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Preface 

This book is an exposition of the technique of surgery on simply-connected 
smooth manifolds. Systematic study of differentiable manifolds using 
these ideas was begun by Milnor [45J and Wallace [68J and developed 
extensively in the last ten years. It is now possible to give a reasonably 
complete theory of simply-connected manifolds of dimension ~ 5 using 
this approach and that is what I will try to begin here. 

The emphasis has been placed on stating and proving the general 
results necessary to apply this method in various contexts. In Chapter II, 
these results are stated, and then applications are given to characterizing 
the homotopy type of differentiable manifolds and classifying manifolds 
within a given homotopy type. This theory was first extensively developed 
in Kervaire and Milnor [34J in the case of homotopy spheres, globalized 
by S. P. Novikov [49J and the author [6J for closed i-connected 
manifolds, and extended to the bounded case by Wall [65J and 0010 [23]. 
The thesis of Sullivan [62J reformed the theory in an elegant way in 
terms of classifying spaces. 

Many applications have been omitted, such as applications to 
embedding theory [24J, [38J, [39J, [25J, [8J, [9J, [26J, [27J, study of 
manifolds with 1tl =7L [10J, diffeomorphisms [11J, and others. An 

. exposition of applications to the theory of differentiable transformation 
groups is given in [12]. For a general discussion of surgery on non­
simply-connected manifolds we refer to [66]. For extensions of the 
techniques to piecewise linear manifolds, we refer to [13J and [62]. In 
particular, the problem of computing with the classifying spaces for the 
P L theory has been now very well dealt with by Sullivan, and the recent 
work of Kirby and Siebenmann has shown how to extend all these 
results to topological manifolds. Discussion of these and many other 
beautiful developments are beyond the scope of this work, but I have 
tried here to introduce some of the basic ideas in the area of surgery, 
whose latest developments are so much involved with many of the most 
striking recent results in topology. A short exposition of some of the 
later developments can be found in my expository article "Manifolds 
and homotopy theory" in the Proceedings of the Amsterdam Conference 
on Manifolds, 1970, published by Springer. 



VIII Preface 

The order of the chapters will not suit every taste. In particular, 
much of the contents of Chapter I will be quite familiar to many, and 
many readers will find more pleasure and motivation in beginning with 
Chapter ll, and using Chapter I as a reference. The main ideas and 
results of surgery are in Chapter II while Chapter I develops some 
necessary tools in the theory of Poincare complexes. Chapter In is an 
account of the simply-connected surgery obstruction, the index and 
Kervaire (Art) invariant. Here, we have been forced to quote some 
rather difficult facts from the theory of integral quadratic forms, but 
we have developed everything needed in the theory of Zz-forms. The 
treatment of the Kervaire invariant is based on [7], and we include a 
treatment of product formuli in § 5 of Chapter Ill. Chapter IV proves 
the main theorem of surgery on 1-connected manifolds, following 
generally the point of view of [34]. In Chapter V we discuss "plumbing", 
which would have appeared in part II of [34]. 

In a later paper I hope to give a unified account of the applications 
of surgery to the study of submanifolds and "super manifolds", based on 
the point of view of this book, (compare [8], [9], [10]). 

This book was written partially at Princeton University and partially 
while the author was visiting at the Faculte des Sciences at Orsay of 
the University of Paris, and is based on courses given at Prince ton 
1966-1967, and at Orsay 1967-1968. I should like to thank also the 
Institute des Hautes Etudes Scientifiques, for their kind hospitality 
during that year, and the Mathematical Institute of the University of 
Warwick. 

I am much indebted to many who made helpful comments and pointed 
out small mistakes, in particular, to David Singer, D. B. A. Epstein, 
Steven Weintraub, Michael Davis, and William Pardon. I was partially 
supported by the NSF while this work was under way. 
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I. Poincare Duality 

In this chapter we will develop the properties of Poincare duality spaces 
and pairs which play such an important role in the study of manifolds. 

We begin in § 1 by studying the products, (slant, cup and cap) which 
relate homology and cohomology theories. In § 2 we study Poincare 
duality in chain complexes and develop in this algebraic context the 
results needed for studying spaces or pairs, (such as compact manifolds 
or manifolds with boundary) for which Poincare duality holds. We call 
them Poincare complexes and pairs. In particular we study kernels and 
cokernels associated with maps of degree 1. In § 3 we study special 
forms of Poincare duality, such as that for a bounded manifold with 
two pieces of boundary, and use these results to derme the sums of 
Poincare pairs and maps of degree 1. Then we use these results to prove 
Poincare duality for smooth manifolds. In § 4 we discuss the Spivak 
normal fibre space of a Poincare complex or pair, and prove Spivak's 
theorems on their existence and uniqueness. 

Note that all chain complexes will be assumed free over 7l in each 
dimension. 

§ 1. Slant Operations, Cup and Cap Products 

Let C be a chain complex, c= I ChO:Ci-Ci- 1 • Let C*= I C- i
, 

i!l;O i!l;O 

c- i = Hom(Ci, 7l) be the dual (cochain) complex, where ~: C-i-+C- i- 1 

is defined by ~c = (-l)ico E C-i-l if C E C- i. Hk(C) = H_k(C*). 
If C, C are complexes, define C®C by (C®C)n= I Ci®Cj 

and o(c®c') = oc®c' + (~ltc®oc', if C ECk' 
Define a map called the slant operation 

/: (C®C)n®(C)-k-+Cn_k 

i+j=n 

by the formula a/b= L b(a;)ai where a = L ai®a;e C®C, and b(x) =0 
if dimx=Fk. 
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Now we note that the slant operation is a chain map. 
For we have oa= l:oa;®a;+(-l)d'a;®oai ifdima;=d;, so that 

(oa)/b = l: b(ai)oa; + (-l)d'b(oai)a;. 

Then b(oai) = 0 unless dim oai = k so d; = n - k - 1 and we get 

(oa)/b = o(a/b) + (_l)n-k-l a/(bo) 

= o(a/b) + ( _l)n-k-l a/( -l)kc5b 

= o (a/b) +( -1)n-l a/c5b. 

So aea/b) = (aa)/b + (-lfa/c5b and / is a chain map. 
Since / is a chain map, it induces a map H*«C®C)®C*)-+H (C). 

Composing with the natural map ,* 

H*(C®C)®H*(C)-+H*«C®C)®C*) 

we get the slant operation 

/: Hn(C®C)®Hk(C)-+Hn_k(C)· 

Now let C; be an augmented chain complex with a diagonal map 
Ll :C-+C®C such that (B®l)L1(c)=(l®B)L1(c)=c, where B:C-+71 is 
the augmentation, and we identify C = C ® 7l = 7l ® c. Then Ll induces 
on C* the structUre of a ring with unit by C*®C*-+(C®C)*4C*, 
where C*®C*-+(C®C)* is the obvious inclusion. This is called the 
cup product, and on the cohomology level induces H*( C) ® H*( C)-+ H*(C), 
also called the cup product, x ® y~ x u y, 

Using .1, we may define the cap product 

n: Cn®C-k-+Cn_k 

by the formula an b = (.1 a)/b. Since n is the composite of chain maps .1 
and /, it follows that n is a chain map and induces 

n: Hn(C)®Hk(C)-+H,,_k(C). 

More generally suppose A, B, and C are augmented chain complexes 
and let .1 : A -+ B ® C be a chain map. Then similarly to the above we 
get a pairing in cohomology 

u: HP(B)®Hq(C)-+Hp+q(A) 
and a cap product 

n: Hn(A)®Hk(C)-+Hn_k(B). 

1.1.1 Proposition. Let xEAn, YEC-k, zEB"-k. Then z(xny) = (zuy)(x). 

Proof· xny=(Llx)/y= l:Y(Xi)Xi where Llx= l:x;®xi, x;EB, XiEC. 
Thenz(xny) = l:y(xi)z(x;) = (z®y)(l:x;®xi) = (z®y)(L1x) = Ll*(z®y)(x) 
= (zu y) (x). 0 
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1.1.2 Corollary. Suppose we have a commutative diagram: 

A _--,=LI:..!..I_-+1 B' ® C 

A2l 1 Ll4® 1 

B®C~B®D®C. 

If x E An' y E C-k, Z E D-q, then 

(xny)nz = xn(zu y) E Bn- k - q, 

where xnYE B~-k' zu yE c-k-q, cup and cap products being defined by 
the appropriate diagonal .1;, i = 1,2,3 or 4, in each case. 

Proof. Let WE B-{n-k-q). By (1.1.1), 

and 

and 

w(xn(zu y»= (wu(zu y»)(x), 

wu(zu y) = L1!(w®L1t(z® y» = L1!(1 ®L1t) (w®z® y) 

= L1i{L1l ®l)(w®z®y)= (wuz)u y, 

«wuz)u y)(x) = (wuz)(xny) = w«xny)nz), by (1.1.1). 

Hence 
w(xn(zu y» = w«xny)nz) 

for any 

wEB-{n-k- q), so xn(zuy)=(xny)nz. 0 

1.1.3 Corollary. Let f: A-+A', g: B-+B', h: C-+C be chain maps 
such that 

commutes. 

Then g*(xnh*y') = (f*(x»ny', for x E H*(A),y' E H*(C). 

Proof. By (1.1.1), if z' EB'*, then 

z'(g*(xn h* y'»= (g*(z'» (xn h* y') = (g* z'uh* y')(x) 

= (f*(z'u y'»(x) = (z'u y') (f*(x» = z'(f*(x)ny'). 

Henceg*(xnh*y'}=(f*(x»ny'. 0 
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Let O_A-4B-4C_O be an exact sequence of chain maps, where 
i : A - B is a map of chain complexes with diagonal maps, so 

A lB 

~l ~l 
A®A~B®B 

commutes. Then we may define Ll1 : C-B®C, by Lll(C)=(l®j)(Llb), 
where bE Band jb = c. If jb' = jb = c then b' = b + a, a E A and 
Llb'=Llb+Lla, where LlaEA®A. Hence (l®j)(Lla)=O and Lll is well 
defined. Similarly define LI 2 (c) = U® l)LI(b), and this is also well defined, 
Ll 2 : C-C®B. 

Then Lll and Ll2 define cup and cap products, in particular, 

n : Hn(C)®Hk(C)-Hn_k(B) 

n: Hn(C)®Hq(B)-Hn-q(C). 

Let o:Hq(C)-Hq_l(A) and a:Hk-l(A)_Hk(C) be the boundary 
and coboundary operators associated with the exact sequences. 

1.1.4 Proposition. Let xEHn(C), yE Hk(C), zEHq(B), uEHk- 1(A). 
Then 

(i) j*(xny) = xnj* y, 
(ii) o(xnz)=(ox)n(i*z), 

(iii) (_l)n-l xn (au)= i*(oxnu). 

Proof. Let j c be a chain representing x, c E B, b E C- k representing y. 
Then xny is represented by (1 ®j)Llc)/b = l: ci®jc;/b = l: bUc;)ci. Then 
j*(xny) is represented by l: bUc;)jci = l: (bj)(C;»jCi = U® l)LI c/bj which 
represents xnj* y. This proves (i). 

To prove (ii) we first recall the definition of a : Hn( C)-H,,-l (A). If 
x E Hn(C) is represented by a chain jc E C, oc = ir, and ox is represented 
by the chain r. Let LIr = l: ri®r;, Llc = l: ci®c;. If bE B-q is a cocycle 
representing z E Hq(B1 then a x n i* z is represented by 

Llr/i*b = Llr/bi = l:(bi(r;»ri' 
Then 

i(LI r/bi) = l: (bi(r;»iri = i(LI r)/b = LI oc/b = oLlc/b = o(LI c/b), since Jb = O. 

But xnz is represented by U®l)Llc/b=j(Llc/b) so that o(xnz) is 
represented by aEA such that ia=o(Llc/b). Hence i(a)=i(Llr/bi), and 
since i is mono, a = Llr/bi and o(xnz) = oxni*z. 

In (iii), let rEA * be such that r represents u E Hk -1 (A), let SE B* so 
that r=i*s=si, and let tEC* so that as=(-l)k-l so =j*t=tj. Then t 
represents au E Hk(C). If c E Bn such that jc represents x E H,,(C),and 
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a E An- 1 such that ia = oc then a represents ox E H,,-1 (A). Suppose 
Lla= l:aj®ai so that i®iLla=Llia=Lloc, and Llc= l:ci®c;. Then 
i*(oxnu) is represented by 

i(LI air) = i(l: r(ai)a j) = l: r(a;)i(ai) = l: (si(ai»i(ai) = (LI oc)/s = (aLl c)/s . 

Since / is a chain map, we have 

o(LI c/s) = (aLl c)/s + (-1)" LI c/as. 

On the other hand 

LI c/as = LI c/j*t = ULI c)/t = (Lljc)/t 

so that LI c/as represents xn (au). Since o(LI c/s) is a boundary in B, the 
homology classes of (oLlc)/s and (_1)n- 1 L1c/as are the same and (iii) 
follows. 0 

1.1.5 Theorem. Let O_A-4B-4C_O beexact,xEHm(C), i a map 
of chain complexes with diagonal. Then 

... ----+Hq(C) j* l Hq(B) i* l Hq(A) l Hq+l(C)----+ ... 

nxl . nxl noxl. nxl 
... -Hm_q(B)~ Hm-q(C)~ Hm-q-l(A)~ Hm- q- 1(B)- .. · 

is commutative, up to sign. 

Proof. Let yE Hq(C). Then xnj*y = j*(xny) by (1.1.4)(i). If yE Hq(B), 
then o(xn y) = (ox)n i* y by (I.1.4)(ii). If u E Hq(A), then 

(_1)"-1 xnau = i*(oxnu), 

by (1.1.4) (iii). Hence the first two squares commute and the third com­
mutes up to sign. 0 

1.1.6 Proposition. Suppose O-A-4B-4C_O is an exact sequence 
of chain complexes, where A = A' + A", the sum (not necessarily disjoint) 
of augmented chain complexes with diagonal map, and i : A - B is a map 
of augmented chain complexes with diagonal maps. Let C = B/ A', C" = B/ A". 
Then there is a natural diagonal Llo: C-C®C" with the following 
properties: Leti': B-C',j": B-C', r(: C-C, r(': C"-C be the natural 
maps. Let x E Hn(C1 y E Hk(C), Z E Hn(B), u E Hq(C"). Then 

(i) xnj"*u = 11~(xnu) F Hn-q(C), 
(ii) j~(znj"*u) = j*znu E Hn-iC), 
(iii) j~(xny) = xnl1"*Y E Hn-k(C). 

The proof consists of routine chain arguments as in (1.1.4) and we 
omit them. 
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Now we bring in spaces. 

1.1.7 Theorem. If C = C*(X), the singular chains of a topological 
space X, and LI : C-+ C® C is the diagonal induced by d: X -+ X x X, 
d(x) = (x, x) and the Eilenberg-Silber map (see [21]) 

C*(X x X)-+C*(X)®C*(X) , 

then all the results of this section hold for the various products induced by LI. 

The proof is trivial. 

Analogous to the results on cap products, we may deduce similar 
properties of the various cup products in these situations. These may 
be deduced directly, or using the results on cap products and (1.1.2). 

1.1.8 Lemma. Let C-+C'®CI/ be a diagonal C, C" complexes with 
locally finitely generated homology and, let c E Cn' {cl = V E Hn(C). Then 
vn: Hq(C")--H,,-q(C') is an isomorphism for all q, if and only if the 
pairing induced by cup product fjJ: Hn-q(C' ®7lp )®H'l(C" ®7lp)-+7lp , 

fjJ(x®y) = (xuy)(v) is non-singular for each prime p, for all q. 

Proof. c n : CI/* -+ C' is a chain map inducing v n on the homology 
level. Then v n is an isomorphism if and only if the homology of the 
mapping Cone M of the chain map cn, is zero, (see [22; V § 13]). 
Since CI/* and C' have locally finitely generated homology, it follows 
that M has locally finitely generated homology. The Universal Coefficient 
Theorem (see [22; p. 161]) then shows that H*(M)=O if and only if 
H (M ® 7l ) = 0 for all primes p. But M ® tlp is the mapping cone of 
c ~ : C"* fi!f7lp -+ C' ® 7lp, so H* (M ® 7lp) = 0 if and only if 

vn : Hq (Cl/ ®7lp)-+Hn_q(C' ®7lp) 

is an isomorphism for all q. But Hn-q(C' ®7lp) = Hom(H,,_q(C' ®7lp), 7lp ). 

Hence vn : Hq(CI/®7lp)-+Hn_q(C'®7lp) is an isomorphism if and only 
if the pairing H,,-q(C' ®7lp)® H!I(C" ®7lp)-+7lp given by x®y-+x(vny) 
is non-singular. But x(vny) = (xuy)(v) by (1.1.1). 0 

§ 2. Poineare Duality 

Since most of the results we give here are of a purely algebraic nature, 
we will state them in the algebraic context of chain complexes. All 
statements translate immediately into topological ones, taking the chain 
complex of a space. 

All chain complexes C considered in § 2 will be assumed to have 
locally finitely generated homology, i.e. Hi(C) is a finitely generated 
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7l-module for each i, and also we will assume Ci = 0 for i < O. A geometric 
chain complex will mean an augmented chain complex C with a diagonal 
map LI: C-+C®C and a chain homotopy H between LI and T LI, so 
that oH + Ha = LI- T LI, where T(a®b) = (-l)"b®a, B= (dim a)(dim b). 
A geometric chain map will be a chain map f: C-+C' where C, C' are 
geometric complexes, such that LI'j = (f®f)LI and H'j=(f®f)H. A 
geometric chain pair (B, A) will be a geometric chain complex B with a 
subcomplex A, which is a direct summand as a graded module and a 
geometric chain complex, such that the inclusion A CB is a geometric 
chain map. The chain complex of a space is the prime example of a 
geometric chain complex. We also denote by (B, A) the free chain 
complex B/ A. 

A geometric chain complex C will be called a Poincare chain complex 
of dimension n, if there exists Jl E Hn(C) of infinite order such that 
Jln: Hk(C)-+Hn_k(C) is an isomorphism for each k. 

A geometric chain pair (B, A) will be called a Poincare chain pair of 
dimension m if there is an element v E Hm(B, A) = H".(B/A) of infmite 
order such that vn : Hq (B)-+ Hm _q(B, A) is an isomorphism for all q. 
The element v (or Jl) is called the orientation class of (B, A) (or of C), 
and the choice of v (or Jl) is called an orientation of (B, A) (or of C). If 
(X, Y) is a pair of CW complexes which satisfies Poincare duality (i.e. 
whose chain complex is a Poincare chain pair) then we call (X, y) a 
Poincare pair, while if Y = 0 so X satisfies Poincare duality, we call 
X a Poincare complex. 
• 

1.2.1 Proposition. Let (B, A) be a geometric chain pair such that 
H,,(B, A) = 7l with generator v. Then the following three conditions are 
eqUivalent : 

(a) vn: Hq(B)-+ Hm-q(B, A) is an isomorphism for each q. 
(b) vn: Hq(B, A)-+ Hm_q(B) is an isomorphism for each q. 
(c) The pairing fjJ: Hq(B; 7lp)®Hm-q(B, A; 7lp)-+7lp given by 

fjJ(x,y) = (xuy)(v), is non-singular for every prime p, each q. 

Proof. By (1.1.8) (b) and (c) are equivalent. By (1.1.8) (a) is equivalent 
to the statement that the pairing. 

is non-singular for all primes p, all q. 
Since (B, A) is a geometric chain pair there is a chain homotopy H 

between LI and T LI and H (A) C A ® A. Hence H induces a chain homotopy 
between LI': C-+C®B and T LlI/: C-+C®B, where C = B/A. It follows 
that fjJ'(y®x) = (-l)q(m- q)fjJ(x® y). Hence fjJ is non-singular if and only 
if fjJ' is non-singular, and the Proposition follows. 0 
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1.2.2 Theorem. If (B, A) is a Poincare chain pair of dimension m, 
then the diagram commutes up to sign: 

-Hq(B, A) j* ) H"(B) i* I Hq(A) ij I Hq+l(B, A)-+ 

vn 1 , vn 1 (ov)n 1 , v n 1 
-Hm_iB)~Hm-iB,A)~Hm-q-l(A)~Hm-q-l(B)-

and all the vertical arrows are isomorphisms. 

Proof. By (1.1.5), the diagram commutes up to sign. Since (B, A) is a 
Poincarechain pair, vn: Hq(B)-Hm_q(B, A) is an isomorphism for all q. 
Hence by (1.2.1), vn: Hq(B, A)-Hm_q(B) is an isomorphism for all q. 
Then by the Five Lemma (av)n: Hq(A)-Hm-l-iA) is,an isomorphism 
forallq. 0 

1.2.3 Corollary. If (B, A) is a Poincare chain pair of dimension rn, 
then A is a Poincare chain complex of dimension m -1. 

Proof. By (1.2.2), (av)n: Hq(A)-+Hm-q_1(A) is an isomorphism for 
all q, so it remains to check only that av is ofinfmite order in Hm-1(A). 
However, if N(av)=O, some N, then N(avnx)=O,xeH*(A), so that 
NH*(A)=O. But A is an augmented complex so that 7leHo(A), and 
hence N(av) =l= 0 for all N. 0 

We will make a convention that a Poincare chain pair (B, A) where 
A = 0 will mean a Poincare chain complex B. 

If v is the orientation class of the Poineare chain pair (B, A), then av 
will be the orientation class of A, by convention ("compatibly oriented"). 

If (B, A) and (B', A') are oriented Poincare chain pairs of dimension 
m, a chain map f: (B, A)_(B', A') will be said to have degree 1 if f*(v)= v', 
where v, v' are the orientation classes of (B, A) and (B', A') respectively, 
where f*: H*(B, A)-H*(B1

, A'). We denote the induced map on H*(B) 
by J* : H*(B)-H*(B'), and similar notation in cohomology. 

1.2.4 Lemma. If f: (B, A)-+(B', A') is a map of degree 1, then 
f' = f lA: A-A' is a map of degree 1. 

Proof. f*(v) = v', so f*(av) = af*(v) = ay'. But av and av' are the 
orientation classes of A and A'. 0 

1.2.5 Theorem. Maps of degree 1 split, i.e. with notation as above, 
there exist 

oc*: H*(B', A')-+H*(B, A), P*: H* (B')-H* (B) , 

oc*: H*(B, A)-H*(B!, A'), P*: H*(B)-H*(B') 

such that f*oc* = 1, l*p* = 1, a* f* = 1, p*l* = 1. 
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Proof. Let P: Hm_,,(B', A')-Hq(B') and P: Hn-iB')-+Hq(B~ A') be 
theinverses ofthe Poincare duality maps, so that v' nP(x) = x, v' nP(y)= y, 
x e Hm-q(B', A'), ye Hm-q(B'). We define: 

oc*(x) = vnJ*(P(x»), x e Hm-q(B', A') 

P*(y) = vn!*(p(y), y e Hm-iB') 

oc*(u) = P(J*(vnu»), u e Hq(B, A) 

p*(v) = P(f*(vnv»), v e Hq(B). 

Using (1.1.3), we have 

f*oc*(x) = f*(vnJ*(P(x») = f*(v)nP(x) = v' nP(x) = x . 

Similarly 

Also 
v' noc*f*(z) = v' nP(J*(vnf*(z»)) = J*(vnf*(z») = v' nz, 

for z e Hq(B', A1. Since v' n is an isomorphism, oc* f*(z) = z. Similarly, 
one shows P"'J*(w) = w for we Hq(B'). 0 

It follows from (I.2.5), that there are direct sum splittings 

H*(B,A)= kerf* +imageoc*, H*(B)=ker!* + imp*, 

H*(B, A)= imf* + keroc*, H*(B) = imJ* + kerp*. 

• Let us establish the following notation that will be used throughout 
this book. Let 

Kq(B, A) = (kerf*)q C Hq(B, A), 

Kq(B) = (kerJ*)q C Hq (B) , 

Kq(B, A) = (keroc*)" C H"(B, A) , 

Kq(B) = (ker P*)" C Hq (B) , 

KiB, A; G) = (ker f*)q C HiB, A; G), etc. 

Then we may derive the following properties of Kq and Kq: 

1.2.6. vn preserve the direct sum splitting, so 

vnKq(B,A)<;:Km-q(B), vnKq(B)CKm_iB,A) 

and vn: Kq(B, A)-+ Km-iB) and vn: Kq(B)-+ Km_q(B, A) are iso­
morphisms, ("K* and K* satisfy Poincare duality"). 

L2.7. In the exact homology and cohomology sequences of(B, A), all 
the maps preserve the direct sum splitting, so induce a diagram, com-
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mutative up to sign, with exact rows: 

... ~ Kq-l(A)~Kq(B,A) --L...,. Kq(B) i' I Kq(A) ~ ... 

a a vn 1 i. V(11 i. vn 1 a a V(1 1 i. 

... -- Km_q(A) --"-+ Km_q(B) ~ Km_q(B, A) -- K m - q- 1 (A)--=--+··· 

(In particular we have relations 

i*y* =1X*i~, y*: Hq(A')--+Hq(A), i': A'--+B', etc.) 

1.2.8. The Universal Coefficient Formulas ho~d for K* and K*, i.e. 
Kq(B, A; G) = Kq(B, A) ® G + Tor(Kq -1 (B, A), G) 

Kq(B; G) = Kq(B) ® G + Tor(Kq(B), G) 

K!J(B, A; G)= Hom(Kq(B, A), G)+ Ext(Kq_1(B, A), G) 

Kq(B, G) = Hom(KiB), G) + Ext(Kq -1 (B), G) . 

It is useful to have following interpretation of (1.2.6): 

L2.9. Under the pairing Hq(B; F)®Hm-q(B, A; F)-+F, given by 
(x, y) = (x u y) 511, (F a ring), Km-q(B, A; F) is orthogonal to 1* (H!J(B' ; F)~ 
Kq(B; F) is orthogonal to f*(Hm-q(B', A'; F)~ and on 

Kq(B; F)® Km-q(B, A; F) 

the pairing is non·singular if F is a field. If F = 7l it is non·singular on 
Kq(B)jtorsion ® Km-q(B, A)/torsion. 

Proof of (1.2.6). Let ue K!I(B, A). Then IX*(U) =0, and IX*(U) = P(1*(vnu». 
Since P is an isomorphism, 1*(vnu)=O, and vnueKm_q(B). Also 
vnf*(z)=vnf(P(v'nz»)=/3*(v'nz), so vnimf*cim/3*, and vn pre­
serves one of the direct sum splittings. The other follows in a similar 
way. Then, since vn is an isomorphism, it follows that each summand 
is mapped isomorphically. 

Proof of (1.2.7). Using Poincare duality (1.2.6), it suffices to show 
that the homology maps preserve the summands in the splittings. Since 
Kq are defmed as kernels of the homology maps, they are clearly preserved, 
so i*,j* and 0 send K* into K*. 

Denote by y*: Hq(A')--+HiA) the splitting of f~ = (fIA)*, and 
P' : H".-q-1 (A')--+ Hq(A'), the inverse of Poincare duality. 

Let z e H!J(A'), so y*(z) = ov n f'*(P' z). Then by (1.1.4) (iii), 
i* (y* (z») = (_l)m-l vn fJf'*(P' z). Then~f'* = f*fJ,and( -lr-1 vn(fJP'z) 
= i~(ov' nP'z) = i~(z). Hence fJP'(z) = P(i~(z») and 

i*(y*(z») = ( -lr-1 vnf*(fJP'(z»)=( -lr-1 vnf* P(i~z)=( -lr-11X*(i~z), 

so i* y * = ( - 1 r -1 1X* i~, and i* preserves the direct sum splitting, i.e., 
i*(imy*) C imlX*. 

§ 2. Poincare Duality 

Let ye Hq(B'), so f3*(y)~vnf*(P(Y»). Then by (1.1.4)(i), 

j*f3*(Y) = j*(vnf*(P(y»)) = vnj* f*(P(y») = vnl *j'* P(y) . 

Now 
v'nj'*Py=j~(v'nPy)=j~(y), so j'*P(y)=Pj~y . 

11 

Hence j f3 (y) = vn 1* Pj~y = IXJ~y, so j*f3* = IXJ~, and j* preserves 
* * fI) . the direct sum splitting, i.e. j*(im/-,* C ImlX*. 

Let x e H (B', A'), so IX (x) = v n 1* P(x). Then by (1.1.4) (ii) 
OIX x = o(vnl: P(x») = ovni*!*P(X) = ovnf'*i'* Px. 

* Now i'* P(x) = P' ox, since by (1.1.4) (ii) (ov)ni'* P(x) = o(v' nPx) = ox. 
Hence OIX x=ovnf'*P'ox=y*ox. Therefore OIX*=y*O, and 
o(imlX*) C iU:y*, and 0 preserves the direct sum splitting. 0 

Proof of (1.2.8). We have the exact sequem::e of the map f 

. .. --+Hq+l(f)~HiB,A)~HiB',A')--+'" 

where H*(f) is the homology of the mapping cylinder of f, whi~h is a 
free chain complex since (B, A) and (B', A') are free. Hen~ the um~ersal 
coefficient formula holds for H*(f). But 0 maps Hq+1 (f) Isomorphlcally 
onto Kq(B, A) = kerf*, since f* is split, and hence t~e Universal Coefficient 
formula holds for KiB, A). Similar proofs hold m the other cases. 0 

Proof of (1.2.9). By (1.2.6), 

(vnKq(B, A; F»)C Km_q(B; F)= (kerl*)m-q, 

1*: Hm_q(B; F)--+Hm-q(B', F). 

Then using (1.1.2), if x e Kq(B, A; F), y' e W-q(B'; F), we have 

(J*y'ux)(v) = (/*y')(vnx) = y'(J*(vnx»)=O 

since vnx e Km_q(B, F) = (kerl*)m-q' Hence ~q(B, A;!) is orthogonal 
to I*H*(B';F). Similarly one may show ~ q(B;F) l~ 0rt:hogonal to 
f* Hm-q(B, A; F). But since the pairing is non·singular if F IS ~ ~eld on 
all of Hq(B, A; F)®Hm-q(B;F), it follows that the restnctIon to 
Kq(B, A; F)®~-q(B; F) is non·singular. 

Now if F=71, and if qx=O, qe71, then q(x,y)=(qx,y)=O an~ y. 
Since the values of ( , ) are in 7l, this implies that (x, y) = O. Hence TorSIon 
Kq(B, A) annihilates Km-q(B) and Torsion ~-q(B) annihilates Kq(B, A). 
Hence we have an induced pairing on 

(Kq(B, A)/torsion)®(Km-q(B)/torsion)--+71. 

Tensoring over <Q, it follows from the result with F = <Q that 

Kq(B, A}/torsion--+ Hom(Km-q(B)jtorsion, 7l) 
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is a monomorphism. If it is not an isomorphism, then tensoring over 7L 
for some prime p, it has a kernel. But the result with F = 7Lp implies thi~ 
is not the case, so the result follows with F = 7L. D 

§ 3. Poincare Pairs and Triads; Sums of Pbincare Pairs and Maps 

In this section we will consider geometric chain pairs, all maps will 
be assumed to commute with the diagonal map and all inclusions of 
subcomplexes will be assumed to split, and commute with the chain 
homotopy of the diagonals. That is to say, in the notation of § 2, we 
assume all pairs involved are geometric chain pairs. 

1.3.1 Proposition. Let (B, A) be a geometric chain pair, 

A=Al +A2,Ao=AlnA2' 

where (A, Ai), and (Ai' Ao), i = 1,2 are geometric chain pairs. Then there 
is a diagonal defined Ll3: A/A2--A/A2®Al such that the diagram 

AdAo~Al/Ao®Al 

1 ~ 1 
A/A2~A/A2®Al 

commutes, where Ad Ao --A/ A2 is the isomorphism induced by the inclusion 
(AI' Ao)--(A, A 2). Further the cap product defined has the following 
properties: 

(i) 

(ii) 

(iii) 

Hq(B, A2) i* , Hq(A, A 2) 

vnl ovn 1 
Hm-iB, Ad~ Hm-q-l(At) 

Hq-l(A, A2)~Hq(B, A) 

ovnl vn 1 
Hm-q(Ad ;. , Hm_q(B) 

Hq(B) i* I Hq(A
1

) 

commutes, 

commutes up to (-lr-t, 

commutes, vn 1 (ov)n 1 
Hm_q(B, A) ~ Hm- q- t (A, A 2) 

where v E Hm(B, A) and 0; HiB, A)-- H j - t (A, A2) so ov E Hm- 1 (A, A2). 

The proof of (1.3.1) is routine and we omit it. 
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Suppose B=Bl +B2,Bo=BlnB2,Ai=B;nA, all pairs are geo­
metric chain pairs, so that we have chain isomorphisms: 

Bd(Bo + A l )--B/(B2 + A), 

B2/(Bo + A2)--B/(Bl + A), 

(corresponding to excisions in the geometrical picture). Also we have 
Mayer-Vietoris sequences (see [22]). 

... --Hq+t(B)--Hq(Bo)--Hq (B l ) + Hq(B 2)--Hq(B)--.·· 

... --Hq(Bo, Ao)--Hq(B, A) it-j, I H/BbBO + Al )+ HiB2,Bo+A2) 

~Hq_t(Bo,Ao)--'" 

..·--Hq+t(B, A)~ Hq(Bo,Ao)--HiBt, At) + Hq(B2' A2) 

--HiB,A)--···. 

Here Ot : Hq(Bt , Bo + At )--Hq_I (Bo, Ao) is defined by the composite 

HiBI' Bo + Al)~ Hq- t (Bo + A1)--Hq-t(Bo + At, At) 

01 ~ 1 
Hq- l (Bo, Ao) 

jl: Hq(B, A)--Hq(B1,Bo +Al) is defined by the composite 

Hq(B, A)--HiB, B2 + A) 

· ~ 1~ 
HiBt, Bo + At) 

and so forth, so that 00 = 01jl = 02j2' etc. 

1.3.2 Theorem. (Sum Theorem for Poincare pairs). With notation as 
above, any two of the following conditions imply the third: 

(i) (B, A) is a Poincare chain pair with orientation v E Hm(B, A) 
(ii) (Bo, Ao)isa Poincare chain pair with orientation 00 v E Hm- 1 (Bo,Ao) 

(iii) (B;, Bo + Ai) are Poincare chain pairs with orientations 
Vi = ji(V) E Hm(Bi' Bo + AJ, i = 1,2. 

Proof. From (1.3.1) we have the following commutative diagram 
(up to sign) with the Maye~.Vietoris sequences: 

__ Hq-t (Bo)~ Hq(B) I Hq(B
1

) + Hq(B2) , ... 

oovnl vnl . Vln+V2n 1 
--Hm-iBo, Ao)--Hm-iB, A)--Hm-iBt, Bo +At) +Hm-iB2' Bo +A2)--··· 

The result then follows from the Five Lemma. D 
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1.3.3 Corollary. Let (B, A), (B', A') be Poincare pairs with B = Bl + B2 , 

B' = B~ + B2, as above. Suppose f: (B, A)-+(B', A') is a chain map 
f(Bi) CB;. Suppose (Bo, Ao) and(B~, A~) are Poincare pairs withorientations 
0ov,oov', (v, v' are orientations of (B, A), (B', A') respectively). Then the 
following three conditions are equivalent: 

(a) f has degree l. 
(b) fo=fl(Bo,A o) has degree 1 with respect to the orientation oov. 
(c) fi = f I (Bi' Bo + Ai) have degree 1 with respect to the orientations Vi' 

Proof. Consider the maps of Mayer-Vietoris sequences induced by f, 
and the result is immediate. 0 

Thus (1.3.2) and (I.3.3) allow one to define the sum of Poincare pairs 
and the sum of maps of degree 1, namely (B, A) is the sum of (Bl , Bo + Al ) 

and (B2 , Bo + A 2) along (Bo, Ao), and f is the sum of fl and f2' Note 
that the orientations must be compatible. 

