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I The chain complex theory offers many advantages . . .
a simple and satisfactory algebraic version of the whole setup.
I hope it can be made to work.

C.T.C. Wall, Surgery on Compact Manifolds (1970)
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Past

I The chain complex theory developed in The algebraic theory
of surgery (R., 1980) expressed the surgery obstruction groups
L∗(A) as the cobordism groups of ‘quadratic Poincaré
complexes’, chain complexes C with quadratic Poincaré
duality ψ.

I The Wall surgery obstruction of a normal map (f , b) : M → X
from an m-dimensional manifold M to an m-dimensional
geometric Poincaré complex X

σ∗(f , b) ∈ Lm(Z[π1(X )])

was expressed as the cobordism class of a quadratic Poincaré
complex (C , ψ) obtained directly from (f , b), without
preliminary surgeries below the middle dimension. The
homology of C consists of the kernel Z[π1(X )]-modules

H∗(C ) = K∗(M) = ker(f̃∗ : H∗(M̃) → H∗(X̃ )) .
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Advantages and a disadvantage

I The algebraic theory of surgery did indeed offer the
advantages predicted by Wall, such as all kinds of exact
sequences.

I However, the identification σ∗(f , b) = (C , ψ) was not as nice
as could have been wished for!

I Specifically, the chain homotopy theoretic treatment of the
Wall self-intersection function counting double points

µ(g : Sn # M2n) ∈ Z[π1(M)]

{x − (−)nx−1 | x ∈ π1(M)}
was too indirect, making use of Wall’s result that for n > 3
µ(g) = 0 if and only if g is regular homotopic to an
embedding – proved by the Whitney trick for removing double
points.

I Need to count double points of immersions using
Z2-equivariant homotopy theory.
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Present

I The ‘geometric Hopf invariant’ h(F ) of Michael Crabb
(Aberdeen) provides a satisfactory homotopy-theoretic
foundation for algebraic surgery theory.

I Let X ,Y be pointed spaces. The geometric Hopf invariant of
a stable map F : Σ∞X → Σ∞Y is a stable map

h(F ) : Σ∞X → Σ∞((S∞)+ ∧Z2 (Y ∧ Y ))

with good naturality properties: if π is a group, X ,Y are
π-spaces and F is π-equivariant then h(F ) is π-equivariant.

I The quadratic structure of a normal map (f , b) : M → X is
the evaluation ψ = (h(F )/π)[X ] with π = π1(X ),
F : Σ∞X̃+ → Σ∞M̃+ a stable π-equivariant map inducing
the Umkehr f ! : C (X̃ ) → C (M̃) and

h(F )/π : Hm(X ) → Hm(S∞ ×Z2 (M̃ ×π M̃)) .

The resulting quadratic Poincaré complex (C , ψ) has a direct
connection with double points of immersions g : Sn # Mm.
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The Umkehr chain map

I The Umkehr of a map f : N → M of geometric Poincaré
complexes is the ‘wrong-way’ Z[π1(M)]-module chain map

f ! : C (M̃) ' C (M̃)m−∗
f̃ ∗ // C (Ñ)m−∗ ' C (Ñ)∗−m+n

with M̃ the universal cover of M, Ñ = f ∗M̃ the pullback
cover of N, m = dim M, n = dim N and

C (M̃)∗ = HomZ[π1(M)](C (M̃),Z[π1(M)]) .

I In the cases of interest f ! is induced by a stable map F , and
the geometric Hopf invariant h(F ) captures the double point
class of an immersion, and the quadratic structure of a normal
map.
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The stable Umkehr of an immersion

I An immersion f : Nn # Mm has a normal bundle
νf : N → BO(m − n) with f ∗τM = τN ⊕ νf .

I For some k > 0 (e.g. if k > 2n −m + 1) can approximate f
by an embedding (e, f ) : N ↪→ Rk ×M, with e : N → Rk and

ν(e,f ) = νf ⊕ εk : N → BO(m − n + k) .

I Let M̃ be the universal cover of M. The Pontrjagin-Thom
construction applied to the π1(M)-equivariant embedding

(ẽ, f̃ ) : Ñ = f ∗M̃ ↪→ Rk × M̃

is a π1(M)-equivariant stable Umkehr map to the Thom space

F : ΣkM̃+ → T (ν
(ee,ef )

) = ΣkT (ν
ef
)

inducing

F : Ċ (ΣkM̃+) ' C (M̃)∗−k
f !

// Ċ (T (ν
(ee,ef )

)) ' C (Ñ)∗−m+n−k .

