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Braids

I An n-strand braid β is an embedding

β :
∐
n

I ⊂ D2 × I ⊂ R3

together with n distinct points z1, z2, . . . , zn ∈ D2 and a
permutation σ ∈ Σn such that for 1 6 i 6 n

β(0i ) = (zi , 0) ∈ D2×{0} , β(1i ) = (zσ(i), 1) ∈ D2×{1} .
I An example of a 3-strand braid with σ = (132)

D  X {0}
2

D  X {1}
2

D  X  I
2

1 2 3Z Z Z

1 2 3Z Z Z
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A braid drawn by Gauss (1833)

I

Copyright © 1998. All rights reserved.

I Further 19th century developments: Listing, Tait, Hurwitz.
I See Moritz Epple’s history paper Orbits of asteroids, a braid,

and the first link invariant, Mathematical Intelligencer, 20,
45-52 (1996)

http://www.maths.ed.ac.uk/~aar/papers/epple8.pdf
http://www.maths.ed.ac.uk/~aar/papers/epple8.pdf
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Artin

I Emil Artin founded the modern theory of braids in Theorie der
Zöpfe (1925), notably the n-strand braid group Bn.

I The simplest types of braids: a trivial braid, a braid with an
overcrossing and a braid with an undercrossing

Theorie der Z6pfe. 49 

aus den Definitionen hervorgeht, daft bei diesem Prozess der ite Faden 
yon Z~ nicht notwendig mit dem i t~ Faden yon Z~ zu verkntipfen ist. 
1st vielmehr #~ die Verbindung yon A~ und B,.,, so hat man ja B,., mit 
dem Punkt A', yon Z2 zusammenfallen zu lassen, so daft ~i mit dem 
Faden #', yon Z~ verkniipft wird. In Fig. 2 ist z. B. der erste Faden 
yon Z~ mit dem ch'itten Faden yon Z~ verbunden. 

Das assoziative Gesetz 

(1) (z ,  z , )  - -  (z ,  z , )  

ffir unsere Komposition leuchtet unmittelbar ein. Denn offenbar erscheint 
derselbe Zopf, wenn man an Z~ den bereits verknfipften Z~Z..~ anh~tngt 
oder abet an ZL den Zopf Z2 und an das Kompositionsresultat Z..~. 
Dagegen ist im allgemeinen die Reihenfolge von Z~ �9 

undZ~ wesentlich' d'h" es gilt nicht das k~ l l l l m u t a t i v e  Gesetz. 

Die einfachsten Typen von Z0pfen T/ter Ordnung 
sind in Fig. 3 dargestellt. Wit haben: I X ] " 

1. Den Zopf E, bei dem der Punkt Ai mit Bi 
verbunde~ ist und die F~den t~ miteinander nicht 
verschlungen sind. (Bei passender Deformation 
schneiden sich dann dieProjektionen unsererKurven l X ] ~ 
nicht.) Ersichtlich gilt, wenn Z ein beliebiger 
Zopf ist: 

Fig. 3. 
z E  = E Z  Z. 

Unser Zorf E spielt also die Rolle der Einheit und werde deshalb auch 
einfach mit 1 bezeichnet. 

2. Der Zopf (ri, bei dem A~ mit B~+I und Ai+l mit Bi verbunden 
ist. wobei der z ~e Faden einmal /tber dem ( i +  1) ten Faden li~uft, die 
iibrigen Faden aber wie bei E laufen. (Also unverschlungen yon A,. 
nach Br.) 

3. Der Zopf %-1, b ei dem derselbe Sachverhalt wie bei a/ vorliegt, 
nur dal3 der ite Faden einmal unter dem ( i +  1) t~n lauft. 

Komponiert man den Zopf ~ mit ai -1, so kann man den ~en Faden 
v0m ( i ~ - 1 )  ten herunterheben, erhiilt also den Zopf E. Ebenso wenn 
a- i  mit % komponiert wird. Es gilt also: 

( 3 )  a i .  a .  - 1  ----- a :  a .  a .  = 1 .  

