SURGERY THEORY AND BRAIDS

Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/~aar Drawings by Carmen Rovi

Dedicated to the memory of my parents

Warwick 25th October, 2013

Braids

An *n*-strand braid β is an embedding

$$\beta : \prod I \subset D^2 \times I \subset \mathbb{R}^3$$

together with *n* distinct points $z_1, z_2, \ldots, z_n \in D^2$ and a permutation $\sigma \in \Sigma_n$ such that for $1 \leq i \leq n$

$$eta(0_i) \;=\; (z_i,0) \;\in D^2 imes \{0\} \;,\; eta(1_i) \;=\; (z_{\sigma(i)},1) \in D^2 imes \{1\} \;.$$

• An example of a 3-strand braid with $\sigma = (132)$

A braid drawn by Gauss (1833)

- Further 19th century developments: Listing, Tait, Hurwitz.
- See Moritz Epple's history paper Orbits of asteroids, a braid, and the first link invariant, Mathematical Intelligencer, 20, 45-52 (1996)

Artin

- Emil Artin founded the modern theory of braids in Theorie der Zöpfe (1925), notably the *n*-strand braid group B_n.
- The simplest types of braids: a trivial braid, a braid with an overcrossing and a braid with an undercrossing

The trivial n-strand braid is

For i = 1, 2, ..., n − 1 the elementary n-strand braid σ_i is obtained from σ₀ by introducing an overcrossing of the *i*th strand and the (i + 1)th strand, with permutation (i i + 1) ∈ Σ_n.

The elementary *n*-strand braid σ_i⁻¹ is defined in the same way but with an under crossing.

The *n*-strand braid group B_n

- ► The concatenation of two *n*-strand braids β, β' is the *n*-strand braid ββ' obtained by identifying β(1_i) = β'(0_i).
- B_n is the set of isotopy classes of *n*-strand braids β, with composition by concatenation, and unit σ₀.
- B_n has generators $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ and relations

$$\begin{cases} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{if } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{if } |i-j| = 1 \end{cases}$$

- Every *n*-strand braid β is represented by a word in B_n in ℓ generators, corresponding to a sequence of ℓ crossings in a plane projection.
- The concatenation βσ_i is obtained from β by adding to the sequence a crossing of the *i*th strand over the (*i*+1)th strand.
- The representation theory of the braid groups much studied. Highlight: the Jones polynomial.

The closure of a braid

• The **closure** of an *n*-strand braid β is the *c*-component link

$$\widehat{\beta} = \beta \cup \sigma_0 : \prod_n I \cup_\sigma \prod_n I = \prod_c S^1 \subset \mathbb{R}^3$$

with $c = |\{1, 2, ..., n\}/\sigma|$ the number of cycles in σ .

- Alexander proved in A lemma on systems of knotted curves (1923) that every link is the closure β of a braid β.
- Example A braid representation of the figure eight knot, with 3 strands and 4 crossings

The closure of $\sigma_1 \sigma_1$ is the Hopf link

The Seifert surfaces of a link

A Seifert surface for a link

$$L$$
 : $\coprod S^1 \subset \mathbb{R}^3$

is a surface $F^2 \subset \mathbb{R}^3$ with boundary

$$\partial F = L(\coprod S^1) \subset \mathbb{R}^3$$
.

Seifert in Über das Geschlecht von Knoten (1935) proved that every link L admits a Seifert surface of the type

$$F = (\prod_n D^2) \cup \prod_{\ell} D^1 \times D^1 \subset \mathbb{R}^3$$

using an algorithm starting with a plane projection.

► A link *L* has many projections, and many Seifert surfaces.

