THE RISE, FALL AND RISE OF SIMPLICIAL COMPLEXES

Andrew Ranicki (Edinburgh)

http://www.maths.ed.ac.uk/~aar

Warwick

2nd February, 2018

Simplicial complexes

- ▶ A simplicial complex is a combinatorial scheme K for building a topological space ||K|| from simplices - such spaces are called polyhedra.
- Combinatorial topology: polyhedra are the easiest spaces to construct. On the syllabus of every introductory course of algebraic topology, including Warwick!
- Piecewise linear topology of polyhedra, especially PL manifolds.

Some of the branches of topology which feature simplicial complexes

- Homotopy theory: simplicial complexes are special cases of simplicial sets.
- Algebraic topology of finite sets.
- Algebraic topology of groups and categories.
- Topological data analysis: simplicial complexes in persistence homology, arising as the nerves of covers of clouds of point data in Euclidean space.
- Surgery theory of topological manifolds: the homotopy types of spaces with Poincaré duality.

A combinatorial proof of the Poincaré duality theorem

The theorem: for any n-dimensional homology manifold K with fundamental class [K] ∈ H_n(K) the cap products

$$[K] \cap -: H^{n-*}(K) \rightarrow H_*(K)$$

are \mathbb{Z} -module isomorphisms.

▶ There have been many proofs of the duality theorem, but none as combinatorial as the one involving the " (\mathbb{Z}, K) -module" category.

The first converse of Poincaré duality

▶ Converse 1 "When is a topological space a manifold?" A simplicial complex K is an n-dimensional homology manifold with fundamental class $[K] \in H_n(K)$ if and only if the " (\mathbb{Z}, K) -module" chain map

$$[K] \cap - : C(K)^{n-*} \to C(K')$$

is a chain equivalence, with K' = barycentric subdivision of K.

- Proof is purely combinatorial, and is relatively straightforward.
- If an n-dimensional topological manifold is homeomorphic to a polyhedron ||K|| then K is an n-dimensional homology manifold.
- ▶ For $n \ge 5$ an n-dimensional topological manifold is homotopy equivalent but not in general homeomorphic to the polyhedron ||K|| of an n-dimensional homology manifold K.

The second converse of Poincaré duality

- ► Converse 2 "When is a topological space homotopy equivalent to a manifold?"
 - For $n \geqslant 5$ a polyhedron $\|K\|$ is homotopy equivalent to an n-dimensional topological manifold if and only if it has just the right amount of " (\mathbb{Z},K) -module" Poincaré duality.
- Proof requires both all of the geometric surgery theory of Browder-Novikov-Sullivan-Wall, the topological manifold structure theory of Kirby and Siebenmann, as well as my algebraic theory of surgery on chain complexes with Poincaré duality.

Simplicial complexes

- ▶ A simplicial complex K consists of an ordered set $K^{(0)}$ and a collection $\{K^{(m)} \mid m \ge 0\}$ of m-element subsets $\sigma \le K^{(0)}$, such that if $\sigma \in K$ and $\tau \le \sigma$ is non-empty then $\tau \in K$.
- ▶ Call $\tau \leq \sigma$ a **face** of σ . Also written $\sigma \geq \tau$.
- ► For any $m \ge 0$ the **standard** m-**simplex** Δ^m , the simplicial complex consisting of all the non-empty subsets

$$\sigma \leqslant (\Delta^m)^{(0)} = \{0, 1, \dots, m\} .$$

► The **polyhedron** (or **realization**) of a simplicial complex *K* is the topological space

$$\|K\| = \left(\bigsqcup_{m=0}^{\infty} K^{(m)} \times \|\Delta^m\|\right) / \sim$$

with $\|\Delta^m\|$ the convex hull of the (m+1) unit vectors $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{R}^{m+1}$.

Combinatorial sheaf theory: the (\mathbb{Z}, K) -category I.

- ▶ In 1990, R.+Weiss introduced an additive category $\mathbb{A}(\mathbb{Z}, K)$ of " (\mathbb{Z}, K) -modules".
- ▶ Convenient for the "local K-controlled algebraic topology" of spaces X with a map $X \to ||K||$.
- ▶ A (\mathbb{Z}, K) -module is a f.g. free \mathbb{Z} -module M with a direct sum decomposition

$$M = \sum_{\sigma \in K} M(\sigma)$$
.