Aus diesem Grunde wurde der dritte Typus a/-~ genannt. 

http://www.maths.ed.ac.uk/~aar/papers/artinzopfe.pdf
http://www.maths.ed.ac.uk/~aar/papers/artinzopfe.pdf
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The n-strand braids σ0, σ1, . . . , σn−1

I The trivial n-strand braid is

σ0 :
∐
n

I ⊂ R3 ; ti 7→ (i , ti , 0)

i

i+1i+1

i

I For i = 1, 2, . . . , n − 1 the elementary n-strand braid σi is
obtained from σ0 by introducing an overcrossing of the ith
strand and the (i + 1)th strand, with permutation
(i i + 1) ∈ Σn.

i i+1

i+1 i

I The elementary n-strand braid σ−1i is defined in the same
way but with an under crossing.

i i+1

i+1 i
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The n-strand braid group Bn

I The concatenation of two n-strand braids β, β′ is the
n-strand braid ββ′ obtained by identifying β(1i ) = β′(0i ).

I Bn is the set of isotopy classes of n-strand braids β, with
composition by concatenation, and unit σ0.

I Bn has generators σ1, σ2, . . . , σn−1 and relations{
σiσj = σjσi if |i − j | > 2

σiσjσi = σjσiσj if |i − j | = 1 .

I Every n-strand braid β is represented by a word in Bn in `
generators, corresponding to a sequence of ` crossings in a
plane projection.

I The concatenation βσi is obtained from β by adding to the
sequence a crossing of the ith strand over the (i + 1)th strand.

I The representation theory of the braid groups much studied.
Highlight: the Jones polynomial.
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The closure of a braid

I The closure of an n-strand braid β is the c-component link

β̂ = β ∪ σ0 :
∐
n

I ∪σ
∐
n

I =
∐
c

S1 ⊂ R3

with c = |{1, 2, . . . , n}/σ| the number of cycles in σ.
I Alexander proved in A lemma on systems of knotted curves

(1923) that every link is the closure β̂ of a braid β.
I Example A braid representation of the figure eight knot, with

3 strands and 4 crossingsVAN WIJK AND COHEN: VISUALIZATION OF SEIFERT SURFACES 3

oriented knot circles bands

Ain

Aout

Bout

Bin

Ain

Aout

Bout

Bin

Fig. 4. Seifert’s algorithm: Assign orientation, eliminate crossings, and add
bands; shown for a knot and a crossing

D. Challenge
Texts on knot theory show figures similar to Fig. 4. From

these it is hard to understand the shape of the surface. One
reason is that such surfaces are not familiar and are rarely
encountered in the real world. We have searched the literature
and the Web, but could not find satisfying visualizations of
Seifert surfaces. The KnotPlot package of Robert Scharein [12]
has a very rich set of features and is a delight to work (and
play) with, but even this has no option to show Seifert surfaces.
We therefore found it a challenge to develop a method to
visualize Seifert surfaces. Specifically, our aim was to enable
the viewer to generate and view Seifert surfaces interactively
in 3D for arbitrary knots and links in different styles.

One possible route is to consider a Seifert surface as a
minimal surface (i.e., the surface with zero mean curvature,
also known as the soap bubble surface) using the knot as its
fixed boundary. However, this requires that a three-dimensional
knot is available. Also, the definition of a suitable initial
surface mesh and the iterative calculation of the minimal
surface are not easy to implement and are compute intensive.
We therefore opted for a different approach. Given an abstract
notation of a knot, derive the structure of the Seifert surface
and find a smooth geometry in a quick and deterministic way.

E. Braid representation
To generate Seifert surfaces for arbitrary knots and links,

we need an encoding for these knots and links. Many different
encodings have been developed, such as the Conway notation
and the Dowker-Thistlethwaite notation. For our purposes we
found the braid representation to be very useful. By means
of braids, several different styles of surfaces can be generated
easily; and also, the braid representation lends itself well to
experimentation. It does have its limitations though, as we
discuss in section V.

