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Simplicial complexes

I A simplicial complex is a combinatorial scheme K for
building a topological space ‖K‖ from simplices - such spaces
are called polyhedra.

I Combinatorial topology: polyhedra are the easiest spaces to
construct. On the syllabus of every introductory course of
algebraic topology, including Warwick!

I Piecewise linear topology of polyhedra, especially PL
manifolds.
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Some of the branches of topology which feature simplicial
complexes

I Homotopy theory: simplicial complexes are special cases of
simplicial sets.

I Algebraic topology of finite sets.

I Algebraic topology of groups and categories.

I Topological data analysis: simplicial complexes in persistence
homology, arising as the nerves of covers of clouds of point
data in Euclidean space.

I Surgery theory of topological manifolds: the homotopy types
of spaces with Poincaré duality.
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A combinatorial proof of the Poincaré duality theorem

I The theorem: for any n-dimensional homology manifold K
with fundamental class [K ] ∈ Hn(K ) the cap products

[K ] ∩ − : Hn−∗(K )→ H∗(K )

are Z-module isomorphisms.

I There have been many proofs of the duality theorem, but
none as combinatorial as the one involving the
“(Z,K )-module” category.
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The first converse of Poincaré duality

I Converse 1 “When is a topological space a manifold?”
A simplicial complex K is an n-dimensional homology
manifold with fundamental class [K ] ∈ Hn(K ) if and only if
the “(Z,K )-module” chain map

[K ] ∩ − : C (K )n−∗ → C (K ′)

is a chain equivalence, with K ′ = barycentric subdivision of K .

I Proof is purely combinatorial, and is relatively straightforward.

I If an n-dimensional topological manifold is homeomorphic to a
polyhedron ‖K‖ then K is an n-dimensional homology
manifold.

I For n > 5 an n-dimensional topological manifold is homotopy
equivalent but not in general homeomorphic to the
polyhedron ‖K‖ of an n-dimensional homology manifold K .
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The second converse of Poincaré duality

I Converse 2 “When is a topological space homotopy
equivalent to a manifold?”
For n > 5 a polyhedron ‖K‖ is homotopy equivalent to an
n-dimensional topological manifold if and only if it has just
the right amount of “(Z,K )-module” Poincaré duality.

I Proof requires both all of the geometric surgery theory of
Browder-Novikov-Sullivan-Wall, the topological manifold
structure theory of Kirby and Siebenmann, as well as my
algebraic theory of surgery on chain complexes with Poincaré
duality.
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Simplicial complexes

I A simplicial complex K consists of an ordered set K (0) and a
collection {K (m) |m > 0} of m-element subsets σ 6 K (0),
such that if σ ∈ K and τ 6 σ is non-empty then τ ∈ K .

I Call τ 6 σ a face of σ. Also written σ > τ .
I For any m > 0 the standard m-simplex ∆m, the simplicial

complex consisting of all the non-empty subsets

σ 6 (∆m)(0) = {0, 1, . . . ,m} .

I The polyhedron (or realization) of a simplicial complex K is
the topological space

‖K‖ = (
∞
t

m=0
K (m) × ‖∆m‖)/ ∼

with ‖∆m‖ the convex hull of the (m + 1) unit vectors
ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm+1.
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Combinatorial sheaf theory: the (Z,K )-category I.

I In 1990, R.+Weiss introduced an additive category A(Z,K )
of “(Z,K )-modules”.

I Convenient for the “local K -controlled algebraic topology” of
spaces X with a map X → ‖K‖.

I A (Z,K )-module is a f.g. free Z-module M with a direct sum
decomposition

M =
∑
σ∈K

M(σ) .
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Combinatorial sheaf theory: the (Z,K )-category II.

I A (Z,K )-module morphism f : M → N is a collection of
Z-module morphisms f (σ, τ) : M(σ)→ N(τ) (σ 6 τ), i.e. a
Z-module morphism f such that

f (M(σ)) ⊆
∑
τ>σ

N(τ) .

I In terms of matrices, f is upper triangular.

I f is a (Z,K )-module isomorphism if and only if each
f (σ, σ) : M(σ)→ N(σ) (σ ∈ K ) is a Z-module isomorphism.
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C (K ) is not a (Z,K )-module chain complex I.

