraic K -theory localization exact sequence has

Kn(A) = Kn(R1)⊕ Kn(R2)⊕ Kn(S) ,

Kn(Σ−1A) = Kn(R1 ∗S R2) ,

Kn(T (A,Σ)) = Kn(S)⊕ Kn(S)⊕Waldhausen-Ñiln .
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The algebraic L-theory of a triangular ring

I If A1,A2,B have involutions then A =

(
A1 B
0 A2

)
may not

have an involution.

I Involutions on A1,A2 and a symmetric isomorphism
β : B → HomA1(B,A1) give a ”chain duality” involution on
the derived category of A-module chain complexes.

I The dual of an A-module M = (M1,M2, µ) is the A-module
chain complex

d = (β−1µ∗, 0) : C1 = (M∗1 , 0, 0)→ C0 = (B⊗A2M
∗
2 ,M

∗
2 , 1) .

I The quadratic L-groups of A are just the relative L-groups in
the sequence

· · · → Ln(A1)→⊗(B,β) Ln(A2)→ Ln(A)→ Ln−1(A1)→ . . . .
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The algebraic L-theory of amalgamated free products and
HNN extensions

I Theorem Let R = R1 ∗S R2 be the amalgamated free product
of split injections S → R1, S → R2 of rings with involution,
and let A→ Σ−1A = M3(R) be the universal localization of
triangular A, as before. If R1,R2 are flat S-modules then

Ln(Σ−1A) = Ln(R) = Ln(A)⊕ Ln(T (A,Σ)) ,

Ln(T (A,Σ)) = Cappell-UNiln(R;S1, S2) .

I Similarly for the UNil-groups of an HNN extension R ∗i1,i2 {t}
of split injective morphisms i1, i2 : S → R of rings with
involution with R1,R2 flat S-modules, and universal
localization Σ−1A = M2(R ∗i1,i2 {t}).