A braid consists of a set of n strings, running (here) from
a left bar to a right bar (Fig. 5). Strings are allowed to cross,
and the pattern can be encoded by enumerating the crossings
from left to right. A crossing is denoted by σ j

k , which means
that strings at the k’th and k+ 1’th row are twisted j times,
where j = 1 denotes a right-hand crossing and j =−1 a left-
hand crossing cf. Fig. 3. The closure of the braid is defined
by attaching the left bar to the right bar, such that no further

σ1 σ1σ2
−1 σ2

−1

1

2

3

Fig. 5. Braid representation of figure-eight knot

crossings are introduced. In other words, we add n extra strings
that connect the beginnings and ends of strings at the same
row, without further crossings. Every knot and link can be
defined as a braid. A trefoil has the braid word σ1σ1σ1 = σ 3

1 ,
a figure eight knot can be represented as σ1σ−1

2 σ1σ−1
2 . An

alternative notation for braids is to use uppercase letters for
right crossings and lowercase letters for left crossings, and
where the character denotes the strings effected, according to
alphabetic order. Hence, a trefoil is encoded by AAA, and a
figure eight knot by AbAb. Furthermore, every possible braid
word defines a knot or a link, which makes this representation
well suited for experimentation.

III. CLOSED SURFACES

Besides visualization of Seifert surfaces, another aim was
to make the genus of a knot ’more visible’. A trefoil or a
figure eight knot has genus 1, hence the corresponding Seifert
surfaces are homotopic to a torus with a hole in the surface.
Via a number of steps in which the Seifert surface is deformed,
cut, and glued, this equivalence can be shown, but it is not
really intuitive. Closed surfaces are easier to understand, hence
we studied how a closed surface can be generated that contains
the Seifert surface as an embedded subsurface. We call such
a surface a closed Seifert surface. The following reasoning is
straightforward, but we could not find it in the literature.

The standard approach of topologists is to cap off bound-
aries (here the m boundaries of the Seifert surface) with
(topological) disks. This leads to a surface that is homotopic
to a closed surface, but not isotopic. What we need here to
close the surface in a more decent way, is an oriented surface
that has the m components of the link as boundary. But this
is exactly the definition of a Seifert surface itself, which leads
us immediately to a solution. Using a physical analogy, the
solution is to take two identical Seifert surfaces, glue them
together at the boundaries, and inflate the closed object. This
is shown in Fig. 6 for a trefoil (which also shows a possible
solution to the puzzles posed in the introduction). The Seifert
surface consists here of two disks, connected by three bands;
the closed Seifert surface consists of two spheres, connected
by three tubes. The knot splits the closed surface into two
parts.

The genus of a closed Seifert surface can be determined
as follows. The Euler characteristic of a Seifert surface is
χs = 2 − 2gs − m, with gs the genus and m the number of
components of the knot. For the Euler characteristic χc of the

http://www.maths.ed.ac.uk/~aar/papers/alexlem.pdf
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The closure of σ1σ1 is the Hopf link

The 2-strand braid β = σ  σ

The closure β = Hopf link

1 1

i

i

i+1

i+1

i+1

i+1 i
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The Seifert surfaces of a link

I A Seifert surface for a link

L :
∐

S1 ⊂ R3

is a surface F 2 ⊂ R3 with boundary

∂F = L(
∐

S1) ⊂ R3 .

I Seifert in Über das Geschlecht von Knoten (1935) proved that
every link L admits a Seifert surface of the type

F = (
∐
n

D2) ∪
∐
`

D1 × D1 ⊂ R3

using an algorithm starting with a plane projection.

I A link L has many projections, and many Seifert surfaces.

http://www.maths.ed.ac.uk/~aar/papers/seifert.pdf
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The canonical Seifert surface Fβ of a braid

I An n-strand braid β with ` crossings is represented by a word
in Bn of length ` in the generators σ1, σ2, . . . , σn−1, so that
β = β1β2 . . . β` is the concatenation of ` elementary braids.