Another refmement of Poincare duality is the following: 

1.3.4 Theorem. Let (B, A) be a Poincare chain pair of dimension m, 
and suppose A = Al + A 2, Ao = Al nA2' (A, Ai) are geometric chain pairs, 
i = 0, 1,2, and Ao is a Poincare chain complex of dimension m - 2, with 
orientation ooo(v), where ov is the orientation of A,oo as above. Then 
vn : Hq(B, AI)-+Hm_q(B, A 2) is an isomorphism for all q. 

We call (B; AI, A 2) a Poincare chain triad, and the analogous situation 
for spaces (X; YI , Y2 ) will be called a Poincare triad. 

Proof. We consider the diagram 

'" -+ Hq-I (AI' Ao)-4 Hq(B, A)-+ Hq(B, A2)-+ Hq(A I , Ao)-+'" 

v,n 1 vn 1 vn 1 V!n 1 
... -+ Hm-iAl)-+ Hm_q(B)-+ Hm-iB, Ad-+ Hm - q - I (Ad-+··· . 

Here ~ is defined by the composite: 

HQ-l(Al , Ao)~Hq-l(A, A 2).4Hq(B, A) 
<, 

where ~' is the coboundary of the triple (B, A, A 2 ), so that the upper 
row is the exact sequence of this triple with H*(A, A 2) replaced by the 
isomorphic H*(Al' Ao). Here Vl = image of o'(v), where 

0': Hm(B, A)-+Hm-dA, A 2), 

v is the orientation of (B, A). It follows from (I.3.1) that the diagram is 
commutative up to sign, and from (I.3.2) it follows that Vl n is an 
isomorphism. Hence the result follows from the Five Lemma. 0 

All the results may be applied to topological spaces, where the chain 
complex of a pair of spaces (X, Y), Ye X, is a geometric chain pair, 
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(where the diagonal map of the chain complex is induced by the diagonal 
map of spaces x 1-+ (x, x), and the Eilenberg-Silber map, for singular 
chains [21]). 

Our results yield a proof of the Poincare duality theorem for differ­
entiable manifolds. First let us recall the notions of orientability for 
manifolds. 

Let M be an m-dimensional manifold with boundary oM, so that 
each point in M has a neighborhood homeomorphic to the closed unit 
ball Dm in Rm (as usual we assume M is Hausdorft). Points in 
intM = M - oM have neighborhoods homeomorphic to the open ball, 
while points in oM do not. It follows by excision that for x E intM, 

Hm(M, M - x) = Hm(Dm, Dm - 0) = 7L. 

By an orientation of M, we will mean a choice of generator Yx of 
Hm(M, M - x) for each x E intM which are compatible in the following 
sense: 

Let I be a simple differentiable arc in intM joining Xl to X2' Then 
the inclusions 

are homotopy equivalences, so 

ei* : Hm(M, M -l)-+ Hm(M, M - Xi) 

• 
are isomorphisms, i = 1,2, and 

e2*e~1(Yx.)=Yx2 . 

1.3.5 Theorem. If (M, aM) is a compact orientable differential m­
manifold with boundary, then (M, oM) is a Poincare pair . 

Proof. Use induction on the dimension m, m = 0 being trivial, so we 
assume the theorem proved for dimension m-l. We then have the 
following special case: 

1.3.6 Lemma. (Dm, srn- l
) is a Poincare pair, where Dm is the unit disk 

in Rm. 

Proof. Hi(Dm, srn- l
) = 7L for i";" m, 0 otherwise, Hi(vm) = 7l for i = 0, 

o otherwise. Since cup product has a unit, 1p: H*(Dm)®H*(Dm, srn-1)-+7L, 
where 1p(x® y) = <xu y, v), (v generates Hm(Dm, sm-l») is non-singular. 

Then it follows from (1.1.8) that (Dm
, sm - 1) is a Poincare pair 

with orientation v, and the lemma is proved. 
Now we use results of M. Morse (as exposed in [41]). Let us assume 

that M is connected. By choosing a function f on M with one minimum 
in the interior of M and isolated non-degenerate critical points, we may 
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use the Morse lemma to write 
q 

M= U Mj,MjCM;+1,Mo=DQ,Mj+1 =M;uD'{'+1' 
;=0 

and M;nD,{,+ 1 = Nj'-1, a compact differentiable manifold with boundary, 
N;=Sk x Dm- k- 1 some k?;0,N;m-1 caMj'naD'{'+1' Now use induction 
on i. For i=0,(Mo,aMo)=(DQ,S'Q-1) is a Poincare pair by (1.3.6). 
Suppose (M;, a Mj) is ~ Poincare pair. Then since (N;, a N;) is a differentiable 
manifold with boundary, of dimension m - 1, by induction (on m) it is a 
Poincare pair. Thetefore if the orientations are compatible, we may apply 
(I.3.2) to show M;+l =M;uDi+1 and its boundary is a Poincare pair. 

Now N; = Sk X vm-k-t, for some k, and if k > 0, N; is connected so 
that one can choose the orientations of M;, D'{'+1 and Ni compatibly, 
since both orientations of N; come from orientations of Mi and D,{,+ l' 
If k =0, however, there are four orientations of SO x vm- 1

, and if we take 
one coming from aM;, we must show it comes from an orientation of 
aD'{'+ l' 

Now ~ is an orientable manifold, so that each Mj' C Mm is also 
orientable. That means that one can choose generators for Hm(M, M - x), 
each x E intM, in a compatible way, so that if I is a simple curve joining 
Xo to Xl' there is a generator of Hm(M, M -I) which goes onto the 
given generators of Hm(M, M - x;), i = 0, l. 

1.3.7 Lemma. If (M,aM) is an n-manifold and an n-dimensional 
Poincare pair, then the image 

J~.[M] E Hn(M, M - x), jx: (M, aM) ........ (M, M - x), 

all x E intM, defines an orientation of M in the sense of manifolds, where 
[M] E Hn(M, aM) defines an orientation of (M, aM) as a Poincare pair. 

To define the compatible orientation of aM at a point YEaM, we 
take a curve I C M such that the initial point is y and rest of the curve 
lies in int M. Then the orientation of M defines a generator of 
Hm{M, (M -l)uaM). Then the boundary operator for the triad 
(M; M -I, a M) is a map 

o:HJM,.(M -l)uaM) ........ Hm _ 1(aM,aMn(M -1))=Hm - 1(aM,aM - y), 

and we take the image of the generator of Hm(M, (M -I)u a M) to defme 
the compatible orientation of aM. One shows easily that it is well defined. 

Now suppose again N;= M;nD'{'+l = aMinaD,{,+ 1, etc.,N =SO xDm- 1 

and M; and Di + 1 are oriented as Poincare complexes so that the induced 
orientations (as manifolds) agree on -1 x vm- 1 C SO x Dm

-
1 • It follows 

that this choice determines an orientation on M;+1 -(1 x Dm-1). Simi­
larly we may orient M; and Di+1 so that the orientations are compatible 

I 
1 
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~ 
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t 
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on lxDm-1, so determine an orientation on Mi+1-(-lxDm- 1), so 
that the two orientations agree on interior Di+ l' Since M; + 1 is orientable, 
these orientations of Mi+1 - (-1 x Dm-1) and M;+1 - (1 x Dm- 1) come 
from an orientation of M;+1' so that the orientations of M; and Di+1 

are compatible on N = SO x Dm
-

1
• 0 

A similar argument may be applied to piecewise linear manifolds 
using skeletons and regular neighborhoods instead of Morse functions. 

§ 4. The Spivak Normal Fibre Space 

In this section we introduce the Spivak normal fibre space of a Poincare 
duality space (see [57]), This space will play an analogous role to that 
played by the normal bundle of a differentiable manifold in a high 
dimensional sphere. First we give some results which describe how to 
obtain spherical fibre spaces. 

1.4.1 Theorem. Let (X, Y) be a Poincare duality pair of dimension 
n + k, X i-connected, 1t2(X, Y) = 0, and suppose X is a Poincare duality 
space of dimension n. Then the inclusion map i : Y ........ X is equivalent to a 
fibre map with fibre the homotopy type of Sk-l. 

We also have a relative version: 

1.4.2 Theorem. Let (X, Y) be a Poincare duality pair in dimension 
.n+k, with X i-connected. Let Y=YluY2,YO=YlnY2,1t2(X,Yt)=0, 

and suppose Yo is Poincare duality space of dimension n + k - 2 and 
(X, Y2) is a Poincare pair of dimension n. Then the inclusion map i: Y1 ........ X 
is equivalent to a fibre map whose fwre is homotopy equivalent to Sk-l. 

1.4.3 Lemma. Let 1t : E ........ B be a fibre map with 1-connected fibre F 
and base B. Then F is a homotopy Sk-l if and only if Hi(1t) =0 for i < k, 
and there is an element U E Hk(1t) such that u U : Hm(B) ........ ~+k(1t) is an 
isomorphism for all m (i.e. the Thorn isomorphism holds). 

Proof. Since F and Bare l-connected, so is E. Since 1t is a fibre map, 
1t;(F) ........ 1ti+l (1t) is an isomorphism for all i (see [28]). 

If F~~-l then 1ti(Sk-l} =0, i<k-l, so 1tJn} = ° for i<k, and by 
the Relative Hurewicz Theorem H;(n) ~ 1ti(1t) = 0 for i < k and 
Hk(1t)~1tk(1t)~nk-1(F)=Z. Then by the Universal Coefficient Theorem 
W(1t) = 7l., and let U be a generator. Then u U: Hq (B)- Hq+k(1t) comes 
from a cochain map, namely uu, where u is a cochain representing U, 
and uu:Cq(B) ........ Cq+k(1t). Since i*U is a generator of H"(cF,F), 
i: (cF, F) ........ (E, E), E the associated cone fibre space of E, (see [7; 
Appendix] and (1.4.5) below) it follows that uu preserves the filtrations 
in Cq(B) and CQ+k(1t), and induces a map of the spectral sequences 
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E2 (B)-+ E2(n). The spectral sequenceE2(B) is trivial,H*(B) ~ Ez{B)~ Eoo(B), 
and E~,q(n) ~ HP(B; Hq(cF, F») and Eoo(n) ~ G(H*(n»), (G meaning the 
associated graded group). Since F~Sk-1 ,Hq(cF,F)=O,q+k,H'(cF,F)=71.. 
It follows since dr changes fibre degree for r ~ 2, that dr =0 all r, in Er(n~ 
and E2(n) = Eoo(n). Now u U : HP(B)-+ HP(B, Hk(cF, F») is an iso­
morpqism, so the map E2(B)-+E2 (n) is an isomorphism. Hence 
Eoo(B)-+Eoo(n) is an isomorphism, and since the associated graded 
groups are mapped isomorphically, we have u U : HP (B)-+ HP+k(n) is an 
isomorphism for all p. 

Now let us suppose that Hi(n) = 0, i < k, and U e Hk(n) such that 
u U: Hq(B)-+Hq+k(n) is an isomorphism for all q. Then by the Relative 
Hurewicz Theorem Hi(n) = ni(n) = 0 for i < k, so ni(n) = ni-1 (F) = 0 for 
i<k. Now Hk(n)~HO(B)=71., since B is O-connected, while 

Hk+1(n) ~ H1(B) = 0, 

and hence Hk(n) =71., by the Universal Coefficient Theorem, and 
Hk(n) ~ nk(n) ~ nk -1 (F) = 71.. Since F is i-connected, it remains to show 
thatHi-1(F)~ Hi(cF, F)=Ofor i + k, in order that F should behomotopy 
equivalent to Sk -1 . 

Now since u U: Hq (B)-+ Hq+k(n) is an isomorphism, and since 
E~,q(n) ~ HP(B;.Hq(cF, F») it follows first that 

Hk(n) ~ HO(B; Hk(cF, F)) ~ HO (B) = 71. , 

U is a generator, and that 

u U: E~,o(B)-+E~,k(n)~ HP(B; Hk(cF, F») 

is an isomorphism for all p. 
If uU:Eoo(B)-+Eoo(n) is not a monomorphism, then for some 

xeFiH*(B), xuU eFi+IH*(n) for some I~ 1. Then xuU represents an 
element in E:';I,k-l(n) for some l~ L Since E~,q(n)= HP(B; Hq(cF, F»)=O 
for q<k, it follows that E:';l,k-I(n) =0 for 1~1, and hence xuU=O. 
Since u U : H*(B)-+ H*(n) is an isomorphism, it follows x = 0 and hence 
u U: E~O(B)-+E~k(n) is a monomorphism. 

Since E~,q(n) = 0 for q < k, it follows that E~k(n) is a quotient of 
E~,k(n), and since u U: E~,O(B)-+E~·k(n) is an isomorphism and 
u U: E~O(B)-+E~k(n) is a monomorphism, it follows that 

u U: E~O(B)-+E~k(n) 

is an isomorphism and E~,k(n) = E!;k(n) for all p, and hence 

E:,k(n)n image dr = 0 

for all p, r ~ 2. 

/ 

I 
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Suppose Hj(cF, F) = 0 for k <j < I, and HI(cF, F) + O. Then 

E~,I(n) ~ HO(B; H'(cF, F») ~ HI(cF, F) 

and the only group E~,q(n) with q < 1 is E~,k(n). Since E~,k(n)n imagedr = 0, 
all r, p, it follows that E~,I(n) = E~I(n), and hence HI{n) contains some 
element x, such that i*(x) +0 in H1(cF,F),I>k. But, if yeH*(B) then 

i*(yu U) = j*(y)u i*(U), j: (point)-+ B . 

Hence i*(yuU)=O if ye Hq(B),q>O, and since uU is an isomorphism, 
it follows that i*(H1(n»)=i*(HI-k(B)uU)=0 if l>k. It follows that 
Hj(cF,F)=O for j+k, hence F is a homology Sk-1, i-connected, so by 
the Theorem of J. H. C. Whitehead, F ~ Sk -1 . D 

Proof of (1.4.1). Replace the inclusion i: Y -+ X by a fibre map 
n:E-+X, with fibre F. Then n1(F)~n2(X, Y)=O, and we may apply 
(1.4.3) as follows: Let Jl e Hn(X) be such that Jln : Hq(X)-+Hn-iX) is 
an isomorphism for all q, since X is an n-dimensional Poincare duality 
space. Let veHn+k(X, Y) be a generator, so that vn : Hq (X, Y)-+Hn+k-q(X) 
is an isomorphism for all q, since (X, Y) is an (n + k)-dimensional Poincare 
pair. Let U e Hk(X, Y) be such that v n U = Jl. Also note that Hi{X) = 0 
for i> n, so Hj(X, Y) = 0 for j < k. If x e Hq(X), by (U.2) 

(vn(xu U») = (vn U)nx = Jlnx. 

.' Hence (v n) 0 (u U) = Jln is an isomorphism, and (v n) is an isomorphism, 
• so uU: Hq (X)-+ Hq+k(X, Y) is an isomorphism. But 

H*(n) = H*(i) = H*(X, Y), • 
and applying (1.4.3) it follows that the fibre of n is homotopy equivalent 
to Sk-1. D 

Proof of (1.4.2). Replacing i: Y1 -+ X by a fibre map n: E-+ X with 
fibre F we note that nl (F) = n2(X, Y1) = o. 

Now let Us apply Theorem (1.3.4) which tells us that (X; Y1, Y2 ) is a 
Poincare triad, and vn : Hq(X, Yi)-+Hn+k-q(X, Yj) is an isomorphism, 
(i,l) = (1,2) or (2, 1~ v a generator of H 1I+k(X, Y). Since (X, Yz) is an 
n-dimensional Poincare pair, Hi(X, Y2)=0 for j>n, and JleHn(X, Y2) 
such that Jln: H'l(X, Y2)-+Hn- q(X) is an isomorphism. Then 

1!q(X, Y2)~Hn+k-iX, Y1) 

so Hi (X, Yt)=O for i<k. Let UeHk(X, Yt ) such that vnU=Jl. Then 
ifxe Hq(X), by(1.1.2~ vn(xu U)= (vn U)nx = Jlnx,so(vn)o(u U)=Jln 
is an isomorphism and v n is an isomorphism so u U is an isomorphism. 
Hence by (1.4.3), the fibre map n equivalent to i: Y1 -+ X has fibre a 
homotopy Sk -1 . D 
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For a spherical fibre space e, we define its Thorn complex 
T(e) = B U (cEo) , 

" where 1t: Eo-B is the projection of the total space Eo onto the base 
B, cEo is the cone on Eo. 

1.4.4 Theorem. (Spivak). Let (X, Y) be an n-dimensional Poincare 
duality pair, with Xl-connected, Ya finite complex, up to homotopy type. 
Then there is a spherical fibre space (e) : 1t : Eo - X with fibre a homotopy 
Sk-l, and an element oc E 1tn+k(T(e), T(e1 Y») such that 

h(oc)n U = [X] E Hn(X, Y). 

We call e the Spivak normal fibre space of (X, Y). 

Proof of (14.4). Let us suppose first Y = 0, soX is a Poincare duality 
space. Since X is i-connected and Hi(X) = 0 for j> n it follows easily 
that there is a finite n-complex K and a homotopy equivalence g : X - K 
(see [16, Expose 22 Appendix]). Using standard arguments Kc sn+k as a 
subpolyhedron for sufficiently large k,k"if;, 3. Let Un+k be a regular 
neighborhood of K in sn+\ so that Un+k is an (n + k)-manifold with 
boundary aun+k, U C sn+k, and g': X - U is a homotopy equivalence, 
(g' = (inclusion) 0 g). Since K is an n-complex, U an (n + k)-manifold, it 
follows from general position arguments that 1ti(U - K)-1Ci(U) is an 
isomorphism for i < k - 1 and onto for i = k - 1. Since U is a regular 
neighborhood of K, 0 U - (U - K) is a homotopy equivalence, so 
1Ci(O U)-1ti(U) is an isomorphism for i < k - 1, onto for i = k - 1. 
Hence 1t.(U,oU)=O for i~k-1. Since X is i-connected, U is 
i-connected and since k"if;, 30 U is i-connected and 1t2(U, 0 U) = O. Then 
(U,OU) satisfied the conditions of (1.4.1), so that the inclusion OU-U 
is equivalent to a fibre map with fibre a homotopy Sk-l. The pull back 
ofthis fibre space to X is (e): 1t: Eo-X. 

Then T(e) = x U (cEo), so it follows that T(e)~ U U (coU)~ U/oU. 
" i 

Since un+k C sn+\ the natural collapse,,: sn+k_ U/oU has the property 
that ,,*(generator) = generator of Hn+k(U/oU). Hence the homotopy 
class oc of the corresponding map sn+ k_ T(e) has the required properties. 

In case Y =1= 8, we will make a similar argument using (1.4.2) instead 
of (1.4.1). One embeds Y in S" +k - 1 using the fact that it is the homotopy 
type of a finite complex. As above, X is the homotopy type of a finite 
complex, and we may assume (replacing X by the mapping cylinder of 
Y - X) that Y is a subcomplex of X with a neighborhood Y x I C X, 
Y = Y x 0 ~ Y x I. Extending to an embedding of Y x 1-D,,+k such that 
the coordinate in I goes into the radial coordinate in D,,+k, we get 
Y x 1 C Interior Dn+k, and if k is very large we may extend to an embedding 
of X in Dn+k with Xnsn+k-l = Y. Then one may apply (1.4.2) to the 
regular neighborhood of X in Dn+k, where the intersection of this neigh-
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borhood with S"+k-l is a regular neighborhood of Y. (One uses the 
star of X in the second derived subdivision.) 

Let B = regular neighborhood of X in Dn+k, C = Bnsn+k-l = regular 
neighborhood of Yin 8"+k-l, E = closure of oB-C, El =EnC=oE=oC. 
Applying Theorem (14.2), it follows that E-B is equivalent to a 
spherical fibre space e, (which we denote by the same letters). However, 
EI-C may not be spherical. Set e' = i*(e): E'-C, the induced spherical 
fibre space over C. Since the diagram 

commutes, we may factor El - E through E', so that we have a map 
of pairs e: (E, El)-(E, E') lying over the identity map of (B, C). Since 
(E, E') is a fibred pair over (B, C) with fibre a homotopy Sk-l and (B, C) 
is a Poincare pair (it is homotopy equivalent to (X, Y») it follows that 
(E, E') is a Poincare pair and that (E, El)-(E, E') is a map of degree 1. 
Since e: E-E is the identity, it follows that e* : H*(E, E1)-H*(E, E') 
is an isomorphism, using (12.7). Hence we get e: (B/E, C/E1)-(B/E, CjE'), 
ahd B/E = T(e), B/E' = T(O, so e: (B/E, C/Et)-(T(e), T(O), and e* is 

I an isomorphism in homology. There is the natural collapsing map 
. oc: (Dn+k, sn+k-l)_(B/E, C/E1) so that e*(oc)E 1Cn+k(T(e), T(O) has the 
·property h(e*(oc»)n U = [X] E H,,(B, C) ~ Hn(X, Y), which proves (1.4.4) 
for Y =1=0. 0 

Before we go on to study the properties of the Spivak normal fibre 
space we first recall some properties of spherical fibre spaces. 

1.4.5. Any spherical fibre space can be embedded (up to fibrehomotopy 
equivalence) as a subfibre space of a fibre space with contractible fibre 
(analogous to the disk bundle for a linear fibre space). 

This may be proved by first replacing the projection by an inclusion, 
then replacing the inclusion by the space of paths fibration, so that the­
contractible fibre is the path space of the base. We leave details to the 
reader (cr. [7, Appendix]). 

For a spherical fibre space e we will denote its total space by Eo(e~ 
and Eo(e) c E(e) = the fi"re space with contractible fibre. With the aid 
of E(~) we may now imitate some of the contructions of linear bundle 
theory in the category of spherical fibre spaces. For example to define 
Whitney sum of el and e2' we first take E(1) x E(e2) over X x X and 
define E(~l +e2)=A*(E(el)xE(e2»)LI :X-XxX, the diagonal. Then 
EO(el + e2) = A*(Eo(e1) x E(e2)U E(el) x E O(e2»)' 
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It is easy to see that the Thorn complex T(,) ~ Eo(' + SI )/ocX, where 
SI is the trivial line bundle, oc: X ---+ Eo(' + e1

) is the canonical cross 
section. 

If oc is a spherical fibre space let End(oc) denote the group of fibre 
homotopy classes of fibre maps oc---+oc covering the identity of the base 
space. Then there are natural maps End(a)---+End(oc+e1),J~ f + 1. 
Defme the stable equivalences of oc to be &(oc) = lim End (oc + en). Clearly 

n .... co 

&(oc) = &(oc + e1). Now End (oc)---+ End(oc + oc- 1) = End (e2q),j ~ f + 1, de­
fines a map a: & (oc)---+ &(e) and End (eq)---+ End (a + eq), g ~ 1 + g defines 
b : &(e)---+&(oc), and clearly ab = 1, ba = 1. So we get 

1.4.6 Lemma. The group of stable equivalences is independent of the 
fibre space, i.e. &(oc) ~ &(/3), any two spherical fibre spaces a, f3 over X. 

Clearly the result above holds for any category of fibre spaces, such 
as linear bundles, piecewise linear bundles, or topological fibre bundles 
with Rn as fibre, as long as Whitney sum and inverses are defined, and 
was first proved by Hirsch and Mazur [29]. 

1.4.7 Proposition. End (a) = [X, Gq], if ocq isjibre homotopically trivial, 
where Gq = space of homotopy equivalences of sq-1 to itself, with the 
compact-open topology. 

Proof. Consider first the product space X x sq -1. Pick a point x EX, 
and considerjx: Sq-1---+X x sq-l,jx(s) = (x, s), S E sq-l, and the projection 
p : X x Sq-1---+ Sq-1 . If f E End(eq), then define '1(f) : X ---+ Gq by 

'1(f)(x) = pfjx: Sq-1---+Sq-1 . 

Since f is a fibre homotopy equivalence it follows that '1(f) (x) is a 
homotopy equivalence, so '1(f) (x) E Gq. It is easy to verify that '1(f) is a 
continuous map and that a fibre homotopy is sent into a homotopy of 
'1(f), so that '1 : End (eq)---+ [X, Gq]. 

If oc: X ---+Gq then oc defines a continuous map /2(oc): X x Sq-l---+Sq-1, 
using the "exponential" law (~-l)Sq-'f = (Sq-l)XXSq-,. Define 
Y(/2(oc»): X x Sq-1---+X X Sq-1 by Y(/2(oc»(x, s) = (x, /2(oc)(x, s»). It follows 
that Y(/2(a») is a map of fibre spaces, and a homotopy equivalence on 
each fibre. One checks easily that Y/2 defines a map w: [X, Gq]---+End(sq) 
and '1w = 1, w'1 = 1, so the groups are isomorphic. The proof is now 
completed by: 

1.4.8 Lemma. If b: oc---+f3 is a fibre homotopy equivalence, then b 
induces an isomorphism b*: End (oc)---+ End (/3). 

Proof. Let b': f3---+oc be an inverse for b so that bb' and b'b are fibre 
homotopic to the identity. If f: oc---+oc, defme bojjJ: f3---+f3 by b# f = b'fb. 
It is easy to verify this induces an isomorphism b*: End (oc)---+ End (/3). 
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1.4.9 Proposition. Let Fq = space of base point preserving homotopy 
equivalences sq-+sq, FqCGq+1. Then the evaluation e:Gq+1-+sq, e(f) 
= f (*), * E sq a base point, defines a fibre map with fibre Fq. 

Proof. See Spanier [55]. 
Now Fq = the identity component of fllSq, (see [55]) and the sus­

pension of maps yields maps Gq+1 -+Gq+2 , Fq-+Fq+1' and the induced 
fllSq-+Q'l+lSq+1 is simply the usual suspension map. Hence by the 
Freudenthal Suspension Theorem Xn(Fq+1' Fq) = 0 for n ~ q -1 (see [55]), 
and [K, Fq] ~ [K, Fq+1] if the dimension of K < q -1. It follows from 
(1.4.9) that the same result holds for G q + 1 since Fq C G q + 1 induces iso­
morphism on Xi i < q - 1 : 

1.4.10 Proposition. XiGq+1,Gq)=O for n~q~2, so [K,Gq]~[K,Gq+tJ 
for dimension K < q - 2. 

We get from (1.4.7) and (1.4.10): 

1.4.11 Corollary. End (ocq) ~ &(oc) if oc is fibre homotopy trivial and 
dimension of base space < q - 2. 

Now we can prove: 

1.4.12 Theorem. End(ocq)~End(ocq+e1) so End(ocq)=&(oc), provided 
. the dimension of the base space < q - 2. 

Proof. We proceed by induction on dimension and on the number of 
tells. If there is only one cell then oc is fibre homotopy trivial since the 
base is contractible, and then the result follows from (1.4.11). 

Now suppose X=Xoue",n<q-2, and End(ocIXo)~End(oc+e1IXo). 
Let f : oc + sl---+a + e1 be a fibre homotopy equivalence. Since /I(oe + e11X 0) 

is homotopic to go + 1, where go: ocIXo---+ocIXo, using the covering 
homotopy theorem, we may assume (by changing f by a fibre homotopy) 
that fl(oc + e1)IXo) = go + 1. . 

Let f)e" = 8"-1 = e" n X 0' then oc 1 e" is fibre homotopy trivial, since e" 
is contractible, and thus oel8"-1 is fibre homotopy trivial. Pick a fibre 
homotopy equivalence between oc I e" and en x sq -1, and keep it fixed 
during the remainder of the argument. 

With this representation of alen
, we get a representation offl(oc+e11e"), 

as a mapf: en x sq-+e" X sq, degree 1 on each fibre, andfl8"-l x sq=Sgo 
where go: 8"-1 x Sq-l---+8"-l X Sq-l and S means suspension on each 
fibre x x Sq-l. 

Hencef, go define a map a: (en, sn-1 )---+(Gq+1 , Gq). But xn(Gq+1, Gq)=O 
for n < q -1 by (1.4.10) so a is nullhomotopic. It follows that go extends 
to g: e"---+Gq and f is fibre homotopic to g+ 1 keeping flSn- 1 fixed. 
Hence End (oc)---+ End(oc + SI) is surjective. A similar argument about a 
fibre homotopy between go + 1 and g1 + 1 shows the map is injective. 0 
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Now we recall the theory of S-duality as developed in Spanier [56]. 
If A and B are two spaces with base points ao E A, bo E B, the "wedge" 

A v B = A x bouao x B C A x B. We denote the "smash" of A and B by 
A /\ B = A x B/ A v B. 

A map rI.: A /\ B -+ S" will be called an n-duaHty map if 

rI.*(g)/: Hq(A)-+H,,-q(B) 

is an isomorphism for all q, where g E H"(S") is a generator. A and B 
will be said to be n-dual in S-theory if some suspension J;k A is homotopy 
equivalent to S,,+l+k+q_J;qB for an embedding of J;qB in sn+ 1 +k+ q, 
k and q arbitrarily large. 

Theorem (Spanier). A and Bare n-dual in S-theory if and only if 
there is a n + k-duality map J;k A /\ B -+ S" +k for some k. 

In the theory of S-duality developed by Spanier and Whitehead they 
consider the S-groups {X, Y} = Hm [J;k X, J;k y], where [A,B] = the set of 

--+ 
homotopy classes of (base point preserving) maps of A to B. The 
equivalence class of f: X -+ Y in {X, Y} is denoted by {f}. If A and A' 
are n-dual in S-theory and Band B' are n-dual in S-theory, then they 
defined D,,: {A, B}-+ {B', A'} which they proved to be an isomorphism 
of groups. If f: A-+B is an inclusion, BCS"+\ then clearly S"+l-B 
is included in S,,+l - A and this inclusion represents D,,({f}) in {B', A'}. 
The general case can be reduced to this by replacing B by a regular 
neighborhood in a high dimensional sphere. 

In terms of n-duality maps Spanier [56J showed the following; 

Theorem (Spanier). Let rI. : A /\ A' -+ sn and !J : B /\ B' -+ S" be n-duality 
maps and let f: A -+ B, g: B' -+ A: Then f and g are n-dual in S-theory 
({g} = D,,({f}») if and only if the following diagram (or some suspension 
of it) commutes up to homotopy 

A/\B'~B/\B' 

11A9 lp 

Now if A and A' are n-dual and Band B' are m-dual, it follows 
easily that A /\ B and A' /\ B' are (n + m)-dual, (all in S-theory). Hence 
the condition rI.:A/\B-+~ such that rI.*(g)j:Hs(A)-+Hk-s(B) is an 
isomorphism all s is equivalent using S-duality and Alexander duality 
between homology and cohomology, withthefollowing:!J: sm+,,-k-+A' /\B' 
such that !J*(g)j: Hq(A')-+Hm+,,_k_q(B') is an isomorphism all q. But 
takingB =A',B' = A,n=m = k, weget!J: S"-+B /\A,!J*(g)/: Hll(B)-+ H,,_q(A), 
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an isomorphism, all q. Thus we get an equivalent formulation of the two 
theorems of Spanier above: 

Ann-dualitymapisamap!J:S"-+A/\Bsuchthat!J*(g)j:Hq(A)-+H _ (B) 
is an isomorphism for all q. " q 

1.4.13 Theorem. A and Bare n-dual in S-theory if and only if there 
exists an n-duality map !J: S"-+ A /\ B. 

1.4.14 Theorem. Let rI.: S"-+A /\ A', !J: S"-+B /\B' be n-duality maps, 
and let f: A-+B, g: B'-+A'. Then {g} = D,,({f}) if and only if the diagram 

S" --''''--.-+) A /\ A' 

pI IfA1 

B/\B'~B/\A' 

commutes up to homotopy. 

Now we may prove (following Wall [67]) an enriched version of the 
uniqueness theorem for the Spivak normal fibre space. 

We use this strengthened version of Atiyah's generalization [4J of 
the Milnor-Spanier Theorem [43] : 

1.4.15 Theorem. Let (X, Y) be a Poincare duality pair of dimension 
m, X 1-connected, v its Spivak normal fibre space as defined above. If ~ 
is another spherical fibre space over X then T(WT(~ I Y) is S-dual to 
~T(v + (- ~») (where - ~ is the inverse of ~). 

Proof. We construct a duality map as in (1.4.13). Now 

(v + ( - ~») + ~ = v + e, e = trivial, 

and v + e is then induced by the diagonal Lt : X -+ X x X from the fibre 
space (v +( - ~») x ~ over X x X. Call e: (v+e)-+(v +(- ~»)x ~ the map 
offibre spaces. Consider the diagonal as a map of pairs (X, Y)-+ X x (X, Y) 
and consider e as a map of pairs 

e: (E(v + e), E«v + e)1 Y)u Eo(v + e») 

-+(E(v + (- ~»), Eo(v + (-~))) x (E(~), E(~ I Y)u Eo(~». 

The subspace of the product pair is 

(Eo(v + (- ~») x.E(~»)u(E(v + (- w x (E(~ j Y)u Eo(~))) 

so that includes all of Eo «v + (- ~»)x ~)uE«(v+( - ~»)x~)1 Y) so that e 
is a map of pairs. Collapsing subspaces, e induces a map of Thom 
complexes 

e' : (T(v + e), T(v + e I Y»)-+(T(v + ( - ~»), (0) x (T(~), T(~ I Y»). 
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Then the following diagram is commutative 

H*(T(v + e), T(v+el Y»~ H*((T(v+ (- ~), (0) x (T@, T(~I Y») 

"Uo 1 "(U\UU2) 1 (*) 

H*(X, Y) d. ) H*(X x (X, Y» 

where Vi' i=O, 1,2 are the three Thorn classes, and e'*(V1UV2)= Vo' 
Since v + e is the Spivak normal fibre space of (X, Y), there is an 
oc E 7tm+k(T(v + e), T(v + e I Y» such that h(oc)n Vo = [X] E Hm(X, Y). We 
claim 

e' oc : sm+k_ T(v + (- ~» 1\ (T(~)/T(~ I Y» 

is a duality map (see (1.4.13». For any element in H*(T(v + (- ~») is of 
the form XUV1 ,XEH*(X), by the Thorn isomorphism theorem. Then 

«e'oc)*(g)/(xu Vd)n V2 = (e~(h(oc»/xu V1 u V2 ) 

= (e~(h(oc»n(V1 u V2 »)!x = J*(h(oc)n Vo)/x 

= J*([X])/x = [X]nx. 