Combinatorial sheaf theory: the (\mathbb{Z}, K) -category II.

▶ A (\mathbb{Z}, K) -module morphism $f: M \to N$ is a collection of \mathbb{Z} -module morphisms $f(\sigma, \tau): M(\sigma) \to N(\tau)$ $(\sigma \leqslant \tau)$, i.e. a \mathbb{Z} -module morphism f such that

$$f(M(\sigma)) \subseteq \sum_{\tau > \sigma} N(\tau)$$
.

- ▶ In terms of matrices, f is upper triangular.
- ▶ f is a (\mathbb{Z}, K) -module isomorphism if and only if each $f(\sigma, \sigma) : M(\sigma) \to N(\sigma)$ $(\sigma \in K)$ is a \mathbb{Z} -module isomorphism.

C(K) is not a (\mathbb{Z}, K) -module chain complex I.

▶ The \mathbb{Z} -module chain complex C(K) is defined using the ordering of $K^{(0)}$, with

$$d : C(K)_{m} = \mathbb{Z}[K^{(m)}] \to C(K)_{m-1} = \mathbb{Z}[K^{(m-1)}];$$

$$(v_{0}v_{1}...v_{m}) \mapsto \sum_{i=0}^{m} (-)^{i+1}(v_{0}v_{1}...v_{i-1}v_{i+1}...v_{m})$$

$$(v_{0} < v_{1} < \cdots < v_{m} \in K^{(0)}).$$

C(K) is not a (\mathbb{Z}, K) -module chain complex II.

▶ C(K) used to define the homology \mathbb{Z} -modules of K and $\|K\|$

$$H_m(K) = H_m(||K||)$$

$$= \frac{\ker(d : C(K)_m \to C(K)_{m-1})}{\operatorname{im}(d : C(K)_{m+1} \to C(K)_m)}$$

ightharpoonup C(K) is not a (\mathbb{Z}, K) -module chain complex, since

 $(v_0v_1\ldots v_m)$ is not a face of $(v_0v_1\ldots v_{i-1}v_{i+1}\ldots v_m)$.

$C(K)^*$ is a (\mathbb{Z}, K) -module cochain complex I.

▶ The Z-module cochain complex

$$C(K)^* = \operatorname{Hom}_{\mathbb{Z}}(C(K), \mathbb{Z})$$

dual to C(K) has

$$d^*: C(K)^m = \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(C(K)_m, \mathbb{Z}) = \mathbb{Z}[K^{(m)}]$$

 $\to C(K)^{m+1} = \mathbb{Z}[K^{(m+1)}]; f \mapsto fd$

with

$$d^*(\sigma) = \sum \pm \tau \ (\sigma \in K^{(m)}, \tau \in K^{(m+1)}, \sigma < \tau) \ .$$

$C(K)^*$ is a (\mathbb{Z}, K) -module cochain complex II.

▶ $C(K)^*$ used to define the cohomology \mathbb{Z} -modules of K and $\|K\|$

$$H^{m}(K) = H^{m}(\|K\|)$$

$$= \frac{\ker(d^{*}: C(K)^{m} \to C(K)^{m+1})}{\operatorname{im}(d^{*}: C(K)^{m-1} \to C(K)^{m})}$$

▶ $C(K)^*$ is a (\mathbb{Z}, K) -module cochain complex.

The barycentric subdivision K'

- ▶ The **barycentric subdivision** of a simplicial complex K is the simplicial complex K' with one 0-simplex $\widehat{\sigma} \in (K')^0 = K$ for each simplex $\sigma \in K$ and one m-simplex $\widehat{\sigma}_0 \widehat{\sigma}_1 \dots \widehat{\sigma}_m \in (K')^{(m)}$ for each (m+1) term sequence $\sigma_0 < \sigma_1 < \dots < \sigma_m \in K$ of proper faces in K.
- ▶ Homeomorphism $||K'|| \to ||K||$ sending $\widehat{\sigma} \in K'^{(0)}$ of $\sigma \in K^{(m)}$ to the barycentre of $||\sigma||$.