I The Z-module chain complex C (K ) is defined using the
ordering of K (0), with

d : C (K )m = Z[K (m)]→ C (K )m−1 = Z[K (m−1)] ;

(v0v1 . . . vm) 7→
m∑
i=0

(−)i+1(v0v1 . . . vi−1vi+1 . . . vm)

(v0 < v1 < · · · < vm ∈ K (0)) .
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C (K ) is not a (Z,K )-module chain complex II.

I C (K ) used to define the homology Z-modules of K and ‖K‖

Hm(K ) = Hm(‖K‖)

=
ker(d : C (K )m → C (K )m−1)

im(d : C (K )m+1 → C (K )m)

I C (K ) is not a (Z,K )-module chain complex, since

(v0v1 . . . vm) is not a face of (v0v1 . . . vi−1vi+1 . . . vm) .
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C (K )∗ is a (Z,K )-module cochain complex I.

I The Z-module cochain complex

C (K )∗ = HomZ(C (K ),Z)

dual to C (K ) has

d∗ : C (K )m = HomZ(C (K )m,Z) = Z[K (m)]

→ C (K )m+1 = Z[K (m+1)] ; f 7→ fd

with

d∗(σ) =
∑
±τ (σ ∈ K (m), τ ∈ K (m+1), σ < τ) .
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C (K )∗ is a (Z,K )-module cochain complex II.

I C (K )∗ used to define the cohomology Z-modules of K and
‖K‖

Hm(K ) = Hm(‖K‖)

=
ker(d∗ : C (K )m → C (K )m+1)

im(d∗ : C (K )m−1 → C (K )m)

I C (K )∗ is a (Z,K )-module cochain complex.
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The barycentric subdivision K ′

I The barycentric subdivision of a simplicial complex K is the
simplicial complex K ′ with one 0-simplex σ̂ ∈ (K ′)0 = K for
each simplex σ ∈ K and one m-simplex σ̂0σ̂1 . . . σ̂m ∈ (K ′)(m)

for each (m + 1) term sequence σ0 < σ1 < · · · < σm ∈ K of
proper faces in K .

I Homeomorphism ‖K ′‖ → ‖K‖ sending σ̂ ∈ K ′(0) of σ ∈ K (m)

to the barycentre of ‖σ‖.
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Dual cells

I The dual cell of σ ∈ K is the subcomplex

D(σ,K ) = {σ̂0σ̂1 . . . σ̂m |σ 6 σ0 < σ1 < · · · < σm} ⊆ K ′ .

I The boundary of the dual cell is the subcomplex

∂D(σ,K ) = {σ̂0σ̂1 . . . σ̂m |σ < σ0 < σ1 < · · · < σm} ⊂ D(σ,K ) .

I Proposition C (K ′) is a (Z,K )-module chain complex which
is Z-module chain equivalent to C (K ).
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The second barycentric subdivision K ′′

Christopher Zeeman, Colin Rourke and Brian Sanderson, 1965
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Homology manifolds

I For any simplicial complex K and m-simplex σ ∈ K (m) there
are isomorphisms

H∗(D(σ,K )) ∼= Z if ∗ = 0, = 0 otherwise ,

H∗(D(σ,K ), ∂D(σ,K )) ∼= H∗+m(‖K‖, ‖K‖ − {σ̂}) .

I K is an n-dimensional homology manifold if for each
x ∈ ‖K‖

H∗(‖K‖, ‖K‖ − {x}) ∼= Z if ∗ = n, = 0 otherwise .

I Equivalent to each ∂D(σ,K ) being a homology
(n −m − 1)-sphere

H∗(∂D(σ,K )) ∼= Z if ∗ = 0 or = n−m−1, = 0 otherwise .
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The assembly functor A : (Z,K )-modules→ Z[π1(K )]-modules

I Let K be a connected simplicial complex with universal
covering projection p : K̃ → K .

I The assembly of a (Z,K )-module M =
∑
σ∈K

M(σ) is the f.g.

free Z[π1(K )]-module

A(M) =
∑
σ̃∈K̃

M(p(σ̃)) .

I The assembly functor A : M 7→ A(M) sends K -local to
Z[π1(K )]-global algebraic topology.

I The assembly A(C (K ′)) is Z[π1(K )]-module chain equivalent
to C (K̃ ).
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The chain duality

I The proof of Poincaré duality will now be expressed as an
assembly of K -local to Z[π1(K )]-global, using a “chain
duality” on A(Z,K ).