Thus since [X] n is an isomorphism, and n V 2 and u VI are isomorphisms, 
it follows tha~ (e'oc}*(g)/ is an isomorphism, and hence e'oc is a duality 
map. 0 

Now we wish to consider the relation between the isomorphism of 
(1.4.6) between the stable equivalences 8(~) and S(v + (- e» and the 
duality (1.4.15) between the Thorn complexes. We recall that if () is a 
trivial fibre space and b : (}-() is an equivalence of it, b ~ b + 1 defines 
a homomorphism 8«(})-S«(} + ~), and b ~ 1 + b defines 

8«(})-S(v + (-~) + (}) 
which induce the isomorphisms y : S«(})-S(~) and y' $(6)-8(v + (- ~}) 
of the stable equivalences (see (1.4.6), (1.4.12), etc.). 

1.4.16 Theorem. V sing the duality of (1.4.15) between T( ~)/T( ~ I Y) 
and T(v + (- ~», then T(y(b» is dual to T(')"(b». 

Proof. We recall that the duality map of (1.4.15) is induced by the 
fibre space map v + e-+(v + (-~» x ~ covering the diagonal considered as 
a map X -+X x (X, Y). Then the natural map oc: sm+k-+ T(v+e)/T(v+el Y) 
composed with the map induced by the fibre space map yields the duality 
using (1.4.13). 

If we add two trivial factors () we get 

e: v +e'-(v + (- ~)+(})x «(}+~). 

§4. The Spivak Normal Fibre Space 27 

On (v + (- ~» + (}) x «() +~) we may consider b1 = (1 + b) x (1) and 
b2 =(1)x(bx1). Now v+e'=v+(-~)+(}+(}+~, and on (}+() the 
equivalences b + 1 and 1 + b are homotopic. Then b1e = e(l + (b + 1) + 1) 
and b2 e=e(1 + (1 + b)+ 1) on (v+( - ~» +(e+e)+~SOb1e is homotopic 
to b2e as an equivalence of fibre spaces. It follows that b1e'ex is homo­
topic to b2Q'oc and thus the diagram below commutes up to homotopy: 

sm+k a'a ) A 1\ B 

,,'al l1AT(b+l) 
AI\B T(1+b)d) AI\B 

where A = T(v + (- e) + e), B = T«(} + WT«(} +~) I Y), Q' is as in (1.4.15) 
and T( ) indicates the induced map of Thorn complexes. Then (1.4.14) 
implies that T(b + 1) on B is dual to T(1 + b) on A. 0 

Let () be the trivial spherical fibre space of fibre dimension k -lover 
B, k» dimB. Let b:e-+(} be an oriented fibre homotopy equivalence) 
and let PE 7tk(T(e» be induced by a fixed fibre homotopy trivialization, 
EO«(})_Sk-1. Then if h': 7tk_W is the Hopf homomorphism, 

h'(g) = g* (generator), g: X _ Sk , 

then h' (P) is a Thorn class of T( e) since j* h' (P) = generator of Hk(~), 
j: ~- T«(}) coming from the inclusion of the fibre, and h'(T(b)*(P» is 
also a Thorn class. Let So(~) = the group of stable orientation preserving 

,. fibre homotopy equivalences of the fibre space~, SoW C $(~). 

1.4.17 Proposition. The map 1p: So«(})_7tk (T«(}» induced by 
1p(b)=T(b)*(p) induces a 1-1 correspondence between So«(}) and 
(j* h') -1 (generator) C 7tk (T( (}». 

Proof. Suppose bi : ()- e, i = 0, 1 and T(bo)* (P) = T(bt>* (P) in 
~(T«(}». Let H: T«(})xl_Sk be a homotopy between them, so that 
H(x, i) = T(pj), i =0,1, Pi: Eo«(})_~-l is such that bj(x, t) = (x, Pi(X, t». 
Then since T«(}) = B x Sk/B x *, * E~, we get B x ~ x 1..!4 T«(})14Sk, 
and this induces a fibre homotopy between the images of bo and b l in 
S(6+e1). Since k> > dimB, it follows from (1.4.12) that {bo}={bt } in ~«(}). 

If P E ~(T«(}) is such that j*h'(p) = generator of Hk(Sk), then the 
composite B x Sk..!4 T«(})..14 ~ is of degree 1 on each fibre, so 
b(x, t) = (x, PI1(x, t» is a fibre homotopy equivalence, so the map is onto 
(j*h')-l (generator). d 

Let v be the Spivak normal fibre space over a Poincare pair of 
dimension m, exE7tm+k(T(v)/T(vl Y» such that h(ex)n V = [X], (k> > m). If 
b : v-v is a fibre homotopy equivalence of v with itself, then ex' = T(b)* (oc) 
has the same property, Le. h(oc')n V = [X]. 
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1.4.18 Corollary. The mapping 1p: tU'o(v)-1tm +k(T(v)/T(vl Y») given by 
1p(b) = T(b)*(o:) establishes a 1-1 correspondence between tU'o(v) and the 
subset KC 1tm+k(T(v)/T(vl Y»), K = {f31 h(f3)n U = [X]}. 

Proof. By (1.4.16) there is a commutative diagram: 

tU'o(e) -...L- tU'o(O) ~ tU'o(v) 

~' 1 1 ~ 
{A, A} __ ---"!B'--_~l {B, B} 

where A = T(e), e = a trivial bundle, (e = v + ( - v»), B = T(v)/T(v I Y), '",7' 
give the reduced maps of Thom complexes,!!JJ is the Spanier-Whitehead 
duality, {, } denoting homotopy classes of maps in S-theory. Now we 
have another commutative diagram 

{A, A} ---=!B"----..l {B, B} 

eJ le 

where!!JJ' is an isomorphism of groups, from Spanier-Whitehead duality, 
and e'(g) = g*(f3), e(J) = f*(o:), 0: E {A, S'} = 1t'(T(e»), 

f3 E {sm+k, B} = 1tm +k(T(v)/T(v I Y»), 

as above, where f3 is chosen so that !!JJ' (f3) = 0:. 

By (1.4.17), the composition e'rt'i: tU'o(O)-{A, S'} = 1t'(T(e») is a 1-1 
correspondence onto h'-l(h'(f3»), and since !!JJ' is an isomorphism it 
follows that erl"l : tU'o(O)- {sm+k, T(v)jT(v I Y)} is a 1-1 correspondence 
on h -1 (h( 0:»), and since y is an isomorphism by (1.4.6), the result follows. 0 

Now we may prove the uniqueness of the Spivak normal fibre space, 
in the enriched version of [67]. 

1.4.19 Theorem. Let ~1 and ~z be (k -I)-spherical fibre spaces over 
aPoincare pair (X, Y) of dimension m, k»m.LetO:iE1tm+k(T(~i)jT(~ily»), 
i = 1, 2 be such that h(O:i)n Ui = [X]. Then there is a fibre homotopy 
equivalence b:el-eZ such that T(b)*(O:l)=O:z, and such a b is unique 
up to fibre homotopy. 

1.4.20 Lemma. el and ez are fibre homotopy equivalent. 

Proof. By (1.4.15), if v is the Spivak normal fibre space of (X, Y) then if 
e = ei' T(~)/T(~ I Y) is S-dual to T(v + (- e»). Since 0: E 1tm+k(T(WT (e I Y») 
such that h(o:)nU, it follows that !!JJ'(o:)=f3E1t'(T(v+(-e») is such 
thatj*h'(f3) is a generator of H'(SI), and hence the composite 

Eo(v + (- e)+ e1 )_T(v +( - ~»)_Sl 

t 

f 
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defines a fibre homotopy trivialization of v + ( - e) + el, so that e = e. is 
fibre homotopy equivalent to v + e1

• Hence el is fibre homotopy equival~nt 
to ez. 0 

...fibre-l=iemotQPY t9 'I I I'll. Heoc@{t is fitll:e hometo~valeBt tQ ~2' -EJ 
Proof of (1.4.19). By (1.4.20), there is a fibre homotopy equivalence 

bl : el-e2' By (1.4.18), there is a fibre homotopy equivalence b2 : e2-eZ 
such that T(b 2)* (T(b1 )* (o:d) = 0:2' Hence T(bzb1)*(0:1) = 0:2 , 

If b1 , b2 : el-eZ are two fibre homotopy equivalences such that 
T(b1 )* (0:1) = T(bz)* (0:1) = 0:2, then T(bi 1 b1)* (0:1) = 0:1, By (1.4.18), bi 1 b 
is fibre homotopic to the identity, and hence b1 is fibre homotopi~ 
to b2 · 0 

• 



ll. The Main Results of Surgery 

In this chapter we shall try to give the main results of the theory of 
surgery on simply-connected manifolds and give some of the most general 
and important theorems on the structure of differentiable manifolds 
which result. 

In § 1 we give without proof the main technical results of surgery, 
the proofs being given in Chapters Ill, IV and V. They are all stated 
without reference to surgery as such, but in terms of "normal cobordism" 
of "normal maps" which are defined in § 1. Surgery is a process used to 
construct normal cobordisms: In § 2 we discuss some generalities about 
the relation of normal maps and cobordisms to homotopy groups using 
transversality. In § 3 we give some of the main theorems on the homotopy 
type of manifolds and the classification of manifolds. In § 4 we describe 
a dual approach, which gives the classification theorem a more functorial 
form. 

§ 1. The Main Technical Results 

Let (X, y) be a Poincare pair of dimension m (see I § 2), where Y may be 
empty. Let (M, aM) be a smooth compact oriented m-manifold with 
boundary, and let f : (M, oM)-(X, Y) be a map. 

A cobordism of f, is a pair (W, F) where wm+ 1 is a smooth 
compact (m+l) manifold, oW=MmuumuM,m, oU=oMuoM', 
F:(W, U)-+(X, Y) and FIM=f. If U=aMxl and F(x, t)=f(x) for 
xeaM, teI, then (W, F) wiU be caned a cobordism off rei Y. If we pick a 
function e: W-+[O, IJ such that e(M)=O, e(M') = 1, then 

G=(Fxe):(W, U)-(Xx [0, 1J, Y x [0, 1J), 

and G can be considered 

G: (W, aw)-(X x [0, 1J, XX Ou Y x [0, IJuX x 1). 

If (W, F) is a cobordism reI Y, e can be chosen so that G(x, t) = (f(x), t), 
xeoM, tel. 
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Let us assume that k»m, and that (Mm, aM) is embedded in 
(Dm+k, sm+k-l) with normal bundle v\ so that vlaM = normal bundle of 
aM in sm+k-l. 

Let ~k be a k-plane bundle over X, k> > m. A normal map is a map of 
degree 1, f: (M, aM)_(X, Y) together with a bundle map b: Vk_~k 
covering f. A normal cobordism (W, F, B) of (f, b) is a cobordism (W, F) 
of f, together with an extension B : mk_~k of b where mk is the normal 
bundle of Wm + 1 in Dm +k x 1, where 

(M, aM) C (Dm+ k x 0, sm+k-l X 0), (M', aM') C (Dm+k x 1, sm+k- 1 X 1), 

and u m C sm+k- 1 X I. 
A normal cobordism rei Y, is a cobordism reI Y such that it is a 

normal cobordism and B(v, t)=b(v) for vevlaM, tel. 
Now we can state the surgery problem: 
Problem. Given a normal map (f, b), f : (M, aM)-(X, Y), b: Vk_c;k, 

when is (f, b) normally cobordant to a homotopy equivalence of pairs? 
We may also state: 
Restricted Problem. Given a normal map (f, b), f: (M, aM)-(X, Y), 

b : v-~, when is (f, b) normally cobordant reI Y to (f', b') where 
f' : M' -Xis a homotopy equivalence? 

Of course, if a M = 0, the restricted problem is .. the same as the un­
restricted one. 

ll.f.t Invariant Theorem. Let (f, b) be a normal map, f : (Mm, aMm) 
.. -(X, Y) etc., such that f I aM induces an isomorphism on homology. 

There is an invariant (f(f, b) defined, (f!::: ° if m is odd, (f e 71. if m = 4k and 
(f e 71.2 if m = 4k + 2, and such that (f(f, b) = ° if (f, b) is normally cobordant 
to a map inducing isomorphtsm on homology. 

Actually (f will be defined in more generality for normal maps of 
Poincare pairs (see Chapter Ill). 

ll.t.2 Fundamental Surgery Theorem. Let (f, b) be a normal map 
f : (M, oM)-(X, Y), b : v-~ as usual and suppose 

(1) f I aM induces an isomorphism in homology 
(2) X is 1-connected 
(3) m~5. 
If m is odd then (f, b) is normally cobordant reI Y to a homotopy 

equivalence f': M'-X. If m = 2k, (f, b) is normally cobordant rei Y 
to (r,b') such that f' ~M'-X is a homotopy equivalence if and only if 
(f(f, b).= 0. 

This theorem is contained essentially in the work of Kervaire-Milnor 
[34J, Novikov [49J, [50J, and the author [6]. 

Kervaire-Milnor proved but did not publish the fonowing (see also 
[31J): 
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ll.1.3 Plumbing Theorem. Let (X, Y)=(Dm,sm-1). If m=2k>4, 
then there are normal maps (g, c), g: (M, oM)-+(Dm, srn- 1), c: vk-+F!' 
= trivial bundle, with g I aM a homotopy equivalence and with O'(g, c) 
taking on any desired value. 

It is proved by a technique called "plumbing", and hence its name. 
For applications, we will need several properties of the invariant 0'. 
Let (f, b), f: (M, oM)-+(X, Y), etc. be a normal map. Suppose (X, Y) 

is the sum of two Poincare pairs (see (13.2)), i.e. 

and (Xi,OXi) where oXi = Xou Yi, are Poincare pairs i = 1,2, with 
orientation compatible with that of X. 

y. 

Xo 

Suppose also that 

~ =M'{'uMi, Mo = M1 nM2 C OM1 noM2, aM nMi C aMi' (Mi' aM;) 

are compact smooth manifolds with boundary i = 0, 1, 2. Suppose further 
that. f(M;)cXi , and set Ii= fIM;: (~, OMi)-+(Xi' oXi), i= 1,2. Since 
v;=vIM; is the normal bundle of MiCDm+k, i=1,2, if b;=blv;> then 
(Ii, bi) are normal maps, i = 1,2. We will say (f, b) is the sum of (f1, b1) 
and (f2,b2). If floM and lilfJMi, i=1,2 induce isomorphisms in 
homology then 0' is defined for each map. 

D.1.4 Addition Property. Suppose (f, b) is a normal map which is the 
sum of two normal maps (f1' b1) and (f2' b2) as above, and such that 
floM,floMi, i = 1, 2 and flMo induce isomorphisms in homology. Then 

O'(f, b) = 0'(f1' b 1) + 0'(f2, b2) . 

D.1.5 Cobordism Property. Let (f, b) be a normal map 

f: (M, oM)-+(X, Y), b: v-+~, 

and set f' = flfJM: oM-+ Y, b' = bl(vloM): vloM-+~1 Y.If m=2k+ 1, 
then O'(f', b') = O. 

§2 :::::=::.~~m~4k; (f. b) a Mrn1Ql_.'~ 
80'(f, b)=index M -index ~ index M = Lk(P1(C 1), ... ,) [X), 
where Lk is the Hirzebruch polynomial, and index X = signature of the 
quadratic form on H2k(X; ~) given by (xu y, [X), where [X) is the 
orientation class of H4k(X), 

D.1.7 Product Formulas. Let (f1' b1), (f2' b2) be normal maps, 
fi: (M;, oM;)-+(X;, oX;). Suppose 0'(f1 x f2' b1 x b2), 0'(f1' b1) = 0'1 and 
0'(f2' b2) = 0'2 are all defined (Le. f1 x f21o(M1 X M 2),f;lOM;, i = 1,2 are 
all homology isomorphisms with appropriate coefficients). Then 

(i) 0'(f1 x f2' b1 x b2) = I(X1)0'2 + I(X2)0'1 + 80'10'2 when dimension 
M1 x M 2 = 4k, where I(X;) is the index of Xi' 

(ii) 0'(f1 x f2' b1 x b2) = x(X1)0'2 + x (X2) 0'1' when dimension M1 x M2 
= 4k + 2, where X(Xi) = Euler characteristic of X;. 

Note that I(X)=O by definition if dimX$O(mod4). 
The three theorems and the four properties of the obstruction 0' are 

the main technical results in the theory of surgery on simply-connected 
manifolds. In the next sections we will show how to deduce some of the 
main theorems of the subject from these results, and we will prove the 
technical results in later chapters. 

§ 2. Transversality and Normal Cobordism 

~ In this section we recall the transversality results due to Thom which we 
shall need, and derive from them the relation between normal cobordism 
classes and homotopy classe~ of maps. 

Let Z be a space and suppose there is a vector bundle ek with base 
space X embedded as an open set in Z, where X is the homotopy type 
of a finite complex. Let M" be a differential manifold and f: M -+ Z 
a continuous map. 

We shall say that f is transversal to X C Z if f - 1 X = N" -k a smooth 
submanifold of M with normal bundle v\ and f restricted to a tubular 
neighborhood of N in M is a linear bundle map ofv into~. 

This definition is usually given as a theorem which follows from the 
usual notion of transversality, but this is exactly what we need so we use 
it as the definition. The proof of the following theorem,.which is due to 
Thom, may be extracted from many standard treatments (see [64], [1]). 
The fact that X is not a smooth manifold makes no difference; for example 
one could replace X by an open subset of euclidean space, by taking a 
regular neighborhood, and get a Z of the same homotopy type, or on the 
other hand one notes that none of the arguments of the transversality 
theorems use differentiability in the base, but only in the fibre. 
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ll.2.1 Thorn Transversality Theorem. Let A be closed in M and 
suppose that f restricted to an open neighborhood of A is already trans­
versal to X. Then there is a homotopy of f relA to f' such that f' is trans­
versal to X. 

Actually this homotopy can be taken to be very small in some metric, 
but such refinements will not concern us. 

Suppose ek is a linear k-plane bundle over X. We recall the definition 
of the Thorn complex T(e) of the bundle e : T(e) = E(e)/Eo(e)' where E(e) 
is the closed disk bundle associated with e, i.e. with fibre Dk, and EQ(e) 
is the associated sphere bundle, i.e. with fibre Sk-l, so that Eo(e) c E(e). 

Recall that e + el, where e1 is the trivial line bundle, has as total space 
the total space of e times Rl. Thus E(e+el)=E+(~+el)uE-(e+el) 
and Eo(e+el)=Eci(e+el)uEo(e+el) where E+(e+e1) is the subset 
where the coordinate t in Rl is ~o, E-(e+e1) where t;;;;O, etc. Then 
E(e)CE(e+e1) as the subset where t=O, and E(e)=E+(e+el)nE-(~ +e1) 
and Eo (e) = Eci (e + el)nEo (e + e1). Also the projection oftotal space on 
the first factor (i.e., forgetting the coordinate t in R 1) induces a map 
p: E(e + el)-E(e) such p' = plEci(e +e1

): Eci(e +e1)_E(e) is a homeo­
morphism, and p'IEri(e+e1)nEo (e+e 1

) is a homeomorphism (the 
identity) onto Eo (e)· For in each fibre we note that p looks like the 
projection of a disk onto a disk one dimension lower: 

• • 
Hence it follows that 

T(e) = E@/Eo(e)=Eci(e + e1)/Eci (e + e1)nEo(e + e1
) 

= Eo(e + e1)/Eo (~+ e1
) 

(where = means homeomorphic). 
Now let ex: X - Eo(e + e1

) be the canonical cross-section where 
ex(x) = (0, -1) in the fibre over x E X, i.e. the unique point with t co­
ordinate =-1. Let €l:[O, 1]-[-1,1] by €l(t)=2t-1, so that €l is a 

I 
t 
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homeomorphism. Then define €l' : Eci (e + e1
)_ Eo(e + e1) by 

, ( V 1 - €l(t)2 ) 
€l (b, t) = Ibl b, €let) , 

for bE E(e) such that IW + Itl2 = 1, so that (b, t) E Eo(e + e1
) and Ibl4= 0. 

If Ibl = 0, then t = 1, and we define €l' (b, 1) = (b, 1). It is then clear that 
€l' induces a homeomorphism between Eri (e + e 1)/ Eci (e + e 1) n Eo (e + e1) 

and Eo(e + e1 )/ex(X), so that 

ll.2.2 Proposition. T(e) is homeomorphic to Eo(e + e1 )/ex(X). 

ll.2.3 Thom Isomorphism Theorem. Let ek be a linear k-plane bundle 
over a connected space X, and let j: (D\ Sk-l)_(E(e), Eo(e» be the map 
induced by the inclusion of a fibre J)k into E(e), 1t: ER) - X. If 
U E Hk(E(e), Eo(e» is such that j* U generates Hk(Dk, Sk-l) then 
cl>: Hq(X)_Hq+k(E(~), Eo(e» is an isomorphism, where cl>(x) = UU1t*(x). 
Further there is always such a U with 71.2 coeffiCients, (i.e. with H* = H*( ;71.2 ) 

in the statement) and the existence of such a U E H*(E@, Eo(';); 71.) is 
equivalent to the orientability of e. 

The element U will be called the Thom class of e. 
Here the u product is the relative one 

H*(E(e). Eo@)®H*(E(';»-H*(E(e), Eo(e»· 

! This theorem has many modern proofs, for example using a spectral 
se€luence (see (I.4.3» or using a Mayer-Viet)?ris theorem (see [44], and 
also [32]). One can use (II.2.2) and standard methods of studying 
H*(Eo(e + e1»), for example. The theorem holds in more generality for 
spherical fibre spaces, and also has a converse in this context, essentially 
due to Spivak (see (I.4.3». 

Since the collapsing map €l: (E(e), Eo(e}}-(T(e), *) induces an iso­
morphism in cohon1oiogy, we get as an easy corollary: 

ll.2.4 Corollary. If e is orientable, (or otherwise with 71.2 coefficients) 
the map cl>:Hq(X)-Hq+k(T(e» given by cl>(X)=g*-l(XVU) is an 
isomorphism, for all q. 

(H* denotes reduced cohomology.) 

Let Y C X be a closed subset and let f = e I Y. Then a relative cup 
product is naturally defined: 

Hq(E(e), Eo(e»® HI(E(e)' E(e'»- Hq + I(E(e), Eo@uE(f») . 

The projection 1t: (E(e), E(e'»-(X, Y) induces an isomorphism in 
cohomology, as does the natural collapse of Eo(e) which defines 

'1 : (E(e)' Eo(e)u E(e')-(T(e), T(f» . 
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Hence we get a cup product 

Hq(T(e»<8>HI(X, Y)-+Hq+I(T(e), T(O). 

11 2.5 Corollary. If e is orientable (or otherwise with 712 coefficients) the 
map 4>: Hq(X, Y)-+Hq+k(T(e), T(O) given by 4> (x) = Vux, is an iso­
morphism, for all q. 

The proof is a simple application of the Five Lemma, using the 
commutative diagram: 

... -+ Hq (X) -+ Hq(y) -+ Hq+ 1 (X, Y) -+ Hq+ 1 (X) -+ ... 

1 vU 1 vu' 1 vU 1 
... -+ Hq+k(T(~»..t4 HIl+k(T(~'» -+ Hq+k+ 1 (T(e), T(O)-+ Hq+k+ l(T(~»-+ .. · 

where V' = g*(V). Here g: T(e')-+ T(e) is the inclusion, and it follows 
that V' = g*(U) has the property that restricted to the fibre,j'*g* V = j* V 
generates Hk(S,,}, where j' : Sk-+ T(e'1 j: ~-+ T(e) come from .the in­
clusions of the fibres, so gj' = j. Hence, by (1I.2.4), the maps on the spaces 
are isomorphisms, so by the Five Lemma the map of pairs is an iso­
morphism. (Here note that the restriction of an orientable bundle is 
orientable.) 

Using the relation between u and n product developed in Chapter I, 
we may easily derive homology versions of the Thorn isomorphisms: 

1l.2.6 Theorem. With the hypotheses of (11.2.4), the map 
n V : Hq +k(T(e»-+ Hq(X) is an isomorphism for aU q. 

1l.2.7 Theorem. With the hypotheses of (11.2.5), the map 
n V: Hq+k(T(~), T(O)-+Hq(X, Y) is an isomorphism for all q. 

Proof. Considering the orientable case, n V is induced by a chain 
map (see Chapter 11 so it follows that n V is an isomorphism if and only 
if n V : Hq+k(T(e);.7lp)-+ HiX; 7lp) is an isomorphism for all q, all 
primes p. (In the non-orientable case, we only consider 712 anyway.) 
Let ye H +k(T@;7lp). Ifx e Hq(X;7lp), then by (1.1.1) using the evaluation 
of coho~ology on homology, x(y n V) = (x u V) (y). Since 

u V: Hq(X;7lp)-+Hq+k(T(e);7lp) 

is an isomorphism, it follows that x(yn V) = 0 for all x if and only if 
y = O. Hence n V is a monomorphism. Now 

Hq+k(T(e); 7lp) = Hom(Hq+k(T@;7lp),7lp) 

and Hll(X; 7lp)= Hom(HiX; 7lp), 7lp) and Hq(X; 7lp)~ Hq+k(T(~); 7lp) 
by the Thorn isomorphism u V. Hence the homology groups Hq (X ; 7lp) 

I 

I 
i 
1 
~ 
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and Hq+k(T(~); 7lp) have the same rank over 7lp, and hence the mono­
morphism n V is an isomorphism. This proves (11.2.6). A similar argument 
proves (H.2.7). D 

Now let f: (X, Y)-+(X', Y') be a map, ek and ek ' linear k-plane 
bundles over X and X' respectively, and b: ~-+~' a linear bundle map 
covering f. Let T(b) : T(~)-+ T(O be the induced map of Thorn complexes. 
Assume either e' (and hence ~) orientable or use 712 coefficients below. 

1l.2.S Lemma. T(b)*(V') = V where V' e Hk(T(e'» is such that j' * V' 
generates Hk(~) (as above), similarly for v . 

Proof. Since b is linear bj = j', where j, j' are inclusions of fibres, 
and the result follows. D 

1l.2.9 Theorem. (Naturality of the Thorn Isomorphism). With the 
above hypotheses, if 4> and 4>' are the Thom isomorphisms in e and ~' 
respectively, then T(b)* 4>' = 4> f*, and T(b)* (x)n V' = f*(xn V), 
x e Hq+k(T(~), T(el Y». 

Proof. 

T(b)*4>'(y) = T(b)*(V'~n'*(y»= T(b)*(VI)ub*n'*(y) = Vun* f*(y) = 4> f*(y). 

Similarly, 

f*(xn V)= f*(xn T(b)* V') = T(b)*(x)n V' . 

• Here we may think of the map of pairs b: (E(e), Eo(e»-+(E(f), Eo(f» 
instead of T(b) in order to find the necessary identities between u and n 
in Chapter I. D 

1l.2.10 Corollary. With notation as above, suppose (X, Y) and 
(X', yl) are Poincare pairs of dimension n. Then the degree of f is equal 
to the degree of T(b), in particular, f*: Hn(X, Y)-+H;,(X', ¥') is an 
isomorphism if and only ifT(b)* : Hn+k(T(e), T(el¥»-+Hn+k(T(O, T(fl Y'» 
is an isomorphism. 

Proof· If [X] eHn(X, Y), [X'] eHn(X', Y'), veHn+k(T(~), TRIY», 
v' e H,.+k(T(~'1 T(f I yl» are generators such that v nU = [X], 
Vi n V' = [X'], then from (11.2.9), f* [X] = (T(b)* (v»n V' and the 
result follows. D 

Let X be a space, ~k a k-plane bundle over X, Y closed subset of X, 
and suppose the total space E(~) of the associated unit disk (Dk) bundle 
is embedded as a closed subset of a space Z, such that interior of E(e) 
is open in Z, and such that E(~ I Y) C Z', a closed subset of Z. Hence 
Z = E(e)u A, z' = E(~ I Y)u A', where . 

E(e)nA = Eo(~), E(~ I Y)nA' = Eo(~ I Y), A' = AnZ' . 
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ll.2.11 Defmition. We define the natural collapsing map 
" : (Z, Z')-(T(e), T(e I Y») extending the identity map of E(e1 such that 
,,(A) = *. 

If X is a smooth manifold with boundary Y embedded with normal 
bundle ek in a smooth manifold Z with boundary Z' then we get such a 
situation. In that case we get: 

11.2.12 Lemma. Suppose (M, aM) is an oriented smooth manifold of 
dimension n embedded with normal bundle tI' in an oriented smooth (n + k)­
manifold W, with a M c a W. Then the natural collapse 

,,: (W, oW)-(T(v), T(vloM») 

has degree 1, i.e. ,,*: Hn+k(W, oW)-Hn+k(T(v), T(vlaM») is an iso­
morphism, ,,*[W]n U = [MJ for the appropriate choice of U e Hk(T(v»). 

This is geometrically clear, and can be shown purely algebraically by 
looking at an appropriate diagram. 

Let (X, Y) be a Poincare pair of dimension n, ek an oriented linear 
k-plane bundle over X, k> n. Let (f, b) be a normal map so that 
f : (M, oM)-(X, Y) is a map of degree 1, M a smooth oriented n­
manifold with boundary, vk its normal k-plane bundle in (Dn+k, sn+k-l), 
b: v-e a linear bundle map covering f. Then b induces a map of Thom 
complexes T(b): (T(v), T(v I aM»)-(T(e), T(e I Y»). Let 

'1 : (Dn+k, sn+k-l)_(T(v), T(v laM») 

be the natural collapse, and consider the composite 

T(b)'1: (Dn+k, sn+k-l)_(T(e), T(e I Y»). 

The homotopy class of T(b)'1 in 7tn+k(T(e), T(e I Y» will be called the 
Thom invariant of the normal map (f, b). 

ll.2.13 Theorem. The Thom invariant of (f, b) depends only on the 
normal cobordism class of(f, b), and defmes a 1- 1 correspondence between 
normal cobordism classes of normal maps, and elements a. e 7tn + k( T( ~), T( e I Y») 
such that h(a.)nU= [X] eHn(X, Y), where h:7tn+k-Ii"H is Hurewicz 
homomorphism, and [XJ is the orientation class, U e Hk(T(~») is the Thom 
class for e· 

Proof. Suppose (f, b) is normally cobordant to (f', b') so that there 
is a manifold wn+l with aW=MuVuM', aV=oMuoM', a map 
F: (W, V)-(X, Y) with FIM = f, FiM' = f', and B: w~e a linear 
bundle map, where w is the normal k-plane bundle of 

(W, V) C (Dn+k x I, sn+k-l X I), W nD"+k x 0 = M, W nDn+k x 1 = M' , 
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and the restrictions of B to the two ends give band b' respectively. Then if 
'1:(Dn+k, sn+k-l)_(T(v), T(vlaM)~ '1' : (Dn+k, sn+k-l)_(T(v'), T(v'IBM1) 
and (: (Dn+k x I, sn+k-l X I)-(T(w), T(wl V») it follows easily that 
T(B) (IDn+k x 0= T(b)" and T(B) (IDn+k xl = T(b'),,', so that the Thom 
invariants are homotopic. 

Now let oc e 7tn+k(T(e), T(e I Y») such that h(oc)n U = [X]. Let 
f : (Dn+k, sn+k-l )-(T(e), T(e I Y») represent oc and by the Thom Trans­
versality Theorem (11.2.1) we may assume f is transverse to X and Y 
in T(e) and T(eIY), so that f-1(X, Y) = (M, oM) a smooth n-manifold 
with boundary and f restricted to a tubular neighborhood of X or Y 
is a linear bundle map b ofthe normal bundle v of (M, aM) c (D"+k, sn+k- 1) 
into e. Now if we take g=fl(M,oM), we claim that g*([M]) = [X], 
where [M] = '1*(z)n Uv, where '1 : (Dn+k, sn+k-l)_(T(v), T(v I aM}) is the 
collapse, le Hn+k(Dn+k, sn+k-l) is the generator (for a fixed orientation 
ofDn+k) and Uv e Hk(T(v») is tbeThom class ofthebundle v, Uv = T(b)*(U). 
For we have that 

g*([MJ) = g*(,,*(I)n Uv) = g*('1*(I)n T(b)*(U») 

= T(b)*'1*(I)n U = f*(I)n U 

= h(oc)n U = [XJ 

using (11.2.9). Hence (g, b) is a normal map and the Thom invariant map 
. is onto 7tn+k(T(e)' T(e I Y»). 

Now suppose the Thom invariants of two normal maps (f, b) and 
• (f', b') are the same, so that there is a homotopy 

H : (Dn+k x I, sn+k-l X I)-(T<e), T(e I Y») 

between T(b)'1 and T(b'),,'. Using the Transversality Theorem (II.2.1) 
again, we may change H, leaving it fixed on D"+k x 0 and Dn+k x 1 so that 
it is transversal to X and Y, and then it follows that the inverse image of 
(X, Y) under this new map is a normal cobordism between (f, b) and 
(f',b'). 0 

§ 3. Homotopy Types of Smooth Manifolds and ClassifICation 

Let us denote by h:7ti-Hi the Hurewicz homornorphisrn, and if ~ is a 
linear oriented k-plane bundle over X, let U e Hk(T@) be its Thorn 
class, so that nU: Hq+k(T(e»-Hq(X) and 

nU: Hq+k(T(e), T(el Y»)-Hq(X, Y) 

are isomorphisms (Y C X), (see (II.2.6), (112.7»). 
The following theorem is due independently to Novikov [50J and 

the author [6]. 
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11.3.1 Theorem. Let X be a 1-connected Poincare complex of dimen­
sion m;:;; 5, ~ an oriented linear k-plane bundle over X, k> m + 1, 
ex E 7tm+k(T(~») such that h(ex)1l U = [XJ, U E Hk(T(~») the Thorn class, 
[X]E Hm(X) the orientation class. If 

(i) m is odd, or 
(ii) m=4k and Index X = (Lk(Pl(C 1), ... ,Pk(~-l»)) [XJ, 

then there is a homotopy equivalence f: Mm---+x, Mm a smooth m-manifold, 
such that v = f*(~), v = normal bundle of Mm C sm+k, and f can be found 
in the normal cobordism class represented by ex. 

Proof. By (11.2.13), there is a no.rmal map (f, b), f: M ---+X such that 
ex = Tho.m invariant o.f (f, b). By the Fundamental Theo.rem (II.1.21 
(f, b) is no.rmally co.bo.rdant to. a ho.mo.to.py equivalence if m is o.dd, 
and if m = 2q then (f, b) is no.rmally co.bo.rdant to. a ho.mo.to.py equivalence 
if and o.nly if u(f, b) = o. If m = 4k, by the Index Pro.perty (11.1.6), 
u(f, b) = (4(Pl (C l), ... , )) [XJ-index X which = 0 when (ii) ho.lds. 0 

If m = 4k + 2, it may be difficult to. evaluate u(f, b). 

11.3.2 Remark. If m = 6, 14, 30 o.r 62, then with the abo.ve hypo.theses 
there is a ho.mo.to.py equivalence f : Mm---+x, with f*(~) = v as abo.ve, 
but f may no.t be representable by a no.rmal map with Tho.m invariant ex. 

