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Aims

I An introduction to algebraic topology (with a little bit of
algebraic geometry)

I An introduction to differential geometry
I An introduction to differential topology

Backgrounds

I The students taking the Geometry/Topology SMSTC module
come from a wide range of mathematical backgrounds.
Inevitably:

I some of the material will be known and too easy for some of
the students,

I some of the material will be unknown and too hard for some
of the students.

I I hope the course strikes a balance between known/easy and
unknown/hard material.
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Prerequisites

I A course in metric spaces or topological spaces (or both).
Important concepts: Open sets and neighbourhoods in metric
spaces.

I Standard calculus courses. Some knowledge of vector calculus
(e.g. div, grad, curl and Green’s theorem) would be useful.

I One or two basic courses in linear algebra. Important
concepts: Abstract vector space, quotient vector spaces.

I A course in group theory, including group actions, generators
and relations, the structure theorem for finitely generated
abelian groups.
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Regular lecturers

I Andrew Ranicki, Edinburgh, Stream Leader

I Brendan Owens, Glasgow

I Richard Hepworth, Aberdeen

I Vanya Cheltsov, Edinburgh

I Bernd Schroers, Heriot Watt

Guest lecturers

I Jeremy Gray, Open University.

I Etienne Ghys, ENS Lyon.

http://www.maths.ed.ac.uk/~aar
http://www.maths.gla.ac.uk/~bowens/
http://homepages.abdn.ac.uk/r.hepworth/pages/
http://www.maths.ed.ac.uk/cheltsov
http://www.macs.hw.ac.uk/staff-directory/bernd-schroers.htm
http://www.mcs.open.ac.uk/People/j.j.gray
http://www.umpa.ens-lyon.fr/~ghys/
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Timetable

I Lectures on Thursdays, 1-3PM.

I 10 lectures in Semester 1: October 17 - December 19.

I Guest lecture on ”Poincaré and topology” (Jeremy Gray):
December 19.

I 10 lectures in Semester 2: January 16 - March 20

I Guest lecture on ”Poincaré and geodesy” (Etienne Ghys):
March 20

I 4 written assessments due on Fridays December 6, January
17, February 21, March 21
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Themes of the Geometry/Topology course

I Topological spaces, compact, connected.

I Continuous functions, homeomorphisms, homotopy.

I The homology groups H∗(X ). The Euler characteristic χ(X ).

I Manifolds in general, surfaces in particular.

I The fundamental group π1(X ).

I The differential geometry of curves and surfaces in R3.

I Theorema Egregium.

I The Gauss-Bonnet theorem, expressing χ(M) of a surface M
as an integral of the curvature.

I Vector calculus on smooth manifolds and deRham
cohomology.

I Applications of vector calculus to intersections and linking in
manifolds, and to homotopy theory.
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Smooth manifolds

I Manifolds are the topological spaces of greatest interest!

I Definition An n-dimensional manifold is a topological space
M which at each point x ∈ M has an open neighbourhood
U ⊆ M homeomorphic to Rn.

I Example The Euclidean space Rn is an n-dimensional
manifold.

I Roughly speaking, an n-dimensional manifold is a space which
can be obtained by glueing together copies of Rn using
homeomorphisms.

I If the homeomorphisms are differentiable then the manifold is
smooth (or differentiable).

I Multivariable calculus extends to calculus on smooth
manifolds.
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Surfaces

I A surface is a 2-dimensional manifold M.
I The genus g of M is the number of holes it has – not a

proper mathematical definition as it stands!
I Here are the surfaces Mg with g = 0, 1, 2

M0 = S2 = sphere M1 = S1 × S1 = torus M2 = pretzel

I χ(Mg ) = 2− 2g .
I The classification theorem for surfaces is that two surfaces are

homeomorphic if and only if they have the same genus.
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Examples of manifolds

I The space M = {x ∈ Rn | f (x) = 0 ∈ Rm} of the solutions of
a set of m simultaneous differential equations in n variables

fi (x1, x2, . . . , xn) = 0 ∈ R (1 6 i 6 m)

is an (n −m)-dimensional smooth manifold, provided that
n > m and that for each x ∈ M the Jacobian m × n matrix
(∂fi/∂xj) has the maximal rank m.

I The unit sphere Sn in (n + 1)-dimensional Euclidean space
Rn+1 is a compact n-dimensional smooth manifold: apply the
previous example with

f : Rn+1 → R ; x 7→ ‖x‖ − 1

and Sn = f −1(0) ⊂ Rn+1.
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Homotopy theory

I Idea: Before we can distinguish topological spaces, we must
learn to distinguish continuous functions.

I Let X and Y be topological spaces.
Definition. Two continuous functions f : X → Y and
g : X → Y are homotopic if there exist continuous functions
ht : X → Y for 0 6 t 6 1 such that

h0 = f , h1 = g : X → Y

and ht(x) depends continuously on t and x . Regard {ht} as a
‘film’ which starts at f and ends at g .

