NILPOTENCE = TORSION

Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/~aar

Vanderbilt, 14th April 2007

Nilpotent endomorphisms

- ▶ Let A be an associative ring with 1.
- ▶ An endomorphism $\nu : P \to P$ of an A-module P is **nilpotent** if $\nu^N = 0 : P \to P$ for some $N \ge 0$.
- ▶ If ν is nilpotent then $1 + \nu : P \to P$ is an isomorphism with $(1 + \nu)^{-1} = 1 \nu + \nu^2 \dots + (-)^{N-1} \nu^{N-1} : P \to P .$
- ▶ For an indeterminate z let A[z] be the polynomial extension, and let A[[z]] be the ring of formal power series.
- ▶ **Proposition 1** Let $f,g:P\to Q$ be morphisms of f.g. projective A-modules. The A[z]-module morphism $f+gz:P[z]\to Q[z]$ is an isomorphism if and only if $f:P\to Q$ is an isomorphism and $f^{-1}g:P\to P$ is nilpotent.
- **Remark 1** Proposition 1 is false if P is not f.g., for example if

$$f = 1$$
, $g = y$: $P = A[[y]] \rightarrow P = A[[y]]$
with $(f + gz)^{-1} = \sum_{j=0}^{\infty} (-)^j g^j z^j : P[z] \rightarrow P[z]$.

Near-projections

- ▶ Let $A[z, z^{-1}]$ be the Laurent polynomial extension of A.
- ▶ An endomorphism $\rho: P \to P$ of an A-module P is a **near-projection** if $\rho(1-\rho): P \to P$ is nilpotent.
- **Example 1** If ν is nilpotent then ν is a near-projection.
- **Example 2** If ν is nilpotent then 1ν is a near-projection.
- ▶ **Proposition 2** Let $f,g:P\to Q$ be morphisms of f.g. projective A-modules. The $A[z,z^{-1}]$ -module morphism $f+gz:P[z,z^{-1}]\to Q[z,z^{-1}]$ is an isomorphism if and only if $f+g:P\to Q$ is an isomorphism and $(f+g)^{-1}g:P\to P$ is a near-projection.
- ▶ Remark 2 Proposition 2 is false if P is not f.g. same counterexample as in Remark 1.

Why is $1 - \rho + \rho z$ an isomorphism for a near-projection ρ ?

▶ Given a near-projection $\rho: P \to P$ let $\nu = \rho(1-\rho): P \to P$, so that $\nu^N = 0$ for some $N \ge 0$. Define the projection

$$\pi = (\rho^{N} + (1 - \rho)^{N})^{-1} \rho^{N}$$

$$= \rho + (1/2)(2\rho - 1)((1 - 4\nu)^{-1/2} - 1)$$

$$= \rho + (2\rho - 1)(\nu + 3\nu^{2} + 10\nu^{3} + \dots) : P \to P$$

The near-projection splits as

with
$$P_+=(1-\pi)(P)$$
, $P_-=\pi(P)$ and the endomorphisms $\rho_+=\rho_+:P_+\to P_+$, $1-\rho_-=(1-\rho_-):P_-\to P_-$ nilpotent.

 $\rho = \rho_+ \oplus \rho_- : P = P_+ \oplus P_- \rightarrow P = P_+ \oplus P_-$

▶ The endomorphism of $(P_+ \oplus P_-)[z, z^{-1}]$

$$1 - \rho + \rho z = (1 + \rho_{+}(z - 1)) \oplus z(1 + (1 - \rho_{-})(z^{-1} - 1))$$

is an isomorphism, by a double application of Proposition 1.

Algebraic *K*-theory

► The **algebraic** *K*-**groups** of *A* are the algebraic *K*-groups of the exact category Proj(*A*) of f.g. projective *A*-modules

$$K_*(A) = K_*(Proj(A))$$
.