The canonical Seifert surface F_{β} of a braid

- An n-strand braid β with ℓ crossings is represented by a word in B_n of length ℓ in the generators σ₁, σ₂,..., σ_{n-1}, so that β = β₁β₂...β_ℓ is the concatenation of ℓ elementary braids.
- Stallings in Constructions of fibred knots and links (1978) observed that the closure β has a canonical Seifert surface with n 0-handles and ℓ 1-handles

$$F_{\beta} = (\prod_{n} D^2) \cup \prod_{\ell} D^1 imes D^1 \subset \mathbb{R}^3$$

and hence a canonical Seifert matrix Ψ_{β} .

• Lemma F_{β} is homotopy equivalent to the *CW* complex

$$X_{eta} = (\prod_{i=1}^n e_i^0) \cup \prod_{j=1}^\ell e_j^1$$

with $\partial e_j^1 = e_i^0 \cup e_{i+1}^0$ if jth crossing is between strands i, i+1

$$egin{array}{rcl} H_1(F_eta) &=& H_1(X_eta) &=& \ker(d:C_1(X_eta) o C_0(X_eta)) \ &=& \ker(d:\mathbb{Z}^\ell o \mathbb{Z}^n) &=& \mathbb{Z}^m \ . \end{array}$$

Some braids β and their canonical Seifert surfaces ${\it F}_\beta$ I.

Some braids β and their canonical Seifert surfaces F_{β} II.

SeifertView

- Arjeh Cohen and Jack van Wijk wrote a programme SeifertView (2005) and a paper The visualization of Seifert surfaces (2006) for drawing the canonical Seifert surfaces of braids.
- A screenshot

Duality and matrices

• The **dual** of an abelian group A is the abelian group

$$A^* = \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(A, \mathbb{Z})$$
 .

► The dual of a morphism f : A → B of abelian groups is the morphism

$$f^* : B^* o A^*$$
; $(g: B o \mathbb{Z}) \mapsto (gf: A o B o \mathbb{Z})$.

- If A is f.g. free with basis {a₁, a₂,..., a_m} then A^{*} is f.g. free with dual basis {a₁^{*}, a₂^{*}, ..., a_m^{*}} such that a_j^{*}(a_k) = δ_{jk}.
- A morphism $f : A \to B$ of f.g. free abelian groups with bases $\{a_1, a_2, \ldots, a_m\}, \{b_1, b_2, \ldots, b_n\}$ has the $n \times m$ matrix (f_{jk}) with

$$f(a_k) = \sum_{j=1}^n f_{jk}b_j \in B \quad (1 \leqslant k \leqslant m) \; .$$

• The dual morphism f^* has the **transpose** $m \times n$ matrix

$$(f_{jk})^* = (f_{kj}^*), f_{kj}^* = f_{jk}$$
.

► The intersection form of a surface with boundary (F, ∂F) is the symplectic bilinear form

 $\Phi = -\Phi^* : H_1(F) \to H_1(F)^* = H^1(F) = H_1(F, \partial F)$ defined by intersection numbers, with an exact sequence $0 \to H^0(F) \to H_1(\partial F) \to H_1(F) \xrightarrow{\Phi} H^1(F) \to H_0(\partial F) \to H_0(F) \to 0$

An embedding *F* ⊂ ℝ³ determines a Seifert matrix
 Ψ = (Ψ_{jk}): given cycles b₁, b₂,..., b_m : S¹ ⊂ F representing a basis {b₁, b₂,..., b_m} ⊂ H₁(F) = ℤ^m

 Ψ_{jk} = linking number $(b_j^+, b_k^- : S^1 \subset \mathbb{R}^3) \in \mathbb{Z}$

with $b_j^+, b_k^- : S^1 \subset \mathbb{R}^3$ the cycles $b_j, b_k : S^1 \subset F$ pushed off from $\partial F \subset F \subset \mathbb{R}^3$ in opposite directions.

The Seifert form Ψ : H₁(F) → H₁(F)* is independent of the choice of basis, and such that

$$\Phi ~=~ \Psi - \Psi^* ~:~ H_1(F)
ightarrow H_1(F)^*$$
 .