I Stallings in Constructions of fibred knots and links (1978)
observed that the closure β̂ has a canonical Seifert surface
with n 0-handles and ` 1-handles

Fβ = (
∐
n

D2) ∪
∐
`

D1 × D1 ⊂ R3

and hence a canonical Seifert matrix Ψβ.
I Lemma Fβ is homotopy equivalent to the CW complex

Xβ = (
n∐

i=1

e0i ) ∪
∐̀
j=1

e1j

with ∂e1j = e0i ∪ e0i+1 if jth crossing is between strands i , i + 1

H1(Fβ) = H1(Xβ) = ker(d : C1(Xβ)→ C0(Xβ))

= ker(d : Z` → Zn) = Zm .

http://www.maths.ed.ac.uk/~aar/papers/stallfib2.pdf
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Some braids β and their canonical Seifert surfaces Fβ I.

F 

     σ

σ F σ
F σ σ

σ σ

σ

σ σ

σ σ
0 1

1

1 1

1 1

0 1
1 1

0
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Some braids β and their canonical Seifert surfaces Fβ II.

F 

     σ

σ F 

F σ σ

σ

σ σ

σ σ

σ σ

σ0 1

1 1

1

σ σ σ

σ σ σ

1 1

1 1

1

1 1 1

0

1 1 F σ σ1 1σ1

1

0
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SeifertView

I Arjeh Cohen and Jack van Wijk wrote a programme
SeifertView (2005) and a paper The visualization of Seifert
surfaces (2006) for drawing the canonical Seifert surfaces of
braids.

I A screenshot

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 1, NO. X, AUGUST 2006

number of such knots as well. In the letter based braid notation,
each symbol represents a single twist of two parallel strands.
We extended this by allowing also the definition of vertical
twists (Fig. 20). Each letter can be followed by a number that
gives the number of vertical twists, such that for instance a
(1, 3, -5) pretzel knot is defined as AA3a5. One limitation we
impose is that the number of vertical twists should be either
odd or even for all bands connecting the same disks, i.e., the
same for all A’s and a’s, all B’s and b’s, etc. If this condition is
met, then processing these extra twists is straightforward. One
change is that when even twists are used, the orientation of
disks changes. With this extension shapes such as chain rings
can be defined easily via a sequence A2A2... (Fig. 21).

VI. RESULTS

A. Examples
Interactive viewing provides much better insight in the 3D

shape than watching static images. Nevertheless, we show
some more examples of results. As mentioned in the previous
section, the braid representation does not always yield a
surface with minimal genus. This property can also be used as
a feature, i.e., to produce surfaces with a high genus that are
bounded by simple knots and links. Consider the knots and
links produced by a sequence AaAaAa... One strand is always
on top of the other here (Fig. 22), hence this produces either
two loose rings or one unknot, for an even or odd number L

A a A a

Fig. 22. AaAa gives simple boundaries, but a complex topology of the surface

Fig. 23. AaA (left) and AaAa (right)

of letters, respectively. The Seifert surface is more complex,
and contains L − 1 holes (Fig. 23). The result of AaAa is
intriguing. Locally, the shape is simple to understand, but it is
hard to form a mental image of the complete shape, like one
can imagine a sphere or a torus.

Fig. 25 shows a number of standard knots, Fig. 26 shows
a number of standard links. For each knot or link two views
are given: one with a minimal number of crossings and one
that shows the spatial structure of the surface. In [15] we have
given examples of the same set, using stacked and reduced
styles, in combination with geometric smoothing. Whereas
these images showed the structure clearly, the use of physically
based smoothing leads to results that resemble the natural
shapes of the knots much better.

B. Dissemination
The visualization of Seifert surfaces is useful for knot the-

orists to illustrate and explain their work. Our first experience
in a course on knot theory was very positive in this respect.
Also, we think that the concepts presented and methods used
here are interesting for a wider audience. Knot theory is pure
mathematics, but can be presented at a basic level without any
formula. In this spirit, our work could be used for tutorial and
educational purposes, such as for instance special projects on
higher mathematics at high schools. We already spent some
effort in bridging the gap between our research results and
application on a wider scale.