I ‘Homotopic” is an equivalence relation.

I The determination of the set [X ,Y ] of equivalence classes of
continuous functions f : X → Y , for fixed X and Y , can often
be reduced to algebra.
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Homology

I The homology groups of a topological space X are a sequence
of abelian groups Hn(X ) for n = 0, 1, 2, . . . . Roughly
speaking, Hn(X ) measures the number of ”n-dimensional
holes” in X .

I Hn(Sm) =

{
Z if n = 0 or m

0 if m 6= n.
I A continuous function f : X → Y induces morphisms

f∗ : Hn(X )→ Hn(Y ) for n > 0, which depend only on the
homotopy class f ∈ [X ,Y ]

I If f : X → Y is a homeomorphism then each f∗ is an
isomorphism.

I If f∗ : Hn(X )→ Hn(Y ) is not an isomorphism then f is not a
homeomorphism, not even homotopic to one.

I For m 6= n Hn(Sm) = 0 is not isomorphic to Hn(Sn) = Z. It
follows that Sn is not homeomorphic to Sm, and hence that
Sn\{point} = Rn is not homeomorphic to Rm.
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The fundamental group

I The fundamental group of a space X is the group of
homotopy classes of continuous functions ω : S1 → X

π1(X ) = [S1,X ] .

I The degree of ω is the number of times it winds around 0,
the unique d ∈ Z such that ω is homotopic to z 7→ zd . The
degree of analytic ω can be computed by Cauchy’s theorem

d =
1

2πi

∫
ω

dz

z
.

I Theorem The degree defines an isomorphism of groups

π1(S1)→ Z ; ω 7→ d .
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Vector calculus and homotopy types of manifolds

I In low dimensions, standard vector calculus gives some
information about homotopy types.

I Let U be a nonempty open set in R3. Let A be the vector
space of all smooth functions from U to R. Let B be the
vector space of all smooth vector fields on U.

I Vector calculus provides linear maps

A
grad−−−−→ B

curl−−−−→ B
div−−−−→ A

such that any two consecutive ones compose to zero.
I Therefore im(grad) ⊂ ker(curl) and im(curl) ⊂ ker(div). If

U = R3, these inclusions are equalities, but in general they are
not!
The dimensions of the vector spaces

ker(curl)/im(grad) , ker(div)/im(curl)

are invariants of the homotopy type of U.
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deRham cohomology

I In our course, vector calculus will be generalised to be
applicable to arbitrary smooth n-manifolds M. The above
sequence of grad, div and curl generalises to a sequence of
vector spaces and linear maps

Ω0(M)
d0−−−−→ Ω1(M)

d1−−−−→ Ω2(M)
d2−−−−→ · · · dn−1−−−−→ Ωn(M)

where di ◦ di−1 = 0, so that im(di−1) ⊆ ker(di ).

I The dimensions of the vector spaces

H i (M) = ker(di )/im(di−1)

are equal to the ranks of the homology groups Hi (M).

I If M is compact, the dimensions are finite.
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Riemannian manifolds

I A smooth manifold M becomes a Riemannian manifold
through a choice of a Riemannian metric on M. This
structure makes it possible to assign a length to any smooth
curve segment in M. Following Gauss, Riemann and others,
we shall isolate the intrinsic aspects of curvature in terms of
length measurements.

I Curvature properties of a Riemannian manifold are often
related to the homotopy type of the manifold. Examples in 2
dimensions:

I For any Riemannian metric on S2, there will be points where
the curvature is positive.

I For any Riemannian metric on the pretzel, there will be points
where the curvature is negative.

I These statements follow from the Gauss-Bonnet theorem,
since χ(S2) = 2, χ(pretzel) = −2.
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Some applications of Geometry and Topology

I Original application of topology: celestial dynamics.

I Algebraic geometry borrows techniques from differential
geometry and algebraic topology to investigate algebraic
varieties.

I Theoretical physics: gauge theory and general relativity,
topological solitons, string theory, . . .

I Computational topology. The advent of computers has
allowed topology to be applied to pattern recognition for large
data sets.
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Relations with other SMSTC courses

I Algebra Groups, both commutative and non-commutative,
are ever-present in the Geometry/Topology course.
Rings. If you are a commutative ring enthusiast, you might be
pleased to know that many essential geometric constructions
in our course can be reformulated in terms of commutative
rings and their modules.

I Pure Analysis Although we don’t need Lebesgue integration
theory, as developed in the Pure Analysis stream, integrals are
of some importance in the Geometry/Topology course.

I Applied Analysis and PDEs The third quarter of the
Geometry/Topology course, on differential geometry, is
somewhat related to the first quarter of the Applied Analysis
course, on dynamical systems. An important class of
dynamical systems (geodesic flows) comes from differential
geometry.