Define the co.nnected sum o.f no.rmal maps o.f manifo.lds: Let (fl' b 1) 
and (fz, bz) be no.rmal maps, fi : Mim---+ Xi. Let MiO = Mi - intDi, Di an 
m-cell in Mi , and let XiOCX be a subco.mplex such that X;=X?uDi', 
D; 11 a Xi = f(J and Hm(XiO, a Xi) = o. It is an easy exercise to. find a representa­
tio.n o.f Xi o.f this type. We may assume using the ho.mo.to.py extensio.n 
theo.rem that fi-l(D;) = Di, fi I Di: Di---+Di' C Xi' i = 1,2 and if 
h: Dl---+Dz, h': D~ ---+D~ are o.rientatio.n reversing diffeo.mo.rphisms, we 
can arrange that h' (fl ID 1) = (fzl D z) h. 

LetMiO =Mi-intDi,X;o =Xi-intD;,anddefineMl =ll=Mz =MpuMf 
with aDl identified to. aDz by hlaDl , Xl =ll=xz=xpuxf with aD1 
identified to. aD~ by h'laD1, and make M1 =ll=Mz differentiable. Then the 
restrictio.ns o.f f1 and fz to. MP and Mf are co.mpatible with the identi­
ficatio.ns and define a map fl =11= f2 : Ml =11= M2---+ Xl =11= X2. It fo.llo.ws 
fro.m (1.3.2) that (Xl * X2, aX1 UaX2) is a Po.incare pair, and f1 * f2 is a 
map o.f degree 1. By cho.o.sing a bundle equivalence o.f ~ 11 D~ with ~21 D~ 
co.vering h' we may define ~1 * ~2' a k-plane bundle o.ver Xl *X2' and 
we may arrange, using the bundle co.vering ho.mo.to.py theo.rem, that b1 

and b2 are co.mpatible to. give a bundle map bl * b2 : v# ---+~l * ~z' 
where v# is the no.rmal bundle o.f Ml =11= M2 in Dm+k, v# IM? = v;lMio and 
bl =11= b2 I (v;lMiO) = b;l(v;lM;O). Then (f1 *fz, bl *b2) is the co.nnected 
sum o.f (ft, bl) and (f2, b2 ), and it fo.llo.ws fro.m results o.f [17] and [51J, 
that it is independent o.f the cho.ices invo.lved. 
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In case aMi and Yi are no.n-empty, (fi, b;) no.rmal maps, 
fi: (Mi, aMi)---+(Xi, Y;), we may define the co.nnected sum alo.ng co.m­
po.nents o.f the bo.undary as fo.llo.ws: Co.nsider the Euclidean half disk 
Hm, i.e. Hm = {x E Rm, Ilxll;;:; 1, xm;:;; O}, so. that Dm

-
l C aH. Find differ­

entiable embeddings (Hr", Di-l)c (Mim, aMi)' and define 

(MiO, aM?) = (clo.sure Mi - Hi' aMi - intDi). 

Let (Xi' Yi)=(XiO, yiO)u(H/,Di- 1'), such that Hm-l(}iO)=O, a rep­
resentatio.n which can be made (if necessary changing (Xi' Y;) by a 
ho.mo.to.py equivalence). Let DO = aH - intDm-1, and let 

Ml llM2 = MpuMf 

with D~ C aMp identified with D~ C aMf, by an o.rientatio.n reversing 
diffeo.mo.rphism. Then Ml llM2 may be made differentiable and 
a(Ml llMz)=aM1 *aM2. One may proceed similarly to. the abo.ve 
discussio.n o.f the clo.sed case to. sho.w that there is defined 

(f1 llf2' bl llb2), f1 llf2: (Ml llM2, a(Ml II M2»)---+ (Xl llX2, Y1=ll= Yz)' etc. 

Then this is a sum o.f no.rmal maps which is exactly the situatio.n in 
(II.1.41 where the intersectio.n o.f the two. parts (Mo and Xo in notatio.n 
of (II.1.4») are (m - l)-cells. 

11.3.3 Lemma. (X II Dm, Y * sm-l) = (X, Y). 

• The pro.o.f is o.bvio.us. D 

11.3.4 Proposition. Let (f, b), (g, c) be normal maps, 

f : (Mm, aM)---+(X, Y), g: (N, aN)---+(Dm, sm-l), etc. 

Then (f II g, b II c) is normally cobordant to (f, b). 

Proof. By (11.3.3), we may assume fllg: (M II N, a(MllN»)---+(X, Y), 
and since vm is co.ntractible, we may assume (fll g)(N°)C Y. Take 
W = (M II N) x I and define U C a W as fo.llo.ws 

U = (NO x O)u(a(M II N) x I). 

Then 

aw = Mu Uu(M II N)I (fllg) Pl(U)C Y, (PI: (M llN)x I---+M 11 N), 

and it is no.t hard to. see that b II c may be arranged to. make W a no.rmal 
cobo.rdism. D 

11.3.5 Proposition. If (f, b) is a normal map, f : (Mm, aM)---+(X, Y), 
and (h,d) is a normal map h:(Vm+1,aV)---+(Dm+1 ,sm), then (f =11= (ah), b =11= (ad») 
is normally cobordant reI Y to (f, b) (where ah = hi av, ad = dl aV). 
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Proof. Take (F, B) = (f x 1, b xl). 

f xl: (M xl, a{M xI»)-{XxI,X xOu Y xIuX xl). 

Then (F, B) is a normal map, and if we take (F II h, B II tl) along an 
m-cell in M x 1, the result is a normal cobordism reI Y between (f, b) 
on M x ° and (f * (ah), b * (ad») on (M x 1) * (ay). 0 

0.3.6 Theorem. Let (X, Y) be an m-dimensional Poincare pair with 
X i-connected, Y =1= 0, m ~ 5, and let (f, b), f: (M, aM)-(X, Y) be a 
normal map such that (flaM)*: H*{aM)-H*(y) is an isomorphism. 
Then there is a normal map (g,c), g:(Vm,aV)_(Dm,8"'-l~ with (glaV) 
a homotopy equivalence, such that (f II g, b II c) is normally cobordant 
rei Y to a homotopy equivalence. In particular, (f, b) is normally cobordant 
to a homotopy equivalence. 

Proof. Let (g,c) be such that q{g,c)= -q{f, b), which exists by 
(11.1.3), The Plumbing Theorem. By (11.1.4), the Addition Property, 
q(f II g, b II c) = q(f, b) + q(g, c) = 0, so by the Fundamental Theorem 
(II.1.2), (f II g, b II c) is normally cobordant reI Y to (f', b), where 
f' : M' - X is a homotopy equivalence. By (II.3.4), (f, b) is normally 
cobordant to (f', b). 0 

Recall that a cobordism W m+1 between Mm and M,m, OW =M u VuM', 
is called an h-cobordism if all the inclusions Mew, M' C W, aM C V, 
and aM' C V are homotopy equivalences. We recall that Smale [54] has 
proved that ifm ~ 5, V is diffeomorphic to oM x I and W is 1-connected, 
then the diffeomorphism of V with a M x I and the diffeomorphism 
M _ M x ° exte:t:ld to a diffeomorphism of W - M x I. In particular M 
is diffeomorphic to M'. 

From this we can deduce the classification theorem of Novikov [49]. 

0.3.7 Theorem. Let (fi' bi)' i = 0, 1 be normal maps fi: Mr - X, 
X i-connected Poincare complex of dimension m~4, and suppose fO'!1 
are homotopy equivalences. If fo is normally cobordant to f1' then there 
is a normal map (g, c~ g: (vm+!, oV)_(Dm+ \ sm), (gl aV) a homotopy 
equivalence, such that (fo, bo) is h-cobordant to (f111gloV, blllclaV). In 
particular Mo is h-cobordant to M1 if m is even, and to M1 * (a V) if m 
is odd. 

Proof. Let (F,B), F:{W,MouM1)-(XxI,XxOuXx 1) be the 
normal cobordism between (fo, bo) and (fl, bl)' Then (F, B) is a normal 
map, and F I a W = F I Mo u M 1 is a homotopy equivalence by hypothesis, 
so (11.3.6) applies. Adding (g, c) along M 2 , (II.3.6) implies that (F, B) II (g, c) 
is normally cobordant reI X x Ou X x 1 to (F', B'), 

F': (W', MouMl)-(X x I, X x OuX xl), 
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and F' : W' - X x I is a homotopy equivalence, where 

Mo =Mo,M~ =M1 *aV,F'IM! = f(Jo=fo'!{ =f1 * ag. 

Then 

is commutative, /;" F' and X x i C X x I are homotopy equivalences 
so ji: M! C W', i = 0, 1 are homotopy equivalences, so W' is an 
h-cobordism. 0 

0.3.8 Corollary. Let M, M' be closed smooth i-connected manifolds 
of dimension ~5. A homotopy equivalence f: M-M' is homotopic to a 
diffeomorphism f': M * E - M' (where M = M =11= E as a topological 
space), for some homotopy sphere E = av, V parallelizable, if and only 
if there is a linear bundle map b: v-v' covering f such that T(b)* (a) = a', 

. a, a' natural collapsing maps a E 1tm +k(T(v)1 a' E 1tm +k(T(v'»). 

Proof. If f is homotopic to such a diffeomorphism f' then 
. df': "MU-"M' induces a map of normal bundles b' : VMU-VM' which 
.sends the collapsing map into the collapsing map. But the map which 
collapses E to a point M * E - M is normally cobordant to the identity 
M - M, so the result follows in one direction. 

The other direction follows from (11.3.7). 0 
Thus the homotopy spheres a V which are boundaries of parallelizable 

manifolds V, play an important role in studying closed manifolds. 
Removing a disk from interior of V, we see that these are the homotopy 
spheres which admit normal maps which are normally cobordant to 
(1, b), 1 : 8"'-S'" is the identity. By (II.3.7) if m is even, au is h-cobordant 
to 8"'. If m = 4k + 1, since the obstruction q to making an h-cobordism 
is in 1l2' by the Addition Theorem av * av is h-cobordant to sm. If 
m = 4k - 1, there are parallelizable manifolds W4k with non-zero index 
and a W = 8"', (see [37]). Let Nk = g . c . d (index W4k) over such W 4k. 
Now W - intDm defines, a normal cobordism between srn and 8"', and 
for this normal cobordism q = 1/8 (index W). Hence 81 index W by 
(III.3.10), so 81 Nk. It follows that if index V = nN, then V II (- n W) has 
index O'-and hence av * (- n8"') = av is h-cobordant to 8"'. If we define 
b pm + 1 to be the set of h-cobordism classes of homotopy m-spheres which 
bound parallelizable manifolds made into a group using the connected 
sum operation, we may deduce the theorem of Kervaire-Milnor [34]: 
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ll.3.9 Theorem. bP; + 1 = 0 for m even, m ~ 4, cyclic of order at 
most 2 for m = 4k + 1, c)1lic of order Nk/8 for m = 4k - 1. 

~ 

Proof. We have shown above that bpm+ 1 = 0 for m even, and that 
2x=0 for xEbp4 k+2, and nx=O, for xEbp4 k, n=Nk/8. Let (g,c), 
g : (U, 0 U)-(1Y"+ 1, sm) be such that CT(g, c) = 1, (using the Plumbing 
Theorem (II.1.3»). If 1:m E bpm+ 1, 1:m= oWm+ \ and (f, b) is a normal map 
f : (Wo, 1:mu sm)_(sm x I, sm x 0 uSm xl), Wo = W - intDm+ 1, then if 
CT(f, b) = r, CT((f, b) II (- r) (g, c») = 0 by the Addition Theorem (11.1.4); 
(where - indicates negative orientation), where the sum is along a disk 
in smCoWo. Then 1: is h-cobordant to (-r)(aU) by (11.1.2). 0 

More details on the exact order of bpm+ 1, the group structure, etc., 
are found in [34]. 

Now we have the theorem of Wall [65]. 

ll.3.10 Theorem. Let (X, Y) be a Poincare pair of dimension m ~ 6, 
X and Y i-connected, Y 9= 0, and let ~k be a k-plane bundle over X, 
oc E 1tm+k(T(~), T(~ I Y») such that h(oc)n U = [X] E H".(X, Y). Then the 
normal map represented by oc is normally cobordant to a homotopy 
equivalence (f, b), f: (M, oM)-(X, Y), which is unique up to h-cobordism. 
Hence (X, Y) has the homotopy type of a differentiable manifold, unique 
up to h-cobordism in the given normal cobordism class. 

Proof. Let(f', b'): (M', oM')-(X, Y) be a normal map representingoc. 
By the Cobordism Property (11.1.51 CT(f'laM', b'loM')=O, so by the 
Fundamental Theorem (11.1.2), (f'loM', b'loM') is normally cobordant 
to a homotopy equivalence. This normal cobordism extends to a normal 
cobordism of (f', b') to (f", b") such that f" I 0 M" is a homotopy 
equivalence (compare with proof of(II.3.4)~ By (11.3.6), (f", b")is normally 
cobordant to a homotopy equivalence, (f, b). 

Let (fi' bi)' i = 0, 1 be two normal maps which are homotopy equiv­
alences, and in the class of oc, so (fo, bo) is normally cobordant to (f1' b I ). 

Let (F, B) be the normal cobordism, F: (W, V) - (X x I, Y x I), 
oW=MouVuM1, oMouoMI =oV, F(x)=Ct;(x),i) for xeMiCW. 
This gives a normal map into (X x I, X x Ou Y x luX x 1) and by 
(II.3.6), (F, B) II (g, c) is normally cobordant rel(X x Ou Y x luX x 1) 
to a homotopy equivalence, where g : (U, 0 U)_(Dm+ \ sm). But if (g, c) 
is added to (F, B) along a disk in V, then Mo and MI and F I Mi = h remain 
as they were, so we get an h-cobordism between Mo and MI (or between 
(fo, bo) and (f1> b1»)· 0 

Similar to (11.3.8) we obtain 

ll.3.11 Corollary. Let M, M' be compact smooth i-connected 
manifolds, of dimension m ~ 6, and with oM, oM' 1-connected and non­
empty. Then a homotopy equivalence f : (M, oM)-(M', oM') is homotopic 
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to a diffeomorphism f': M - M', if and only if there is a linear bundle 
map b: v- v' covering f (v, v' normal bundles of M, M' in Dm +k) such 
that T(b)* (oc) = oc', (where oc, oc' are the homotopy classes of the collapSing 
maps, oc E 1tm+k(T(v), T(v I oM)~ oc' E 1tm +k(T(v'), T(v'l oM'»)). 

§ 4. Reinterpretation Using the Spivak Normal Fibre Space 

Now we shall reinterpret the results of II § 3 in the terms of the Spivak 
normal fibre space. In particular we will describe the classification 
theorem of Sullivan [62J from this point of view, rather than the "dual" 
approach of [62]. 

Now we refer to the work of Stasheff [58J or Brown [14J, which 
shows that there is a classifying space, called BG

n
' for fibre spaces with a 

homotopy (n -l)-sphere as fibre, in the appropriate category of spaces. 

ll.4.1 Theorem. (Stasheft). Consider the category re of spaces with 
the homotopy type of locally finite C W complexes. Then there is BG in re 
and a (n - i)-spherical fibre space Yn over it such that if X is in re ~nd ~ 
is an (n - i)-spherical fibre space over X then there is a map f : X - BGn 
such that f*(Yn) is fibre homotopy equivalent to ~. Further, if ~1 = f1*Yn 

,and ~2=fiYn' fi:X-BGn' and ~1 is fibre homotopy equivalent to ~2' 
. then f1 is homotopic to f2. .. 

We refer to [58J for the proof. 
Let BG be the classifying space for k-spherical fibre spaces where k 

is large. Its homotopy type in low dimensions (i.e. < k - 1) is independent 
of k, so we suppress k in our notation. This fact is a consequence of the 
Freudenthal Suspension Theorem, (compare (1.4.10»). Similarly if Bo 
is the classifying space for (k + i)-plane bundles, the homotopy type in 
low dimensions is independent of k and we omit k in the notation (see 
[44,32J). Since the complement of the zero cross-section is a k-sphere 
bundle, we have a natural map (!: Bo-BG. 

ll.4.2 Corollary. Let X be a 1-connected Poincare duality space of 
dimension n ~ 5, and let f : X -+ BG be the classifying map of its Spivak nor­
mal spherical fibre space. If n is odd, X has the homotopy type of a smooth 
manifold if and only if ffactors through (! : Bo -+ BG. If n = 4k, X has the 
homotopy type of a smooth manifold if and only if there is a g : X - Bo 
such that (!g"'f and (Lk(g*(W- I »), [XJ) = index X, where w is the 
canonical linear bundle over Bo. 

ll.4.3 Corollary. Let (X, Y) be an n-dimensional Poincare pair with 
X and Y i-connected, Y 9= 0 and n ~ 6, and let f: X -+ BG be the classifying 
map of its Spivak normal spherical fibre space. Then (X, Y) has the homo-
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topy type of a smooth manifold with boundary if and only if f factors 
through (l: Bo~BG' 

If vk is the normal spherical fibre space of X, X a Poincare duality 
space of dimension n, or (X, Y) a Poincare duality pair, then by definition 
there is an ocEnn+k(T(v)~ or ocEnn+k(T(v), T(vl Y») such that h(oc)n U = [X]. 
Then if g: X -+Bo such that (lg '" f, then «(lg)* (y)= v and «(lg)*(y) = g*«(l*Y), 
where (l*(Y) = canonical bundle over BOk' Hence g*«(l* y) = ~ is a linear 
k-plane bundle over X which is fibre homotopy equivalent to v. Hence, 
there is oc' E nn+k(T(~» or oc' E nn+k(T(~), T(~ I Y») with h(oc')n U = [X]. 
Then (11.4.2) and (11.4.3) follow from (II.3.1) and (11.3.10). 0 

In [7, § 4], we studied the general situation of "reducing" the structural 
group of a bundle, or giving it a "structure" in another theory, which we 
shall specialize here in the context of spherical fibre spaces and linear 
structure. 

Let ~ be a k-spherical fibre space, over a finite complex X, k very large. 
A linear structure on ~ will be a map of fibre spaces oc: ~ ~ y (of degree 1 on 
each fibre), where Y=(l*(Y), (l:Bo~BG' y the canonical k-sphericaJ fibre 
space over BG, so that Y is the canonical bundle over Ba. Two linear 
structures OCo, OC l : ~ ~ Y are equivalent (or concordant) if there is a linear 
structure A: ~ x I ~ Y such that A(x, i) = OCj(x), i = 0, 1, x E~. 

Let GIO be. the fibre of (l {if (l has been made into a fibre map 
(l : Bo-+ BG)' One can identify this fibre in a natural way with the orbit 
space of G by the action of 0, where G = {f: Sk-+Sk, degf = ± 1} with 
the compact open topology, 0 = OH 1 is the orthogonal group, k 
very large. 

11.4.4 Theorem. Equivalence classes of linear structures on e (provided 
there exists one) are in 1- 1 correspondence with [X, GIO], the homotopy 
classes of maps of X into GIO. 

This is a special case of the situation considered in [7, (4.2)]. We 
outline the proof in this context, referring to [7] for some of the detailed 
arguments. 

Proof· Let p : y-+y be the map of fibre spaces covering (l : Bo-+ BG, 
and let -a: ~~y be a classifying bundle map for ~. A normal linear 
structure on ~ will be a linear structure oc: ~ ~ y such that poc = ex. An 
equivalence A : ~ x I -+y will be called normal if PA = aP1' Pt: ~ x I-+~ 
is projection. Let g'(~) (g'o(~») denote the set of equivalence (normal 
equivalence) classes of linear structures (normal linear structures) on ~. 
Clearly there is a natural map e: g'o(e)-+g'(~). 

11.4.5 Lemma. e is a 1 - 1 correspondence. 

Proof. Using the covering homotopy theorem one can easily show 
any oc is equivalent to oc', which is normal, by covering the homotopy of 

§ 4. Reinterpretation Using the Spivak Normal Fibre Space 47 

(la to ii by a homotopy of poc to a, (where a: X -+ Bo, ii: X -+ BG are the 
maps induced on base spaces by oc, a). A similar argument on an 
equivalence between normal structures, shows that one can [md a homo­
topic normal equivalence (see [7, (4.1)]). 0 

II.4.6 Lemma. If g'o(e) is non-empty, then g'o(e) ~ [X, GIO]. 
Proof. Let BOk, BGk be the classifying spaces of k-plane bundles, (k - 1) 

spherical fibre spaces, and let Bo = u BOk, BG = U BGk, be the limit spaces. 
Let (lk: BOk -+ BGk be the map inducing the canonical bundle, and let 
(l : Bo-+ BG be the limit map. 

Now Bo and BG are H -spaces with mUltiplication induced by Whitney 
sum and (l: Bo-+ BG is a multiplicative map. Hence GIO, the fibre, 
is also an H -space. Also the inclusions induce isomorphisms 

[X, BOk] ~ [X, Bo], [X, BGk] ~ [X, BG], [X, GJOk] ~ [X, GIO] , 

for dim X < k - 1. Hence we may multiply maps into BGk, BDk, GJOk = the 
fibre of (lk> provided the domain X has dimension < k - 1. 

If oc: ~-+y is a representative of an element x in g'o(e), then poc = a, 
so if oc covers a: X -+Bo, then (la = ii. Take OCo: ~-+y representing a 
fixed element Xo E g'o(~), OCo covers ao· 

Now the structures in g'o(~) are in 1-1 correspondence with 
homotopy classes of maps a : X -+ Ba such that 

• ~\l 
BG 

commutes, and homotopies such that 

commutes. 
For a and a: e~y define a map oc: e-+y since y is induced from 

y by (l, and similarly a homotopy defines an equivalence in .9OW and 
vice versa. It follows that elements of 9QW are in 1 - 1 correspondence 
with homotopy classes of sections of E-+ X where E is induced from the 
fibre space Bo-+ BG with' fibre GIO by the map a: X -+ BG. Since GIO 
acts on Bo so that 
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commutes, GjO acts similarly on E, J1. : GjO x E~ E. If ao corresponds 
to a section So : X ~ E, then T: GjO x X ~ E given by T(x, y) =J1.(x,so(y» 
defines a homotopy equivalence. Then with this representation other 
sections correspond to maps X~GjO x X with component in X being 
the identity, or in other words maps X ~GjO. Similarly homotopy of 
sections corresponds to homotopy in GjO. D 

Applying (H.4.5) and (H.4.6) yields (II.4.4). D 
If oc: e~y is a linear structure on e, and if a: X ~ Bo is the classifying 

map on base spaces, then oc defines a fibre homotopy equivalence 
f: e~a*(y), (y being a linear bundle). An equivalence A between OCo 
and OC 1 induces a fibre homotopy equivalence f: e x I~A*{Y) extending 
fo'!l induced on ex 0 and ex 1 byoco and OC1' Since A*(V is a bundle 
over X x I, there is a linear equivalence B: A*(Y)~a~{Y) x I extending 
the identity on a~{Y). Hence b: a1(Y)~a~(Y) x 1, b = B I a1(Y) is a linear 
equivalence, and b f1 is fibre homotopic to fo. 

Now consider pairs (1'/, oc) where 1'/ is a linear k-plane bundle over X, 
oc: ~~1'/ is a fibre homotopy equivalence covering the identity of X. 
Call such a pair (1'/, oc) a GjO bundle (structure on e). Two GjO bundles 
(1'/i, OCi), i = 0,1 are equivalent if there is a GjO bundle (if,~) over X x I, 
~: e x I ~if, and linear equivalences bi : ifl X x i~1'/i such that 
M~ I e x i) = OCi' i = 0, 1. This is equivalent to th~ statement tha~ there 
exists a linear equivalence b : 1'/0 ~ 1'/1 such that boco IS fibre homotopIC to oc1. 
Thus we get 

I1.4.7 Proposition. EqUivalence classes of linear structures on e are 
in 1 - 1 correspondence with eqUivalence classes of GjO bundle structures 
on e. D 

Now let e be the Spivak normal fibre space of a Poincare pair (X, Y), 
(see I § 4). 

I1.4.8 Lemma. A normal map (J, b), f: (M, aM)~(X, Y), b: v~1'/, 
1'/ a linear k-plane bundle, determines a linear structure on e, depending 
only on the normal cobordism class of (J, b). Two normal maps U;, bi)' 
i = 1,2 determine equivalent linear structures if and only if there is a linear 
bundle eqUivalence b': 1'/1 ~1'/2 such that (J2' b2) is normally cobordant 
to (Jt, b' bd. 

Proof. By (1.4.19) there is a fibre homotopy equivalence h: e~1'/ such 
that T(h)* (bo) = T(b)* (01), wherebo E 7tm+k(T(~), T(~ I Y»isa fixed element 
such that h(bo)n U = [X], and oc E 7tm+k(T(v), T(v I aM») is the homotopy 
class of the collapsing map. By (1.4.19), such an h is unique up to fibre 
homotopy, so this defines a map cp from the set of normal maps % into 
GjO bundle structures on ~. If (Ji' bi)' i = 1,2 are normally cobordant, 
then 1'/1 =1'/2 =1'/ and T(b 1)* (oc 1) = T(b2)* (oc2) by (11.2.14). It follows then 
that the corresponding structures hi: ~ -1'/ are homotopic, so the map 
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cp: % ~9'(e) depends only on the normal cobordism class. Hence cp 
defines CPo: %o~9'(e), where %0 = set of normal cobordism classes. 
If CPO(J1' b1) = CPO(J2' b2), then h2 = b' hI where b': 1'/1-1'/2' Then 

T(b')* T(h1)* (bo)= T(b')* T(bd* (ocd = T(b' b1 )* (ocd= T(h2)* (bo) = T(b2)* (OC2)' 

Hence (J2, b2) is normally cobordant to (J1, b' bI)' D 

• 

Putting together (H.4.8) with (II.3.7) and (II.3.10), and with (11.4.4) 
we obtain the theorem of Sullivan [62]: 

Let (X, Y) be a Poincare pair. Define 9'(X) to be the set of pairs (h, M) 
where M is a smooth manifold with boundary, h : (M, aM)~(X, Y) is 
a homotopy equivalence of pairs, under the equivalence relation 
(ho, Mo)"'" (hI' M1) if there is an h-cobordism wm+ 1, and a map 
H:(W, V)~(X, Y), (aW=MouVuMI) such that HIMi=h i , i=O, 1. 

I1.4.9 Theorem. Let (M, aM) be a compact smooth manifold with 
boundary, dimension M ~ 6, M and aM 1-connected, aM =l= 0. Then 9'(M) 
is in 1- 1 correspondence with [M, GjOJ. 

In case aM = 0, the analogous theorem holds modulo homotopy 
spheres which bound 7t-manifolds, (compare (H.3.7) and (II.3.10», but 
in this case the natural expression in terms of an exact sequence (which 
has a generalization to the non-simply connected case): Let M be a closed 
smooth i-connected manifold of dimension m ~ 5. 

I1.4.10 Exact sequence of surgery. There is an exact sequence of sets 

where 

i odd 

i=4k 

i=4k+2 

where 1'/ is defined by the normal cobordism class, q is the surgery obstruction 
of the normal map, and w(x) is defined as below. 

Taking connected sum along the boundary of M x [0, 1] and Vm + 1 

where (g, c) is a normal map g : V ~ Dm + I, glaVa homotopy equivalence, 
q(g, c) = x, we obtain a manifold with boundary = MuM"" av. Define 
w(x) to be M"" av with the obvious homotopy equivalence which 
collapses av - cell to a point. This actually defined an action of Pm+1 on 
9'(M) as follows: If h: M'-M represents yE 9'(M), and x E Pm +1, then 
W'(X).E 9'(M') is defined as above. Let w(x, y) = h~(w'(x)1 i.e. if (M", h'), 
h': M" ~M' represents w'(x), then (M", hh') represents w(x, y) E 9'(M). 
Then the sequence of (H.4.10) is exact in the stronger sense. 
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n.4.11. '1(Y) = '1(y'), y, y' Efl' (M), if and only if y' = m(x, y) for some 
XEPm+ l · 

The piecewise linear version of (Il.4.9) may be proved in a similar 
way using p.l. micro bundle theory, and surgery on p.l. manifolds (see 
[48, 13J) and is an important step in the proof of the Hauptvermutung for 
l~connected manifolds M, with oM i-connected, dimension M ~ 6, 
and H3 (M) having no 2-torsion (see [63]). (Il.4.lO) and (Il.4.11) degenerate 
in the p.l. case, but become interesting again in their non-simply connected 
versions (see [66]). 

i , 

HI. The Invariant (1 

In this chapter we prove the Invariant Theorem of Chapter Il, § 1 and 
deduce the three properties of (J of (11, § 1) . 

. We will outline a slightly more general version than that indicated 
in Chapter Il. Let (X, Y) be an m-dimensional oriented Poincare duality 
pair, i.e., there is an element [X] (the orientation class) in Hm(X, Y) 
such that 

is an isomorphism for all q. 
Recall that in Chapter I we showed that [X]n : Hq (X)-+Hm-iX, Y) 

. being an isomorphism for all q is equivalent to [X]n : Hq (X, Y)-+Hm_,,(X) 
being an isomorphism for all q, and that this implies that in the diagram 

... l-Hq(X, Y) j* I Hq(X) i* I Hq(y) Il I Hq+l(X, Y)-+ ... 

~ [Xl" 1 . {Xl" 1 [Y]" 1 [Xl" 1 
.··-+Hm_q(X)~Hm_q(X, Y)~Hm-q-l(Y)~Hm-q-l(X)-+ ... 

(where [Y]=o[X]EHm_l(Y), i: Y-+X, j:X-+(X, Y) are inclusions) 
all the vertical arrows are isomorphisms. In particular Y is an oriented 
Poincare duality space of dimension m - 1. 

Let m=4k, and let f:(X1 , Yt )-+(X2 , Y2) be a map of degree 1 of 
t~e Poincaredualitypairs(Xi , Y;),i= 1,2 such that(flli)*:H*(li)-+H*(Y2) 

is an isomorphism. 
A cobordism of f reI Y2 is described by U with subsets 

such that (U, Xl U X~) is an (m + 1 )-dimensional Poincare pair, with 
orientation [U] compatible with the orientation [Xl] (see I, §2) and a 
map F:(U, Yt )-+(X2 , Y2), such that FI(X1 , Yl)=f. We write below 
A = Xl U X~. Then I (f) E 7l is defined in § 2 such that if f is cobordant 
reI Y2 to a homology isomorphism, then I (f) = O. 
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Let f: (Xl' Yl)-+(X 2' Y2) be as above and let Vi be a (k - 1)- spherical 
fibre space over (Xi' Yi), k large, and b: V1 -+V2 a map of fibre spaces 
covering f. Suppose that IX E 1tm +k(T(Vl)) ,is such that h(IX)(\ U1 = [Xl]' 
so that V is the normal spherical fibre space of Spivak for (Xl' Y1), and 
it follow: that h(T(b) (a))(\ U2 = [X 2], so that V2 is the normal spherical 
fibre space of (X 2, Y ~ (see I, § 4 and [57]). Then the pair (f, b) is ca~led 
a normal map of the Poincare pairs, (compare n, § 1 )'.A norr;n~l cobordlsm 
of (f, b) is a cobordism reI Y2 of f, as above, and m a~dl~on a (k -1)­
spherical fibre space v over U, a map of fi~e spaces b: V-+V2 and an 
element (XE1tm +l +k(T(V), T(VjA») such that T(bl(vl(X.,:' Yl»)*~O(X)= T(b)*(IX) 
where o:1t

m
+l+k(T(V), T(vIA»)-+1tm +k(T(vIX1), T(vIY1») IS the natural 

boundary (again compare n, § 1). . .. , 
If m == 4k, and (f, b) is a normal map, then I(f) IS dlVlslble by 8 and 

we define q(f, b)=i-I(f). If m=4k+2, we define q(f,b)E~2' suc~ that 
if (f, b) is normally cobordant to a homology isomorphIsm wIth 'lt2 
coefficients, then q(f, b) = 0. 

We will also deduce the various properties of q needed. 

§ 1. Quadratic Forms over Z and Z 2 

Let V be a fmitely generated free 'It-module, and let (, ) be a symmetric 
bilinear form on V SO that 

(i) (x, y) = (y, x), 
(ii) (h +A'x', y)=A(X, y)+A'(x', y), A, A' E 'It,x, X',YE V. 
Choosing a basis {b i } for V, i = 1, ... , n, and letting aij = (b i , b j~ repr~­

sent (, ) as a matrix A = (ai), and (x, y) = xAy in terms of thIS baSIS, 
n 

where x = L Aibi' etc. e means transpose). If we change the basis by 

an invertibl;ln x n matrix M so that b' = Mb, i.e., b; = l:jmijbj, then in 
terms of the new basis, (, ) is represented by the matrix M AM. Such 
changes are equivalent to doing a sequence of row and column operations 
on A, performing the same operation on row and column. For example 
we may add A(i-th row) to the j-th row, and then A(i-th column) to the 
j-th column. 

The bilinear form (, ) defines q: V -+ 'It by q(x) = (x, x). Then 
(x, y) =t(q(x + y) - q(x) - q(y») so that (, ) is derivable from q. Then (, ) 
is called the associated bilinear form to the quadratic form q. 

The bilinear (, ) defines naturally a bilinear form (again denoted 
by (, ») on V ® <Q into <Q. 

HI.Lt Proposition. If (, ) i~ a symmetric bilinear form on a finite 
dimensional vector space V' over <Q into <Q, then there is a basis for v' 
such that the matrix of (, ) is diagonal. 
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The proof is a routine exercise. 

Now we may define the index or signature of (,) to be the number 
of positive entries on the diagonal minus the number of negative entries 
(in the diagonalized matrix). The first number is the dimension of the 
maximal subspace on which ( , ) is positive definite, (i.e., (x, x) > 0, if x * 0) , 
and the second is the dimension of the maximal subspace on which ( , ) 
is negative definite {i.e., (x, x) < ° if x * 0). It follows that the signature 
is an invariant, i.e., it does not depend on the choice of basis. Hence 
we have defined an invariant 

sgn: (Quadratic forms over 'It)-+'lt. 

We shall call a quadratic form over 'It non-singular if the determinant 
IAJ = ± 1 {i.e., if ( , ) is unimodular). Over a field we call it non-singular 
if IAI *0. 

m.L2 Proposition. Let q be a non-singular quadratic form on a finite 
dimensional V over IR, the reals. Then sgn(q) = ° if and only if there is a 
subspace U C V such that 

(i) dimR U = tdimR V 
(ii) (x, y)=o for x, y E U. 

Proof. Let V+ and V_ be subspaces of V such that q is positive definite 
on V+, negative definite on L, and V+, V_ are maximal with respect to 
this property. Then sgn(q) = dim V+ - dim L. Clearly V+ (\ V_ = ° and 
sin~ q is non-singular, V = V+ + V_. Now 

• V+ (\ U = V_ (\ U = ° 
since (,) is zero on U. On the other hand 

dim(V+ (\ U) ~ dim V+ + dim U - dim V 

dim(V_ (\ U) ~ dim V_ + dim U - dim V 

so that dim V± = dim V-dim U =tdim V, and thus sgn(q) = 0. 
If sgn(q) = 0, then dim V+ = dim V_. Over the reals IR, one may find 

orthonormal bases for V+ and V_, {a;},{b;} respectively, i=l, ... ,n, 
suchthat(ai , aj )= c5ij, (bi , b) = - c5ij , (ai' bj)=O. Thenci=ai + bi,i= 1, ... ,n, 
generates U, and (ci,ci)=(ai,ai)+(bi,bi)=l-l=O, and (Ci'C)=O, so 
q=OonU. 0 

Now we state some non-trivial results which we Will need, which we 
shall not prove here. 

m.t.3 Proposition. Let q be a non-singular quadratic form q: V-+'lt, 
and suppose q is indefinite (i.e., neither positive definite nor negative defmite). 
Then there is x E V, X * ° such that q(x) = 0. 