Fig. 24. User interface SeifertView

First of all, we have tried to turn our research prototype
into a useful and interesting tool for an extended audience.
The result is a Microsoft Windows application, which we
have called SeifertView. A snapshot of the user interface is
shown in Fig. 24. The user can view and rotate the knot (here
knot 77) in the main area. With the controls below the main
view area, the user can select which parts have to be shown,
trigger a smoothing cycle, refine the mesh, or reset to the
original shape. The first tab sheet, shown on the right, provides
basic functionality which enables an occasional user to have a

http://www.win.tue.nl/seifertview/
http://www.maths.ed.ac.uk/~aar/papers/vanwijk.pdf
http://www.maths.ed.ac.uk/~aar/papers/vanwijk.pdf
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Duality and matrices

I The dual of an abelian group A is the abelian group

A∗ = HomZ(A,Z) .

I The dual of a morphism f : A→ B of abelian groups is the
morphism

f ∗ : B∗ → A∗ ; (g : B → Z) 7→ (gf : A→ B → Z) .

I If A is f.g. free with basis {a1, a2, . . . , am} then A∗ is f.g. free
with dual basis {a∗1, a∗2, . . . , a∗m} such that a∗j (ak) = δjk .

I A morphism f : A→ B of f.g. free abelian groups with bases
{a1, a2, . . . , am}, {b1, b2, . . . , bn} has the n ×m matrix (fjk)
with

f (ak) =
n∑

j=1

fjkbj ∈ B (1 6 k 6 m) .

I The dual morphism f ∗ has the transpose m × n matrix

(fjk)∗ = (f ∗kj) , f
∗
kj = fjk .
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The Seifert form of a surface F ⊂ R3

I The intersection form of a surface with boundary (F , ∂F ) is
the symplectic bilinear form

Φ = − Φ∗ : H1(F )→ H1(F )∗ = H1(F ) = H1(F , ∂F )
defined by intersection numbers, with an exact sequence

0 // H0(F ) // H1(∂F )→ H1(F )
Φ // H1(F ) // H0(∂F ) // H0(F ) // 0

I An embedding F ⊂ R3 determines a Seifert matrix
Ψ = (Ψjk): given cycles b1, b2, . . . , bm : S1 ⊂ F representing
a basis {b1, b2, . . . , bm} ⊂ H1(F ) = Zm

Ψjk = linking number(b+j , b
−
k : S1 ⊂ R3) ∈ Z

with b+j , b
−
k : S1 ⊂ R3 the cycles bj , bk : S1 ⊂ F pushed off

from ∂F ⊂ F ⊂ R3 in opposite directions.
I The Seifert form Ψ : H1(F )→ H1(F )∗ is independent of the

choice of basis, and such that

Φ = Ψ−Ψ∗ : H1(F )→ H1(F )∗ .
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The canonical Seifert matrix Ψβ of a braid I.

I A Seifert matrix for a link L :
∐
c
S1 ⊂ R3 is a Seifert matrix

Ψ of a Seifert surface F ⊂ R3.

I The canonical Seifert matrix Ψβ of a braid β is the Seifert
m ×m matrix of the canonical Seifert surface Fβ for the

closure β̂ : S1 ⊂ R3, with m = rankH1(Fβ).

I Example 1 For the elementary braid β = σ1 with closure β̂
the trivial knot the canonical Seifert surface Fβ is homotopy
equivalent to

Xβ = e0 ∪ e0 ∪ e1 = I .

Thus H1(Fβ) = 0 and the canonical Seifert 0× 0 matrix is

Ψβ = (0) .
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The canonical Seifert matrix Ψβ of a braid II.

I Example 2 For the braid β = σ1σ1 with closure β̂ the Hopf
link the canonical Seifert surface Fβ is homotopy equivalent to

Xβ = e0 ∪ e0 ∪ e1 ∪ e1 = S1 .

