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Braids
An n-strand braid 3 is an embedding
B: J[1cp*xicr?

together with n distinct [goints z1,2,...,2z,€ D? and a
permutation o € X, such that for 1 <7< n

/8(0/) = (Z,',O) € D2 X {0} s B(ll) = (Za(i)¢1) € D2 X {1} :
An example of a 3-strand braid with o = (132)

DX {0}




A braid drawn by Gauss (1833)
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> Further 19th century developments: Listing, Tait, Hurwitz.

» See Moritz Epple’s history paper Orbits of asteroids, a braid,

and the first link invariant, Mathematical Intelligencer, 20,
45-52 (1996)


http://www.maths.ed.ac.uk/~aar/papers/epple8.pdf
http://www.maths.ed.ac.uk/~aar/papers/epple8.pdf

Artin

» Emil Artin founded the modern theory of braids in Theorie der
Zopfe (1925), notably the n-strand braid group B,.

» The simplest types of braids: a trivial braid, a braid with an
overcrossing and a braid with an undercrossing
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http://www.maths.ed.ac.uk/~aar/papers/artinzopfe.pdf
http://www.maths.ed.ac.uk/~aar/papers/artinzopfe.pdf

The n-strand braids 0g,01,...,0,_1

» The trivial n-strand braid is

oo - HICR3; tir—>(i,ti,0)

i i

i+l i+l

» Fori=1,2,...,n—1 the elementary n-strand braid o; is
obtained from og by introducing an overcrossing of the ith
strand and the (i + 1)th strand, with permutation

(ii+1)ex,.
i /—i+1

> The elementary n-strand braid ai_l is defined in the same
way but with an under crossing.

i+1 ¥ i



The n-strand braid group B,

The concatenation of two n-strand braids 3, 3’ is the
n-strand braid 83’ obtained by identifying 5(1;) = 5/(0;).
B, is the set of isotopy classes of n-strand braids 3, with
composition by concatenation, and unit oy.

B, has generators 01,05,...,0,_1 and relations
oioj = 0j0; if |i—jl>2
oiojo; = ojojo; if|i—jl = 1.

Every n-strand braid 3 is represented by a word in B, in ¢
generators, corresponding to a sequence of ¢ crossings in a
plane projection.

The concatenation [o; is obtained from £ by adding to the
sequence a crossing of the ith strand over the (i + 1)th strand.
The representation theory of the braid groups much studied.
Highlight: the Jones polynomial.



The closure of a braid

» The closure of an n-strand braid § is the c-component link
B=puo : [J1u ]! = [[S' cr®
n n C

with ¢ = [{1,2,..., n}/o| the number of cycles in o.

» Alexander proved in A lemma on systems of knotted curves
(1923) that every link is the closure B of a braid S.

» Example A braid representation of the figure eight knot, with
3 strands and 4 crossings



http://www.maths.ed.ac.uk/~aar/papers/alexlem.pdf

The closure of o107 is the Hopf link

i > i+

The 2-strand braid 3 = 61 0.

The closure B\: Hopf link



The Seifert surfaces of a link
» A Seifert surface for a link
L: J[sS'cR?
is a surface F2 C R3 with boundary

oF = L(J]shH cr®.

» Seifert in Uber das Geschlecht von Knoten (1935) proved that
every link L admits a Seifert surface of the type

F = (]p>u][DP" xD'cR?
n L

using an algorithm starting with a plane projection.

» A link L has many projections, and many Seifert surfaces.


http://www.maths.ed.ac.uk/~aar/papers/seifert.pdf
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The canonical Seifert surface F3 of a braid
» An n-strand braid 8 with £ crossings is represented by a word
in B, of length £ in the generators 01,07,...,0,_1, so that
B = P12 ... B¢ is the concatenation of £ elementary braids.
» Stallings in Constructions of fibred knots and links (1978)

observed that the closure B has a canonical Seifert surface
with n 0-handles and ¢ 1-handles

Fs = (JIp>)u]] D' x D* c R?
n V4
and hence a canonical Seifert matrix Wg.