For a proof see [45, Lemma 8] (see also [46]). 
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111.1.4 Proposition. Let q be a non-singular quadratic form q : V --+ 1l 
and suppose 2Iq(x, x) for all x E V (we say q is an even form). Then 
8Isgn(q). 

For a proof see [46]. 
Now we consider the field 112 and consider a function q: V--+1l2' 

where V is a 112 vector space of finite dimension over 1l2· We shall call q 
a quadratic form if q(O) = 0 and 

q(x + y) - q(x) - q(y) = (x, y) 

is bilinear. It is clear that (x, y) = (y, x) and (x, x) = q(2x) - 2q(x) = 0 'so 
that ( , ) is a symplectic bilinear form. Thus if ( , ) is non-singular we may 
find a basis ai' bi' i=1, ... , n for V such that (ai' b) = (jii' (ai' a) = (b i , bj ) = 0 
(see (3). Thus in case q(i.e. ( ,)) is non-singular with respect to the 
symplectic basis {ai' bJ we define the Arf invariant (see [2): 

n 

c(q) = L q(ai)q(b j ) E 112 . 
i=1 

We shall show that c is independent of the choice of base, and completely 
determines q up to equivalence. 

First we consider the 2-dimensional vector space U, with basis 
a, b, (a, b) = 1, (a, a) = (b, b) = O. There are two quadratic forms on U 
compatible with ( ,),qi: U--+1l2,i=0, 1,q1(a)= q1(b)= 1,andqo(a)=qo(b)=0. 
Note that ql (a + b) = qo(a + b) = l. 

m.1.5 Lemma. Any non-singular quadratic form on a 2-dimensional 
space U is isomorphic to either qo or ql' 

The proof is trivial. 
Obviously qo is not equivalent to ql- Also c(qo) = 0 and C(q1) = l. 

Hence the Arf invariant c characterizes non-singular quadratic forms in 
dimension 2. < 

m.1.6 Lemma. On U + U, qo + qo is isomorphic to ql + q1' 

Proof. Let ai' bi i = 1,2 be a basis for U + U so that ai' bi forms a 
symplectic basis of the i-th U, and if 1pi = qi + qi' i = 0, 1 on U + U, then 
1pi)(ai) = lPo(b,) = 0, i = 1,2, and 1pl (ai ) = 1pl (b i ) = 1, i = 1,2. Choose a new 
basis for U + U, 

a~ = a2 + b2 + a l + bl , b~ = b2 + al + bl . 

One checks easily that this defines a symplectic basis and 

1pl (aD = 1po(aj ), 1pl (bi) = 1po(bi ) 

so that 1pl is isomorphic to 1po· 0 
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m.1.7 Proposition. Let q: V--+1l2 be a non-singular quadratic form 
over 1l2 • Then q is equivalent to ql + (m - 1)qo if with respect to some 
basis c(q) = 1, and q is equivalent to mqo if c(q) = 0 (dim V = 2m). 

Proof. If a" bi' i = 1, ... , n is a symplectic basis for V and if Vi = space 
n 

spanned by ai' bi' let 1p, = q I Vi. It is evident that q = L 1pi' and by (III.1.5), 
i=1 

1pi is equivalent to either qo or ql' By (Ill. 1.6), 2q1 = 2qo, so q is equivalent 
to either mqo or ql +(m-1)qo· But C(ql +(m-1)qo)= 1 and c(mqo) =0, 
which implies the results. 0 

To complete the study of non-singular quadratic forms over 1l2' it 
remains to show that CP1 = q1 + (m - 1)qo and CPo = mqo are not equi­
valent. We prove this by the following 

ID.1.S Proposition. The quadratic form CPl sends a majority of 
elements of V to 1 E 1l2' while CPo sends a majority of elements to 0 E 1l2. 

m.1.9 Corollary. If q is a non-singular quadratic form, then c(q) = 1 
if and only if q sends a majority of elements to 1 E 1l2. 

Proof of (111.1.8). We proceed by induction, the case of m= 1 being 
trivial. 

Let p(cp)=number of elements XEV such that cp(x)=1 and let 
n(g) = number of x E V such that cp(x) = O. Hence p( cp) + n( cp) = 22m = num­
ber of elements in V (including 0). 

111.1.10 Lemma. p(cp + qo) = 3p(cp) + n(cp), n(cp + qo) = 3n(cp) + p(cp). 

Proof. Any element in V + U is of the form (x, u), x E V, U E U and 
(cp + qo) (x .. uY= cp(x) + qo(u). Three of the four elements in U have qo = 0 
and only one has qo = 1, so for each element x E V such that cp(x) = 1 
we have three elements (x, u) such that qo(u) = 0 and thus (cp + qo)(x,u)= 1. 
Similarly for each y E V such that cp(y) = 0 there is one element(y, V)E V + U 
with qo(v) = 1 so (cp + qo)(Y, v) = 1. Hence p(cp + qo) = 3p(cp) + n(cp), and 
the other formula follows similarly. 

m.l.H Corollary. Set r(cp)=p(cp)-n(cp). Then r(cp+qo)=2r(cp), so 
that if r(cp) > 0 then r(cp + qo) > 0, and if r(cp) <0 then r(cp + qo) < O. 

The proof is immediate. 
It follows that since r(q1) = 2, r(qo) = - 2, that r(q1 + (m -l)qo) > 0, 

r(mqo) < 0, which proves (I1I.1.8). Since r is obviously an invariant, it 
follows that q1 + (m - l)qo is 110t equivalent to mqo. Thus we have proved: 

m.1.12 Theorem. (Arf). Two non-singular quadratic forms on a 112 
vector space V of finite dimension are equivalent if and only if they have 
the same Arf invariant. 

Analogous to (111.1.2) we have: 
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111.1.13 Proposition. Let q be a non-singular quadratic form q : V --712· 
Then the Arf invariant c(q) = ° if and only if there is a subspace U C V, 

such that 
(i) rankz2 U = !rankz2 V, 
(ii) q(x) = 0, all x E U. 

Proof. Let x, y E U, U with properties (i), (ii). Then 

(x, y)= q(x + y)- q(x)- q(y) = ° 
since x y x + yE U. Hence U is an isotropic subspace, (i.e. (x, y)= 0, x, y E U} 
and th~' a base ai' ... , am for U may be extended to a symplectic basis 
for U ai' b

l
, ... , am' bm (since (,) is non-singular}. It follows that 

m 

c(q)= L q(aJq(bi)=O. 

Co~;'~rsely if c(q) = 0, by (III.l.12) q is equivalent to mqo, so that 
U = space spanned by al , ... , ~ (where ai' bi are a base for the 2-
dimensional space of qo) has properties (i) and (ii). 0 . 

For a biIinear form (,) on a vector space V, we let R = radIcal of 
V = {XE V such that (x, y) =0 all yE V}. ., . 

If q: V --712 is a quadratic form with (,) as aS~lated bIli~ear form, 
then we have defined c(q) only if R = radical of V IS zero. But 1f q I R == 0, 
then it is easy to see that q defines q' on VIR and the .radical of VIR ~s 
zero. In that case we may define c(q) = c(q'). However If qlR $ 0, then It 
is easy to see that the Arf invariant does not make sense and in fact the 
equivalence class of the form is determined by rank V and rank R. Note 
that in this case r(<p) = O. 

Thus we have proved: 

ID.1.14 Theorem. Let q: V--712 be a quadratic form over 7l2, 
R = radical of the associated bilinear form. Then the Arf invariant c(q) 
is defined if and only if q I R == 0. In general if q I R == 0, q is determined 
up to isomorphism by rank V, rank R and c(q), while if q I R $ 0, then q 
is determined by rank V and rank R. 

§ 2. The Invariant I (j) 

Let (X, Y), (A, B) be oriented Poincare pairs of dimension m, let 
f: (X, Y)--(A, B)beamap of degree 1,i.e . .!*[X] = [A], [X] EHm(X, Y), 
[A] E Hm(A, B) the orientation classes. Then as in Cjapter I, § 2 we have 
groups Kq(X, Y}, Kq(X), Kq(y) defined with any coefficient group such 

l 
~ 
I 
I 
t 
I , 
r 

f' 
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that the diagram below is commutative with exact rows and columns: 

Here the notation f: X --A, J: (X, Y)--(A, B) is used to distinguish the 
induced cohomology maps. By (1.2.5), the vertical sequences split, 
oc*: H*(X, Y)--H*(A, B) such that oc*j* = identity, for example, and 
K*(X, Y)=keroc* by definition. 

Suppose m = dim (X, Y) = 4k, and consider the pairing 

dermed by (x, y) = (xv y) [X]. This is symmetric since the dimension is 
even. Define 

ID.2.t. l(f) = signature of ( , ) on K2k(X, Y; ~). 

We note that ( , ) is the rational form of the integral form defined on 
K2k(X, Y}/torsion by the same formula. If(fl Y)*: H*(B; ~)--H*(Y;~) 
is an isomorphism, then 

(xuy) [X] = (U*x)vy)[X],j* : K2k(X, Y; ~ __ K2k(X; <Q) 

is an isomorphism, and thus from (1.2.9) it follows that ( , ) is non-singular. 
Similarly if (f I Y)* : H*(B)-- H*(Y) is an isomorphism, then the integral 
form is non-singular. In particular this is of course the case if Y = B = 0. 
We note also that positive degree would have sufficed to define I(f). 

111.2.2 Proposition. Let f: (X, Y)--(A, B) be a map of degree 1 of 
Poincare pairs of dimension m = 2q + 1, let F be a field, and consider 
i* : Kq(X; F)-- Kq(y; F) induced by inclusion i: Y --X. Then 

rankF(image i*)q =!rankFKq(y; F). 
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Proof. By (1.2.7) we have a diagram which commutes up to sign: 

----.Kq(X;F) i' ) Kq(Y;F)~Kq+I(X, Y;F)-

[Xlr'l [Y]n 1 [X]n 1 
-K (X Y'F)~Kq(Y;F) i. )Kq(X;F)-q+l , , 

In this diagram the rowl! are exact and ~he vert~cal maps isomorphisms. 
Hence (image i*)q 8:: (ker i*)q' By (1.2.8), smce F 1S a field, 

Kq(y; F)= Hom(Kq(Y; F), F) 

Kq(X; F) = Hom(KiX; F), F) 

and i* = Hom(i*, 1). Hence rankp(imagei*)q = rankp(imagei*)q and 
rankp (image i*)q + rankp(keri*)q = rankpKiY; F)= rankpKq(y; F). Hence 
rankp(imagei*)q = trankpKq(y; F). 0 

ID.2.3 Lemma. mth the hypotheses of (III.2.2), (image i*~ C Kq( Y; F) 
annihilates itself under the pairing ( , ). 

Proof. 

(i*x, i*y)= «i*x)u(i*y»[Y] = (i*(xu y»[Y] = (xuy)(i*[YJ) = 0 

since i*[YJ = i*o[X] =0 in H2q(X). 0 
ID.2.4 Theorem. Let f: (X, Y)-(A, B) be a map of degree 1 of 

Poincare pairs of dimension m = 4k + 1. Then l(fl Y) = O. 

Proof. By (III. 2. 2) (image i*fk C K2k(y; ~~ is ~ subspace of 
rank = trankK2k(y; ~ and by (III.2.3) it annihlla~es itself under the 
pairing. Hence by (III.1.2), sgn(, )=0 on K2~(y; ~),ol.~. 1</1 y)=0. ~ 

Now using the notion of sum of Pomcare pa1rs mtroduced m 
Chapter I, § 3, we may study the behavior of I .on su~s. 

Let (X, Y) and (A, B) be Poincare pairs of dlmenslOn m, and suppose 
each is the sum of pairs, i.e., X =Xl uX2,XO=X1nX2 , .Y;= !n~i' 
i= 1,2, A = Al uA2, etc., where (Xo, Yo) and (Ao, Bo) are Pomcare pallS 
withorientationsoo[X], oo[A] respectively (see (I. 3.2». Letf: (X, y)-(A,B) 
be a map of degree 1 such thatf(Xi) c Ai' i= 1, 2 (c.f. (1.3.3». Let/;= fiX;, 
i=O, 1,2. 

ID.2.S Theorem. Suppose f: (X, Y)-(A, B) as above is the sum of 
two maps fi: (Xi' X 0 U y;)-(Ai' Ao UBi), i = 1, ~ and su~pose. that .the 
map on the intersection ft : H*(Ao, Bo ; CQ)-+ H (X 0' Yo, CQ) zs an zso­
morphism. Then 
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Proof· Consider the exact sequence induced from the map of Mayer­
Viettoris sequences (or the map of triples f: (X, X 0, Y)-+(A, A

o
, B» 

defined by f: 

"·_Kq-I(XO' Yo)-Kq(XI, Xou Y1)+ Kq(X2,XO
u Y

2
) 

- Kq(X, Y)- Kq(X 0, Yo)-+'" 

Since fo* is an isomorphism with coefficients CQ, it follows that 
K*(X 0' Yo; CQ) = 0, and 

llI.2.6. Kq(X, Y; CQ) ;:= Kq(X I, X 0 U Yl ; CQ) + KQ(X2, Xo u Y
2

; CQ). 

Now the map Hq(XI, Xou YI)+Hq(X2, Xou Y2)-+Hq(X, Y) is the sum 
of two maps Hq(Xi, X 0 U Y;)~ Hq(X, X s(i) u Y).24 Hq (X, Y) (where 
s(i) =1= i,s(i) = 1 or 2). Butji(xl)ujHx2) E imageH2q(X, (Xl u Y)u(X 2 u Y» 
using the relative cup product between Hq(X, X I u Y) and Hq(X, X 2 u Y). 
Since XI UX2 =X, H*(X,(X1 uY)U(X2uY»=0, sojf(x

1
)uj!(X2)=0 

and it follows that (III.2.6) is an orthogonal decomposition. However 
the bilinearform restricted to each fatoris the usualform on Kq(Xi, X 0 u Y;), 
so the bilinear form on Kq(X, Y; CQ) is the sum, and hence 
1(f)=I(fd+I(f2)' 0 

If (X, Y) is a Poincare pair of dimension m = 4k we may consider 
the symmetric pairing 

H2k(X, Y; CQ)®H2k(X, Y; CQ)-+<Q 

given by (x,y)=(xuY)[X]. 

ID.2'; ~mma. K2k(X, Y; ~ and f*(H2k(A, B; <Q» are orthogonal 
under the pairing. . 

Proof. (x, y) = (xu y)[X] = «;*x)u y)[X] where j: X -(X, Y). But 
j* K2k(X, Y) C K2k(X), and by (1.2.9), K2k(X) is orthogonal to f* H2k(A, B), 
so the lemma follows. 0 

Thus we may defme leX, Y) = signature of (,) on H2k(X, Y; <Q). 

ID.2.S Theorem. l(f) = leX, Y) - leA, B). 

Proof· By (III.2.7), H2k(X, Y;CQ)=K2k(X, Y;<Q)+f*H2k(A,B;<Q) 
as ari orthogonal direct sum, so that the inner product is the sum of 
those on the factors. But the inner product on f*H2k(A,B;~ is the 
same as that on H2k(A, B; <Q) so that it follows that I(X, Y)= l(f)+ I(A,B) 
and the result follows. 0 

Ill.2.9 Theorem. Let f: (X, Y)-(A, B) be a map of degree 1 of 
Poincarepairs of 4imension m = 4k. Suppose (f I Y)* : H*(B; <Q)_ H* (Y; <Q) 
is an isomorphism, and that f is cobordant reI Y to f': (X', Y)-(A, B) 
such that f'*:H*(A;<Q)-H*(X';<Q) is an isomorphism. Then 1(f}=0. 
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Proof. Let U be the cobordism reI Y between X and X' so that 
au =XuX', X nX' = Y, (U, aU) a Poincare pair of dimension m+ 1, 
orientations compatible, and F: (U, Y)-(A, B) such that FIX = f, 
FIX' = 1'. We may consider F as a map of degree 1, 

G: (U, XuX')-(A x I, A x OuB x IuA xl). 

By (111.2.4), I(GIXuX')=O, and by (111.2.5) I(GIXuX')=I(f)-I(f'). 
Now 1(1')=0 since 1'* is an isomorphism, and hence I(f)=O. 0 

§ 3. Normal Maps, Wu Classes, and the Defmition of (J for m=41 

Let (X, Y) be a 7lz~Poincare pair of dimension m. Define a linear map 

by li(x) = (Sqi x) [X] where [X] e Hm(X, Y; 7lz) is the orientation class. 
By Poincareduality, Hi(X ;71z)® ~-i (X, Y;71z)J....471z, (x,y)=(xuy)[X] 
is a non~singular pairing, so that Hi(X,712) is isomorphic, using this 
pairing to Hom(Hm-i(X, Y;71Z),712) and hence li(x) = (x, Vi) for some 
Vi e Hi(X; 7l2), any x e Hm- i(X, Y; 7l2). 

m.3.t Definition. V = 1 +Vl +V2 + ... istlte Mil class of X, vieHi(X;712). 

m.3.2 Proposition. Let (X, Y), (A, B) be 7l2~Poincare pairs of di~ 
mension m, f: (X, Y)-(A, B) a map of degree 1 (mod 2), so f*[X] = [A]. 
Then vi(X) = Vi + f*(Vi(A»), where Vi(X) e Hi(X; 7l2), vi(A) e Hi (A ; 7lz) are 
the i~th Mil classes and Vi e Ki(X) ~ (kernellX*)i, oc* : Hi (X ; 7l2)-Hi(A; 7lz) 
the natural splitting map for f*. 

Proof. Let xe~-i(A,B;71z)' Then f*(SqiX)=Sqi(f*X), so 

(f* x, Vj(X») = Sqi(f*(X») [X] = (f* (Sqi x») [X] = (SqiX) (f*[X]) 

= (Sqi x) [A] = (x, vi(A»). 

Since (x,y)=(f*x,f*y), we have (f*x, Vj(X») = (f*x,f*vi(A»), any 
x e Hm-l(A~B;71z), so Vi(X) - f*vi(A)e annihilator f* Hi(A, B;712) 
= (keroc*)i = Ki(X; 7lz) by (1.2.9). 0 

m.3.3 Proposition. With notation as in (III.3.2), suppose that m = 2q. 
Then the pairing (,) on Kq(X, Y;71 2) is symplectic «x,x)=O all x) if 
and only if f*vq(A) = vq(X). 
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Prc:of . (x,x)= x2[X] = (SqqxnX] = (XUVq(X») [X] for xeHQ(X, Y;712), 
and Since Kq(X, Y; 7l2) and (lmage f*)q are orthogonal by (1.2.9), 
(x, j*~(A»)=O for xeKq(X; Y; 7l2). ~ence for xeKq(X; Y; 7l2), (x, x) 
= (x, vq) by (111.3.2). Then (x, x) = 0 if and only if v = V (X) -f*v (A) 
= O. 0 q q q 

m.3.4 Corollary. Let (X, Y), (A, B) be oriented Poincare duality pairs 
of dimension m = 41, and let f: (X, Y)-(A, B) be a map of degree 1. If 
r*V21(A)=v2I(X), then the pairing (x,y)= (xuy) [X], (x,yeK*(X, Y)/Tor~ 
szon, [X] e Hm(X, Y) the orientation class) is even. 

Proof· By (III.3.3), f*V21(A) = V21(X) implies that the pairing 
( , h, (x, yh = (x u y) [X], x, y e K 21 (X, Y; 7l2) is symplectic. If 

'1: H*(X, Y)-H*(X, Y;71 2) 

is induced by reduction mod2, then 

('1 x,'1yh =('1 XU'1y)[X] = ('1(xuy») [X] = (x,y)mod2, for x,yeKZI(X, Y). 

Since (, his symplectic, ('1 x, '1xh = 0, so (x, x) is even for x e KZI(X, Y). 0 

m.3.S Corollary. Let (X, Y), (A, B) be oriented Poincare pairs of 
dimension m = 41, f: (X, Y) - (A, B) a map of degree 1 such that 
(fl Y)*: H*(Y)-H*(B) is an isomorphism. If f*(vZI(A») = V21(X), then 
I(f) is divisible by 8. 

Proof· By (III.3.4), (,) is even on KZI(X, Y)/Torsion, and (flY) an 
isomorphism implies (, ) is non~singular (see III, § 2). Hence by (III.i.4), 
signat~re of ( , ) is divisibleny 8, Then 

KZI(X, Y; <Q)= (KZI(X, Y)/Torsion)®<Q, 

so signature ( , ) == I (f). 0 
Now we investigate the Wu class V and show that normal maps 

preserve the Wu class. 
Let (X, Y) be a pair, and let ~k be a fibre space over X with fibre F 

such that H*(F; 7l2}= H*(Sk-l; 7l z). We recall from (I, § 4) (see also n. § 2) 
if we set T(e) = XucE(e) using the projection of ~ as the attaching'map, 
then there is a Thom class U e Hk(T(~); 7lz) such that 

u U: Hq(X;712)_Hq+k(T(~); 7lz) 

u U: Hq(X, Y; 7l2)-Hq+k(T(~), T(~ I Y); 7lz) 

nU: Hs(T(~),' T(~ I Y); 7lz)-Hs-k(X, Y; 7lz) 

nU: Hs(T(e); 7l2)-Hs-k(X; 7l2) 

are isomorphisms. Let h:1tr(A, B)-Hr(A, B;712) be the Hurewicz hom~ 
morphism mod 2. 
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ID.3.6 Proposition. Let (X. Y) be a 7l.2-Poincare pair of dimension m, 
~k a fibre space over X with fibre F a 7l.2 homology (k -I)-sphere, 
IX E 1tm+k(T(~), T(~ I Y» such that (h(IX»n U = [XJ E Hm(X, Y; 7l.2), the 
fundamental class of (X, Y). Then V(X)u U = Sq-1(U). 

Proof. V = V(X) E H*(X; 7l.2) is characterized by the equation 
(x, V)=(Sqx)[X], any xEH*(X, Y;7l. 2)· Ify is a cohomology operation 
which raises degree, since h(lX) is spherical, (y z)(h (ex» = 0, any 
ZE H*(T(~), T(~ I Y); 7l.2)' Now Sq-1 = 1+ X(Sq1) + "', so 

(Sq -1 z) (h(ex» = (z) (h(ex». 
Hence 

(Sq x) [XJ = (Sq x) (h(ex)n U) = (Sq xu U) (h(ex» = 
(Sq-1(Sqxu U» (h(ex» = (xuSq -1 U)(h(IX» = (xu V')[X] = (x, V') 

where Sq -1 U = V' u U. But V is characterized by this equation so V' = V 
and Sq -1 U = Vu U. 0 

We recall that the Thom class U E Hk(T(~); 7l.2) is characterized by 
the fact that j*(U) generates Hk(EF; 7l.2) =7l.2, where j: EF ----'> T(~) is the 
inclusion of' the Thom complex over a point into the whole Thom 
complex. 

ID.3.7 Proposition. Let b: ~----'>~' be a map of fibre spaces over 
f:X----'>X', where ~,~' have fibre F, H*(F;7l.2)=H*(Sk-l;7l.2)· Then b 
induces a map of Thom complexes T(b): T(~)----,> T(O, and T(b)*(U1 = u, 
U' = Thom class in Hk(T(O; 7l.2), U the Thom class in Hk(Tm; 7l.2)· 

Proof. Let E, E' be the total spaces of ~,~' respectively, so that the 
following diagram commutes: 

F~E~X 

11 lb if 
F~E' ·~X'. 

Hence f, b induce 

T(b):X U cE-+X' U cE' 
" ,,' 

and the diagram 

EF~Tm 

11 1 T(b) 

EF~TR') 

commutes. Hence j'!' T(b)*(U') = j'*(U') so that j* T(b)*(U') generates 
Hk(EF;7l.2) and hence T(b)*(U') = U. 0 
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ID.3.8 Corollary. Let (X, Y), (A, B) be 7l.r Poincare pairs of dimension 
m, e' a fibre space over A with fibre F a (k -1) dimensional7l.2-homology 
sphere. Letf: (X, Y)----'>(A, B) bea map of degree 1 mod 2, and let ~= f*(e'). 
Suppose there is an element ex E n,..+JT(~), T(~ I Y» such that h(ex)n U = [X], 
the fundamental class in Hm(X, Y; 7l. 2 ), U E Hk(T(~); 7l.2) the Thom class, 
h the Hurewicz homomorphism. Then f*(V(A» = V(X), in particular 
f*viA) = vq(X), all q. 

Proof. By (111.3.7), if b: ~ ----'>~' is the natural map, T(b)* U' = U. 
Setting V(X) = V, V(A) = V', we have, using (111.3.6), T(b)*(V'u U') 
= f*V'u T(b)*U' = f*(V')uU = T{b)*(Sq- 1 U')=Sq- 1T(b)*U'=Sq-1 U 
=VuU. Hencef*V'=V. 0 

llI.3.9 Theorem. Let (X, Y), (A, B) be oriented Poincare pairs of 
dimension m = 41, let f: (X, Y) --+ (A, B) be a map of degree 1 such that 
(fl Y)* is an isomorphism, and let ~' be a fibre space over A with fibre 
F a 7l.r homology (k - 1 )-sphere. Set ~ = f*~' and suppose there is 
exE1tm+k(T(~), TWY»such that h{ex)n U = orientation class of (X, y) mod2, 
(where U E Hk(TW; 7l.2) is the Thom class, h = Hurewicz homomorphism}. 
Then I (f) is divisible by 8. 

Proof. By (111.3.8), f*v 2Z (A) = V2Z(X~ so by (III.3.5), I(f) is divisible 
by 8. 0 

Let (f, b) be a normal map, f: (M, aM)----'>(A, B) a map of degree 1, 
Mm a-smooth oriented m-manifold with boundary, (A, B) an oriented 
Poincare pair of dimension m, m = 41, and b : v ----'>'1 is a linear bundle map 
covering f, v the normal bundle of (M, aM) C(Dm+k, sm+k-1), '1 a k-plane 
bun<Jle over A. 

IIl.3.10 Coroilary. If (f, b) is a normal map with (floM)* an isomor­
phism, then I (f) is divisible by 8. 

Proof. The pair (f, b) satisfies the conditions of (111.3.9) where ~' = '1 
is a linear bundle over (A, B). 0 

ID.3.11 Defmition. Let (f, b) be a normal map f: (M, oM)----,>(A, B), 
etc. with (floM)* an isomorphism, m = dimension M = 41. Define 
(1(f, b) = V (f) E 7l.. 

Then (I1.l.1~ the Invariant Theorem, follows for m = 41 from (111.2.9). 
The Addition Property (11.1.4) follows from (111.2.5), the Cobordism 
Property (11.1.5) follows from (III.2.4). For the Index Property (11.1.6) 
we note that by (III.2.8~ 8(1(f, b) = I(f) = Index M - IndexA, and by 
the Hirzebruch Index Theorem [30J, 

Index M = (LZ(Pl ('M), ... , pz{-rM») ([M]) = (Lz(P1 (v- 1), ... , pz(v-1»)(MJ 

= (Lz(p1 ('1- 1
), •.. , pz('1-1 ») [AJ 
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where [AJ is the orientation class in H 41(A, B). This proves the Index 
Property (Il.1.6) (recalling that A = X, 11 =~, k = I to retrieve the original 
notation). 

§ 4. The Invariant c(j, b) 

Let (X, Y) and (A, B) be oriented Poincare pairs of dimensio~m = 2q, 
and let f: (X, Y) -+(A, B) be a map of degree 1. Let ~ be the Spivak normal 
fibre space of (X, Y) and 11 that of (A, B), and let 0( E 1tm+k(T(~), T(~ I Y)~ 
PE 1tm+k(T(11), T(111 B») be the elements defined in (1.4.4) such that· 
h(O()n V~ = [XJ, h(p)n V" = [AJ, where l.!~ E Hk(T(~»), V, E H

k
(T(11») are 

the respective Thom classes, h the HureWlCZ homomorphlsm. Let b: ~-----+11 
be a map of fibre spaces over f. We shall call the pair (f, b) a normal 
map of Poincare pairs, (compare 1I, § 1). 

Normal cobordism and normal cobordism relB is defined analogously 
(c.f. 1I, § 1). 

By (1.4.15), T(~) is (m + k+s)-dual to T(gS)/T(BslY)~ES(X/Y), 
(gS = trivial bundle over X) and T(11) is (m + k + s)-dual to ES(A/B). Hence 
for a normal map (j, b), T(b): T(~)- T(11) is (m + k + s)-dual (k very 
large) to a map g: ES(A/B)-----+ES(X/Y). 

In fact we will only use mod2 properties of these things in defining 
c(f, b). Thus it is possible to weaken tbe hypotheses, for example.to 
(X, Y) and (A, B) 7l2-Poincare pairs, with appropriate fibre spaces with 
71. 2 homology spheres as fibre in place of the Spivak normal fibre space etc. 

The map g may be related to certain maps constructed in Chapter 1. 
Recall that in Chapter 1, § 2 we defined 0(*: H*(X/Y)-H*(A/B) by 
[AJnO(*(x) = f*([XJ n x), for xEH*(X/Y), [XJ,[AJ the orientation 
classes of (X, Y), (A, B) respectively. Let E*: Hq(K)-Hq+S(E'K) be the 
suspension isomorphism for any space K. 

111.4.1 Theorem. g* E* = E*O(*. 

Proof. By (1.4.14) the condition that T(b) and g are (m + k + s) dual is 
equivalent to the commutativity (up to homotopy) of the following 
diagram: 

sm+k+s ) T(~) /\ E'(X /Y) 

y'1 1 T(b)A1 

T(11) /\ ES(A/B) ~ T(11) /\ ES(X/Y). 

Here Y and Y' are defined as in the proof of (1.4.15). In particular 
Y*(I)nV~nV=L1*[xJ, and Y~(I)nV"nU'=L1~[AJ, where IEHm+k+s(sm+k+s) 
is the generator, V E H"(E" X +), V' E HS(E" A+) are Thom classes, 

J , 
f 
{ 
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(considering ES(X/Y) as T(B)/T(Bl Y) etc.) so that E* X = xu V,X E H*(X/Y~ 
etc. and L1 : (X, Y)-----+ X x (X, Y) and L1': (A, B)-A x (A, B) are the diagonal 
maps (see diagram (*) in the proof of (1.4.15»). 

It follows that 
Y~(l)/g*(xu V) = T(b)*(Y*(I)/(XU V»). 

But (Y*(l)/(XU V»)n V~ = (Y*(l)n V~n V)/x = L1*[XJ/x = [XJnx. But 
V~ = T(b)* V" so that . 

(T(b)*(Y*(I)/(xu V»))n V" = f*«Y*(I)/XU V)n V~) = f*([XJnx). 

Now in a similar way, if g*(xu V) = yu V', it follows that 

(Y~(I)/g*(xu V»)n V" = (Y~(I)/(Yu V'»)n V" 

= Y~(I)n V"n V'/y = L1~[AJ/y = [AJny. 

Hence [AJn(E*-lg*E*x) =f*([X] nx), so E*-1 g*E*x=0(*x, so 
g* E* = E* 0(* . 0 

111.4.2 Corollary. If (j, b) is a normal map of Poincare pairs, 
f: (X, Y)-----+(A, B), then ESf: ES(X/Y)_ES(A/B) is a domination for 
sufficiently large s, i.e. ES f has a homotopy right inverse. 

. Proof. Consider (Esf)g: ES(A/B)-tES(A/B). Then 

E*-l(Esf)g)* E* = E*-1 g*(Esf)* E* = E*-1 g*E*f* 

= E*-1E*0(*f* =O(*f* = 1 

by (IlIA. 1 ) and (1.2.5). Hence h = (ES f)g induces isomorphism on 
H*(~S(A/B)} and hence on H*(ES(A/B»). It follows that h is a homotopy 
equivalence and therefore (gh -1) is a homotopy right inverse for (ES f). 0 

111.4.3 Corollary. For normal maps the splitting map 0(*: H*(X/Y) 
-+ H*(A/B) commutes with stable cohomology operations. In particular 
0(* Sqi = Sqi 0(*. 

Proof. E* 0(* = g* E*, so 0(* = E* -1 g* E*, and since g* and E* com­
mute with stable cohomology operations, so does 0(*. 0 

This gives us anotber proof of the factthat (x, x)=Oforx E Kq(X, Y;7L2) 
(see Ill. § 3). For Kq(X, Y) = (kerO(*)q, and 

(x, x)= x2[X] = (Sqqx)[XJ = (Sqqx)(O(*[AJ) 

= (O(*Sqqx)[AJ = (SqqO(*x)[AJ =0. 

Now we shall use the map g and (III.4.1) to construct a quadratic 
form on Kq(X, Y; 71.2), The construction follows that in [7]. 

Recall that (see [55J) the Eilenberg-Mac Lane space K(7L2, q) is a 
space sqch that 1ti (K(7L2,q»)=0 for i:4=q and 1tq(K(7L2,q»)=7L2. It is a 
simple consequence of obstruction theory that this condition deftnes 
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the homotopy type of K (Z2' q) uniquely in the category of C W complexes 
and that homotopy classes of maps of a CW-complex L into K(Z2.' q) 
are in one-to-one correspondence with elements x e Hq(L; Z2), I.e., 
e: [L, K(Z2' q)J-Hq(L;Z2) is a 1-1 correspondence where e(f)= f*(z), 
z is the generator of Hq(K(Z2' q); Z2) = Z2' 

Let xeHq(X/Y;Z2)' xe(kernela*) so that g*(1'*x)=O, and let 
q>:X/Y-K(Z2,q) be a map such that q>*(z)=x. Take h=(.r'fji)g 

1"(A/B) ~ 1"(X/Y) ~1" K(Z2' q). 

Now we recall the definition of functional cohomology operation, 
due to Steenrod [61]. Let w: Hn(x; G)_Hn+k(X; G') be a stable coho­
mology operation, (e.g. Sqk) and let f: K-L be a map of spaces. Let 
x e Hn(L; G) such that 

(i) f*(x) = 0 and 
(ii) w(x) = O. 
Then the functional operation Wj(x) is dermed as an element of 

H n+ k - 1(K; G') 
wHn l(K;G)+f*Hn+k l(L;G') 

defined using the exact sequence of f : 
--">Hn-l(K; G) li ) Hn(f; G)~ Hn(L; G)~ Hn(K; G)--"> 

loo loo loo loo 
Hn+k-l(L; G')--4 Hn+k-l(K; G')~ Hn+k(f; G')--4Hn+k(L; G')--4 Hn+k(K; G'). 

Sincef*x=O, by exactness x=j*y,yeHn(f;G). Now 

j*wy=wj*y=wx=O, 

so by exactness, wy= c;z, Z e H,,+k-l(K; G'). Then z represents Wj(x). 
Now c;f* = 0, so at t~e last step z is only well defin~~odf* Hn+k

-
1(L; G'). 