Thus H1(Fβ) = Z and the canonical Seifert 1× 1 matrix is

Ψβ = (1) .

I Example 3 For β = σ−11 σ−11

Ψβ = (−1) .

I Problem For any n-strand braids β, β′ what is the relation
between the canonical Seifert matrices Ψβ,Ψβ′ ,Ψββ′?
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An algorithm for the canonical Seifert matrix Ψβ

I In 2007 Julia Collins computed the canonical Seifert matrix
Ψβ of a braid β, with a programme Seifert Matrix
Computation and a paper An algorithm for computing the
Seifert matrix of a link from a braid representation

I For a sequence x1, x2, . . . , x` with
xi ∈ {±1,±2, . . . ,±(n − 1)} let

ε(i) = sign(xi ) ∈ {−1, 1} , σ(xi ) = σ
ε(i)
|xi | ∈ Bn .

I Define the braid with n strands and ` crossings

[x1, x2, . . . , x`] = σ(x1)σ(x2) . . . σ(x`) ∈ Bn .

I The algorithm uses a basis for the homology H1(Fβ) = Zm

with one basis element for each pair of adjacent crossings on
the same strands, i.e. between each xi and xj where |xi | = |xj |
and |xk | 6= |xi | for all i < k < j .

I The entries in the canonical Seifert matrix Ψβ are either 0,+1
or −1.

http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/
http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/
http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/SeifertMatrix.pdf
http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/SeifertMatrix.pdf
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Braids and signatures

I The Tristram-Levine ω-signature of a link L :
∐

S1 ⊂ R3 is
defined for ω 6= 1 ∈ C by

σω(L) = signature((1− ω)Ψ + (1− ω)Ψ∗) ∈ Z

for any Seifert matrix Ψ. Independent of choice of Ψ.
I Gambaudo and Ghys (2005) and Bourrigan (2013) used the

Burau-Squier hermitian representation of Bn to express the
non-additivity

σω(β̂β
′
)− σω(β̂)− σω(β̂′) ∈ Z

in terms of the Wall-Maslov-Mayer formula for the
nonadditivity of signature.

I Proofs rather complicated, for lack of an explicit formula for
the canonical Seifert matrix Ψβ of the closure β̂ of a braid β.
Could get such a formula from an expression for the canonical
Seifert matrix of a concatenation Ψββ′ in terms of Ψβ,Ψβ′ .
Rather tricky, because of the nonadditivity of rankH1(Fβ).

http://www.maths.ed.ac.uk/~aar/papers/gambghys.pdf
http://www.maths.ed.ac.uk/~aar/papers/bourrigan.pdf
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Surgery on manifolds

I An r-surgery on an m-dimensional manifold M uses an
embedding

S r × Dm−r ⊂ M (−1 6 r 6 m)

to create a new m-dimensional manifold, the effect

M ′ = cl.(M\S r × Dm−r ) ∪ Dr+1 × Sm−r−1

I The trace of the r -surgery is the (m + 1)-dimensional
cobordism (W ;M,M ′) with

W = (M × I ) ∪ Dr+1 × Dm−r

obtained from M × I by attaching an (r + 1)-handle at
S r × Dm−r ⊂ M × {1}.

I Theorem (Thom, Milnor, 1961) Every (m + 1)-dimensional
cobordism is a union of traces of successive surgeries.

I For surgery on manifolds with boundary (M, ∂M) require
S r × Dm−r ⊂ M\∂M.
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Surgery on 1-manifolds

I A 1-dimensional manifold is a disjoint union of circles

M =
∐
n

S1 .

I The effect of a (−1)-surgery on M is to add another circle

M ′ = M t S1 =
∐
n+1

S1 .

I The effect of a 0-surgery using an embedding S0 ×D1 ⊂ M is

M ′ =


∐
n+1

S1 if S0 ⊂ M in same component of M∐
n−1

S1 if S0 ⊂ M in different components of M .
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The pair of pants

P

P = M x I      D  x D   = trace11

M = S

M M’

1 M = S1 S  x D10 1M’ = M \S  x D        D  x S10 0
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Generalized intersection matrices

I Given an n-strand braid β with ` crossings, let C = C (Xβ) be
the cellular Z-module chain complex of Xβ ' Fβ with

d =


1

...