Dual cells

▶ The **dual cell** of $\sigma \in K$ is the subcomplex

$$D(\sigma,K) = \{\widehat{\sigma}_0\widehat{\sigma}_1 \dots \widehat{\sigma}_m \mid \sigma \leqslant \sigma_0 < \sigma_1 < \dots < \sigma_m\} \subseteq K'.$$

The boundary of the dual cell is the subcomplex

$$\partial D(\sigma,K) \, = \, \{\widehat{\sigma}_0\widehat{\sigma}_1\ldots\widehat{\sigma}_m \, | \, \sigma < \sigma_0 < \sigma_1 < \cdots < \sigma_m\} \subset D(\sigma,K) \, .$$

▶ **Proposition** C(K') is a (\mathbb{Z}, K) -module chain complex which is \mathbb{Z} -module chain equivalent to C(K).

The second barycentric subdivision K''

Christopher Zeeman, Colin Rourke and Brian Sanderson, 1965

Homology manifolds

▶ For any simplicial complex K and m-simplex $\sigma \in K^{(m)}$ there are isomorphisms

$$H_*(D(\sigma,K)) \cong \mathbb{Z} \text{ if } *=0, =0 \text{ otherwise },$$

 $H_*(D(\sigma,K),\partial D(\sigma,K)) \cong H_{*+m}(\|K\|,\|K\|-\{\widehat{\sigma}\}).$

▶ K is an n-dimensional homology manifold if for each $x \in ||K||$

$$H_*(\|K\|,\|K\|-\{x\}) \cong \mathbb{Z} \text{ if } *=n, =0 \text{ otherwise }.$$

▶ Equivalent to each $\partial D(\sigma, K)$ being a homology (n-m-1)-sphere

$$H_*(\partial D(\sigma,K)) \cong \mathbb{Z} \text{ if } *=0 \text{ or } = n-m-1, = 0 \text{ otherwise }.$$

The assembly functor $A:(\mathbb{Z},K)$ -modules $\to \mathbb{Z}[\pi_1(K)]$ -modules

- Let K be a connected simplicial complex with universal covering projection $p : \widetilde{K} \to K$.
- ▶ The **assembly** of a (\mathbb{Z}, K) -module $M = \sum_{\sigma \in K} M(\sigma)$ is the f.g. free $\mathbb{Z}[\pi_1(K)]$ -module

$$A(M) = \sum_{\widetilde{\sigma} \in \widetilde{K}} M(p(\widetilde{\sigma})) .$$

- ▶ The assembly functor $A: M \mapsto A(M)$ sends K-local to $\mathbb{Z}[\pi_1(K)]$ -global algebraic topology.
- ▶ The assembly A(C(K')) is $\mathbb{Z}[\pi_1(K)]$ -module chain equivalent to $C(\widetilde{K})$.

The chain duality

- ► The proof of Poincaré duality will now be expressed as an assembly of K-local to $\mathbb{Z}[\pi_1(K)]$ -global, using a "chain duality" on $\mathbb{A}(\mathbb{Z}, K)$.
- ▶ The **chain dual** of a (\mathbb{Z}, K) -module chain complex C is the (\mathbb{Z}, K) -module chain complex

$$TC = \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Hom}_{(\mathbb{Z},K)}(C(K)^{-*},C),\mathbb{Z}).$$

- ▶ TC is \mathbb{Z} -module chain equivalent to $C^{-*} = \operatorname{Hom}_{\mathbb{Z}}(C, \mathbb{Z})^{-*}$. However, even if C is concentrated in dimension 0, then TC is not concentrated in dimension 0.
- Combinatorial version of Verdier duality in sheaf theory.

Homology = (\mathbb{Z}, K) -module chain maps

▶ For any simplicial complex K the (\mathbb{Z}, K) -module chain complexes C(K'), $C(K)^{-*}$ are chain dual, with chain equivalences

$$TC(K') \simeq C(K)^{-*}, TC(K)^{-*} \simeq C(K').$$

▶ The Z-module morphism

$$H_n(K) \to H_0(\operatorname{\mathsf{Hom}}_{(\mathbb{Z},K)}(C(K)^{n-*},C(K')))\; ; \; [K] \mapsto [K] \cap -$$

sending a homology class $[K] \in H_n(K)$ to the chain homotopy classes of the (\mathbb{Z}, K) -module chain map $[K] \cap -: C(K)^{n-*} \to C(K')$ is an isomorphism.