▶ The **nilpotent** K-**groups** of A are the algebraic K-groups of the exact category Nil(A) of f.g. projective A-modules P with a nilpotent endomorphism $\nu: P \to P$

$$\operatorname{Nil}_*(A) = K_*(\operatorname{Nil}(A)) = K_*(A) \oplus \widetilde{\operatorname{Nil}}_*(A)$$
.

Proposition 3 Let Near(A) be the exact category of f.g. projective A-modules P with a near-projection ρ : P → P. The equivalence of exact categories

Near(A)
$$\stackrel{\approx}{\longrightarrow}$$
 Nil(A)×Nil(A); $(P, \rho) \mapsto (P_+, \rho_+) \times (P_-, 1-\rho_-)$ induces an isomorphism of algebraic K -groups

The Bass-Heller-Swan Theorem

▶ **Theorem** (B-H-S 1965 for $n \le 1$, Quillen 1972 for $n \ge 2$) For any ring A there are natural splittings

$$K_n(A[z]) = K_n(A) \oplus \widetilde{\text{Nil}}_{n-1}(A) ,$$

$$K_n(A[z, z^{-1}]) = K_n(A) \oplus K_{n-1}(A) \oplus \widetilde{\text{Nil}}_{n-1}(A) \oplus \widetilde{\text{Nil}}_{n-1}(A) .$$

▶ **Original proof** (i) Use Higman linearization to represent every $\tau \in K_1(A[z])$ by a linear invertible $k \times k$ matrix

$$B = B_0 + zB_1 \in GL_k(A[z])$$

with $B_0 \in M_k(A)$ invertible and $(B_0)^{-1}B_1 \in M_k(A)$ nilpotent.

▶ (ii) Represent every $\tau \in K_1(A[z,z^{-1}])$ by

$$B = B_0 + zB_1 \in GL_k(A[z, z^{-1}])$$

with $B_0 + B_1 \in M_k(A)$ invertible and $(B_0 + B_1)^{-1}B_1 \in M_k(A)$ a near-projection.

▶ (iii) For $n \in \mathbb{Z}$ apply the algebraic K-theory commutative localization exact sequence for $A[z] \to \{z\}^{-1}A[z] = A[z, z^{-1}]$.

The Farrell-Hsiang splitting theorem

► **Theorem** (1968)

A homotopy equivalence $h:M^n\to X^{n-1}\times S^1$ with M an n-dimensional manifold and X an (n-1)-dimensional manifold has a **splitting obstruction**

$$\Phi(h) \in \mathsf{Nil}_0(\mathbb{Z}[\pi_1(X)])/\mathsf{Nil}_0(\mathbb{Z}) = \widetilde{K}_0(\mathbb{Z}[\pi_1(X)]) \oplus \widetilde{\mathsf{Nil}}_0(\mathbb{Z}[\pi_1(X)]).$$

▶ $\Phi(h) = 0$ if (and for $n \ge 6$ only if) h is h-cobordant to a split homotopy equivalence $h: M \to X \times S^1$, with the restriction

$$|h|: V^{n-1} = h^{-1}(X \times \{*\}) \to X$$

also a homotopy equivalence.

 $ightharpoonup \Phi(h)$ is a component of the Whitehead torsion

$$\begin{split} \tau(h) &= (-)^{n-1} \tau(h)^* \in \mathsf{Wh}(\pi_1(X) \times \mathbb{Z}) \\ &= \mathsf{Wh}(\pi_1(X)) \oplus \widetilde{\mathsf{K}}_0(\mathbb{Z}[\pi_1(X)]) \oplus \widetilde{\mathsf{Nil}}_0(\mathbb{Z}[\pi_1(X)]) \oplus \widetilde{\mathsf{Nil}}_0(\mathbb{Z}[\pi_1(X)]). \end{split}$$