» Lemma Fp is homotopy equivalent to the CW complex

n l
Xg = (H ed U H ejl
i=1 j=1
with c?ejl =elU e,Q_s_1 if jth crossing is between strands 7,/ + 1
Hl(Fﬁ) = Hl(Xﬁ) = ker(d: Cl(Xg) — Co(X/B))
= ker(d:Z' - 7") = 7™ .


http://www.maths.ed.ac.uk/~aar/papers/stallfib2.pdf
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Some braids 3 and their canonical Seifert surfaces F3 I.
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Some braids 3 and their canonical Seifert surfaces Fz Il.
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SeifertView

> Arjeh Cohen and Jack van Wijk wrote a programme
SeifertView (2005) and a paper The visualization of Seifert
surfaces (2006) for drawing the canonical Seifert surfaces of
braids.

> A screenshot
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http://www.win.tue.nl/seifertview/
http://www.maths.ed.ac.uk/~aar/papers/vanwijk.pdf
http://www.maths.ed.ac.uk/~aar/papers/vanwijk.pdf
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Duality and matrices

The dual of an abelian group A is the abelian group
A* = Homgz(A,Z) .

The dual of a morphism f : A — B of abelian groups is the
morphism

f*: B*"> A", (g:B—>Z)— (gf :-A=>B—7Z).
If Ais f.g. free with basis {a1,a2,...,am} then A* is f.g. free
with dual basis {a], a3, ..., ap,} such that a7 (ax) = dj.
A morphism f : A — B of f.g. free abelian groups with bases

{a1,a2,...,am}, {b1,b2,..., bn} has the n x m matrix (fy)
with

Z fibj€ B (1< k< m).

The dual morphism f* has the transpose m x n matrix

()" = (fg) » fig = fir -
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The Seifert form of a surface F C R3

» The intersection form of a surface with boundary (F,0F) is
the symplectic bilinear form

® = —&* : Hi(F) — Hi(F)* = HY(F) = Hi(F,0F)
defined by intersection numbers, with an exact sequence

0~ HO(F) = Hy(9F) — Hi(F) 2 H(F) = Ho(9F) = Ho(F) =0

» An embedding F C R3 determines a Seifert matrix
W = (Wj,): given cycles by, by, ..., by : S C F representing
a basis {b1, by, ...,bm} C Hi(F)=2Z"
V. = linking number(bjr7 b, :S'CR) ez

with bj“, b, : S* C R3 the cycles bj, by : S* C F pushed off
from OF C F C R3 in opposite directions.

» The Seifert form W : Hi(F) — Hi(F)* is independent of the
choice of basis, and such that

O = W_U* : Hy(F)— Hy(F)* .
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The canonical Seifert matrix V3 of a braid I.

» A Seifert matrix for a link L: [] S C R3 is a Seifert matrix
C

VU of a Seifert surface F C R3.

» The canonical Seifert matrix W3 of a braid 3 is the Seifert
m x m matrix of the canonical Seifert surface Fg for the

closure 3 : ST C R3, with m = rank Hy(Fp).

» Example 1 For the elementary braid 8 = o1 with closure B
the trivial knot the canonical Seifert surface Fg is homotopy
equivalent to

Xg = fuelue = 1.
Thus Hyi(F3) = 0 and the canonical Seifert 0 x 0 matrix is

vy = (0).
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The canonical Seifert matrix Wz of a braid II.

» Example 2 For the braid 8 = o101 with closure Ethe Hopf
link the canonical Seifert surface Fg is homotopy equivalent to

Xs = fUueluelue! = St.
Thus Hi(Fg) = Z and the canonical Seifert 1 x 1 matrix is
Vg = (1).
» Example 3 For g = 01_101_1

vy = (1)

» Problem For any n-strand braids 3, 3’ what is the relation
between the canonical Seifert matrices Wg, Wy, Wgg?
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An algorithm for the canonical Seifert matrix Vg

In 2007 Julia Collins computed the canonical Seifert matrix
V3 of a braid 3, with a programme Seifert Matrix
Computation and a paper An algorithm for computing the
Seifert matrix of a link from a braid representation

For a sequence x1, X2, ..., Xy with

xi e {x1,£2,...,£(n—1)} let

6(/) _ sign(Xi) c {_]_7]_} R O'(X,') = J|E>E,i|) € B,.

Define the braid with n strands and ¢ crossings

[x1,x2,....x] = o(x)o(x)...0(x) € B .
The algorithm uses a basis for the homology Hi(Fg) = Z™
with one basis element for each pair of adjacent crossings on
the same strands, i.e. between each x; and x; where |x;| = |xj|
and |xg| # |xi| for all i < k <.
The entries in the canonical Seifert matrix Wg are either 0,+1
or —1.


http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/
http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/
http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/SeifertMatrix.pdf
http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/SeifertMatrix.pdf
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Braids and signatures

» The Tristram-Levine w-signature of a link L: [[S* C R3is
defined for w #1 € C by

ou(L) = signature((1 —w)V + (1 —w)¥V*) € Z

for any Seifert matrix V. Independent of choice of V.