I If f is an embedding can take k = 0, and F is unstable.
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The stable Umkehr of a normal map

I The algebraic mapping cone C = C(f !) of the Umkehr
f ! : C (X̃ ) → C (M̃) of a degree 1 map f : M → X of
m-dimensional geometric Poincaré complexes is such that

H∗(C ) = K∗(M) = ker(f̃∗ : H∗(M̃) → H∗(X̃ ))

with f̃∗ a surjection split by f !.
I For a manifold M and a normal map (f , b) : M → X f ! is

induced by a π1(X )-equivariant S-dual F : Σk X̃+ → ΣkM̃+

of the map T (b̃) : T (ν
eM
) → T (ν

eX
) of Thom spaces.

I F can also be constructed geometrically: apply Wall’s π-π
theorem to obtain a homotopy equivalence

(X × Dk ,X × Sk−1) ' (W , ∂W ) (k > 3)

with (W , ∂W ) an (m + k)-dimensional manifold with
boundary. For k > 2n−m + 1 approximate (f , b) by a framed
embedding M ↪→ W and apply the Pontrjagin-Thom
construction to M̃ ↪→ W̃ .
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The quadratic construction on a space

I The quadratic construction on a space X is

Q(X ) = S∞ ×Z2 (X × X )

with the generator T ∈ Z2 acting by

T : S∞ = lim−→
k

Sk → S∞ ; s 7→ −s ,

T : X × X → X × X ; (x , y) 7→ (y , x) .

I Let X+ = X t {+}, i.e. X with an adjoined base point +.

I The reduced quadratic construction on a pointed space Y is

Q̇(Y ) = (S∞)+ ∧Z2 (Y ∧ Y ) .

In particular
Q̇(X+) = Q(X )+ .
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Unstable vs. stable homotopy theory

I Given pointed spaces X ,Y let [X ,Y ] be the set of homotopy
classes of maps X → Y .

I The stable homotopy group is

{X ;Y } = lim−→
k

[ΣkX ,ΣkY ] = [X ,Ω∞Σ∞X ]

I The stabilization map

[X ,Y ] → {X ;Y } = [X ,Ω∞Σ∞Y ]

is in general not an isomorphism!

I The quotient of Y ↪→ Ω∞Σ∞Y has a filtration, much studied
by homotopy theorists. If f : Nn # Mm is an immersion with
Umkehr stable map F : Σ∞M+ → Σ∞T (νf ), the adjoint
adj(F ) : M+ → Ω∞Σ∞T (νf ) sends the k-tuple points of M
to the k-th filtration.
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The James-Hopf map

I (1950’s) James decomposition ΩΣY 's

∞∨
k=1

(Y ∧ · · · ∧ Y ).

I (1970’s) Snaith and others constructed a stable homotopy
equivalence

Ω∞Σ∞Y 's

∞∨
k=1

EΣ+
k ∧Σk

(Y ∧ · · · ∧ Y )

for connected Y , group completion in general.
I The stable homotopy projection

Σ∞Ω∞Σ∞Y → Σ∞(EΣ+
2 ∧Σ2 (Y ∧ Y )) (EΣ2 = S∞)

is the James-Hopf double point map. However, only defined
for connected Y , and not natural in Y .

I In order to get the quadratic structure of a normal map
(f , b) : M → X need to split off the quadratic part of the
π1(X )-equivariant map adj(F ) : X̃+ → Ω∞Σ∞M̃+.
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The geometric Hopf invariant h(F )

I Let X ,Y be pointed π-spaces. When is a k-stable π-map
F : ΣkX → ΣkY homotopic to the k-fold suspension ΣkF0 of
an unstable π-map F0 : X → Y ?

I The geometric Hopf invariant of F is the stable
π × Z2-equivariant map

h(F ) = (F ∧ F )∆X −∆Y F : Σk,kX → Σk,k(Y ∧ Y )

with

T : Σk,kX = Sk ∧ Sk ∧ X → Σk,kX ; (s, t, x) 7→ (t, s, x) ,

T : Σk,k(Y ∧ Y ) → Σk,k(Y ∧ Y ) ; (s, t, y1, y2) 7→ (t, s, y2, y1) .

I The stable Z2-equivariant homotopy class of

h(F )/π : Σk,kX/π → Σk,k(Y ∧π Y )

is the primary obstruction to the k-fold desuspension of F .
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The stable Z2-equivariant homotopy groups

I Given pointed Z2-spaces X ,Y let [X ,Y ]Z2 be the set of
Z2-equivariant homotopy classes of Z2-equivariant maps
X → Y .