Also, j* 15 = 0, so Y IS only well defined mod 15 Hn (K; G), so that W y IS 
only well defined mod wc;Hn-l (K; G) = c;wHn- 1 (K; G), (since w is a stable 
cohomology operation). Hence z is only well dermed 

modf*Hn +k - 1(L; G')+wHn- 1(K; G). 

Returning to our situation, we have 

1"(A/B)~1"(X/Y) xstp) 1"K(Z2,q), h=(1"q»g, q>*z =xeHq(X/Y;Z2) , 

where h*(1"z)=O. Then the operation Sqq+l(Z)=O in H*(K(Z2,q);Z2) 
since dimz=q and Sqk(C)=O if dimc<k. Hence we may define the 
functional operation Sqz+l(1"(Z») e H2q+'(1"(A/B); Z2) 

modh*(H2q+S(1's K(Z2' q);Z2)) + Sqq+l Hq+s-l(1'S (A/B); Z2)' 
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llI.4.4 Lemma. The indeterminacy imageh* + imageSqq+l = O.(Com­
pare [7, (1.1)].) 

Proof. Since HQ+s-l(1"(A/B); Z2) =1" HQ-l(A/B; Z2), and since SqQ+l 
is identically zero on Hq -1 (A/B; Z2) for dimensional reasons, it follows 
that imageSqQ+l = 0 in H2Q+'(1'S(A/B); Z2)' By a theorem of Serre [52], 
H 2Q(K(Z2' q);Z2) is obtained by acting with the Steenrod algebra d 2 0n 
z e HQ(K(Z2' q); Z2)' It follows that H2q+,(1" K(Z2' q); Z2) is obtained 
from 1"(z) by action of d 2. Then h*(1"(z») = 0 implies 

h*(a.r'(z» = ah* 1"(z) = 0 

for a e d 2, and hence h* H 2Q+'(1" K(Z2' q); Z2) = O. D 

ill.4.S Definition. tp:KQ(X, Y;Z2)-Z2 by tp(x)=(Sqz+l(1"(z»))(.ES [A]) 
where h etc., is as above. 

ill.4.6 Proposition. tp is a quadratic form on KQ(X, Y; Z2) and its 
associatedbili~ear formis(,), where(x,y) = (xuy)[XJ,forx, ye KQ(X, Y;Z2)' 

Proof. We outline the proof briefly referring to [7, (1.4)] for the 
details. Set M = X /Y. 

Let Xl' x2 e HQ(M; Z2) such that a*xl = a*x2 = O. Let q>j:M-K(Z2' q) 
be such that q>i(z) = Xi' i = 1,2, and let q> be the composite 

M~MxM tplXtp2)KxK~K, 

K=K(Z2,q), Ll(m)=(m,m), meM, J.l. is the multiplication map in K. 
Then (p*(z) = Xl + x2 • 

Then 1"q>: 1"M_1'sK is the composite of the suspended maps. For 
any X and Y, we have natural homotopy equivalences 

e: 1'X v l' Yv 1'(X /\ Y)_1'(X x Y) 

where e=1'i+1'j+h(l), i:X-Xx Y by i(x)=(x,*), j: Y-Xx Y, 
j(y) = (*, y), * denoting base point, and h(l) is the Hopf construction on 
the identity 1 : X x Y - X x Y, (see [55J and [59J). Here + denotes the 
sum of maps in the group of homotopy classes of 

[1'X v1' Y v 1'(X /\ Y), 1'(X x Y)] . 

It then follows from naturality that 1'S A/ B ~1" M E!41's K is the sum 
of three maps el + e2 +y where ei = E'q>jo 1'[, and 

y = 1',-1 h(j..t.) ° 1"(q>l /\ q(2) 01" A 01'[, 

where A is the composite 

M~MxM-M /\M, fl /\f2:M /\M-K/\K, 

h(J.l.) is the Hopf construction on J.l. : K x K ~ K. 
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It is an easy exercise to show that 

Sqr~:~~2+y)(,PI) = Sq~~l(l7sl) + Sq~:l(l7sl) + Sqrl (l?I). 

Setting (= Es - 1h(p.): E' K A K-+l7'K, we have (*(17'1) = 0, so Sq~+l(ES(I») 
is defined, and since the indeterminancy of Sq~+ 1 is zero in 
H 2q+S(l7' K A K; Z2) (since Hi(E' K A K; Z2) is zero for i < 2q + s) it 
follows that 

Sq~+l (17'(1») = '1* 0 (l7s ,1)* 0 (l7s({Jl A ({J2)* Sql+l (17'(1». 

Now «l7'({JlA ({J2)' (l7s ,1»)* = (l7S«({JIA ((J2) 0 J))* and «({JlA ((J2) 0 Xf(IA I) 
= Xl UX2 E H 2q(x/y; Z2) (recalling we have set M = X/Y). Now 
Sq%(tf(l7(,») = 17(1 A I) E H 2q+l(E K A K; Z2), as is easily shown by an 
argument analogous to [59, (5.3)]. It follows now that 

1p(Xl + x 2) = 1p(x1) + 1p(X2) + (Xl UX2) [X]. 0 

Now if (fl Y)*:H*(B;Z2)-+H*(Y;Z2) is an isomorphism, it follows 
from (1.2.9) that ( , ) is non-singular on Kq(X, Y; Z2) (~ Kq(X; Z2»)' Then, 
by Ill. § 1, the Arf invariant c(1p) is defined. 

111.4.7 Defmition. Let (f, b) be a normal map of Poincare complexes 
f: (X, Y)-+(A, B), and suppose that (f I Y)* : H*(B; Z2)-+ H*(Y; Z2) is 
an isomorphism. Then define the Kervaire invariant c(f, b) = c(1p), the 
Arf invariant of t· 0/ . 

Now we will proceed to develop the properties of c(f, b). 
Let (f, b) be a normal map, f: (X, Y)-+(A, B) etc., and suppose in 

addition that Y and B are sums of Poincare pairs along the boundaries 
and f sends summands into summands. In p~rticular, we suppose 
Y = Yl U Y2, Yo = Yl n Y2, B = Bl U B2, Bo = Bl nB2, f("Yt) CBi' and that 
(Bi, Bo), ("Yt, Yo) are Poincare pairs compatibly oriented with (X, Y) and 
(A, B) (see I. § 3). If ~, '1 are the Spivak normal fibre spaces of (X, Y) 
and (A, B) then ~ I "Yt, '11 Bi are the corresponding Spivak normal fibre 
spaces, so that if /; = fI"Yt, b, = bl(~1 YJ then (/;, bi) are all normal maps, 
i=O,l,2. 

We note that ifft: H*(B2;Z2)-+H*(Y2 ;Z2) is an isomorphism then 
it follows from (1.2.6) and (1.2.7) that ft: H*(Bo;Z2)-+H*(YO;Z2) is an 
isomorphism. 

ID.4.8 Theorem. Let (f, b) be a normal map as above, so that fl Y 
is the sum of fl and f2 on Yl and Y2 etc. Suppose ft: H*(B2; Z2)-+ H*(Y2; Z2) 
is an isomorPhism. Then C(fl, bl)=O. 

This theorem has the following corollaries: 

ID.4.9 Corollary. If (f, b) is a normal map and is normally cobordant 
relY to (j',b /),j'*:H*(A,B;Z2)-+H*(X',Y;Z2) an isomorphism, then 
c(f, b)=O. 
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ID.4.10 Corollary. If (f, b) is a normal map, f: (X, Y)-+(A, B), then 
c(fl Y, b I(e! Y») = O. 

It is clear how to derive the two corollaries, in the first using the 
normal cobordism as a normal map, and in the second taking Y

2 
= 0. 

We will utilize some lemmas. 

mA.l1 Proposition. Let (f, b) be a normal map, f: (X, Y)-+(A, B), 
and let g: l7'(A/B)-+E'(X/Y) and gl: 17,+1 B-+l7'+l Y be the duals of T(b) 
and T(bl(~1 Y»). Then the diagram below commutes up to homotopy: 

l7'(A/B) ~ 17' (X /Y) 

J:od'l ISd 1 
E,+l B+ ~ 17,+1 Y+ 

where d: X/Y-+l7~ d' : A/B-+EB+are the natural maps, (considering X/Y 
as X U c Y, and smashing X to a point). 

Proof. We have a commutative diagram 

T(~I Y) T(bl(~IY», T('1IB) 

j 1 j'l 
T(~) T(b) , T(rt} 

where },j' are inclusions. Then the dual diagram commutes: 

l7'(A/B) ~ ES(X /Y) 

~l la 
l7'+1B+~l7'+1y+ . 

It remains to show that a is homotopic to l7'd and al is homotopic to 
ESdI, i.e. that l7'd and} are dual in S-theory, and similarly for ESdI and}'. 
Then (I11.4.11) follows from: 

111.4.12 Lemma. Let (X, Y) be a Poincare pair, ~ its Spivak normal 
fibre space. Then the inclusion j : T(~ I Y)-+ T(~) is (m + k) dual to d, where 
d is the natural map d : X /Y -+ 17 l.f 

Proof. By (1.4.14) the statement is equivalent to the commutativity 
up to homotopy of the diagram 

sm H e I T(~) 1\ (X/Y) 

g'l llAd 
T(~ I Y) A E(Y+) ~ T(~) 1\ l7(Y+). 

We recall the definition of {} and {}I (1.4.15). 
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Consider the map b: ~--+~ x eO, where ek is the trivial fibre space of 
dimension k, covering the diagonal L1 : (X, Y)--+X x (X, Y). We have a 
commutative diagram 

sm+k-1 ~ T(~I Y)~ T(~I Y)/\(Y+) 

1 1 jA1 

T(~I Y)~ T(~)/\(Y+) 

1 i1Ai 

Dm+k a. I T@ Q) , T(~)/\(X+) 

where T(~) /\ X + = T(~ x eO) over X x X, T(~) /\ (Y+) = T(~ x eO I X x Y), 
T(~ I Y) /\ (Y+) = T(~ x eO I X x Y), 0(, 0(' are the collapsing maps, and 
w, w', w" are induced by b and its restrictions. 

Then y'=w'O(':sm+k-1--+T(~Iy)/\(Y+) is the duality map for Y+ 
and T(~ I Y) while the map of pairs 

y = (wO(, w" 0('): (Dm+k, sm+k-1 )--+(T(~) /\ (X +), T(~) /\ (Y+») 

represents the duality map for T(~) and X/Y when the subspaces are 
pinched to a point. Now w" 0(' = U /\ 1 )w' 0(', so we have 

o{y} = U /\ 1)* {y'}, 0 :7tm+k(T(~) /\ (X +), T(~) /\ (Y+»)--+7tm+k-1 (T(~) /\ (Y+». 

As e: Dm+k/sm+k-1--+ T(~) /\ (X +)/T(~) /\ (Y+) = T(~) /\ (X/Y) is induced 
by y, then l:o{y} =d*{e} from the general properties of homotopy 
groups, where d: T(~)/\(X+)/T@/\(Y+)--+l:(T(~)/\(Y+»). Rearranging 
the suspension parameters to make the homotopy equivalence 
h: l:(T(~) /\ (Y+»)--+ T(~) /\ l:(Y+) then shows that hd = 1/\ d and hence 

(1/\ d)* {e} = h*d* {e} = h*l: o{y} = h*l:U /\ 1)* {y'} = U /\ 1)* re'} , 

since 'Ey' = e'. Hence the diagram commutes. 0 
The proof of (IlI.4.S) is based on the following lemma. 

HI.4.13 Lemma. Let (f, b) be a normal map, f: (X, Y)--+(A, B), Yof 
dim2q, and let x E Kq(x; 1:2), Then tp(i* x) = 0, where i: Y --+ X is inclusion. 

Proof. If cp': X --+K(7l.2,q),CP'*(I)=x, then tp(i*x) is defined using the 
composite 

h'l:SB~l:SY~l:SX~l:SKf7I q) . r i. .j.- V'''2 . 

Now l:s-1d': l:.-1 (A/B)--+ l:' B+is of degree 1, so that 

tp(i* x) = (Sqz+1(l:S(I»))(l:·-1 d~[A]) = (Sqz,+1 (l:'(I»)) [A] 
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where h' = h (l:.-1d'). 'Then we have a commutative diagram from 
(IlI.4.11) 

so that h' = (l:' cp')(l:'i)g'(l:·-1 d') = (l:' cp')(l:s i)(I:S- 1 d)g. But 

(l:si) (l:s-ld) = l:s-1«I:i)d) 

and (l:Od is homotopic to a constant as is clear from the representation 

XucY~cXucY~cXucY/XucY 
III III 

l:Y l:X 

(i.e. it is the composition of two consecutive terms in the sequence 

Y --+X --+X/Y --+l:Y --+l:X --+ ... 

which dermes exact sequences for all cohomology theories after Puppe, 
Eckmann-Hilton). Hence h' is null-homotopic, Sqz,+l = 0, and hence 
tp (i* x) = 0. 0 

Proof of Theorem (IlI.4.8). From (1.2.7) we have an exact sequence 
(witp 1:2 coefficients) 

Also i* = Hom(i*, 1:2), so ranki* Kq(X) = trankKq(y). Now since 
KQ(Y2) = 0, it follows that KQ(Y1) = Kq(y), and that 'lP1 = tp, where 'lP1 
is defined by (f1' b1), tp by (f, b). Then by (IlL 1.13) and (IlI.4.13) c(tp) = 0, 
so C(tp1) = c(f1' b1)=0. 0 

Let (f, b), f: (X, Y)--+(A, B) be a normal map of Poincare pairs, and 
suppose (X, Y) and (A, B) are sums of Poincare pairs X = Xl uX2 , 

A=A1uA2, XO =X1 nX2 , Ao =A1nA2, 1';=Xi nY, Bi=Ai nB, 
f(Xi) C Ai' (Xi' X ° U 1';), (Ai' Ao UBi) i = 1, 2, are Poincare pairs oriented 
compatibly with (X, Y) and (A, B) (see 1.3.2). Set 

fo=fIXo:(Xo, Yo)----+I(Ao,Bo), 

and bi the appropriate restriction of b. 

i= 1,2 
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Now suppose that (fl Y)*: H*(B; Z2)-H*(Y; Z2) and 

fo*: H*(Ao;Z2)-H*(XO;Z2) 

are isomorphisms. It follows easily from arguments with the Mayer­
Vietoris sequence that (fi 1 X 0 u 1';)*, i = 1, 2 are isomorphisms so that 
c(f, b), C(fl' bl ) and C(f2' b2) are all defined. 

ID.4.14 Theorem. c(f, b) = c(fl' bl ) + C(f2, b2)· 

Proof. Let lP, lPl and lP2 be the quadratic forms defined on Kq(X, Y), 
Kq(Xl , Xou Yl) and Kq(X2, Xou Y2) respectively. An argument with the 
Mayer-Vietoris sequence (which is really the exact sequence of the triple 
dfpairs (Xo, Yo)C(X, y)C(X, YuXo), where the last pair is replaced by 
the excisive pair (Xl' Xou Yl)U(X2, Xou Y2 ») gives an isomorphism 
Ih +lh:Kq(Xl,XOu Yl)+ Kq(X2, Xou Y2)-KQ(X, Y) where et is defined 
by the diagram 

where the isomorphism comes from an excision, and the vertical arrow 
is induced by inclusion (similar for e2)' 

It remains to show: 

m.4.15 lP(eiX) = lPi(X) for x E Kq(Xi, X 0 U 1';). 

Then lP is isomorphic to the direct sum lPl + lP2' so that 

c(lP) = C(lPl) + C(lP2) 

and the theorem will follow. 
Consider the diagram: 

where a', P' are homeomorphisms, a, P are the natural collapsing maps 
el = (P'P)*, qJ*(l) = XE Kq(Xl , Xou Yl)· The diagram can be shown to 
be commutative (compare (I1IA.11») and a' a is of degree 1. If hI = (EsqJ)gl' 
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then lPl(X)=(Sqz~l(ES(l»))(E'[Al])' Now l:'[AtJ=(a'a) ES[A] so that 
if h~ =hla'a, then Sqz~l(ES(l»)(ES[Al])=(Sq~,+l(ES(l»))(ES[Aj). Now 
h~ = (ES qJ) (p' P)g, and since P and P' are s-fold I suspensions, it follows 
that (EsqJ)(fJ'P)=Es~" qJ':XIY-+K(Z2.q), qJ'*(l) = el(X), Hence 

lP(el x) = (Sqzt 1 (E'(l»)) ES[A] , 

and lPl (x) = lP(el x). 0 
.Now suppose (A, B) is a Poincare complex of dimension m, and ~ is 

a bnear .bun~le over A, g: (M, a~)-(A, B) is a map of degree 1 and 
b: v-~ IS a lInear bundle map, v IS the normal bundle v of (M aM) in 
(Dm+k, sm+k-l); i.e. (f, b) is a normal map in the sense of Ch~pter n. 
Then by (1.4.19), the enriched Spivak uniqueness theorem, there is a 
fibre homotopy equivalence (unique up to homotopy) b': ~-11 such 
that T(b')* (T(b)* (a») = P, where 

aE1tm+k(T(v), T(vlaM»), PE1tm+k(T(I1), T(I1IB») 

are the natural collapsing maps. Then (f, b'b), b'b: V-'1 is a normal map 
in the sense of this chapter, and we define 

a(f, b) = c(f, b' b) E Z2 

if m = 4k + 2 and if(fl aM)* : H*(B; Z2)-H*(aM; Z2)is an isomorphism. 

DI.4.16 Proposition. The value of a(f, b) is independent of the choice 
of P E 1tm+k(T(I1), T(111B»), and thus depends only on the normal map (f, b). 

Proof. Let Pi E 1tm+ k(T(I1), T('11 B») i = 1,2 be two elements such that 
h(Pi)n U~ == [AJ. Then by (IA.19), there is a fibre homotopy equivalence 
e:'1-:-+11 such that T(e)*(Pl)=P2' If bi:~-'1 are fibre homotopy 
equlvalences such that 

T(bi)* lJi) = Pi' i = 1,2 lJi = T(b)* (a) E 1tm+k(T(~), T(~ 1 B»)), 

then b2 is fibre homotopic to eb1, by (I.4.19), so T(b2 ) "" T(e) T(b1). 
It follows that g2 ""g1t, where gi is S-dual to T(b i ), t is S-dual to T(e), 
so t: ES AI B -+ E" AI B is a homotopy equivalence. Hence, for the two 
maps hi: l:' AIB-+EsK(Z2, q), hi = (EsqJ)gj, qJ: MlaM-+K(Z2' q), h2 "'Jli1' 
Hence h,t 

Sqz: 1 (ES(l»)(l:' [A]) 

= Sq;h~l (ES(l»)(ES[A]) = Sqz7 1 (Es1)(t*ES[A]) = Sqz7 1 (l:'1)(ES[A]), 

and the quadratic form lP is independent of the choice of p. 0 
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§ 5. Product Formulas 

In this paragraph we prove the product formula (11.1.7) for a due to 
Sullivan. This generalizes the classical formula for the Index. 

Let Ul,bl), (fi,b2) be normal maps, /;:(Xi, Yi)~(Ai,Bi)' (Xi' Yi), (Ai,Bi) 
Poincare pairs, i = 1,2. Suppose (/; I Yi)* : H *(Yi)~ H * (Bi) are iso­
morphisms. What is the relation between aUl), a(2) and aUl x f2)? 
We note that (fl x f2' bl x b2) is a normal map but the boundary of 
Xl xX2 is o(Xl XX2)=Xl X Y2UYl xX2, so fl Xf2lo(Xl xX2) does 
not induce homology isomorphism except in special circumstances, (see 
111.5.6 below). 

Note that (Xl ®X2, Yl ® Y2) = (Xl' X2)(Yt> Y2) for 

Xl' Yl E H*(Xl> Y1), x 2, Y2 E H*(X2, Y2)· 

Hence the bilinear form on H*(X1 ,Y1)X(X2,Y2);F) is the tensor 
product of the individual forms. 

ID.S.t Lemma. For the tensor product of bilinear forms on VI ® V2, ~ 
vector spaces over R, sgn(Vl ® V2) = sgn(Vl)sgn(V2)' 

Proof. We may assume that we have chosen bases a1 , ••• , ak for 
V1 and b1 , ••• ,bl for V2 so that (ai,aj)=(bi,bj)=O for i=t=j, i.e. they are 
in diagonal form .. Then ai®bj is a basis for VI ® V2 which puts it in 
diagonal form. Now if Pl = number of ai such that (ai' ail > 0, nI = number 
ai such that (ai' ai) < 0, (similarly P2, n2), then the number of ai®bj 
such that (ai® bj, ai® bj) > 0 is PlP2 + nl n2, since if(ai, ail (bj, bj) > 0, both 
(ai' ail and (bj, bj) are simultaneously + 1 or - 1. Hence while 

sgn(Vl) = Pi - ni' i = 1,2, 

we also have 

Sgn(Vl ® Vz) = PIP2 + n1n2 - Pln2 - n1P2 = (PI - nd (P2 - n2) 

= sgn(Vl)sgn(V2) . 0 

111.5.2 Lemma. Let dim Xl = 4m, dim X 2 = 4n. The restriction of ( , ) 
on 1:Hi(X1 , Y1)®Hj(X2, Y2) for i=t=2m, j=t=2n, i+j=2(m+n), has 
signature O. 

Proof· If a E Hi(X l' Y1), a' E Hj(X l' Y1), i> 2m, j> 2m, then 
aa'EHi+j(Xl , Y1)=0, so (a,a')=O and (a®b,a'®b')=O, (similarly for 
b, b' E H*(Xz, Y2»). Now 1: Hi(X1, Yl) ® Hj(Xz, Y2) i =t= 2m, i + j = 2m + 2n 
= L H

j 
® Hj + L Hi ® Hj. Hence the first and the second are self-

i>2m j>2n 

annihilating subspaces. It follows that the signature is zero, (compare 
with (111.1.2»). 0 
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ID.S.3 Proposition. If dim Xl = 4m, dimX2 =4n, then 

I(Xl x X 2)= I(Xdl(X2). 
Proof· 

H 2 (m+n)(x l , Yd X (X
2

, Y
2

») 
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= . L Hi(Xl , Yl)®Hi(Xl , Yz)+ H 2 m(Xt> Yl )®H2,,(X
2

, Y2) 
.*2m 

as an orthogonal direct sum. By (11I.5.2) the signature of the form on 
the first summand is zero and by (1I1.5.1) the signature on the second 
is the product of the signatures. 0 

ID.S.4 Theorem. Let!t : (X j , ¥;)~(Aj, Bj), i = 1,2 be maps of degree 1 
with dim Xl =4m, dimX2 =4n. Then 

IUl x f2) = IUl) I(A 2) + I(Al) I(2) + l(fl) I(2)' 

Note that this formula together with the relation aU) = 81(f) yields 
(I. 1.7) (i). 

Proof. By (111.2.8), 

IUl x f2)=I(Xl x X 2)- I(Al x A2)= I(Xl) I(X2)- I(Ad I(A2)' 

by (111.5.3). Now I(Xj) = I(Aj) + l(ft), so 

IUl x f2) = (I(Al) + IUl») (I(A 2) + IUl») - I(Ai) I(A2) 

= I(Al) I(2) + IUl) I(A2) + IUl) l(f2)' 0 

ID.S.S Remark. If dim Xl xX2=4k and dim Xi $ 0(4) i= 1 or 2, then 
IUl x f2) = 0 and (III.5.4) still holds. 

Proof. If dim Xi is odd i = 1 or 2, (III.5.2) gives the result. If 
dimX1 =2m::2(4) then (,) on ~(X1' Yl) is skew symmetric so that 
(x, x) = 0 for X E ~(X l' Y1 ; R). Hence there is a symplectic basis for 
Hm(x1, Yl;R), {aj,b j} with (ai,aj)=(bj,bj)=O, (ai,bj)=(jij. Let A = sub­
space spanned by the aj's, B == subspace spanned by the bt's. Then 
A®H"(X2, Y2) is a self-annihilating subspace of half the dimension of 
!l"'(Xl , Yl)®H"(Xz, Y2), hence the signature on ~(Xl' Yl )®H"(X2, Y2) 
1S zero so the result follows from (111.5.2) as in (111.5.4). 0 

There remains one case to consider, i.e. what is aUl x f2) when the 
dimension of X 1 x X 2 is 4k + 2 and a is defined. Namely to define a in 
~his case i~ is n~cessary that f1 x f21 o(X 1 x X 2) should induce homology 
1somorph1sm w1th 'Il2 coefficients. 

ID.S.6 Lemma. Suppose j; : (Xi' ¥;)~(Ai' Bj) are maps of degree 1, 
and suppose Uti ¥;)*: H*(¥;, G)~H*(Bj; G) are isomorphisms G='Il ora 
field, i = 1, 2. Then fl x f21 o(X 1 xX 2) induces an isomorphism 

H*(o(Xl x X 2); G)~H*(o(Al x A2); G) 
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if and only if for each i = 1,2, either (i) ¥; = 0 = Bj or (ii) 

fi+1 : H*(Xi+1; G)--+H*(Ai+1; G) 

is an isomorphism, (i + 1 = 1 if i = 2). 

Proof. Recall that O(X1 XX2)=X1 x Y2UY1 xX2, with 

Y1 x Y2 = XIX Y2 n Y1 x X 2 , 

(similarly for O(A1 x A2»). Since (fd ¥;)*: H*(¥;; G)--+H*(Bi; G) are iso­
morphisms i = 1,2, it follows that 

(f1 x f21 Y1 x Y2)*: H*(Y1 x Y2; G)--+H*(B1 x B2; G) 

is an isomorphism, from the Klinneth formula. Consider the map of 
Mayer-Vietoris sequences induced by f1 x f2 on o(X 1 x X 2) into 
O(A1 x A2), and since f1 x f2 induces isomorphism on the intersection 
Y1 x Y2 into B1 x B2 it follows that 

ker(f1 x f21 o(X 1 x X 2»)* ~ ker{f1 x f21 Y1 xX 2)* + ker{f1 x f21X 1 x Y2)* . 

If Y1 =F 0 then 1 ® ker f2' C ker{f1 x f21 Y1 x X 2)* and if Y2 =F 0 then 
(kerf1)* ® 1 C ker{f1 x f21 Xl xX 2)*' Hence if (f1 x f21 o(X 1 xX 2»)* is an 
isomorphism, and if ¥; =F 0 then kerfi + 1* = 0 and 

li+1': H*(Xi+1; G)--+H*(Ai+1; G) 

is an isomorphism, since maps of degree 1 are onto in homology. 
On the other hand if either Y1 = 0 or f2' is an isomorphism, then 

either Y1 x X 2 is empty or (f1 x f21 Yl x X 2)* is an isomorphism (simi­
larly for' X 2 x Yd. Hence (fl x f21 o(X 1 xX 2»)* is an isomorphism. D 

111.5.7 Theorem. Let (fi' bi) be normal maps, fi: (Xi' ¥;)--+(Ai' Bi) 
i = 1, 2, and suppose 

(fl x f2lo(Xl x X 2»)*: H*(o(X1 xX 2);Z2)--+H*(o(Al x A2);Z2) 

is an isomorphism. Then 

c{fl x f2' b1 x b2) = X(A 1) C(f2' b2) + C(f1' b1) x(A 2) 

where X denotes the Euler characteristic. 

This implies (11.1.7) (ii). 
Note that if either dimension is odd C{f1 x f2' bl x b2) is auto­

matically zero. Also (111.5.7) and (111.5.5) together completely determine 
U(fl x f2) when it is defined. 

The proof proceeds by a sequence of lemmas and takes up the 
remainder of this section. 

I , 
I 
r 
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Let gi: E'(A;/Bj)--+ E'(Xi/¥;) be the S-duals of T(bi): T(~i)--+ T('1i), 
i = 1,2, as at the beginning of § 4, and let 

g: Et(Al x A2/0(Al X A2»)--+Et(Xl x'X2/O(X1 x X 2») 

be the S-dual of T(b1 x b2) : T(~l x ~2)--+ T('11 X '12), where ~i' '1i are the 
Spivak normal fibre spaces of Xi' Ai respectively so that ~l x ~2' '11 X '12 
are the Spivak normal fibre spaces of Xl xX2,A1 xA2. Recall that 
O(AIXA2)=AIXB2UBlXA2 (similarly for O(Xl XX2») so that 

Al x A2/0(Al x A2) = (At/B1) 1\ (A2/B2) 

and Xl XX2/0(Xl X X 2)= (Xt/Yl) 1\ (X2/Y2). If we let s be sufficiently 
large and t = 2s we get: 

111.5.8 Lemma. 9 is homotopic to gl 1\ g2' 

Proof· T(~l x ~2) = T(~l) 1\ T(~2)' T('11 x '12) = T('1l) 1\ T('12) and 
T(b1 x b2) = T(bl ) 1\ T(b2). The result then follows from the fact that 
S-duality preserves 1\ products, (which follows easily from (1.4.14). D 

m.5.9 Lemma. With a field of coefficients, 

K*{f1 Xf2)=K*{ft>®H*(X2 , Y2)+H*(Xt , Yt )®K*{f2)' 
and 

K*{f1 x f2) = K*{f1)®H*(X 2)+ H*(Xt )®K*{f2)' 

Proof. This follows from (111.5.8), the fact that K* is the kernel of 
g* Et, (see 111.4.1) and the Klinneth formula, using the fact that if 
1p: V --+ V', 1p : W --+ W', V, V', W, W' vector spaces over F, 1p, <P linear 
maps, then ker(1p® <p) = (ker1p)® W + V®(ker<p). 

The proof for K* is similar and even easier. D 
The main point in the proof of (IlI.5.7) is the following which is a 

consequence of the Cartan formula. 

m.5.l0 Proposition. Let xeKi{fl;Z2)' yeHi(X2, Y2;Z2), i+j=n+m, 
where dimX1 =2n, dimX2=2m,j~m. Then 

1p(x® y) = 1p(x)' (y, y) 

so in particular 1p(x® y) = 0 if i> n, i.e. j < m. Similarly 1p(x® y) 
= (x, x) 1p(y) if x e Hi(X1, Y1; Z2)' ye Ki{f2; Z2)' i ~ n. 

Proof. Recall that (see III.4.5), 

1p(x® y) = (Sqkh+1 (Et (zn +",))) ];f[A1 x A2J , 
where h=(Et<p)g, <p:X1 XX2/O(Xl xX2)--+K(Z2,n+m), <p*(zn+m)=x®y, 
Since XIX X 2/0(X 1 xX 2) = (X t/Y1) 1\ (X 2/Y2)' <p factors through 
<PI 1\ <P2' <PI: Xt/Y1 --+K(1l2, i~ <P2 : X 2/Y2 --+K(1l2,j1 <Pt(Z;) = x, <P!(Zi) = y, 
<P ='1 (<PI 1\ «2) where '1 :K(Z2,i) 1\ K(Z2,j)--+ K(Z2,m+n), '1*(Zn+m) = Zj 1\ lj. 
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By (I1I.S.8), g = g1 /\ gz, so that h = (I''1) 0 (h1 /\ hz) where hi = (l:'<Pi)gi' 
t = 2s. We may consider ht /\ hz = (ht /\ 1) 0 (1/\ hz). Now 

(h1 /\ 1)* (Ii /\ 1 j) = h!(li) /\ Ij = 0 

and it follows that Sq(h~;:'t~l(EI(Zi /\ I j ») is defmed. From the naturality 
of functional operations it follows that 

111.5.11 Sqh+m+ t (EI(Zn + m») = (1/\ hz)* Sq(h~;:'l~t (EI(li /\ I)), where the 
indeterminacy on both sides is zero. 

m.5.12 Lemma. Let f: S -+ T be a base point preserving map, 
C(f) = TU cS. Then. C(f /\ 1) = (T /\ Z) U c(S /\ Z) = C(f) /\ Z, where 

f fAt 
1: Z-+Z is the identity. 

Proof. Using the cone with the cone on the base point collapsed to 
the base point, we have cS = 1 /\ S, so that C(f) = TU (I /\ S). Then 

f 
C(f) /\ Z = (T /\ Z) u (1 /\ S /\ Z) where the identifications are by 
(1/\ s /\ z),... (f(s) /\ z), which is exactly by f /\ 1. D 

From (IIl.S.12) it follows that the mapping cone of ht /\ 1, 
C(hl /\ 1) = C(hl) /\ E8 K(7lz, j). If x' E W+ i- l (C(h 1); Zz) such that 
bx' = ESzi E HS+i(ES K(Z2' i);Zz), then 

b(x' /\ E"l j) = Et(li /\ Ij) E H,+i+ j(I' K(7lz, i) /\ K(7lz,j); Zz) 

so that ~:ll(El(li/\ z))= z, where 

(1/\ l)*(z) = Sqk+l(X' /\ E"lj) E H,+i+ j+k(C(hd /\ E" K(7lz,j); Zz) 

k=m+n=i+j, 

zEHI+i+j+k(ES(Al/Bl) /\ E"K(Zz, J); Zz), 1:C(hl)-ESAdB1. By the 
Cartan formula, Sqk+1(X' /\ ESI) = L Sq"x' /\ SqJl ESlj. If 

«+JI=k+l 

Z« E H8+i-t +"'(E" AdBl ; Zz) 

is such that l*z", = Sq"'x', then 

Z= L za/\SqJl Zj 
a+JI=m+n+1 

has the right property. Then from (IlLS. H) we get that 

111.5.13 tp(x® y) = Sqh+m+ 1 (E'(ln+m»)El[A1 X A z] 

= (1/\ hz)*(Ez", /\ E"SqJl zj) El[A1 x A z] 

= (Ez" /\ ~E8SqJllj)(ES[A1] /\ E"[Az]) 

= Ez«(ES[At]}·(h~E"SqPlj)ES[Az] . 
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Now if dim~E"Sq/\<2m+s=dimES[Az], or /3<2m-j, then 
(h~ESSqJlzj)(ES[Az])=O, and on the other hand 

JI _{O if /3>j 
Sq Z j - 2 'f /3 _ . 

I j 1 - J. 

Since j ~ m, it follows that for /3 = 2m - j, /3 ~ m ~j ~ /3 and so the only 
non-zero term in (IlI.S.13) occurs when /3 = m = j, so that tp(x® y) = 0 if 
j<m. If j=m=/3, then lX=n+l so that z",=Sqh7 1(ESzn) and from 
(I1LS.13), 

m.5.14 tp(x® y) = (Sqh: 1 (ESzn)ES[A1]) . (h~ES(zm)Z)(ES[Az]) 

= tp(x)· «~ES(lm)Z) (ES[A z]») . 

Since hz = (Es<pz)gz so 

h~ES(z;') = g~ ES<p~ES(I;') = g~Es<pHz;') = g~ES yZ . 

Then (IlLS.14) becomes 

tp(x® y) = tp(x) (g~ ES(/») (ES[A z]) 

= tp(x) (E"(yZ)gz.ES[A z]) 

= tp(x) (ES(yZ») (ESlXz.[A z]») 

= tp(x) (yZ[X z]) = 11' (x) . (y, y) 

using (IlL4.1), and the fact IXz.(Az] = [Xz]. This completes the proof of 
(IlLS. 10). D 

By (1.2.5) and (1.2.9), we have an orthogonal splitting 

H*(Xi, Y;) = K*(fi) + it H*(Ai,Bi) ' 
so that 

111.5.15 K*(f1 x fz) = K*(f1)® K*(fz) + K*(f1)® ft H*(X z' Yz) 

+ ftH*(X1, Yt)®K*(fz)' 
and this is an orthogonal splitting. 