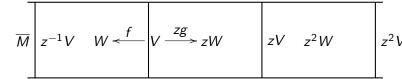
Geometric transversality over S^1

- ▶ Given a map $h: M \to X \times S^1$ let $\overline{M} = h^*(X \times \mathbb{R})$ be the pullback infinite cyclic cover of M, with $z: \overline{M} \to \overline{M}$ a generating covering translation.
- ▶ Assuming M is an n-dimensional manifold make h transverse regular at $X \times \{*\} \subset X \times S^1$, with

$$V^{n-1} = h^{-1}(X \times \{*\}) \subset M^n$$

a 2-sided codimension 1 submanifold. Cutting M at $V \subset M$ there is obtained a fundamental domain $(W; z^{-1}V, V)$ for \overline{M}

$$\overline{M} = \bigcup_{k=-\infty}^{\infty} z^k(W; z^{-1}V, V) .$$



Algebraic transversality over S^1

- ▶ Let C(V), C(W) denote the cellular finite based f.g. free $\mathbb{Z}[\pi_1(X)]$ -module chain complexes of the pullbacks to V, W of the universal cover \widetilde{X} of X.
- ▶ Identify $\mathbb{Z}[\pi_1(X \times S^1)] = \mathbb{Z}[\pi_1(X)][z, z^{-1}]$ and let $C(\overline{M})$ denote the cellular finite based f.g. free $\mathbb{Z}[\pi_1(X)][z, z^{-1}]$ -module chain complex of the pullback to M of the universal cover $\widetilde{X} \times \mathbb{R}$ of $X \times S^1$.
- ▶ The decomposition $\overline{M} = \bigcup_{k=-\infty}^{\infty} z^k W$ determines a

Mayer-Vietoris presentation of $C(\overline{M})$

$$0 \longrightarrow C(V)[z,z^{-1}] \xrightarrow{f-zg} C(W)[z,z^{-1}] \longrightarrow C(\overline{M}) \longrightarrow 0$$

with $f,g:C(V)\to C(W)$ the left and right inclusions.

For any ring A every finite f.g. free $A[z, z^{-1}]$ -module chain complex C has a Mayer-Vietoris presentation.

The two ends of \overline{M}

- Everything has an end, except a sausage which has two!
- ▶ The infinite cyclic cover of *M* is a union

$$\overline{M} = \overline{M}^+ \cup_V \overline{M}^-$$

with

$$\overline{M}^+ = \bigcup_{k=1}^{\infty} z^k W , \overline{M}^- = \bigcup_{k=-\infty}^{0} z^k W .$$

\overline{M}^-	V	\overline{M}^+

Chain homotopy nilpotence

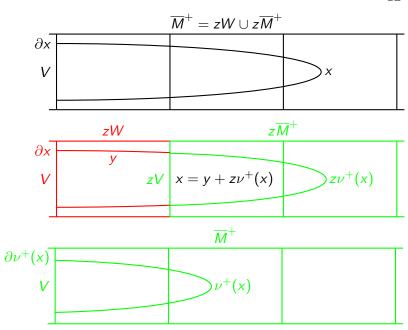
- ► An A-module chain complex C is finitely dominated if it is chain equivalent to a finite f.g. projective A-module chain complex.
- ▶ An A-module chain map $\nu : C \to C$ is **chain homotopy nilpotent** if $\nu^N \simeq 0 : C \to C$ for some $N \geqslant 0$.
- ▶ If $h: M^n \to X \times S^1$ is a homotopy equivalence then

$$C(\overline{M}^+, V) \oplus C(\overline{M}^-, V) \to C(V \to X)$$

is a chain equivalence with $\mathcal{C}(V \to X)$ a finite f.g. free $\mathbb{Z}[\pi_1(X)]$ -module chain complex.

- ▶ The free $\mathbb{Z}[\pi_1(X)]$ -module chain complex $C(\overline{M}^+, V)$ is finitely dominated.
- ▶ The $\mathbb{Z}[\pi_1(X)]$ -module chain map

$$u^+: C(\overline{M}^+, V) \to C(\overline{M}^+, zW) \cong C(z\overline{M}^+, zV) \cong C(\overline{M}^+, V)$$
 is chain homotopy nilpotent.