The canonical Seifert matrix Ψ_{β} of a braid I.

- A Seifert matrix for a link $L : \coprod_c S^1 \subset \mathbb{R}^3$ is a Seifert matrix Ψ of a Seifert surface $F \subset \mathbb{R}^3$.
- The canonical Seifert matrix Ψ_β of a braid β is the Seifert m × m matrix of the canonical Seifert surface F_β for the closure β̂ : S¹ ⊂ ℝ³, with m = rank H₁(F_β).
- Example 1 For the elementary braid β = σ₁ with closure β
 the trivial knot the canonical Seifert surface F_β is homotopy
 equivalent to

$$X_{\beta} = e^0 \cup e^0 \cup e^1 = I .$$

Thus $H_1(F_\beta) = 0$ and the canonical Seifert 0×0 matrix is

$$\Psi_\beta = (0) .$$

The canonical Seifert matrix Ψ_{β} of a braid II.

► Example 2 For the braid β = σ₁σ₁ with closure β̂ the Hopf link the canonical Seifert surface F_β is homotopy equivalent to

$$X_eta ~=~ e^0 \cup e^0 \cup e^1 \cup e^1 ~=~ S^1$$

Thus $H_1(F_\beta) = \mathbb{Z}$ and the canonical Seifert 1×1 matrix is

$$\Psi_eta~=~(1)$$
 .

• Example 3 For $\beta = \sigma_1^{-1} \sigma_1^{-1}$

$$\Psi_eta~=~(-1)$$
 .

► Problem For any *n*-strand braids β, β' what is the relation between the canonical Seifert matrices Ψ_β, Ψ_{β'}, Ψ_{ββ'}?

An algorithm for the canonical Seifert matrix Ψ_{β}

In 2007 Julia Collins computed the canonical Seifert matrix Ψ_β of a braid β, with a programme Seifert Matrix
 Computation and a paper An algorithm for computing the Seifert matrix of a link from a braid representation

For a sequence
$$x_1, x_2, \ldots, x_\ell$$
 with
 $x_i \in \{\pm 1, \pm 2, \ldots, \pm (n-1)\}$ let
 $\epsilon(i) = \operatorname{sign}(x_i) \in \{-1, 1\}, \ \sigma(x_i) = \sigma_{|x_i|}^{\epsilon(i)} \in B_n$.

Define the braid with *n* strands and
$$\ell$$
 crossings

$$[x_1, x_2, \ldots, x_\ell] = \sigma(x_1)\sigma(x_2)\ldots\sigma(x_\ell) \in B_n$$

- The algorithm uses a basis for the homology H₁(F_β) = Z^m with one basis element for each pair of adjacent crossings on the same strands, i.e. between each x_i and x_j where |x_i| = |x_j| and |x_k| ≠ |x_i| for all i < k < j.</p>
- The entries in the canonical Seifert matrix Ψ_β are either 0,+1 or −1.

Braids and signatures

The Tristram-Levine ω-signature of a link L : ∐ S¹ ⊂ ℝ³ is defined for ω ≠ 1 ∈ ℂ by

$$\sigma_\omega(\mathsf{L}) \;=\; {
m signature}((1-\omega)\Psi+(1-\overline{\omega})\Psi^*)\in\mathbb{Z}$$

for any Seifert matrix Ψ . Independent of choice of Ψ .

► Gambaudo and Ghys (2005) and Bourrigan (2013) used the Burau-Squier hermitian representation of *B_n* to express the non-additivity

$$\sigma_{\omega}(\widehat{etaeta}') - \sigma_{\omega}(\widehat{eta}) - \sigma_{\omega}(\widehat{eta}') \in \mathbb{Z}$$

in terms of the Wall-Maslov-Mayer formula for the nonadditivity of signature.