−1
...

0
...

...
...

 : C1 = Z` = Z[e11 , . . . , e
1
` ]

→ C0 = Zn = Z[e01 , . . . , e
0
n ] ; e1j 7→ e0i − e0i+1 .

I A generalized intersection matrix for β is an `× ` matrix
φβ such that

d∗d = φβ + φ∗β : C1 → C 1

and which induces the intersection form

Φβ = [φβ] : H1(Fβ) = H1(C ) = ker(d)

→ H1(Fβ, ∂Fβ) = H1(C ) = coker(d∗) .
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The canonical generalized intersection matrix φβ I.

I Definition The canonical generalized intersection 1× 1
matrices for the elementary n-strand braids σi , σ

−1
i are

φσi = φσ−1
i

= (1) .

I Let β, β′ be n-strand braids with `, `′ crossings and chain
complexes

d : C1 = Z` → C0 = Zn , d ′ : C ′1 = Z`
′ → C ′0 = Zn .

I Lemma The concatenation n-strand braid β′′ = ββ′ with
(`+ `′) crossings has chain complex

d ′′ = (d d ′) : C ′′1 = Z` ⊕ Z`
′ → C ′′0 = Zn

I Definition The concatenation of generalized intersection
matrices φβ, φβ′ for β, β′ is the generalized intersection matrix
for β′′

φβ′′ = φβφβ′ =

(
φβ d∗d ′

0 φβ′

)
.

I Lemma Concatenation is associative.
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The canonical generalized intersection matrix φβ II.

I Proposition An n-strand braid β = β1β2 . . . β` with `
crossings has the canonical generalized intersection matrix

φβ = φβ1φβ2 . . . φβ` : C1 = Z` → C 1 = Z` .
I The generalized intersection matrix φβ encodes the sequence

of ` 1-surgeries on
∐
n
S1 determined by β with combined trace

(cl.(Fβ\
∐
n
D2);

∐
n
S1, ∂Fβ).

I The algebraic theory of surgery (A.R., 1980) expresses the
chain complex of ∂Fβ = β̂(

∐
n
S1) ⊂ R3 up to chain

equivalence as

d ′ =

(
φβ −d∗
d 0

)
: C ′1 = C1 ⊕ C 0 → C ′0 = C 1 ⊕ C0 .

I Proposition

no. of components of β̂ = rankH0(C ′) .

http://www.maths.ed.ac.uk/~aar/papers/ats1.pdf
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How many components does the Hopf link have?

I Example The canonical Seifert surface Fβ of the closure β̂ of
the 2-strand braid β = σ1σ1 has chain complex

d =

(
1 1
−1 −1

)
: C1 = Z⊕ Z→ C0 = Z⊕ Z

and generalized intersection matrix

φβ =

(
1 2
0 1

)
: C1 = Z⊕ Z→ C 1 = Z⊕ Z .

The 4× 4 matrix d ′ =

(
φβ −d∗
d 0

)
has rank 2, so the Hopf

link β̂ has 4-2=2 components.
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Surgery on submanifolds

I An ambient r-surgery on a codimension q submanifold
Mm ⊂ Nm+q is an r -surgery on S r × Dm−r ⊂ M with a
codimension q embedding of the trace

(W ;M,M ′) ⊂ N × (I ; {0}, {1}) .
I Key idea 1 The closure β̂ :

∐
S1 ⊂ R3 of an n-strand braid β

with ` crossings is the effect of n ambient 0-surgeries on the
codimension 2 submanifold ∅ ⊂ R3 (i.e.

∐
n
S1) followed by `

ambient 1-surgeries.
I Key idea 2 The canonical Seifert surface Fβ ⊂ R3 is the

union of the traces of n ambient 0-surgeries on the
codimension 1 submanifold ∅ ⊂ R3 (i.e.