The F-H splitting obstruction from the chain complex point of view

▶ For a homotopy equivalence $h: M^n \to X \times S^1$ the contractible finite based f.g. free $\mathbb{Z}[\pi_1(X)][z,z^{-1}]$ -module chain complex $\mathcal{C}(\overline{h}:\overline{M}\to X\times\mathbb{R})$ fits into a short exact sequence

$$0 \to C(V,X)[z,z^{-1}] \xrightarrow{f-zg} C(W,X\times I)[z,z^{-1}] \to C(\overline{h}) \to 0$$

▶ The splitting obstruction of *h* is the nilpotent class

$$\Phi(h) = (C(\overline{M}^+, V), \nu^+) \in \mathsf{Nil}_0(\mathbb{Z}[\pi_1(X)])/\mathsf{Nil}_0(\mathbb{Z})$$

where

$$C(\overline{M}^+, V) = \operatorname{coker}(f - zg : zC(V, X)[z] \to C(W, X \times I)[z]).$$

- ▶ $\Phi(h) = 0$ if and only if $(C(\overline{M}^+, V), \nu^+)$ is equivalent to 0 by a finite sequence of algebraic handle exchanges.
- ► For $n \ge 6$ can realize algebraic handle exchanges by geometric handle exchanges.

Universal localization

- ▶ (P.M.Cohn, 1971) Given a ring R and a set Σ of morphisms $\sigma: P \to Q$ of f.g. projective R-modules there exists a **universal localization** $\Sigma^{-1}R$, a ring with a morphism $R \to \Sigma^{-1}R$ universally inverting each σ
- ▶ Universal property For any ring morphism $R \to S$ such that $1 \otimes \sigma : S \otimes_R P \to S \otimes_R Q$ is an S-module isomorphism for each $\sigma \in \Sigma$ there is a unique factorization $R \to \Sigma^{-1}R \to S$.
- ▶ Warning 1 $R \to \Sigma^{-1}R$ need not be injective.
- ▶ Warning 2 $\Sigma^{-1}R$ could be 0.
- ▶ **Gerasimov-Malcolmson normal form** An element $q\sigma^{-1}p \in \Sigma^{-1}R$ is an equivalence class of triples

$$((\sigma: P \to Q) \in \Sigma, p \in P, q \in Q^* = \operatorname{\mathsf{Hom}}_R(Q, R))$$
.

The algebraic K-theory localization exact sequence

- ▶ Assume $R \to \Sigma^{-1}R$ is injective.
- \blacktriangleright An (R, Σ) -torsion module is an R-module T such that

$$0 \longrightarrow P_1 \xrightarrow{d} P_0 \longrightarrow T \longrightarrow 0$$

with P_0 , P_1 f.g. projective R-modules and $1 \otimes d : \Sigma^{-1}P_1 \to \Sigma^{-1}P_0$ a $\Sigma^{-1}R$ -module isomorphism.

▶ **Theorem** (Neeman+R., 2004) For an injective universal localization $R \to \Sigma^{-1}R$ such that

$$\operatorname{Tor}_{*}^{R}(\Sigma^{-1}R, \Sigma^{-1}R) = 0$$
 (stable flatness)

there is a long exact sequence of algebraic K-groups

$$\cdots \to K_n(R) \to K_n(\Sigma^{-1}R) \to K_{n-1}(H(R,\Sigma)) \to K_{n-1}(R) \to \cdots$$

with $H(R, \Sigma)$ the exact category of (R, Σ) -torsion modules.

Triangular matrix rings

▶ Given rings R_1 , R_2 and an (R_2, R_1) -bimodule Q define the triangular matrix ring

$$R = \begin{pmatrix} R_1 & 0 \\ Q & R_2 \end{pmatrix} .$$

▶ **Proposition 4** (i) The category of *R*-modules is equivalent to the category of triples

$$M = (M_1, M_2, \mu : Q \otimes_{R_1} M_1 \to M_2)$$

with M_i R_i -modules (i = 1, 2), μ an R_2 -module morphism.