» Gambaudo and Ghys (2005) and Bourrigan (2013) used the
Burau-Squier hermitian representation of B, to express the
non-additivity

0u(BF) = 0u(B) — 0u(F) € 2
in terms of the Wall-Maslov-Mayer formula for the
nonadditivity of signature.

» Proofs rather complicated, for lack of an explicit formula for
the canonical Seifert matrix W3 of the closure 3 of a braid .
Could get such a formula from an expression for the canonical
Seifert matrix of a concatenation Wgg in terms of Wg, Wy,
Rather tricky, because of the nonadditivity of rank Hy(Fg).


http://www.maths.ed.ac.uk/~aar/papers/gambghys.pdf
http://www.maths.ed.ac.uk/~aar/papers/bourrigan.pdf

Surgery on manifolds

An r-surgery on an m-dimensional manifold M uses an
embedding

S"xD™""CM(-1<r<m)

to create a new m-dimensional manifold, the effect
M = cl.(M\S" x D™ "YU D"t x gmr-t

The trace of the r-surgery is the (m + 1)-dimensional
cobordism (W; M, M") with

W = (MxIuDt x D™ "
obtained from M x | by attaching an (r + 1)-handle at
S"x D™ C M x{1}.
Theorem (Thom, Milnor, 1961) Every (m + 1)-dimensional
cobordism is a union of traces of successive surgeries.

For surgery on manifolds with boundary (M, 9M) require
S'x D™= C M\OM.

20
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Surgery on 1-manifolds

» A 1l-dimensional manifold is a disjoint union of circles
M= T[s".
n
» The effect of a (—1)-surgery on M is to add another circle

M = MuS! = Hsl.
n+1

» The effect of a O-surgery using an embedding S° x D! ¢ M is
[T S if S° € M in same component of M

M/ — n+1
[T S* if S° c M in different components of M .
n—1



The pair of pants

O O (D

S’ S°xD'<cM=S" =M\S’xD'v D'xS°

P=MxIwD xD' =trace

22
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Generalized intersection matrices

» Given an n-strand braid 3 with ¢ crossings, let C = C(X3) be
the cellular Z-module chain complex of X3 ~ Fg with

1
d = -1 G :ZZZZ[ell""’efl]
O .
-G = 7" = Z[e?,...,eg ; elee?_e?+1‘

» A generalized intersection matrix for 5 is an ¢ x { matrix
¢s such that

d'd = ¢g+ ¢ : G — C'
and which induces the intersection form
®s = [¢pg] : Hi(Fg) = Hi(C) = ker(d)
— Hi(Fs,0F3) = HY(C) = coker(d*) .



The canonical generalized intersection matrix ¢g |.

Definition The canonical generalized intersection 1 x 1
matrices for the elementary n-strand braids o, ofl are

bo; = (bglfl = (1)

Let 3,8’ be n-strand braids with ¢, ¢’ crossings and chain
complexes

d:G=2'-G=2",d:C=2"=C=12".

Lemma The concatenation n-strand braid 3" = 53’ with
(¢ + ') crossings has chain complex

d"=(dd): =202’ > =2"

Definition The concatenation of generalized intersection

24

matrices ¢g, pp for 3, 3’ is the generalized intersection matrix

for B”
d*d’
bor = ¢adp = (tgﬁ ¢6’) |
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The canonical generalized intersection matrix ¢z Il.

Proposition An n-strand braid 5 = 518> ... 5, with £
crossings has the canonical generalized intersection matrix

bs = dp b, ---05 1 G = L' = Ct = 7.
The generalized intersection matrix ¢3 encodes the sequence
of ¢ 1-surgeries on [] S determined by 3 with combined trace

n
(cl.(Fs\ 11 D?); 11 S*, 9Fj).
The algebraic theory of surgery (A.R., 1980) expresses the
chain complex of OF5 = B(][ S') C R3 up to chain

equivalence as

d = @5 _g> (= GoaclC-¢g = Cadg.