(\mathbb{Z}, K) -proof of Poincaré duality

► Theorem A simplicial complex K is an n-dimensional homology manifold if and only if there exists a homology class

$$[K] \in H_n(K) = H_0(\operatorname{Hom}_{(\mathbb{Z},K)}(C(K)^{n-*},C(K')))$$

which is a (\mathbb{Z}, K) -module chain equivalence.

▶ **Proof** For any homology class $[K] \in H_n(K)$ the \mathbb{Z} -module chain maps

$$([K] \cap -)(\sigma, \sigma) : C(K)^{n-*}(\sigma) \simeq C(D(\sigma, K))^{n-m-*}$$

$$\to C(K')(\sigma) \simeq C(D(\sigma, K), \partial D(\sigma, K)) \ (\sigma \in K^{(m)})$$

are chain equivalences if and only if each $\partial D(\sigma, K)$ is a homology (n - m - 1)-sphere.

Poincaré complexes

▶ The assembly of a (\mathbb{Z}, K) -module chain map $[K] \cap - : C(K)^{n-*} \to C(K')$ is a $\mathbb{Z}[\pi_1(K)]$ -module chain map

$$A([K] \cap -) : A(C(K)^{n-*}) = \operatorname{Hom}_{\mathbb{Z}[\pi_1(K)]}(C(\widetilde{K}), \mathbb{Z}[\pi_1(K)])^{n-*}$$

 $\to A(C(K')) = C(\widetilde{K'}).$

- ▶ An *n*-dimensional Poincaré complex K is a simplicial complex with a homology class $[K] \in H_n(K)$ such that $A([K] \cap -)$ is a $\mathbb{Z}[\pi_1(K)]$ -module chain equivalence.
- ▶ If the polyhedron ||K|| is an *n*-dimensional topological manifold then K is an *n*-dimensional Poincaré complex.
- For each n ≥ 4 there exist n-dimensional topological manifolds which are not polyhedra of simplicial complexes.

Homotopy types of topological manifolds

- ▶ If ||K|| is homotopy equivalent to an *n*-dimensional topological manifold then K is an *n*-dimensional Poincaré complex.
- ▶ The total surgery obstruction $s(K) \in \mathbb{S}_n(K)$ of an n-dimensional Poincaré complex K is a homotopy invariant taking value in an abelian group, such that s(K) = 0 if (and for $n \ge 5$ only if) ||K|| is homotopy equivalent to an n-dimensional topological manifold.
- ▶ The **total rigidity obstruction** $s(f) \in \mathbb{S}_{n+1}(f)$ of a homotopy equivalence $f: M \to N$ of n-dimensional topological manifolds is a homotopy invariant such that s(f) = 0 if (and for $n \ge 5$ only if) f is homotopic to a homeomorphism.

The algebraic surgery exact sequence

▶ The S-groups of a simplicial complex *K* are defined to fit into long exact sequence of abelian groups, cobordism groups of chain complexes *C* with Poincaré duality (generalized Witt groups)

▶ The total surgery obstruction $s(K) \in \mathbb{S}_n(K)$ is the cobordism class of the $\mathbb{Z}[\pi_1(K)]$ -module contractible (\mathbb{Z}, K) -module chain complex

$$C = \mathcal{C}([K] \cap -: C(K)^{n-*} \to C(K'))_{*+1}$$

- with (n-1)-dimensional quadratic Poincaré duality.
- Underlying homotopy theory developed in book with Michael Crabb.

The future

Nico Marcel Vallauri

Dedicatee of The geometric Hopf invariant and surgery theory (2018)

References

- (with M. Weiss) Chain complexes and assembly, Mathematische Zeitschrift 204, 157–185 (1990)
- ► Algebraic *L*-theory and topological manifolds, Cambridge Tracts in Mathematics 102, CUP (1992)
- ► Singularities, double points, controlled topology and chain duality, Documenta Math. 4, 1–59 (1999)
- (with M. Crabb) The geometric Hopf invariant and surgery theory, Springer Mathematical Monograph (2018)