Proofs rather complicated, for lack of an explicit formula for the canonical Seifert matrix Ψ_β of the closure β̂ of a braid β. Could get such a formula from an expression for the canonical Seifert matrix of a concatenation Ψ_{ββ'} in terms of Ψ_β, Ψ_{β'}. Rather tricky, because of the nonadditivity of rank H₁(F_β).

Surgery on manifolds

An r-surgery on an m-dimensional manifold M uses an embedding

$$S^r \times D^{m-r} \subset M \ (-1 \leqslant r \leqslant m)$$

to create a new *m*-dimensional manifold, the effect

$$M' = \operatorname{cl.}(M \setminus S^r \times D^{m-r}) \cup D^{r+1} \times S^{m-r-1}$$

► The trace of the *r*-surgery is the (*m* + 1)-dimensional cobordism (*W*; *M*, *M*') with

$$W = (M \times I) \cup D^{r+1} \times D^{m-r}$$

obtained from $M \times I$ by attaching an (r + 1)-handle at $S^r \times D^{m-r} \subset M \times \{1\}.$

- ▶ **Theorem** (Thom, Milnor, 1961) Every (*m* + 1)-dimensional cobordism is a union of traces of successive surgeries.
- For surgery on manifolds with boundary (M, ∂M) require S^r × D^{m-r} ⊂ M\∂M.

Surgery on 1-manifolds

A 1-dimensional manifold is a disjoint union of circles

$$M = \prod_n S^1 .$$

► The effect of a (-1)-surgery on M is to add another circle

$$M' = M \sqcup S^1 = \prod_{n+1} S^1 .$$

▶ The effect of a 0-surgery using an embedding $S^0 \times D^1 \subset M$ is

$$M' = \begin{cases} \prod_{n+1} S^1 & \text{if } S^0 \subset M \text{ in same component of } M \\ \prod_{n-1} S^1 & \text{if } S^0 \subset M \text{ in different components of } M \end{cases}.$$

Generalized intersection matrices

Given an *n*-strand braid β with ℓ crossings, let C = C(X_β) be the cellular Z-module chain complex of X_β ≃ F_β with

$$d = \begin{pmatrix} 1 & \vdots \\ -1 & \vdots \\ 0 & \vdots \\ \vdots & \vdots \end{pmatrix} : C_1 = \mathbb{Z}^{\ell} = \mathbb{Z}[e_1^1, \dots, e_{\ell}^1] \\ \to C_0 = \mathbb{Z}^n = \mathbb{Z}[e_1^0, \dots, e_n^0]; e_i^1 \mapsto e_i^0 - e_{i+1}^0.$$

A generalized intersection matrix for β is an ℓ × ℓ matrix φ_β such that

$$d^*d = \phi_\beta + \phi_\beta^* : C_1 \to C^1$$

and which induces the intersection form

$$egin{array}{rcl} \Phi_eta &=& [\phi_eta] \ : \ H_1(F_eta) &=& H_1(C) \ = \ {
m ker}(d) \ & o H_1(F_eta,\partial F_eta) \ = \ H^1(C) \ = \ {
m coker}(d^*) \ . \end{array}$$

The canonical generalized intersection matrix ϕ_{β} I.

Definition The canonical generalized intersection 1 × 1 matrices for the elementary *n*-strand braids σ_i, σ_i⁻¹ are

$$\phi_{\sigma_i} = \phi_{\sigma_i^{-1}} = (1)$$
.

Let β, β' be n-strand braids with ℓ, ℓ' crossings and chain complexes

$$d: C_1 = \mathbb{Z}^\ell o C_0 = \mathbb{Z}^n \ , \ d': C_1' = \mathbb{Z}^{\ell'} o C_0' = \mathbb{Z}^n \ .$$

Lemma The concatenation *n*-strand braid β'' = ββ' with (ℓ + ℓ') crossings has chain complex

$$d'' = (d \ d'): C_1'' = \mathbb{Z}^\ell \oplus \mathbb{Z}^{\ell'} \to C_0'' = \mathbb{Z}^n$$

▶ Definition The concatenation of generalized intersection matrices φ_β, φ_{β'} for β, β' is the generalized intersection matrix for β"

$$\phi_{eta^{\prime\prime}} \;=\; \phi_eta \phi_{eta^\prime} \;=\; egin{pmatrix} \phi_eta & d^*d' \ 0 & \phi_{eta^\prime} \end{pmatrix} \;.$$

The canonical generalized intersection matrix ϕ_{β} II.