∐
n
D2) followed by `

ambient 1-surgeries.
I Problems What are the algebraic effects of the corresponding

chain level algebraic surgeries?



28

Surgery on braids

I The effect of a 1-surgery on a 2-strand braid
β : I t I ⊂ D2 × I with S0 × D1 ⊂ I t I in different
components is the 2-strand braid β′ = βσ1 : I t I ⊂ D2 × I

β β’

I Corresponding 1-surgery on the closure β̂ of β with effect the
closure β̂′ of β′

β β’

β’β P

With trace the pair of pants:
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Generalized Seifert matrices

I Define the n × n matrix

χ =


0 0 0 . . .
1 0 0 . . .
1 1 0 . . .
...

...
...

. . .


I A generalized Seifert matrix for an n-strand braid β with `

crossings is an `× ` matrix ψβ such that

φβ + d∗χd = ψβ − ψ∗β : C1 = Z` → C 1 = Z`

and ψβ : C1 → C 1 induces the Seifert form

Ψβ = [ψβ] : H1(Fβ) = H1(C ) = ker(d)

→ H1(Fβ, ∂Fβ) = H1(C ) = coker(d∗) .

I Motivated by the algebraic surgery properties of the
Pontrjagin-Thom map S3 → Σ(Fβ/∂Fβ) of Fβ ⊂ R3.
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The canonical generalized Seifert matrix ψβ I.

I Definition The canonical generalized Seifert 1× 1
matrices for the elementary n-strand braids σi , σ

−1
i are

ψσi = (1) , ψσ−1
i

= (−1) .

I Let β, β′ be n-strand braids with `, `′ crossings and chain
complexes

d : C1 = Z` → C0 = Zn , d ′ : C ′1 = Z`
′ → C ′0 = Zn .

As before, the concatenation n-strand braid β′′ = ββ′ has

d ′′ = (d d ′) : C ′′1 = Z` ⊕ Z`
′ → C ′′0 = Zn

and a canonical generalized intersection matrix φβ′′ = φβφβ′ .
I Definition The concatenation of generalized Seifert matrices
ψβ, ψβ′ for β, β′ is the generalized Seifert matrix for β′′

ψβ′′ = ψβψβ′ =

(
ψβ −d∗χ∗d ′
0 ψβ′

)
.
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The canonical generalized Seifert matrix ψβ II.

I Lemma Concatenation is associative.

I Proposition An n-strand braid with ` crossings
β = β1β2 . . . β` has the canonical generalized Seifert matrix

ψβ = ψβ1ψβ2 . . . ψβ` : C1 = Z` → C 1 = Z` .

I The generalized Seifert matrix ψβ encodes the sequence of `
ambient 1-surgeries on

∐
n
S1 ⊂ R3 determined by β with

combined trace (cl.(Fβ\
∐
n
D2);

∐
n
S1, ∂Fβ) ⊂ R3.

I Maciej Borodzik extended Julia Collins’ algorithm to construct
an `× ` matrix inducing the Seifert form directly from the
braid, but it is not clear if this is the canonical generalized
Seifert matrix.



32

What is the Seifert form of the trefoil knot?

I Example The 2-strand braid β = σ1σ1σ1 with 3 crossings has
closure β̂ the trefoil knot. The chain complex for β is

d =

(
1 1 1
−1 −1 −1

)
: C1 = Z⊕ Z⊕ Z→ C0 = Z⊕ Z

so H1(C ) = Z⊕ Z with basis b1 = (1, 0,−1), b2 = (0, 1,−1).
I The canonical generalized Seifert matrix is

ψβ =

1 −1 1
0 1 1
0 0 1

 : C1 = Z⊕Z⊕Z→ C 1 = Z⊕Z⊕Z

The Seifert matrix of the trefoil knot with respect to b1, b2 is

[ψβ] =

(
1 −1
0 1

)
: H1(C ) = Z⊕ Z→ H1(C ) = Z⊕ Z .