Now recall that if x E K"(ft), (x, x) = 0 (since (x, x) = 2tp(x) = 0 by 
(III.4.6), or (x,x}=(x, vn(X1») = (x,f*vn(A1») =0 by (IIl.3.8»). Hence if 
X®YE K*(f1)®K*(fz), then tp(x®y) =0, by (III.S.10). Such x®y form 
a basis for K*(ftl® K*(fz) so that the Arfinvariant of 11' IK*(fl)® K*(fz) 
is zero and we have 

m.5.16 c(tp) = c(tp IK*(f1)®imfi) + c(tplirnft®K*(fz»). 

Note that we have an orthogonal direct sum: 

(K*(ft)® imfz*Y'+m = Kn(ft)® fz* Hm(Az' Bz) 

+ L K i(f1)® ft Hj(A z, Bz) 
i*n 

i+ j=n+m 



Now tpl L K iUl)®Hi(A 2,B2)=.0 by (IlLS.l0) and by Poincare 
i>n 

i+ i=n+m 
duality this is a subspace of half the rank of L KiUI)®Hi(A 2, B2), so 

i*n 
that the Arf invariant of tp on this space is zero. Similar reasoning applies 
to imfl*®K*(2) and we get: 

DI.S.17 

c(tp) = c(tpl KnUt>®N Hm(A2' B2») + c(tplft* Hn(Al' Bl )®KmU2»' 

Let VI be a one dimensional vector space over 7L2 with bilinear form 
(c, c) = 1 where c is the basis element of VI' Let Vo be a two dimensional 
vector space over 7L2 with basis {a, b}, and bilinear form (a, a) = (b, b) = 0, 
(a, b)= (b, a)= 1. 

DI.S.18 Lemma. Let (,): V ® V -+7L2 be a non-singular symmetric 
bilinear form over 7L2. Then V ~ BV1 + kVo, where B = 0, 1 or 2, 2k + B 
= dimV. 

Proof. Consider the mapcp : V -+7L2' cp(x) = (x, x). This is linear since 

cp(x + y) = (x + y, x + y) = (x, x) + (y, x) + (x, y) + (y, y) 

= (x, x) + (y, y) + 2(x, y) = cp(x) + cp(y) . 

If cp =. 0, the ( , ) is sympletic and non-singular, so that there is a symplectic 
basis which gives an isomorphism V ~ kVo. 

Suppose cp =l= O. Since (,) is non-singular there is a unique element 
v E V such that cp(x) = (x, v) for all x E V. Let W = ker cp C V, T = subspace 
generated by vC V. We consider two cases: 

Case 1. cp(v) = (v, v) = 1, i.e. v ~ W. Then V = W + T, W and Tare 
orthogonal, ( , ) is non-singular and symplectic on W so W ~ k Vo, and 
T~ Vl' Hence V~ V1 +kVo. 

Case 2. cp(v) = (v, v) = 0, i.e. v E W. Let u E V such that cp(u) = (u, v) = 1, 
so that if S is generated by u, V = W + S. Let 

R = (annihilator of u)n W = {y E V such that (y, u) = (y, v) = O} : 

Then W = R +,T so that V = R + T + Sand R is orthogonal to T + S. 
Now (, ) is symplectic and non-singular on R, so R ~ k Vo. In T + S, we 
have (u, u) = cp(u) = (u, v) = 1, (v, v) = cp(v) = O. Then 

(u + v, u + v) = (u, u) + (v, v) = (u, u) = 1, (u, u + v) = (u, u) + (u, v) = 0 

so that with the basis {u, u + v}, T + S ~ 2VI . 0 

m.S.19 Remark. Note that Bl VI + kl Vo ~ B2 VI + k2 Vo, 0 ~ Bi ~ 2, if 
and only if Bl = B2 and kl = k2' so that the decomposition of (IlI.S.18) 
is uniquely determined. 

Let U, V be 7L2 vector spaces, q: U -+7L2 a quadratic form with 
< , > : U ® U -+7L2 as associated bilinear form, ( , ) : V ® V -+7Lz a bilinear 
form. On U ® V we may define a quadratic form tp: U ® V -+7Lz by 
defining it on basis elements by tp(x® y) = q(x) . (y, y), (compare IIl.5.10»), 
so that tp has < , > . ( , ) as associated bilinear form. 

Let Uo, U1 be two dimensional vector spaces over 7Lz with quadratic 
forms qo, qI respectively, with c(qo) = 0, C(ql) = 1, (see IIl.l.5), and let 
VO,VI be as above. 

m.s.lO Lemma. Ui®Vl~Ui,Ui®Vo~2Uo, i=O,l, as spaces with 
quadratic forms. 

Proof. Calculate on bases ofthe various spaces, and use (III.1.6). 0 
Proof of (IlLS.?). By definition 

CUl X fz, bl x bz) = c(tp on K*(fl x f2») 

= c(tpIKnUl)®N Hm(Az, Bz») + c(tplft* Hn(A z, BI)®KmUz» 

by (IlLS.1?). By (IlI.5.10), tp on these two spaces is the tensor product 
of the quadratic form on the K* factor and the bilinear form on the 
im!;* factor. Let ci = cUi> bi ) so that 

Since CUI x fz, bl x b2) is defined by hypothesis, so that 

is an isomorphism with 7L2 coefficients, it follows from (IILS.6) that for 
each i, either a) Yi = Bi = 0 or b) K*Ui+d = O. In case b), the appropriate 
term, (say if i = 1, im ft®K*(2») is zero, so we may assume that for 
each non-zero term a) holds, i.e. Bi = 0 and hence the bilinear forms on 
Hn(A1 , Bl ) = Hn(Al}, Hm(A2' B2) = Hm(A z) are non-singular. 

Let Hn(A l ) ~ 8 1 VI + k2 Vo. Then by (IILS.20), we have that 

A similar argument shows that 



so we get 

C(lp I K"(fl)® f2* Hm(A2») = Cl E2 

C(lp I It H"(A1)® Km(f2») = C2El> and c(lp) = Cl E2 + C2El . 

Now by Poincare duality rank H n
- i(A1) = rank H n+ i(A1) so that mod 2 

X(A1) = rankH" (A1) = El and similarly X(A 2) = E2 mod2 which com­
pletes the proof of (IlI.5.7). 0 

Since rank K n(fl) = 0 mod2 and H*(X1) = K*(fl) + ocH*(A1) it 
follows that X(X1) = X(A1) = El mod2 and similarly X(X2) = X(A2) = E2 
·mod2. 

IV. Surgery and the Fundamental Theorem 

In this chapter we develop the techniques of surgery for constructing 
normal cobordisms and use them to prove the Fundamental Theorem. 

The ideas of surgery have their origins in the theory of 2-manifolds, 
in the process of "cutting off handles", and in general, in the theory of 
Marston Morse of non-degenerate critical points of differentiable 
functions. A good modern exposition of the Morse Theory and the 
applications due to Smale of it to study of differentiable manifolds has 
been given in the two books of Milnor, [41J and [42]. 

§ 1. Elementary Surgery and the Group SO(n) 

We now describe the surgery process on a given smooth manifold Mm. 
Suppose q>: SP x Dq+ 1 ~ Mm, p + q + 1 = rn, is a differentiable em­

bedding, into the interior of M if oM =F 0. Let Mo = M - interior 
q>(SPx Dq+l). ThenoMo=oMuq>(SPx S~. We define M'=MouDp+l x sq, 
with q>(x, y) identified to (x, y) E SP X sq C DP+ 1 X sq. Then M' is a mani­
fold, oM' = oM, and we refer to M' as being the result of doing a surgery 
using q>, on M. Further, we may derme a cobordism W;+1 between M 
and M' as follows: Wq> = M x [0, 1Ju(Dp+l X ~+l)withtheidentification 
(x, y) E SP X ~+ 1 C o(DP+ 1 X Dq+ 1) is identified with (q>(x, y), 1) C M x 1. 
Clearly oWq>=Mu(oM x I)uM' and we call it the trace of the surgery. 
Unfortunately Wq> is not a smooth manifold with boundary as it stands, 
but has "corners," i.e. points such as in q>(SP x sq), oM x 0 and oM x 1, 
where the coordinate neighborhoods naturally look like one quadrant 
of the plane times Rm-l, instead of a Euclidean half space. However, 
there is a canonical way to make it a smooth manifold with boundary, 
a process called "straightening the angles" which is described for example 
in [18, Chapter I]. 

If Wm+1 is a manifold with oW=Mu(oMxI)uM' and W' has 
OW' = M'u(oM' X I)uM", tp.en we may define the sum of the two 
cobordisms by taking W = W u W' and identifying M' coW with 
M' coW". Then it is clear that oW = M u(oM x I)u M". 



IV.1.t Theorem. Let W be a cobordism with aw = Mu(aM x I)uM'. 
Then there is a sequence of surgeries based on embeddings CPi, i = 1, ... , k 
each surgery being on the manifold which results from the previous surgery, 
and such that W is the sum of Wq>I' ... , Wq>k' 

The proof is an immediate consequence of the Morse Lemma, and 
we refer to [42] for a proof. 

IV.1.2 Proposition. If M' is the result of a surgery on M based on 
an embedding cP : SP x JYl + 1_ M, then M is the result of a surgery on M' 
based on an embedding tp: sq x DP + 1 _ M' and the traces of the two 
surgeries are the same. 

Proof. Let Wq> be the trace of cp so that Wq> = M x I U DP+ 1 X Dq+ 1. 
q> 

If we set Mo = M - interior cp(SP x Dq + 1), then we may equally well view 
W as M x I u (SP x Dq + 1 X I) u DP +1 X Dq + 1· and SP x JYl + 1 X I u DP + 1 tp 0 , 

x Dq + 1 may be reparametrized to be DP +1 X Dq + 1. Thus we may view 
W~ as Mo xJuDP+1 X Dq+1, united along SP x sq x I. Now from the 
obviously symmetrical nature of this description, the proposition 
follows. 0 

IV.1.3 Proposition. Let cP: S,P x JYl+1_Mm be a smooth embedding 
in the interior of M, p + q + 1 = m, and let W'" be the trace of the surgery 
based on cp. Then Wq> has MU DP+ 1 as a deformation retract, where 

rp 
<P = cP I SP x O. 

Proof· Wq>=(M x I) U (DP+1 x Dq+1), image cpCM x 1, so we may 

'" deform Mx I to M x 1 leaving M x 1 U (DP+1 X Dq+1) fixed. Then 
q> 

DP+1 x JYl+l may be deformed onto (DP+1 x O)u(SP X Dq+l), leaving 
the subspace fixed. This then yields the deformation retraction of Wq> to 
MUDp+1. 0 

q, 

IV.1.4 Proposition. (a) Let f: (M, aM)-(A, B) be a map, M an 
oriented smooth m-manifold, (A, B) a pair of spaces, and let 
cp : SP X Dq+ 14 interior M be a smooth embedding, p + q + 1 = m. Then f 
extends to F: (Wtp, aM x I)-(A x I, B x I) to get a cobordism of f if 
and only if f 0 <p is homotopic to the constant map SP _ A. 

(b) Suppose in addition that Yfk is a linear k-plane bundle over A, 
b: Vk_Yfk is a linear bundle map covering f, v = normal bundle of 
(M, aM) C (Dm+k, sm+k-l), k > > m. Then b extends to b: w-Yf covering F, 
where w=normal bundle of W",CDn+kxI if and only if bl(vlcp(SP») 
extends to wl(Dp+1 X 0), covering FIDP+1 X O. l!\8-

Proof. Since M U DP+ 1 is a deformation retract of Wtp,it follows 
;p 

that f extends to Wq> if and only if f extends to M U DP+ 1. But the latter 
;p 

is true if and only if f 0 <p is null-homotopic, which proves (a). 
For (b), it follows from the bundle covering homotopy property that 

since M U DP+ 1 is a deformation retract of Wq>, b extends to w if and only 
;p 

if b extends to w I (DP+ 1 X 0). 0 
If(f, b) is a normal map (see Chapter 11), cP: SP x JYl+ 1_InteriorMm, 

m = p + q + 1, f: (M, aM)-(A, B), and if the trace of cP can be made 
a normal cobordism by extending f and b over Wq>' we will say that the 
surgery based on cP is a normal surgery on (f, b). 

From (IV.l.l) we may deduce easily that any normal cobordism 
relB is the composite of normal surgeries. 

We are here principally interested in normal surgery as a method of 
constructing normal cobordisms, rather than vice versa. 

Let cP: SP x Dq + 1_ Interior Mm be an embedding m = p + q + 1, 
Wq> the trace, and M' the result of the corresponding surgery. Now we 
will discuss the effect of surgery on the homotopy of M, namely the 
relation between the homotopy groups of M and M', below the "middle 
dimension." 

IV .1.5 Theorem. If p < m ~ 1 then 1ti(M');;;; 1ti(M) for i< p, and 

1tiM');;;; 1tp(M)/{<p* 1tp(SP)}, where {X} denotes the Z[1t1 (M)] submodule 
of 1tp(M) generated by X. 

Proof. By (IV.1.3), Wq> is of the same homotopy type as M U DP+ 1. 
q, 

Hence 1ti(Wq» = 7!;i(M) for i < p, and 1tp(Wq» = 1tp(M)/{<p* 1tp(SP)}. By 
(IV.1.2) and (IV.1.3), we have also that Wq> = WIp = M' U JYl+ 1, where 

1P 

tp: sq x DP+l_M' gives the surgery which makesM'backintoM. Hence 
1ti(Wq» = 1ti(M1 for i < q, and 1tiWq» = 1tq(M1/{1P* 1tq(sQ)}. Since 

m-1 
p< -2-' then q> p, so 1ti(M')=1ti(Wq» for i-;£p and the result follows. 0 

The analysis for p near ; is much harder, and will be dealt with in 

later sections in the 1-connected case. 
Let (f,b) be such thatj:(M,aM)-(A,B1 b:vk-Yfk, k»m, Yf a 

linear bundle over A, v == normal bundle of (M, aM) C (Dm+k, sm+k-1), 
and let <p: SP- Interior M, be a smooth embedding. Suppose that f 
extends to F: AI-A where AI = MU DP+ 1. We consider the problem 

q, 
of "thickening AI to a normal cobordism" i.e. of extending <p to a smooth 



embedding qJ : SP x Dq + 1_ Interior M", m = p + q + 1 such that 
ip=qJISPxO, and so th~t F:(W""oMxI)-(AxI,BxI) can be 
covered by a bundle map b : w-t/ extending b, where w is the nOJIDal 
bundle of W'" in Dm+k x I, F is the extension of F, unique up to homotopy. 

IV.l.6 Theorem. There is an obstruction (9 E 1tp(Vk,q+ d such that 
(9=0 if and only if ip extends to qJ such that F: W",-A can be covered 
by b: w-t/ extending b as above. 

Here Vk ,q+1 is the space of orthonormal k-frames in Rk+q+1. 
Proof. If we consider Mc Dm+k, since k is very large, we may extend 

the embedding to MU DP+1 C vm+k X I, with DP+ 1 coming in ortho­
;p 

gonally to Dm+k x 0, and DP+ 1 smoothly embedded. The normal bundle 
')' of DP+ 1 in Dm+k x I is trivial, i.e. DP+ 1 X Rq+k+ 1 = total space of ')'. 

Now F defines a homotopy of f ip to a point, which is covered by 
a bundle homotopy b on v I ip(SP), ending with a map of v I ip(SP) into a 
single fibre of t/, i.e. a trivialization of v I ip(SP), which is well defined up to 
homotopy. This trivialization of v I ip(SP), which is a subbundle of')' I ip(SP) 
which is also trivial, therefore defines a map r:t. of SP into the k-frames in 
Rq+k+1, r:t.: SP- Vk,q+1 and thus deflnes an element (9 E1tp(Vk,Q+1). Now 
if ip extends to qJ and b extends to b as above, then the normal bundle 
w of W'" restricted to DP+t, wlDp+1 is a subbundle of ')' extending 
v I ip(SP), and b defines an extension of r:t. to r:t.': DP + 1_ Vk,Q -+- 1. Hence 
(9 = ° in 1tiVk,q+ 1). 

Conversely if (9 = 0, then r:t. extends to r:t.': DP + 1_ Vk,q + 1, and r:t.' 
defines a trivial subbundle w' of dimension kin,)" extending v I ip(SP). 
The subbundle w" orthogonal to w' in ')' is trivial (being a bundle over 
DP+1) and the total space of w" is DP+1 X Rq+1 CDP+1 X Rq+k+1 = total 
space of ')'. Since w" I ip(SP) = the normal bundle of ip(SP) in M, this em­
bedding defines qJ: SP x Rq+ 1 C M, and r:t.' defines the extension of b to 
b: w-t/, where by construction w I DP+ 1 = w'. 0 

Now we shall study Vk,q+1' in order to analyze the obstruction (9, 

(see [60J). 
Recall that the group SO(k + q + 1) acts transitively on the set of 

orthonormal k-frames in Rk+q+1 and SO(q+ 1) is the subgroup leaving 
a given frame fixed. Hence Vk,q+ 1 = SO(k + q + 1)/SO(q + 1) and Vk,q+ 1 

is topologized to make this a homeomorphism, (see [6OJ or [32J). Further, 
we recall (see [6OJ or [32J) that SO(n)~SO(n + l)..l4.SR is a fibre bundle 
map, where p is the map which evaluates an orthogonal transformation 
at the first unit vector, i.e. p(T) = T(1, 0, ... ,0), TE SO(n + 1), 
(1,0, ... ,0)ES"CR"+1. 

IV.l.7 Lemma. i*: 1ti(SO(n»)-1ti(SO(n+ 1») is an isomorphism for 
i<n-1, onto for i~n-1. 

Proof. 1ti(S") = ° for i < n, so the result follows from the exact 
homotopy sequence: 

. ··-1ti+ 1 (S") ~ 1ti(S0 (n») ~ 1ti(SO(n + 1») .J4 1ti(S")- .... 

IV.l.8 Lemma. The map p: SO(n + 1)-S" is the prOjection of the 
principal SO(n) bundle associated with the oriented tangent bundle of Sft. 

Proof. Letf =U1' ... ,J") be a tangent frame to S" at vo=(l,O, ... ,O)ES". 
Define a map e: SO(n + 1)-F = bundle of frames of S", e(T) = frame 
TUd, ... , TU,,) at T(vo) E S". Then e is onto, and it is obviously 1 - 1. 
Hence e is a homeomorphism and the lemma follows. 0 

IV.l.9 Lemma. The composite 1t,,(S") ~ 1t,,-1 (SO(n») ~ 1t,,-1 (S,,-1) 
is the boundary in the exact sequence of the tangent S" - 1 bundle to S" and 
is = ° if n is odd, multiplication by 2 if n is even. 

Proof. The tangent S,,-1 bundle is obtained from the bundle of 
frames by taking the quotient by S O(n - 1) C S O(n) = the group of the 
bundle. Hence, we have the commutative diagram 

SO(n)~SO(n)jSO(n-1)=S"-1 

i1 1 
SO(n + 1) _ SO(n + l)jSO(n - 1) 

1 r 
S" _....::ld::.:e.:::nt""itY'---_ ... 1 S" . 

It follows that in the exact sequence for the right hand bundle 

J = p* 0: 1ti (SR)- 1ti-1 (S,,-1). 

Now by the Euler-Poincare Theorem the tangent sphere bundle has 
a cross-section (there is a non-singular tangent vector field) if and only 
if the Euler characteristic X(M) = 0. More precisely, the only obstruction 
to a cross-section to the tangent sphere bundle of a manifold Mm is 
X(M)g, where g E Hm(M;~) is the class dual to the orientation class of M, 
(see [32J). Now in case M = S", the obstruction to a cross-section can 
also be identified with the "characteristic map" (see [60, (23A)]) 
J:1t,,(S")_1tn_1(sn-l). Hence J=O if n is odd, multiplication by 2 if n 

is even. 0 
IV.l.10 Theorem. p*: 1t,,(SO(n + l»)-1t,,(S") is onto if and only if 

n= 1,3 or 7. 

Proof. If p* is onto, then there is a map r:t.: SR-SO(n + 1) such that 
pr:t. '" t and hence the principa,l bundle of 7:S" has a section and is therefore 
trivial, i.e. S" is parallelizable. But it is known (see [36], [5J) that S" 
is parallelizable if and only if n = 1, 3 or 7. 0 
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IV.l.11 Corollary. kernel i*:1tn_ 1(SO(n»-1tn_ 1(SO(n+1», is 7l 
if n is even, 712 if n is odd and n =l= 1,3, 7, and 0 if n = 1, 3 or 7. 

Proof. kernel i* = 01tn(S") ~ 1tn(sn)/p* 1tn(SO(n + 1». If n is odd, by 
(IV. 1.9), p* 1tn(SO(n + 1») 21tn(sn), and by (IV.l.l0) is not the whole 
group, if n =l= 1, 3 or 7, hence 1tn(sn)/p* 1tn(SO(n + 1» = 712 if n is odd, 
n =l= 1, 3 or 7. If n = 1, 3," or 7, p* is onto, so kernel i* = O. 

If n is even, by (IV.1.9) p*o is a monomorphism, so 

0: 1tn(sn)-1tn_l (SO (n» 

is a monomorphism, so kernel i* ~ 7l. 0 

IV.l.l2 Theorem. 1tj(Vk,,,,) =0 for i<m, 1tm(Vk,m)=7l2 if m is odd, 
7l if m is even, k ~ 2. Further j* : 1tj(Vk,m)-1tj(Vk+ 1,"') is an isomorphism 
for i~m, k~2, and j*:1tm(Vl,m)=1tm(sm)-1tm(Vk,,,,) is onto, and an 
isomorphism if m is even, where j is inclusion. 

Proof. Take k = 2 so that V2,m = SO(m + 2)/SO(m) and we have a 
natural fibration over sm+ 1 = SO(m + 2)/SO(m + 1) with fibre 
sm = SO(m + l)/SO(m). Also we have a commutative diagram of fibre 
bundles: 

SO(m+l)~Sm 

I I j 
SO(m+2)-----+ V2 m 

pI l' 
sm+ 1 Identity, sm+ 1 . 

It follows that we have a commutative diagram 

1tm+ l(sm+l)~ttm+1(sm+l) 

~ 1r 
1tm(SO(m + 1» ~ ttm(sm) . 

By (IV.1.9) p* 0 = 0 if m is even, p* 0 = multiplication by 2 if m is odd. 
Hence 0' = p* 0, and from the exact homotopy sequence ofthe fibre bundle 

1tj + 1 (sm + 1) ~ ttj(sm) ~ 1tj(V2,m) --+ ttj(sm + 1) = 0 

for i ~ m, we obtain i* is onto for i ~ m, and 1tj (V2,m) = 0 for i < m, 
1tm(V2,,,,) = 7l if m is even, and 1tm(V2,m) = 712 if m is odd. 

Consider the natural inclusion Vk,m- Vk+ I,m given by including 
SO(m + k)-SO(m + k + 1), so that the SO(m) subgroup is preserved. 
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Then we get the commutative diagram: 

SO(m) --"---+1 SO(m) 

1 1 
SO(m+k)-4S0(m+ k+ 1) 

in· 1 
j v. , k+ I,m 

and a corresponding map of exact sequences 

1ti(SO(m»--+ 1tj(SO(m+ k» --+ 1tj(Vk.",) --+1tj_ 1(SO(m» 

11 1j

* 1i
• 11 

1tj(SO(m» --+ 1tj(SO(m + k + 1» --+1tj(Vk+ 1,"') --+1ti - 1 (SO(m». 

By (IV. 1. 7), i* is an isomorphism for i < m + k - 1, and since k ~ 2, it 
follows that i* is an isomorphism for i ~ m. 0 

The following theorem describes what can be accomplished by surgery 
below the middle dimension. It is closely related to theorems of 
Mazur [40] and Brown [15]. The proof given here is essentially a 
translation into the category of differentiable manifolds of an analogous 
theorem in the category of CW complexes due to Moore [16, Expose 22 
Appendix]. 

IV.l.t3 Theorem. Let (Mm,oMM) be a smooth compact m-manifold 
with boundary, m ~ 4, vk the normal bundle for (M, oM) c (D'"+k, sm+k-l), 
k > > m. Let A be a finite complex, B C A, 1'/k a k-plane bundle over A, let 
f: (M, oM)-(A, B) and let b: V-1'/ be a linear bundle map covering f. 
Then there is a cobordism W of M, with oW=Mu(oMxI}uM', 
oM' = oM x 1, an extension F of f, F: (W, oM x I)-(A, B) with 
FloMxt=floM for each tEI, and an extension b of b, b:ro-'1, 
ro = normal bundle of W in Dm+kxI such that j'=FIM':M'-A is 

[; ]-connected. 

(We shall eaU the cobordism of the above type a normal cobordism, 
in a slight abuse of language.) 

(We recall that [a] = greatest integer ~ a, for a real number a.) 
Proof. Let us assume by induction that f: M-A is n-connected, 

n + 1 ~ [ ; ], and show how to obtain W, F etc. as above, with j' : M' - A 

(n + i)-connected. 
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If n + 1 = 0, we must only show how to make 1t0 map onto. Since A is a 
finite complex, A has only a finite number of components, A = Al u· .. u A,. 
Let ajEAj, and take M'=MvSiu···uS';, where Si is an m-sphere. 
Let W=MxIuDi+ 1u···uD,;,+1 and let F:W-A be defined by 
F I M x t = f for each t E I, F(Dj) = ai' Since the normal bundle of D'" is 
trivial, and the extension condition on the bundle map is easy to fulfill 
on the Di, it follows easily that b extends to b over W. Clearly f' = F I M' 
is onto 1to(A), which proves the first step of our induction. 

Now assume n= 1, f: M-A is ()..connected. Let Ml and M2 be two 
components of M such that f(M1) and f(M2 ) are in the same component 
of A. Take two points Xi E interior M i , i = 1, 2, and define ip : SO - M by 
ip(1)=Xl' ip(-1)=X2' Since ip(SO)C a single component of A, it follows 
that f : M-A extends to J: M U Dl_ A. Then since m ~ 4, it follows 

;p 
from (IV.1.6) and (IV.1.12), that ip extends to cp: SO x Dm_M defining 
a normal cobordism of f to f' and reducing the number of compo­
nents of M. Using this argument repeatedly, we arrive at a 1-1 corre­
spondence of components. 

Now we consider the fundamental groups. Take presentations, 
i.e. systems of generators and relations, 1tl(A) = {aI' ... , a.; rI' ... , rt }, 

1tl(M)={XI"",Xk;Yl"",YI} so that rl is a word in a1 , ••• ,a. (yj is a 
word in X I, ... , xJ each i, and 1t 1 (A) is the quotient of the free group on 
aI' ... , a. by the sniallest normal subgroup containing rI' ... , rt , (similarly 
for 1t1 (M»). Now take s disjoint embeddings of SO in an m-cell D'" C intM, 
cp': U SO-M and assume f(Dm) = *, the base point of A. We assume the 

• 
base point of M is in Dm. Consider M = M U U D1. Then 

<p' s 

1t1(M)=1t1(M)*F where F is a free group on s generators g1, ... ,g., 
where each gi is the homotopy class of a loop in D"'u U Dl consisting 

• 
of a path in Dm

, one of the Di>s, and another path in D"'. Hence 
1t1 (M) = {Xl' ... , Xk' g1' ... , g.; Y1' "" Yl}' 

Define J: M-A extending f by letting the image of the i-th D1 
traverse a loop representing the generator al' Then J*: 1t1(M)-+1t1(A) 
is onto, and furthermore we may represent J* on the free groups by a 
function O(Xi) = x;, x; a word in a1 , ••• , as, and O(gj) = ai' Then as above 
we may extend cp' to cp: U SO x D"'-M to define a normal cobordism 

• 
of f, and with W<p~M, and F: W<p-A homotopic to J: M-A. (Here 
Wq> is the trace ofthe simultaneous surgeries.) By (IV. 1.2), 1t1 (M') ~ 1t1 (W<p) 
where oW<p=Mu(oM x I)uM', and hence f; :1t1(M')-1t1(A) is onto, 
1t1 (M') has the same presentation as 1t1 (M), and f; is also represented by 
the function ex on the free groups. In particular f' is 1-connected. 
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Let us consider the exact sequence of the map f : M - A in homotopy, 

.. ·-1tn + 1 (f)-1tn(M)-1t,,(A)-1tn(f)-'" . 

Recall that the elements of the groups 1tn + 1 (f) are defmed by commutative 
diagrams 

sn a IM 

kl Y 
Dn+l~A 

where k is inclusion of the boundary and all maps and homotopies are 
base point preserving (see [28]). Thus P defines a map J: MU Dft + 1_A 
extending f. a 

IV .1.14 Lemma. Let f: M-A be n-connected, n > 0, and let 
(P, ex) E 1tn+ 1 (f) be the element represented by the above diagram (*). If 
J : M U Dn + 1_ A is defined by p as above, then 1ti(f) = 1tj(f) = 0 for 

a 

i ~ n, and 1tn+ 1 (f) = 1tn+ 1 (f)/K, where K is a normal subgroup containing 
the 1t1 (M) module generated by the element (p, ex) in 1tn + 1 (f). 

Proof. Consider the commutative diagram 

- 1tl+ 1(f) 11tI(M) f. 11tI(A)-

li * li• 11 
-1t1+1(f)--+1tI(M V Dn+l) ~1tI(A)-. 

Here i: M-M U Dn + l is inclusion, andj* is induced by (1, i) on the 
a 

diagram (*). Clearly i* is an isomorphism for l<n and onto for l=n, 
so it follows easily that 1t,(f) = 1tl(f) = 0 for I ~ n. 

Clearly any map of Sft into M U vn+ 1 is homotopic to a map into M, 
" so that any pair (P', ex') 

sn a' I M U Dn+ I 

1 ay 

is homotopic to another (P", iex") 

sn a'" IM~MUvn+1 

! r a!j 
Dn+I~A lA. 
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Hence j* : 7tn+ 1 (f)~7tn+ 1 (J) is onto. Clearly (P, IX) is in the kernel j* 
and hence everything obtained from (P, IX) by the action of 7tl (M) is also 
in kernel j*, which proves the lemma. 0 

Now we recall that from our previous work we may assume f : M ~ A 
is i-connected and that furthermore the fundamental groups have 
presentations 7tl(1H)={Xl, ... ,Xk,gl, ... ,gs;Yl" .. ,YI}, Yi words in 
X1 , ••• ,Xk, and 7tl(A)={al, ... ,aS;rl, ... ,rr}' with f*:7tl(l\tf)~7tl(A) 
presented by the function ex(xj ) = xj(a), a word in a l , ..• , as, j = 1, ... , k, 
ex(gi) = ai' i = 1, ... , s. 

IV.1.15 Lemma. kernel f * is the smallest normal subgroup containing 
the words x j- 1(xj@)),j= 1, ... , k and r;Cg), i = 1, ... , t, where xj@ and ri@ 
are the words in aI' ... , as with the ai's replaced by g;'s. 

Proof. Adding the relations xi 1(xj@) makes gl, ... , gs into a set of 
generators. Adding the relations ri@ makes the group into 7tl(A), 
with IX defining the isomorphism. The map ex annihilates xi l(xj@) 
and rj(g) so that these elements generate kernel f* as a normal 
subgroup. 0 

Now for each element xj 1 (xj(g)) and ri@ choose an element 
Xj' ri E 7tz(f) such that aXj = xi 1 (xj@)), ari = r;("ii), and choose representa­
tives Xj' ri such that they are disjoint embeddings of SI into M, which 
is possible since m.~ 4. Let M = Mu U DZ, with the DZ's attached by 
these embeddings. It follows from (IV.1.14) that f*: 7tl (M)~7tl (A) 
is an isomorphism. Using again (IV. 1.6) and (IV. 1.12), it follows that there 
is a normal cobordism W, and map F: W ~ A such that MeW is a 
deformation retract and FIM = J, so that F*: 7tl (W)~7tl (A) is an iso­
morphism. By (IV.1.2) and (IV.1.3) it follows that if M' is the result of 
the surgery, then f~: 7tl(M')~7tl(A) is an isomorphism, and hence 
7tz(A)~7tz(f) is onto and therefore 7tz(f) is abelian. 

Now we proceed to the induction step. Suppose f: M ~ A is 
n-connected, n> 0, and ifn = 1 suppose 7tl(M)~7tl(A)is an isomorphism, 
so that 7tz(f) is abelian. 

IV .1.16 Lemma. 7tn + 1 (f) is a finitely generated module over 7t 1 (M). 

Proof. If f is replaced by an inclusion fo : M ~ A', where M and A' 
are still finite complexes, then 7ti(f) ~ 7ti(A', M). Since 7ti(A', M) = 0 for 
i ~ n, all the cells of dimension ~ n in A' can be deformed into M to get 
a new A" such that r: (A', M)~(A", M), r * : 7t,(A', M) ~ 7ti(A", M), and A" 

s 

is a finite complex with all cells of dimension ~n in M, A" =Mu U IYi+ 1 

i=1 

u cells of higher dimension. Let M, A" be the universal coverings of 
M, ~". Ihen 1ti(J:"'. y) ~ 7ti(A", M) and since A" and M are i-connected 
7ti(A", M) ~ Hi(A", M) as 7tl (M) modules, by the Relative Hurewicz 
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Theorem. But clearly the preimages of the (n + 1) cells of A" are the (n + 1) 
cells of A", so that modulo the action of 7tl (M) there are only a finite 
number of them. Hence Hn+ 1 (A", M) is finitely generated over 7t1(M) 
and the lemma follows. 0 

Now we may represent each of this finite number of elements in 
7tn + 1 (f) by a map 

sn 

1 
Dn+l~A. 

If n + 1 ~ [ ;]. then n < ; and it follows from Whitney's embedding 

theorem ("general position") that we may choose (Pi' IXi) so that the IXi are 
disjoint embeddings. Setting M = Mu U Di+ 1, D/+ 1 attached by lXi' 

i 

f: M~A defined by the p;'s, we may apply (IV.1.6) and (IV.1.1}) to 
thicken M into a normal cobordism W of M, and using (IV. 1.14), 7t1(f) = 0 
for I::;; n + 1. If M' is the other end of W (the result of the surgeries), from 
(IV.C2) and (IV.1.3) it follows that 7ti(f') = 7ti(f) =0 for i~n+ 1. This 
completes the proof of (IV.1.13). 0 

Note that we have always used the low dimensionality of the groups 
involved to ensure that the obstruction (!J was zero (IV.1.12) and to get 
representatives of elements of 7tn+ 1 (f) which were embeddings. These are 
two difficulties which must be treated in order to get stronger theorems 
in higher dimensions. 
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Let (A, B) be an oriented Poincare pair of dimension m, let M be an 
oriented compact smooth m-manifold with boundary aM, and let 
f: (M, oM)~(A, B) be a map of degree 1. Let rtk be a linear k plane 
bundle over A, k > > m, ap.d let vk be the normal bundle of 

(M, aM) C (Dm+k, sm+ k- 1). 