Proposition

no. of components of 3 = rank Ho(C') .


http://www.maths.ed.ac.uk/~aar/papers/ats1.pdf
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How many components does the Hopf link have?

» Example The canonical Seifert surface Fgz of the closure B of
the 2-strand braid 5 = o101 has chain complex

-1 -1

and generalized intersection matrix

d = (1 1) = LT Co = BT

b5 = <(1) i) G = Z®Z—>Ct = ZaZ.

The 4 x 4 matrix d’ = (qif _(()j > has rank 2, so the Hopf

link B has 4-2=2 components.
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Surgery on submanifolds

An ambient r-surgery on a codimension g submanifold
M™ c N™+9 is an r-surgery on S" x D™=" C M with a
codimension g embedding of the trace

(W; M, M) C N x (I,{0},{1}) .

Key idea 1 The closure B: [T1S* C R3 of an n-strand braid 3
with ¢ crossings is the effect of n ambient O-surgeries on the
codimension 2 submanifold ) C R3 (i.e. [] S!) followed by ¢

ambient 1-surgeries.

Key idea 2 The canonical Seifert surface Fg C R3 is the

union of the traces of n ambient 0-surgeries on the

codimension 1 submanifold () C R3 (i.e. [[ D?) followed by ¢
n

ambient 1-surgeries.
Problems What are the algebraic effects of the corresponding
chain level algebraic surgeries?
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Surgery on braids

» The effect of a 1-surgery on a 2-strand braid
B 1UlC D?x 1 with SO x D! c U/ in different
components is the 2-strand braid ' = foy : U1 C D? x |

X
B B

» Corresponding 1-surgery on the closure B of B with effect the

closure 3" of B

With trace the pair of pants:

@@
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Generalized Seifert matrices

» Define the n x n matrix

= = O
= O O
O O O

» A generalized Seifert matrix for an n-strand braid 5 with ¢
crossings is an £ x £ matrix 13 such that

¢p+dxd = Yg—up : G = 2= C = 7
and ¢g : G — C induces the Seifert form
Vs = [¢p] : Hi(Fg) = Hi(C) = ker(d)
— Hi1(Fs,0F3) = HY(C) = coker(d*) .

» Motivated by the algebraic surgery properties of the
Pontrjagin-Thom map S3 — ¥(F3/0Fs) of Fs C R3.
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The canonical generalized Seifert matrix 3 I.

Definition The canonical generalized Seifert 1 x 1

matrices for the elementary n-strand braids o, afl are

Yoy = (1) ¥, = (-1).
Let 3,8’ be n-strand braids with £, ¢’ crossings and chain
complexes
d:G=2'-C=2",d:¢=2" - =1".
As before, the concatenation n-strand braid 8” = 38’ has
d"=(dd): ¢ =2'az" ) =2"
and a canonical generalized intersection matrix ¢gr = ¢gdg:.

Definition The concatenation of generalized Seifert matrices
g, Yp for B, is the generalized Seifert matrix for 5"

_d* *dl
Yo = Ypp = (%ﬁ ¢;<, > :



31

The canonical generalized Seifert matrix 5 Il.

» Lemma Concatenation is associative.

» Proposition An n-strand braid with ¢ crossings
B = P12 ... 0B has the canonical generalized Seifert matrix

Vs = Yp s, .Y 1 G = 28— Ct = 7",
» The generalized Seifert matrix 1)3 encodes the sequence of /
ambient 1-surgeries on [ S! C R3 determined by 3 with
combined trace (cl.(Fg\ [ D?); ][ S*, 0Fs) C R3.

» Maciej Borodzik extended Julia Collins' algorithm to construct
an £ x ¢ matrix inducing the Seifert form directly from the
braid, but it is not clear if this is the canonical generalized
Seifert matrix.
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What is the Seifert form of the trefoil knot?

> Examplg The 2-strand braid 8 = 010101 with 3 crossings has
closure 3 the trefoil knot. The chain complex for S is

d = (_11 5 _11> G = ZOLOL— G = LOL

so Hi(C) = Z & Z with basis by = (1,0,—1), bo = (0,1, —1).
» The canonical generalized Seifert matrix is

1 -1 1

Yg = (0 1 1] : G = ZOZOZ—~ C' = ZOZSDZ
0 0 1

The Seifert matrix of the trefoil knot with respect to by, by is

[Vs] = <(1) _11> C H(O)=Z®Z - HY (C)=ZD7Z.

9]