I The stable Z2-equivariant homotopy group is

{X ;Y }Z2 = lim−→
k

[Σk,kX ,Σk,kY ]Z2

I Example The Z2-equivariant Pontrjagin-Thom isomorphism
identifies {S0;S0}Z2 with the cobordism group of
0-dimensional framed Z2-manifolds (= finite Z2-sets).
The decomposition of finite Z2-sets as fixed ∪ free determines
an isomorphism

{S0;S0}Z2
∼= Z⊕Z ; D = DZ2 ∪(D−DZ2) 7→

(
|DZ2 |, |D| − |DZ2 |

2

)
.
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Z2-equivariant stable homotopy theory

= fixed-point + fixed-point-free

I Theorem (Crabb+R.) For any pointed π-spaces X ,Y there is
a naturally split short exact sequence of abelian groups

0 // {X/π; Q̇(Y )/π} // {X/π;Y ∧π Y }Z2

ρ // {X/π;Y /π} // 0

I The surjection ρ is given by the Z2-fixed points, and is split by

{X/π;Y /π} → {X/π;Y ∧π Y }Z2 ; F 7→ ∆Y F .

I The injection is induced by the projection S∞ → {∗}

{X/π; Q̇(Y )/π} = {X/π; (S∞)+∧Y∧πY }Z2 → {X/π;Y∧πY }Z2 .
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Properties of the geometric Hopf invariant h(F )

I Proposition (Crabb+R.) The geometric Hopf invariant of a
stable π-map F : Σ∞X → Σ∞Y

h(F ) = (F ∧ F )∆X −∆Y F

∈ ker(ρ : {X/π;Y ∧π Y }Z2 → {X/π;Y /π})

= im({X/π; Q̇(Y )/π} ↪→ {X/π;Y ∧π Y }Z2) .

has the following properties:
(i) For F1,F2 : Σ∞X → Σ∞Y

h(F1 + F2) = h(F1) + h(F2) + (F1 ∧ F2)∆X .

(ii) For F : Σ∞X → Σ∞Y , G : Σ∞Y → Σ∞Z

h(GF ) = (G ∧ G )h(F ) + h(G )F .

(iii) If F ∈ im([X ,Y ]π → {X ;Y }π) then h(F ) = 0.
(iv) The function

{X ;Y } → {X ; Q̇(Y )} ; F 7→ h(F ) (π = {1})
is the James-Hopf double point map.
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Double point sets

I The double point set of a map f : N → M is the Z2-set

D(f , f ) = {(x , y) ∈ N × N | f (x) = f (y) ∈ M} .

I The ordered double point set of f is the free Z2-set

D(f ) = {(x , y) ∈ N × N | x 6= y ∈ N, f (x) = f (y) ∈ M} .

I The unordered double point set is

D(f ) = D(f )/Z2 ,

so that the projection D(f ) → D(f ) is a double covering.

I f is an embedding if and only if D(f ) = ∅.



16

Immersions

I For n < m the double point set of a self-transverse immersion
f : Nn # Mm is a stratified set

D(f , f ) = ∆N ∪ D(f ) ∪ (6 3n − 2m)-dimensional strata

with ∆N n-dimensional, D(f ) (2n −m)-dimensional.
I The normal bundle of the immersion

g : D(f ) # M ; (x , y) 7→ f (x) = f (y)

is
νg : D(f )

h = incl .// N × N
νf × νf // BO(2(m − n)) .

I If M,N are oriented then D(f ) is oriented, with a
fundamental class

[D(f )] ∈ H2n−m(D(f )) .

I In general, D(f ) is not oriented: T [D(f )] = (−)m−n[D(f )], so
D(f ) has a (−)m−n-twisted fundamental class

[D(f )] ∈ H2n−m(D(f ); Z(−)m−n
) .
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The double point class

I Given an immersion f : Nn # Mm lift an approximating
embedding (e, f ) : N ↪→ Rk ×M to a π-equivariant
embedding (ẽ, f̃ ) : Ñ ↪→ Rk × M̃ with π = π1(M), M̃ the
universal cover of M, and Ñ = f ∗M̃. The map

d : D(f̃ ) → Sk−1×(Ñ×Ñ) ; (x , y) 7→
(

ẽ(x)− ẽ(y)

‖ẽ(x)− ẽ(y)‖
, x , y

)
is Z2 × π-equivariant, and so determines a map

d : D(f ) → Sk−1 ×Z2 (Ñ ×π Ñ) ⊂ Q(Ñ)/π .