Proposition An *n*-strand braid β = β₁β₂...β_ℓ with ℓ crossings has the canonical generalized intersection matrix

$$\phi_{\beta} = \phi_{\beta_1}\phi_{\beta_2}\dots\phi_{\beta_\ell} : C_1 = \mathbb{Z}^\ell \to C^1 = \mathbb{Z}^\ell$$

- The generalized intersection matrix φ_β encodes the sequence of ℓ 1-surgeries on ∐_n S¹ determined by β with combined trace (cl.(F_β\∐_n D²); ∐_n S¹, ∂F_β).
- ► The algebraic theory of surgery (A.R., 1980) expresses the chain complex of $\partial F_{\beta} = \widehat{\beta}(\coprod_{n} S^{1}) \subset \mathbb{R}^{3}$ up to chain

equivalence as

$$d' = \begin{pmatrix} \phi_{\beta} & -d^* \\ d & 0 \end{pmatrix}$$
 : $C'_1 = C_1 \oplus C^0 \to C'_0 = C^1 \oplus C_0$.

Proposition

no. of components of $\widehat{\beta}$ = rank $H_0(C')$.

How many components does the Hopf link have?

Example The canonical Seifert surface F_β of the closure β̂ of the 2-strand braid β = σ₁σ₁ has chain complex

$$d = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} : C_1 = \mathbb{Z} \oplus \mathbb{Z} \to C_0 = \mathbb{Z} \oplus \mathbb{Z}$$

and generalized intersection matrix

$$\phi_{\beta} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 : $C_1 = \mathbb{Z} \oplus \mathbb{Z} \to C^1 = \mathbb{Z} \oplus \mathbb{Z}$.

The 4 × 4 matrix $d' = \begin{pmatrix} \phi_{\beta} & -d^* \\ d & 0 \end{pmatrix}$ has rank 2, so the Hopf link $\hat{\beta}$ has 4-2=2 components.

Surgery on submanifolds

An ambient *r*-surgery on a codimension *q* submanifold *M^m* ⊂ *N^{m+q}* is an *r*-surgery on *S^r* × *D^{m-r}* ⊂ *M* with a codimension *q* embedding of the trace

$$(W; M, M') \subset N \times (I; \{0\}, \{1\})$$
.

Key idea 1 The closure β̂ : ∐ S¹ ⊂ ℝ³ of an *n*-strand braid β with ℓ crossings is the effect of *n* ambient 0-surgeries on the codimension 2 submanifold Ø ⊂ ℝ³ (i.e. ∐ S¹) followed by ℓ ambient 1-surgeries.

▶ Key idea 2 The canonical Seifert surface $F_{\beta} \subset \mathbb{R}^3$ is the union of the traces of *n* ambient 0-surgeries on the codimension 1 submanifold $\emptyset \subset \mathbb{R}^3$ (i.e. $\prod_n D^2$) followed by ℓ

ambient 1-surgeries.

Problems What are the algebraic effects of the corresponding chain level algebraic surgeries?