I The chain dual of a (Z,K )-module chain complex C is the
(Z,K )-module chain complex

TC = HomZ(Hom(Z,K)(C (K )−∗,C ),Z) .

I TC is Z-module chain equivalent to C−∗ = HomZ(C ,Z)−∗.
However, even if C is concentrated in dimension 0, then TC is
not concentrated in dimension 0.

I Combinatorial version of Verdier duality in sheaf theory.
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Homology = (Z,K )-module chain maps

I For any simplicial complex K the (Z,K )-module chain
complexes C (K ′), C (K )−∗ are chain dual, with chain
equivalences

TC (K ′) ' C (K )−∗ , TC (K )−∗ ' C (K ′) .

I The Z-module morphism

Hn(K )→ H0(Hom(Z,K)(C (K )n−∗,C (K ′))) ; [K ] 7→ [K ] ∩ −

sending a homology class [K ] ∈ Hn(K ) to the chain homotopy
classes of the (Z,K )-module chain map
[K ] ∩ − : C (K )n−∗ → C (K ′) is an isomorphism.
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(Z,K )-proof of Poincaré duality

I Theorem A simplicial complex K is an n-dimensional
homology manifold if and only if there exists a homology class

[K ] ∈ Hn(K ) = H0(Hom(Z,K)(C (K )n−∗,C (K ′)))

which is a (Z,K )-module chain equivalence.

I Proof For any homology class [K ] ∈ Hn(K ) the Z-module
chain maps

([K ] ∩ −)(σ, σ) : C (K )n−∗(σ) ' C (D(σ,K ))n−m−∗

→ C (K ′)(σ) ' C (D(σ,K ), ∂D(σ,K )) (σ ∈ K (m))

are chain equivalences if and only if each ∂D(σ,K ) is a
homology (n −m − 1)-sphere.
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Poincaré complexes

I The assembly of a (Z,K )-module chain map
[K ] ∩ − : C (K )n−∗ → C (K ′) is a Z[π1(K )]-module chain map

A([K ] ∩ −) : A(C (K )n−∗) = HomZ[π1(K)](C (K̃ ),Z[π1(K )])n−∗

→ A(C (K ′)) = C (K̃ ′) .

I An n-dimensional Poincaré complex K is a simplicial
complex with a homology class [K ] ∈ Hn(K ) such that
A([K ] ∩ −) is a Z[π1(K )]-module chain equivalence.

I If the polyhedron ‖K‖ is an n-dimensional topological
manifold then K is an n-dimensional Poincaré complex.

I For each n > 4 there exist n-dimensional topological
manifolds which are not polyhedra of simplicial complexes.
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Homotopy types of topological manifolds

I If ‖K‖ is homotopy equivalent to an n-dimensional topological
manifold then K is an n-dimensional Poincaré complex.

I The total surgery obstruction s(K ) ∈ Sn(K ) of an
n-dimensional Poincaré complex K is a homotopy invariant
taking value in an abelian group, such that s(K ) = 0 if (and
for n > 5 only if) ‖K‖ is homotopy equivalent to an
n-dimensional topological manifold.

I The total rigidity obstruction s(f ) ∈ Sn+1(f ) of a homotopy
equivalence f : M → N of n-dimensional topological manifolds
is a homotopy invariant such that s(f ) = 0 if (and for n > 5
only if) f is homotopic to a homeomorphism.
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The algebraic surgery exact sequence

I The S-groups of a simplicial complex K are defined to fit into
long exact sequence of abelian groups, cobordism groups of
chain complexes C with Poincaré duality (generalized Witt
groups)

. . . // Hn(K ;L•(Z))
A // Ln(Z[π1(K )]) //

Sn(K ) // Hn−1(K ;L•(Z)) // . . . .

I The total surgery obstruction s(K ) ∈ Sn(K ) is the cobordism
class of the Z[π1(K )]-module contractible (Z,K )-module
chain complex

C = C([K ] ∩ − : C (K )n−∗ → C (K ′))∗+1

with (n − 1)-dimensional quadratic Poincaré duality.
I Underlying homotopy theory developed in book with Michael

Crabb.
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The future

Nico Marcel Vallauri

Dedicatee of The geometric Hopf invariant and surgery theory (2018)
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