- (ii) An R-module M is f.g. projective if and only if M_1 is a f.g. projective R_1 -module, μ is injective, and $\operatorname{coker}(\mu)$ is a f.g. projective R_2 -module.
- (iii) $K_*(R) = K_*(R_1) \oplus K_*(R_2)$.

Full matrix rings

▶ Let
$$R = \begin{pmatrix} R_1 & 0 \\ Q & R_2 \end{pmatrix}$$
, $P_1 = \begin{pmatrix} R_1 \\ Q \end{pmatrix}$, $P_2 = \begin{pmatrix} 0 \\ R_2 \end{pmatrix}$.

The *R*-modules P_1 , P_2 are f.g. projective, since $P_1 \oplus P_2 = R$.

▶ If $R \to S$ is a ring morphism with $S \otimes_R P_1 \cong S \otimes_R P_2$ then

$$S = M_2(T)$$

with $T = \operatorname{End}_S(S \otimes_R P_1) = \operatorname{End}_S(S \otimes_R P_2)$.

► Morita equivalence

$$\{S\text{-modules}\} \xrightarrow{\approx} \{T\text{-modules}\}; N \mapsto (T T) \otimes_S N$$
.

▶ The induced functor

$$\{R ext{-modules}\} o \{S ext{-modules}\} o \{T ext{-modules}\} ;$$
 $M = (M_1, M_2, \mu: Q \otimes_{R_1} M_1 o M_2) \mapsto$

$$(T\ T)\otimes_R M = \operatorname{coker}(T\otimes_{R_2} Q\otimes_{R_1} M_1 \to T\otimes_{R_1} M_1 \oplus T\otimes_{R_2} M_2)$$
 is an **assembly** map, i.e. local-to-global.

(R, Σ) -torsion modules

▶ **Proposition 5** The universal localization of

$$R = \begin{pmatrix} R_1 & 0 \\ Q & R_2 \end{pmatrix} = P_1 \oplus P_2$$

inverting a set Σ of R-module morphisms $\sigma: P_2 \to P_1$ is $\Sigma^{-1}R = M_2(T)$ with $T = \operatorname{End}_{\Sigma^{-1}R}(\Sigma^{-1}P_1)$.

- ▶ **Proposition 6** Assume that $R \to \Sigma^{-1}R = M_2(T)$ is injective, and that Q is a flat right R_1 -module.
 - An R-module $M=(M_1,M_2,\mu)$ is (R,Σ) -torsion if and only if
 - (i) $\cdots \longrightarrow 0 \longrightarrow Q \otimes_{R_1} M_1 \stackrel{\mu}{\longrightarrow} M_2$ is homology equivalent to a 1-dimensional f.g.projective R_1 -module chain complex,
 - (ii) M_2 is an h.d. 1 R_2 -module,
 - (iii) the assembly

$$T \otimes_{R_2} Q \otimes_{R_1} M_1 \to T \otimes_{R_1} M_1 \oplus T \otimes_{R_2} M_2$$

is a T-module isomorphism.

Polynomial extensions as universal localizations

▶ For any ring A let

$$R \ = \ \begin{pmatrix} A & 0 \\ A \oplus A & A \end{pmatrix} \ , \ P_1 \ = \ \begin{pmatrix} A \\ A \oplus A \end{pmatrix} \ , \ P_2 \ = \ \begin{pmatrix} 0 \\ A \end{pmatrix}$$

and let $\sigma_+, \sigma_-: P_2 \to P_1$ be the two inclusions.

- ▶ Proposition 7 (Schofield, 1985)
 - (i) The universal localization of R inverting $\Sigma_+ = \{\sigma_+\}$ is

$$\Sigma_+^{-1}R = M_2(A[z]).$$

(ii) The universal localization of R inverting $\Sigma = \{\sigma_+, \sigma_-\}$ is

$$\Sigma^{-1}R = M_2(A[z,z^{-1}])$$
.