Surgery on braids

The effect of a 1-surgery on a 2-strand braid β : I ⊔ I ⊂ D² × I with S⁰ × D¹ ⊂ I ⊔ I in different components is the 2-strand braid β' = βσ₁ : I ⊔ I ⊂ D² × I

• Corresponding 1-surgery on the closure $\hat{\beta}$ of β with effect the closure $\hat{\beta}'$ of β'

Generalized Seifert matrices

Define the n × n matrix

$$\chi = \begin{pmatrix} 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & \dots \\ 1 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

A generalized Seifert matrix for an *n*-strand braid β with ℓ crossings is an ℓ × ℓ matrix ψ_β such that

$$\phi_{\beta} + d^* \chi d = \psi_{\beta} - \psi_{\beta}^* : C_1 = \mathbb{Z}^{\ell} \to C^1 = \mathbb{Z}^{\ell}$$

and $\psi_{eta}: {\it C}_1
ightarrow {\it C}^1$ induces the Seifert form

$$egin{array}{rcl} \Psi_eta &=& [\psi_eta] \ : \ H_1(F_eta) &=& H_1(C) \ =& {
m ker}(d) \ & o H_1(F_eta,\partial F_eta) \ =& H^1(C) \ =& {
m coker}(d^*) \ . \end{array}$$

Motivated by the algebraic surgery properties of the Pontrjagin-Thom map S³ → Σ(F_β/∂F_β) of F_β ⊂ ℝ³. Definition The canonical generalized Seifert 1 × 1 matrices for the elementary *n*-strand braids σ_i, σ_i⁻¹ are

$$\psi_{\sigma_i} = (1) , \ \psi_{\sigma_i^{-1}} = (-1) .$$

Let β, β' be n-strand braids with ℓ, ℓ' crossings and chain complexes

$$d: C_1 = \mathbb{Z}^\ell
ightarrow C_0 = \mathbb{Z}^n \;,\; d': C_1' = \mathbb{Z}^{\ell'}
ightarrow C_0' = \mathbb{Z}^n \;.$$

As before, the concatenation *n*-strand braid $\beta'' = \beta \beta'$ has

$$d'' = (d \ d'): C''_1 = \mathbb{Z}^\ell \oplus \mathbb{Z}^{\ell'} o C''_0 = \mathbb{Z}^n$$

and a canonical generalized intersection matrix φ_{β''} = φ_βφ_{β'}.
Definition The concatenation of generalized Seifert matrices ψ_β, ψ_{β'} for β, β' is the generalized Seifert matrix for β''

$$\psi_{\beta^{\prime\prime}} = \psi_{\beta}\psi_{\beta^{\prime}} = \begin{pmatrix} \psi_{\beta} & -d^*\chi^*d' \\ 0 & \psi_{\beta^{\prime}} \end{pmatrix}$$

The canonical generalized Seifert matrix ψ_{β} II.

- Lemma Concatenation is associative.
- Proposition An *n*-strand braid with ℓ crossings
 β = β₁β₂...β_ℓ has the canonical generalized Seifert matrix

$$\psi_{\beta} = \psi_{\beta_1} \psi_{\beta_2} \dots \psi_{\beta_\ell} : C_1 = \mathbb{Z}^\ell \to C^1 = \mathbb{Z}^\ell.$$

- Maciej Borodzik extended Julia Collins' algorithm to construct an l × l matrix inducing the Seifert form directly from the braid, but it is not clear if this is the canonical generalized Seifert matrix.

What is the Seifert form of the trefoil knot?

Example The 2-strand braid β = σ₁σ₁σ₁ with 3 crossings has closure β̂ the trefoil knot. The chain complex for β is

$$d = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix} : C_1 = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \to C_0 = \mathbb{Z} \oplus \mathbb{Z}$$

so $H_1(C) = \mathbb{Z} \oplus \mathbb{Z}$ with basis $b_1 = (1, 0, -1)$, $b_2 = (0, 1, -1)$. The canonical generalized Seifert matrix is

$$\psi_{\beta} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} : C_{1} = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \to C^{1} = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$$

The Seifert matrix of the trefoil knot with respect to b_1, b_2 is

$$[\psi_{\beta}] = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} : H_1(C) = \mathbb{Z} \oplus \mathbb{Z} \to H^1(C) = \mathbb{Z} \oplus \mathbb{Z} .$$