I The double point class of f is

d∗[D(f )] ∈ H2n−m(Q(Ñ)/π; Z(−)m−n
) .
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The Double Point Theorem

I Theorem (Crabb+R.) If f : Nn # Mm is an immersion with
stable Umkehr map F : ΣkM̃+ → ΣkT (ν

ef
) then

h(F ) = HG ∈ ker
(
ρ : {M+;T (ν

ef
) ∧π T (ν

ef
)}Z2 → {M+;T (νf )}

)
= im

(
{M+; Q̇(T (ν

ef
))/π} ↪→ {M+;T (ν

ef
) ∧π T (ν

ef
)}Z2

)
with G : Σk,kM+ → Σk,kT (νg ) the Z2-equivariant Umkehr
map of (e, e, g) : D(f ) ↪→ Rk × Rk ×M, with Z2-fixed points

ρ(G ) : ΣkM+ → Σk{∗} = {∗} .

π = π1(M) and H : T (νg ) ↪→ T (ν
ef
) ∧π T (ν

ef
) is induced by

the Z2-equivariant embedding

h : D(f ) = D(f̃ )/π ↪→ Ñ ×π Ñ .



19

The double point class = the evaluation
of the geometric Hopf invariant

I Corollary The double point class of f : Nn # Mm is the
evaluation on the fundamental class [M] ∈ Hm(M) of the
geometric Hopf invariant h(F ) of the π1(M)-equivariant
stable Umkehr map F : Σ∞M̃+ → Σ∞T (ν

ef
)

d∗[D(f )] = h(F )[M]

∈ Ḣm(Q̇(T (ν
ef
))/π1(M)) = H2n−m(Q(Ñ)/π1(M); Z(−)m−n

) ,

identifying Q̇(T (ν
ef
)) = T (e2(ν̃f )), the Thom space of the

2nd extended power bundle e2(ν̃f ) : Q(Ñ) → BO(2(m − n)).
I Example The Wall self-intersection µ of f : Nn # M2n is

µ(f ) = d∗[D(f )] = h(F )[M] ∈ Ḣ2n(Q̇(T (ν
ef
))/π1(M))

= H0(Q(Ñ)/π1(M); Z(−)n) =
Z[π1(M)]

{x − (−)nx−1|x ∈ π1(M)}
.
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Symmetric and quadratic structures on chain complexes I.

I Let A be a ring with involution A → A; a 7→ a.

I Given an A-module chain complex C let C ⊗A C be the
Z[Z2]-module chain complex

C ⊗A C = C ⊗Z C/{x ⊗ ay − ax ⊗ y | a ∈ A, x , y ∈ C} ,
T : Cp ⊗A Cq → Cq ⊗A Cp ; x ⊗ y 7→ (−)pqy ⊗ x .

I Use the standard free Z[Z2]-module resolution of Z

W : . . . // Z[Z2]
1−T // Z[Z2]

1+T // Z[Z2]
1−T // Z[Z2]

to define the Z-module chain complexes

Sym(C ) = HomZ[Z2](W ,C⊗AC ) , Quad(C ) = W⊗Z[Z2](C⊗AC ) .

I Write Qm(C ) = Hm(Sym(C )), Qm(C ) = Hm(Quad(C )).
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Symmetric and quadratic structures on chain complexes II.

I An m-dimensional symmetric complex (C , φ) is an A-module
chain complex C together with φ ∈ Qm(C ), represented by a
collection {φs ∈ (C ⊗A C )m+s |s > 0} such that

d(φs) = φs−1 + (−)sTφs−1 (s > 0, φ−1 = 0) .

I An m-dimensional quadratic complex (C , ψ) is an A-module
chain complex C together with ψ ∈ Qm(C ), represented by a
collection {ψs ∈ (C ⊗A C )m−s |s > 0} such that

d(ψs) = ψs+1 + (−)s+1Tψs+1 (s > 0) .

I The symmetrization chain map

1 + T : Quad(C ) → Sym(C ) ; ψ 7→ (1 + T )ψ

is defined by

((1 + T )ψ)s =

{
(1 + T )ψ0 for s = 0

0 for s > 1 .
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The symmetric construction

I The symmetric construction on a pointed π-space X is the
natural chain map

∆ = {∆s |s > 0} : Ċ (X/π) → Sym(Ċ (X ))

be an Alexander-Whitney-Steenrod diagonal chain
approximation, with

∆0 : Ċ (X/π) → Ċ (X )⊗Z[π] Ċ (X )

a chain map, ∆1 : ∆0 ' T∆0 a chain homotopy, etc.