Torsion = nilpotence

- ▶ Let $R = \begin{pmatrix} A & 0 \\ A \oplus A & A \end{pmatrix}$. An R-module M = (P, Q, f, g) is defined by A-modules P, Q and A-module morphisms $f, g : P \rightarrow Q$.
- ▶ **Proposition 8** (i) The assembly of M = (P, Q, f, g) with respect to $\Sigma_+^{-1}R = M_2(A[z])$ is the A[z]-module

$$(A[z] \ A[z]) \otimes_R M = \operatorname{coker}(f + gz : P[z] \to Q[z])$$
.

M is an (R, Σ_+) -module if and only if P, Q are f.g. projective A-modules and f + gz is an A[z]-module isomorphism. Thus

$$\mathsf{Nil}(A) o H(A[z], \Sigma_+) \; ; \; (P, \nu) \mapsto (P, P, 1, \nu)$$

is an equivalence of exact categories, by Proposition 1.

• (ii) Likewise for $\Sigma^{-1}A[z]=M_2(A[z,z^{-1}])$, with Near(A) \to $H(A[z],\Sigma)$; $(P,\rho)\mapsto (P,P,\rho,1-\rho)$

an equivalence of exact categories by Proposition 2.

Universal localization proof of B-H-S theorem

▶ Apply the universal localization exact sequence

$$\cdots o \mathcal{K}_n(R) o \mathcal{K}_n(\Sigma^{-1}R) o \mathcal{K}_{n-1}(\mathcal{H}(R,\Sigma)) o \mathcal{K}_{n-1}(R) o \ldots$$

to the stably flat universal localizations of $R=\begin{pmatrix}A&0\\A\oplus A&A\end{pmatrix}$

$$\Sigma_+^{-1} R \ = \ M_2(A[z]) \ , \ \Sigma^{-1} R \ = \ M_2(A[z,z^{-1}]) \ .$$

▶ Identify

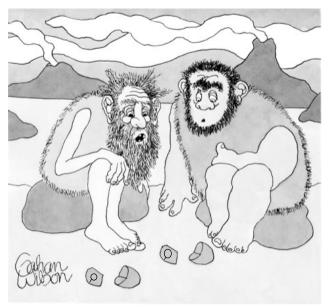
$$K_{*}(R) = K_{*}(A) \oplus K_{*}(A)$$
,
 $K_{*}(\Sigma_{+}^{-1}R) = K_{*}(A[z])$, $H(R, \Sigma_{+}) = Nil(A)$,
 $K_{*}(\Sigma^{-1}R) = K_{*}(A[z, z^{-1}])$,
 $H(R, \Sigma) = Near(A) = Nil(A) \times Nil(A)$

to recover

$$K_n(A[z]) = K_n(A) \oplus \widetilde{\text{Nil}}_{n-1}(A) ,
K_n(A[z,z^{-1}]) = K_n(A) \oplus K_{n-1}(A) \oplus \widetilde{\text{Nil}}_{n-1}(A) \oplus \widetilde{\text{Nil}}_{n-1}(A) .$$

Generalized free products

- ▶ A group π is a **generalized free product** if it is
 - \blacktriangleright either amalgamated free product $\pi=\pi_1*_{\rho}\pi_2$,
 - ▶ or an HNN extension $\pi = \pi_1 *_{\rho} \{t\}$.
- ▶ (Bass-Serre, 1970) A group π is a generalized free product if and only if π acts on a tree T with $T/\pi = [0,1]$ or S^1 .
- ▶ Article in proceedings of **Noncommutative localization in algebra and topology**, LMS Lecture Notes 330 (2006) includes an outline of the proof of the Waldhausen (1976) algebraic *K*-theory splitting theorems of generalized free products via noncommutative localization, using *T*-based Mayer-Vietoris presentations.
- ▶ Nilpotence = torsion also in the generalized free product case.
- ► Also in algebraic *L*-theory, with the Cappell (1974) UNil-groups.



"There -- now I've taught you everything I know about codimension 1 splitting"