I For π = {1} ∆ gives the Steenrod squares of X

Sqi : H r (X ; Z2) → H r+i (X ; Z2) = Hom(Hr+i (X ; Z2); Z2) ;

x 7→ (y 7→ 〈x ⊗ x ,∆r−i (y)〉) .
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Symmetric Poincaré complexes

I An m-dimensional symmetric Poincaré complex (C , φ) over A
is an m-dimensional f.g. free A-module chain complex

C : Cm → Cm−1 → · · · → C1 → C0

with φ ∈ Qm(C ) such that

φ0 : Cm−∗ = HomA(C ,A)∗−m → C

is an A-module chain equivalence.
I Mishchenko (1974) defined the cobordism group Lm(A) of

m-dimensional symmetric Poincaré complexes over A.
I The symmetric signature of an m-dimensional geometric

Poincaré complex X is the cobordism class

σ∗(X ) = (C (X̃ ),∆X [X ]) ∈ Lm(Z[π1(X )]) .

Homotopy invariant, generalizing the ordinary signature (=
the special case σ∗(X ) ∈ L4k(Z) = Z).
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Quadratic Poincaré complexes

I An m-dimensional quadratic Poincaré complex (C , ψ) over A
is an m-dimensional f.g. free A-module chain complex C with
ψ ∈ Qm(C ) such that (1 + T )ψ0 : Cm−∗ → C is an A-module
chain equivalence.

I Proposition (R., 1980) The Wall surgery obstruction group
Lm(A) is the cobordism group of m-dimensional quadratic
Poincaré complexes over A.

I Proof Every quadratic Poincaré complex (C , ψ) is cobordant
to a highly-connected complex, i.e. one with Hr (C ) = 0 for
2r < n. The cobordism group of highly-connected
m-dimensional quadratic Poincaré complexes is essentially the
same as the original group Lm(A) (m(mod 4)).
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The quadratic construction

I The quadratic construction (R., 1980) on a stable π-map
F : Σ∞X → Σ∞Y is a natural chain map

ψF : Ċ (X/π) → Ċ (Q̇(Y )/π) = Quad(Ċ (Y )) .

such that

(1+T )ψF = (F ⊗F )∆X −∆Y F : Ċ (X/π) → Sym(Ċ (Y )) .

I ψF was obtained using a natural (but implicit) chain
homotopy

∆ΣX ' {∆s−1|s > 0} : Ċ (ΣX/π) ' Ċ (X/π)∗−1 → Sym(Ċ (ΣX ))

with ∆−1 = 0 - cup products vanish in suspensions!
I For π = {1} ψF gives the functional Steenrod squares of F .
I Proposition The quadratic construction ψF is induced by the

geometric Hopf invariant h(F ) : Σ∞X/π → Σ∞Q̇(Y )/π.
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Surgery obstruction = quadratic Poincaré cobordism class

I Proposition (R., 1980) The surgery obstruction of a normal
map (f , b) : M → X is a quadratic Poincaré cobordism class

σ∗(f , b) = (C(f !), ψ) ∈ Lm(Z[π1(X )])

with C(f !) the algebraic mapping cone of the Umkehr
Z[π1(X )]-module chain map f ! : C (X̃ ) → C (M̃), such that
H∗(C(f !)) = K∗(M).

I In the original construction ψ = i%ψF [X ] ∈ Qm(C(f !)) was
the evaluation on [X ] ∈ Hm(X ) of the composite

i%ψF : Hm(X )
ψF // Qm(C (M̃))

i% // Qm(C(f !))

with F : Σ∞X̃+ → Σ∞M̃+ a stable π1(X )-equivariant
Umkehr map and i% induced by i : C (M̃) ↪→ C(f !).

I Can now identify ψ = i%h(F )[X ].
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Future

I The interpretation of the geometric Hopf invariant of
F : Σ∞X̃+ → Σ∞M̃+

h(F ) ∈ {X+;Q(M̃)/π1(M)}

as ‘universal double points’ of normal map (f , b) : M → X ,
using all of ΩM not just H0(ΩM) = Z[π1(M)].

I Quadratic Poincaré kernels for bounded/controlled normal
maps, without preliminary surgeries below the middle
dimension.

I Homotopy-theoretic total surgery obstruction s(X ) ∈ Sm(X )
of an m-dimensional geometric Poincaré complex X using an
X -local geometric Hopf invariant.

I Homotopy-theoretic surgery on Poincaré complexes.

I Quadratic Poincaré sheaf/intersection homology theory.