Suppose b: V~'1 is a linear bundle map lying over f. Recall that in 
Chapter 11 we called (f, b) a normal map, and we defmed a normal 
cobordism of(f, b) rei B as a,(m+ i)-manifold W with 

aW=Mu(aM x I)uM', 

together with an extension of f, F: (W, aM x I)~(A, B) such that 
FI aM x t = f I aM for each t E I, and an extension b of b to the normal 
bundle w of W in Dm +k x I. 
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Suppose now that A is a 1-connected C W complex, m ~ 5, and that 
(f loM)* : H*(oM)-- H*(B) is an isomorphism. 

IV.2.1 Theorem. There is a normal cobordism rei B of (f, b) to (I', b) 

such that 1': M' --A is [;] + 1 connected if and only if q(f, b) = o. 
In particular if m is odd this is true. 

The proof of this theorem will take up the rest of Chapter IV. First 
we note the corollary: 

IV.2.2 Corollary (Fundamental Theorem). The map I' above is a 
homotopy equivalence. Hence (f, b) is normally cobordant relB to a 
homotopy equivalence if and only if q(f, b) = O. In particular it is true 
if m is odd. 

Proof of Corollary. Look at the map of exact sequences 

--IoHi(oM')--Hi(M')--IoH;(M',oM')--H;_l(oM') 

(f"DM')·l y; ·l.n lU'laM')' 

--10 Hi (B) --10 Hi(A) --10 Hi(A, B) --10 Hi- 1 (B). 

By hypothesis, (nt3M)* H*(oM)--H*(B) is an isomorphism, and 
oM'=oM, f'loM'=floM, so (f'loM')* is an isomorphism in each 

dimension i. Since 1': M'--A is [;] + 1-connected, f~: Hi(M')--H;(A) 

m 
is an isomorphism for i ~ "2' Hence by the Five Lemma, 

is an isomorphism for i ~ ; . Since I' is a map of degree 1, it follows from 

Poincare duality that 1'*: Hi(A) __ Hi(M,) is an isomorphism for 

j~m-; =; (see (I.2.6»). Now f'*:Hi(A) __ Hi(M') is given, by the 

Universal Coefficient Theorem, by 1'* = Hom(f~i' 7l) + Ext(f~i-l' 7l), 

where f~i: H;(M)-- Hi (A). Since f~i is an isomorphism for i ~ ; 

it follows that 1'*: Hi(A) __ Hi(M') is an isomorphism for J' ~ ~ and 
- 2' 

hence 1'* : Hi(A) __ Hi(M') is an isomorphism for allj. Hence H*(f') = 0, 
so by the Universal Coefficient Theorem H*(f') = 0, and since M' and A 
are 1-connected, by the Relative Hurewicz Theorem and the Theorem of 
Whitehead, I' : M' --A is a homotopy equivalence. 
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The remainder of § 2 will be devoted to the preliminaries of the proof 
of (IV.2.1). 

By (IV, 1.13), we may assume that f: M--A is [; ]-connected, 

i.e. 7ti (f) = 0 for i ~ [ ; ]. Set 1= [ ; ]. Since A, M are 1-connected, it 

follows from the Relative Hurewicz Theorem that 7tz+l(f)~Hz+l(f). 
Then we have a commutative diagram: 

where h is the H urewicz homomorphism, and we use f * to denote the 
map of homotopy groups induced by f. We recall that f* is onto and 
splits by (1.2.5). It follows that (kernelf*)z = h(kernelf *)/' 

We recall Whitney's embedding theorem (see [42J for a proof): Let 
c: vn -+ Mm be a continuous map of smooth manifolds, m ~ 2n, m - n > 2, 
M 1-connected, V connected. Then c is homotopic to a smooth embedding. 

Since I ~ t m, it follows from Whitney's embedding theorem that any 
element x E 7tz + 1 (f) may be represented by ({3, iP), where iP is a smooth 
embedding of SZ in Interior M, and {3:IY+ 1 

__ A, {3i=flp. Let 
M = M U Dl+ 1, 1: M --A extending f, defined by {3. 

iP 
Now we have two problems to consider: . 
(1) If m = 21, then the obstruction (9 to thickening M, 1 to a normal 

cobordism lies in a non-zero group 7t/(Vk I) (see (IV.1.6) and (IV.1.12»). 
(2) Though (IV.1.14) tells us how to' compute7t/+ 1(f), the relation 

between this and 7tl+ 1 (f) is no longer obvious if 1= [ ; l where f' is 

the map on the result of the surgery (c.f. (IV.1.2»). 
The remainder of § 2 will be devoted to some preliminary results on 

question (2). 
F or the remainder of this ~aragraph we assume (j. b) is a normal map 

satisfying the hypotheses of (IV.2.1) and f : M --A is q-connected where 

[ ; ) = q, so that m = 2q or 2q + 1. 

IV.2.3 Lemma. f is (q + 1) connected if and only if f* : HiM)-- Hq(A) 
is an isomorphism, i.e. if Kq(M) = O. 
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Proof. By the Relative Hurewicz Theorem nq+l(f)~Hq+l(f), and 
by (1.2.5), f * : Hq + 1 (M)~ Hq + 1 (A) is onto so that 

Hq+ 1 (f) ~ (ker f*)q= KiM ). 0 

Thus we shall study the effect of surgery on homology. To simplify 
our arguments we will use the following lemma, which reduces the 
problem to the case of closed manifolds. 

Let (fl' b1), (f2' b2) be two disjoint copies of the normal map (f, b), 
so that fi: (Mi' aMi)~(Ai' Bi) is f renamed, etc., i = 1, 2. Then by 
(1.3.2), A3 = Al U A2 with Bl identified to B2 is a Poincare complex 
(the "double" of A) M3 = Ml U M2 along aMI = aM2 is a smooth closed 
oriented manifold, and f3 = fl U f2' b3 = b1 ub2 defines a normal map 
(f3' b3), f3: M3~A3' Further it is easy to see from the Mayer-Vietoris 
sequences (since (f I aM)* is an isomorphism) that 

IV .2.4 Hi(f3) = 0 for i < 1+ 1 and 

Hq+ 1 (f3) ~ Kq(M 3) ~ KiMl) + K q(M2) . 

Now suppose q>: sq x Dm-q~intMl is a smooth embedding such 
that fl 0 q> '" * and such that q> defines a normal surgery on M 1 and by 
inclusion on M3 (with respect to (fl, b1) and (f3' b3»). If a prime denotes 
the result of surgery then we have 

IV.2.S M3 = Mf u M2 and K q(M3} ~ KiMD + KiM2)' 

This follows easily from the fact that we have not changed the factor 
M2 in the decomposition of M 3 • 

Hence we get: 

IV .2.6 Proposition. The effect of a normal surgery on Kq(M) is the 
same as the effect of the induced surgery on K q(M3), and hence to compute 
its effect we may assume aM = B = 0. 

This will simplify the. algebra in our discussion. 
Letq>:~xDm-q-+intM be a smooth embedding which defmes a 

normal surgery on M (with respect to (J, b»). Set Mo = M '-- int q>(sq x Dm - q), 
and let M'=Mov~+l X sm-q-t, with q>(sq x sm-q - 1) identified with 
sq x sm-q- 1 = a(~+ 1 X sm-q-l). Then M' is the result of the surgery 
on M. Since q> defines a normal surgery, HiM') = Hq(A) + Kq(M'), and 
we wish to calculate the cha~ge of KiM) to Kq(M') which is the same as 
the change of Hq(M) to HiM'). 

Now we recall some useful facts relating Poincare duality in manifolds 
and submanifolds. 

IV.2.7 Proposition. Let U be a compact m-manifold with boundary, 
f : U C int W, W a compact m-manifold with boundary, 

g:(W,aW)C(W, W-intU), 
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oriented compatibly. Then the diagram below is commutative.' 

Hq(W, aW)--rt..-Hq(W, W -int U)~ Hq(U, aU) 

[W1nl (g.[W])nl [Ulnl 
Hm_q(W) I Hm_q(W) ( f. Hm_q(U) 

so if x E Hq(UjaU), f*([U]nx) = [W]ng*(x), where g: WjaW~UjaU, 
(interpreting the cap products appropriately). 

Proof. If l:(u,au)~(W, W-intU), then l*[U]=g*[W], since 
we have oriented U and W compatibly. Then the commutativity follows 
from the naturality of cap product (see Chapter I, § 1). 0 

IV .2.8 Corollary. Let E = normal tube of f: NR (wm, N closed 
oriented and let g: WjaW~EjaE= T(v), v = normal bundle of NR( wm. 
Let U E Hm-R(T(v») be the Thom class. Then 

[W]ng* U = f*[N]. 

Proof. Since [E]n U = [N], by (IV.2.7), 

f*([E]n U)= f*[N] = [W]n(g*(U»). 0 

Recall now the definition of the intersection pairing in homology: 

. : Hq(M)®Hm_q(M, aM)~7L 

defined by X· y =(x', y') = (x' u y') [M] where x' E Hm-q(M, aM), y' E Hq(M) 
such that [M]nx' = x E Hq(M), [M]ny' = yE Hm_q(M, aM). This induces 
an intersection product 

. : Hq(M)®Hm_iM)~7L 

by 
x· y= x 'j*(y), j: M~(M, aM). 

The. properties of the pairing ( , ) on cohomology induce analogous 
properties for the intersection pairing, such as 

(a) With coefficients in a field F, Hq(M; F)®H",-iM, aM; F)-F 
is a non-singular pairing. (This also holds over 7L, modulo torsion.) 

(b) If x E Hq(M), yE Hm-q(M), X· Y = (_l)q(m-q) y. x. 

IV .2.9 Proposition. Let xeHq(M), YEHm-iM, aM), x' E~-q(M,aM), 
Y'EHq(M) such that [M]nx'=x, [M]ny'=y. Then x·y=x'(y), 
(i.e. evaluation of the cohomology class x' on the homology class y). 

Proof. X· y=(x'uy,) [M] =x'([M]ny')=x'(y), using (1.1.1). 0 
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Now let <p: sq x Dm-q __ intM be a smooth embedding. Set 
E = sq x Dm-q, Mo = M - <p intE, M' = Mou(Dq+ 1 X sm-q-l) the result 
of the surgery based on <po 

Following [34] we will consider the exact sequences of the pairs 
(M, Mo) and (M', Mo). 

As usual we have the excision <p: (E, oE)--(M, Mo) which induces 
isomorphisms on the relative homology and cohomology groups. 
Thinking of E as the normal tube of SqcM, let U EH"'-q(E, oE)=71 
be the Thom class, a generator. If p = [E] (l U, then p = i* [sq], i: sq C E, 
and p. x = U(x), X E Hm-iE, oE), by (IV.2.9), induces an isomorphism 
Hm_q(E,oE) __ 71 by property (a) above. Let j:M--(M,Mo) be the 
inclusion. 

IV.2.10 Proposition. p' V*(Y») = (<p*{J.L»). y. 

Proof· p. V*(Y») = Uv*(y») = (j* U) (y) = (<p*(p»). y, using (IV.2.9) and 
(IV.2.~), and identifying j*: H*(M)--H*(M, Mo) with the collapsing 
mapj*:H*(M)--H*(M/Mo)=H*(E/oE). 0 

IV .2.11 Corollary. The following sequence is exact: 

···0-- Hm-q(Mo)-- Hm-q(M)2:...t71-4Hm_Q_l(Mo) __ Hm- q- 1(M)-- 0 

where x = <p*(p), pE Hisq x D'"-q) is the image of [sq] the orientation 
class of sq. 

Proof· The sequence is that of (M, Mo), replacing Hm-iM, Mo) 
by 7l using the diagram 

Hm_q(E, oE}~ Hm_q(M, Mo) 

wJ 
7l 

and using (IV. 2. 10) to identify x·. 0 

Thus there is also an exact sequence 

0-- Hq+ 1 (Mo) -- Hq + 1 (M') --4 7l ~ Hq(Mo) ~ HiM1-- 0 

where y=1jJ*{J.L1; p'=kasm-q-1] generates H",':"q_l(D4+ I xSm - q- 1), 
1jJ: D4+ I x sm-q-I __ M' is the natural embedding, 

is inclusion. 
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Let A be the generator of 7l above corresponding to 

A E H,+ 1 (sq x D'+ t, sq X S') = 7l , 

such that U (A) = 1, (similarly for A'). 

IV.2.12 Lemma. i* d'(A') = <p*{J.L) = x, and i~ d(A) = 1jJ*{J.L') = y. 

Proof. Let m = q + r + 1. We have the commutative diagram 
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Clearly if A. E H,+ I (sq X D'+ 1, sq x S') such that U(A) = 1, then 
01A = l®[S'] E H,(Sq x S'}. We also have the commutative diagram 

H*(Sq x S') ~ H*(D4+ I X S') 

~o'l l~' 
H*(Mo) i. ) H*(M') 

and i 2 *(1 ® [S']) = p'. Hence 

i~ d(A) = i~ O<p*(A) = i~ <Po* 01 (A) 

= 1jJ* i2 *(1 ® [S']) = 1jJ*{J.L') = y. 

A similar argument proves the other assertion. 0 

IV.2.13 Theorem. Let <p: S4 X D'+ I __ M be an embedding, Mm 
closed, m = q + r + 1, q ~ r + 1. Suppose <p*([sq]) = <p*{J.L) ~ x generates 
an itifinite cyclic direct summand of HiM). Then rank Hq (M') < rank Hq(M) 
and torsion HiM') ~ torsion Hq(M), i.e. the free part of Hq(M) is reduced, 
and the torsion part of HiM) is not increased. Further Hj (M1 ~ ~(M) 
for i<q. 

IV.2.14 Corollary. Let (f, b) be a normal map, f: (M, oM)--(A, B), 
(floM)* an isomorphism, and let <p; sq x D'+l __ intM be an embedding 
which defines a normal cobordism of (f, b), q ~ r+ 1. Suppose <p*{J.L) = x 
generates an infinite cyclic dir~ct summand of Kq(M). Then 

rank Kq(M') < rank Kq(M) 

and torsion KiM1 ~ torsion KiM), while K j (M1 = Kj(M), for i < q. 

Proof. This follows immediately from (IV.2.13) and (IV.2.6). 0 
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With a field of coefficients F we have analogous results: 

IV.2.t5 Theorem. Let ({J, M be as in (IV.2.13) and suppose ((J*{Jt) = x=!=O 
in Hq(M;F). Then rankFHq(M'; F) < rankFHq(M; F), and 

Hi(M';F)~Hi(M;F) for i<q. 

IV.2.t6 Corollary. With hypotheses of (IV.2.14), suppose only that 
({J*{Jt) = x =!=O in KiM;F). Then rankFKq(M';F)<rankFKq(M;F) and 
Ki(M'; F) ~ Ki(M; F) for i < q. 

The proof of the corollary is similar. 
Proof of (IV.2.13). Consider the exact sequence of (IV.2.11): 

Since x generates an infinite cyclic direct summand., it follows from 
property (a) of the intersection pairing that there is an element y E H,+ 1 (M) 
such that x· y = 1 (since oM = 0). Hence x· is onto and we get 

IV.2.t7 

i* : H,(Mo) ~ H,(M) 

0-+ Hr+l(Mo)~ H'+l(M)-+7L-+O. 

Consider the sequence of (IV. 2. 11) for (M', Mo) and the commutative 
diagram from (IV.2.12): 

IV.2.tS 

where i*d'(A.') = x. Since x generates an infinite cyclic direct summand, 
it follows that i*d' splits, so that d' splits, and 

IV.2.t9 

Hq(Mo) ~ 7L + Hq(M') 

i~: Hq+ 1 (Mo) ~ Hq+ 1 (M'). 

From (IV.2.19), it follows that rank Hq(M') = rankH (Mo)-1, and 
since q = r orr + 1, from (IV.2.17) it follows that rank Hq (M) ~ rankHq(Mo), 
so that rank Hq(M') < rank HiM), (the difference being 1 if q = r, 2 if 
q=r+ 1). 
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From (IV.2.17) it follows that torsion Hq (Mo) is isomorphic to 
torsion HiM), and from (IV.2.19) it follows that 

torsion Hq(Mo) ~ torsion Hq(M) . 

Hence torsion Hq (M') ~ torsion HiM). 0 
The proof of (IV.2.15) is almost identical, using (IV.2.17), (IV.2.18), 

(IV.2.19) with coefficients in F, and using property (a) of intersection 
with coefficients in F. We omit the details. 

This is as far as one can proceed in the proof of the Fundamental 
Theorem without considering different dimensions separately, according 
to parity, or modulo 4. This we shall do in the next sections. 
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First we note an easy consequence of (IV.2.14). 

IV.3.t Theorem. Let (f, b) be a normal map, f: (M, oM)-+(A, B), 
A 1-connected, (f\8M)*: H*(8M)-+H*(B) an isomorphism, m=2q+ 1~5. 
There is a normal cobordism relB of (f, b) to (f', b'), such that f' : M' -+ A 
is q-connected and KiM') ~ torsion KiM). 

Proof. By (IV.1.13), we may first find a normal cobordism relB to 
(fl' hi)' such that fl : Ml-+A is q-connected. We note that the surgeries 
involved in (IV.1.13) are on spheres of dimension <q, so that it follows 
from (IV.1.2) and (IV.1.3) that Kq(Ml)~KiM)+F, where F is free 
abelian, and arises from killing torsion classes in K q - 1 . So let us assume 
f : M -+ A is already q-connected. 

Let x E KiM) be a generator of an infinite cyclic direct summand. 
Since f is q-connected it follows from the Relative Hurewicz Theorem 
that 1tq+l(f)~Hq+l(f) and Hq+1(f)~Kq(M) by (1.2.5). Since q<im, 
it follows from Whitney's embedding theorem that we may represent 
x' E 1tq+ 1 (f) by (/3, (X) 

such that (X is a smooth embedding. Then /3 defines a map 1: Ai -+ A 
where At = M U Dq+ 1 and by (IV.1.12) since q < m - q, the obstruction (fJ 

Cl 

to thickening At to a normal cobordism is 0 (see (IV.1.6»). If x' E 1tq+ 1 (f) 
is such that (X represents x E KiM) then by (IV.2.14), Kq(M) has rank 
one less than KiM) with the same torsion subgroup. Proceeding in 
this way till the rank is zero, the theorem is proved. 0 
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Now let us put together the two sequences of (IV.2.11), to get the 
following lemma from [34]: 

IV.3.2 Lemma. We have a diagram 

1 
Hq + 1(M') 

t· 
7l 

dJ 
- Hq+ 1 (M) -=.:..... 7l ~ Hq (Mo) ~ HiM) - 0 

}-
Hq(M') 

1 
o 

where i* d'(A') = x = (/)*{)l,), i~ d(A) = y = lP*{)l,'), p. a generator of 
Hisq x Dq+ 1), p.' of Hq(D4+ 1 X S4), etc. Hence 

Hq(M')/i~ d71 = Hq(M)fi* d'71. 

Proof. This follows immediately from (IV.2.11), (IV.2.12) and the 
fact that 

HiM)ji* d'71 ~ Hq(Mo)jd'71 + d7l ~ Hq(M')/i~ d(7l) . 0 

If x = i* d'(A') has finite order s, then x· is the zero map, so in (IV.3.2) 

IV.3.3 

o -71 ~ Hq(Mo}~ Hq(M) - 0 

is exact. Also sd' (A') E ker i* = im d, so we have 

IV.3.4 
sd'(A') + td(A) =0 in HiMo) , some t E 7l. 

IV.3.5 Lemma. Suppose x is of finite order s in H (M). Then y is 
of infinite order if t = 0, and order y = t if t =F O. q 

Proof. Since d(A) is of infinite order by (IV.3.3), (IV.3.4) implies that 
d'(A') is also of infinite order if t =F 0, (since s =F 0). Clearly 

ty = ti~ d(A) = i~( - s d'(A'» = 0, 

since i~ d' = 0, and using (IV.3.4). Hence (order y) I t. 
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If t'y=O, then t'i~d(A)=i~(t'd(A»=O so t'd(A)Ekeri~=imd'; and 
t' d(A) = - s' d'(A') some s' E 7l, or s' d'(A') + t' d(A) = 0 in Hq(Mo)' Applying 
i*, we get s' i* d'(A') = s' x = 0, so s' = Is. Subtracting I times (IV.3.4) from 
s' d'(A') + t' d(A) = 0 we get (t' -It) d(A) = O. But del) is of infinite order. 
so t' - It = 0 or t' = It. Hence tIt', and t = order y. 

Suppose t=O so that sd'(A')=O. Then keri~CtorsionF4(Mo), so i~ 
is 1 - 1 on d71, and hence y = i~ d(A) is of infinite order in Hq(M'). 0 

Consider the commutative diagram 

IV.3.6 

Hisq x sq) ( ()' Hq+1(Dq+l X sq,sqxS4)=71 

{)r~dl 
7l = Hq+ 1 (sq X D4+ 1, sq x sq) d , Hq(Mo) 

where d and d' are from the sequences of (IV.2.11). Recall that 

AEHq+1(Sq x Dq+\Sq x sq) such that 0..1.= l®[Sq] , 

A' E Hq+ 1 (Dq+ 1 X sq, sq x sq) such that 0' A' = [S4] ® 1. 

Suppose M is closed., so that oMo = S'l x sq, and (/)0: sq x S'l-Mo 
is the inclusion of the boundary. Then we have the exact sequence 
diagram of Poincare duality (1.2.2): 

<P/i lJ -Hq(Mo) , Hq(Sq X S'l) __ HQ+l(Mo, sq X sq)--t 

[M01r'l lsqxsqlnl [Molnl 

_ Hq+
1
(Mo• sq X S'l)~ Hq(Sq x sq) 'Po. I Hq(Mo)-

Thus 

IV.3.7 

[S4 x SQ]n(image CP6)= kernel (/)0* . 

By (IV.3.6), d'(A} = (/)0* 0'(..1.')= (/)0 * ([sQ] ® 1), and 

d(l) = CPo* 0(..1.) = (/)0*(1 ® [S4]). 

so that 

(/)o*(s([S4]®l)+ t(l ® [sq]» = o. 
IV.3.8 Lemma. Let q be even. Then (/)o*(s([sq]® 1)+ t(l®[sq]» =0 

implies either s = 0 or t = O. 

Proof. Let U E Hq{Sq) such that U [S4] = 1. Then 
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in Hq(Sq x sq). Hence 

[sq x Sq]n(s(l ® U) + t(U ® 1») = s([sq] ® 1) + t(l ® [sq]) , 

and by (IV.3.7) it follows that s(l®U)+t(U®l)=cpt(z), for some 
z E Hq (Mo). But cp~ : H2q(Mo)-o H2q(Sq x sq) is zero, as CPo is the inclusion 
of the (connected) boundary of Mo. Hence 

(s(l ® U) + t(U ® 1»2 = cp~(Z2) = 0 

But (s(l ® U) + t(U ® 1»2 = 2st(U ® U) if q = dim U is even. Hence it is 
zero if and only if either s = 0 or t = O. 0 

Proof of Theorem (IV.2.1) for m=2q+ 1, q even: 
By (IV.3.1), we may assume f: M-oA is q-connected and KiM ) 

is a torsion group. Let x E KiM) generate a cyclic summand of order s. 
Let cp : sq x Dq + 1-0 M be an embedding with cp * (P) = x, and defining a 
normal cobordism of(f, b). Assume M is closed, using (IV.2.6). Consider 
diagram (IV.3.2). By (IV.2.12) i* d'(A..') = x, a generator of a summand 
7ls C HiM). By (IV.3.4) and (IV.3.8), s d'(A) = 0, so d'(A) generates a cyclic 
direct summand tl s C HiMo)· 

From (IV.3.3) it follows that torsion HiMo) is isomorphic to a sub­
group of torsion 14(M), and since Hq(M') ~ Hq(Mo)/d'(ll), it follows that 
torsion Hq(M') is isomorphic to a subgroup of torsion HiM) with at least 
one cyclic summand 7l. missing, so the same is true for Kq(M'). (It follows 
also that rank HiM') = rank Hq(M) + 1.) By (IV.3.1) we may find a normal 
cobordism of (f', b) to (f", b') with Kq(M") = torsion Kq(M) < KiM). 
Iterating the above steps, since Kq(M) is fmitely generated, eventually 
this process must terminate, and we get an (fl' b1) with KiM1)=0 and 
f1 (q + l)-connected. 0 

From now on then, we will assume q is odd. 
Let cp: sq x Dq + 1-0 M be an embedding which defines a normal 

cobordism, i.e. so that (f, b) extend over the trace W'I' of the surgery 
based on cp. Let w : sq-oSO(q + 1), let SO(q + 1) act on the right on Dq+ 1, 
and define a new embedding cp(J) : sq x Dq+ 1-0 M by CPro(x, t) = cp(x, tw{x»), 
x E sq, t E Dq+ 1. Then cp(f) defines a surgery, and the result 
M:" = MouDq+ 1 X sq, using the diffeomorphism w': sq X sq-osq X sq, 
w'(x, y) = (x, yw(x»), to identify the boundaries. 

IV.3.9 Lemma. The trace of the surgery based on cp(f) also defines a 
normal cobordism if and only if the homotopy class {w} of w goes to zero 
in 1tq(SO(q + k + 1», i.e. i* {w} = 0 where i: SO(q + l)-oSO(q + k + 1) 
is inclusion. 

Proof. The map CPj(f): sq x Dq+1 x Rk-oM X R\ 

Cp;ro(x, t, r) = (cp(x, tw(x»), r) = (cp(f)(x, t), r) 
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defines a new framing of the normal bundle to ~ in Dm+k, i.e. of vlS
q + v' 

where v = normal bundle of M C Dm + k, v' = normal bundle of ~ cM. 
Then cp defines a normal cobordism if and only if this framing extends 
to a fraring of the normal bundle of Dq + 1 in IY" + k xl, so that the first 

. +1 Dq+1' nm+k I t d' part of the frame defines an embeddmg Dq x. m u x ex en mg 
CPw: sq x Dq+ 1 C MC Dm+k, and the second part of the f~a~: ex~ends the 
trivialization of vlcp(Sq x Dq+ 1) defined by b: V--+1], to a trlVlahzatlon of the 
normal bundle of Dq+1X~+1, and hence that of Mxlu~+lX~+l. 

Now sq = o~+ 1, Dq+ 1 C Dm+k x I such that the normal bundle of sq 
in Dm +k X 0 is the restriction to sq of y = the normal bundle of 
Dq+ 1 C Dm +k X 1. Now y has a framing defmed on S4 by the map 
(p : sq x ~+ 1 X Rk-o E{v), (p{x, t, r) = (cp{x, t), r),. sine: cp defined a n~~al 
cobordism. The difference of these two frammgs IS a map of S mto 
SO(q + k + 1) which is obviously iw. 

Hence the frame cpj(f) extends over Dq+ 1 if and only if iw is homotopic 
to zero in SO(q + k + 1). 0 

By (IV.1.7), 1tq(SO(q + r»-o1tq(SO(q + r + 1» is an is~morphism for 
r> 1, so that keri*, i*: 1tq(SO(q+ l»)--+1tq(SO(q+k+ 1») IS the same for 
all k ~ 1. For k = 1, the exact homotopy sequence of the fibre sp:;e 
SO{q + 1)-4 SO(q + 2)-084+ 1 gives that (ker i*)q = 00 1tq+ 1 (sq ), 
00: 1tq+ 1 (sq+ 1)-o1tq(SO(q + 1» the boundary in the exact sequ~ce. 
Hence from (IV.3.9) if cp: sq x Dq+1-oM defines a normal cobordlsm, 
then we may change cp by w:Sq-oSO(q+ 1) if {w} E 00 1tq +l(sq+ 1) and 
CPw will still define a normal cobordism. . 

Now we will compare the effect of surgenes based on cp and CPro' Let 
g~ = [S4]®l, g~ = l®[Sq]E Hi~ x sq). 

IV.3.10 Lemma. Let g be generator ofnq+ 1 (sq+ 1), and let {w} =moo@), 

cp' = CPro' Then 

CPo*(g~) = CPO*(g'1) + 2mcpo*(g~) 

CPo*(g~) = CPo*(g~)· 

Proof. Recall that lemma (IV. 1.9) says that the composition 

1tq+1(Sq+1)~ 1tq(SO(q + l») J41ti sq) 

is multiplication by 2 if q is odd. Now CPo is represented by the compo· 
sition 

S4 xsq~SqxSq~Mo, 

where w': sq x ~-osq X sq is given by w'(x, y)= (x, yw(x»). If y = base 
point Yo E sq, then by definition, Yow(x) = pw(x), p: SO(q + l)-oS4 is 
the projection of the bundle. Hence on S4 x yo. <i'o(x, y(}) = (fJo(x, pw(x») 
so CPo=(fJo(l x pw)A on sq x Yo, Lt :sq-o~ x sq given by A{x)=(x,x). 
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Now LI*(g)=gt +g2' where now gE1tq(Sq) is the generator, gj=(ij)*g, 
it (x) = (x, Yo), i2(x) = (Yo, x), so that h(gj) = g;, h the Hurewicz homo­
morphism. Then 

CPo*(gd = CPo*(l x pw)* LI*(g) 

= CPo*(l x pw)* (gt + g2) = CPO*(gl + 2mg2) 

= CPO*(gl) + 2mCPO*(g2)' 

On Yo x sq, w(Yo)=identity of SO(q+ 1), so CPolyo x Sq=CPolyo x sq, 
so CPO*(g2) = CPO*(g2)' The result in homology follows by applying h. 0 

Returning to diagram (IV.3.2) where d(A) = CPo*(l (8) [sq]) = hCPo*(g2) 
and d'(A') = hCPo*(gt), if we take the analogous diagram using CPw instead 
of cp, we fmd dw(A) = hCPwo*(g2) = d(A) and 

d;"(A.') = hCPwo*(gt) = d'(A.') + 2md(A) , 

or d(A) = dw(A), d'(A.') = d;"(A.') - 2mdw(A). Hence (IV.3.4) becomes 

IV.3.lt 

or 

s d;"(A') + (t - 2ms) dw(A) = 0 . 

IV.3.12 Proposition. Let p be prime and let x E Kq(M) be an element 
of finite order such that (x)p =1= 0 in KiM; 7lp), where ( )p denotes reduction 
modp. Let cp: sq x J)iJ+ t_intM be an embedding which represents x, 
i.e. cP*(P) = x, and which defines a normal surgery of (f, b). Then one may 
choose w:sq-SO(q+1) so that CPw:SIl x Dq+t_intM also defines a 
normal surgery of (f, b), order (torsionKq(M;"» ~ order(torsionKiM», 
and rankZpKq(M;"; Zp) < rankzpKq(M;Zp). 

Proof· By (IV.3.2), HiM)/(x) ~ HiM')/(y)' where (x) indicates the 
subgroup generated by x, etc. By (lV.3.5), order x = s, and order y = t if 
t =1= 0, order y=oo if t=O" where (IV.3.4) gives sd'(A.')+td(A)=O. By 
(IV.3.9), we may change cp so that (IV.3.4) becomes (IV.3.11) 
sd;"(A.') + (t - 2ms) d(J)(A) = 0, so that Hq(M)!(x) ~ Hq(M;")!(yw) and 
order y m = t - 2ms if t - 2ms =1= 0 and order y w = 00 if t - 2ms = O. Choose 
m so that -s ~(t- 2ms)~ s, so that orderyw ~ orderx or orderyw= 00. 

Hence order torsion Hq (M;") ~ order torsionHq(M). Hence 

order torsion Kq(M;") ~ order torsion Kq(M) . 

But if(x)p =1= 0, then by (IV.2.16) rankzp Kq(M;"; Zp) < rankzpKq(M; Zp). 0 
Now we complete the proof of (IV.2.1) for m = 2q + 1, q odd. 
Let (f, b) be a normal map, and by (IV.3.1) we may make f 

q-connected, and Kq(M) a torsion group. Let p be the largest prime 
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dividing order KiM), and let x E KiM) be an element such that (x)p =1= 0 
in Kq(M; Zp). By Whitney's embedding theorem we may find an embedded 
Sq·cintM2q+1 representing x, and by (IV.1.6) and (IY.l.12) we may 
extend this embedding to an embedding cp: sq x J)iJ+t_intM such that 
cp defines a normal surgery on (f, b). By (IV.3.12) cp may be chosen so 
that order (torsion KiM'» ~ order (torsion KiM» and 

rankzp Kq(M'; 7lp) < rankzp Kq(M; Zp) . 

Proceeding in this fashion step by step we will find after a finite number 
of such surgeries, a normal cobordism of (f, b) to (ft, bt) such that f1 is 
q-connected, order (torsion Kq(Mt}) ~ order (torsion KiM», and 
rankz KiMt; 7lp) = O. By (1.2.8), KiMt; Zp)~ Kq(M1)(8) tlp since 
Ki(M;) = 0 for i < q, and it follows that KiMt) is a torsion group of order 
prime to p, and order KiMt) ~ order Kq(M). Since KiM) has p-torsion, 
it follows that order KiMt) < order KiM). Hence we have reduced the 
order of the kernel, and so by a finite sequence of these steps we may ~a!e 
the kernel 0, thus obtaining a normal cobordism of (f, b) with (f, b), 
where J is q-connected, and KiM) = O. Hence J is (q + l)-connected, 
and (IV.2.l) is proved for m = 2q + 1, q odd. 0 

This completes the proof of (IV .2.1) for m odd. 

§ 4. Proof of the Fundamental Theorem for m even 

If m = 2q, (f, b) a normal map f : (M, oM)-(A, B), 

(floM)*: H*(oM)-H*(B) 

an isomorphism, and f is q-connected, then Kj(M) = 0 for i < q and by 
Poincare duality Km-i(M,oM);;fKm-i(M)=O for i<q (see (1.2.6». 
By the Universal Coefficient property (1.2.8), it follows that Kj(M) = 0 
for i > q, and KiM) is free. Let x E KiM) be represented by an embedding 
Cl: Sq-intM, so that (P, ex) E 1tq+ 1 (f), 

Sq~M 

1 1 
J)iJ+t~A 

and define M = M U DIl + 1, J: M - A extending f, defined by p. By 
11 

(IV. 1.6) there is an obstruction (!) E 1tq(Vk ,q) = Z if q is even,712 if q is odd, 
such that (!) = 0 if and only if J : AI - A can be thickened to a normal 
cobordism. Let x' E Kq(M, aM), such that [M]nx' = x E Kq(M). 

Recall that in Chapter III we defined a bilinear pairing ( , ) on 
Kq(M, oM) and a quadratic form 11': Kq(M, oM; 7l2)-712 • 
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IV.4.1 Theorem. The obstruction (!) above for thickening J: M - A 
to a normal cobordism is given by 

(!) = (x', x') if q is even, 

(!) = V'«x'h) if q is odd, 

where ( h denotes reduction mod 2. 

Assuming (IV.4.1) for the moment we will complete the proof of 
(IV.2.1), i.e. in the case m even. 

If (j, b) is normally cobordant relB to a homotopy equivalence then 
it follows from (11.1.1) that u(j, b) = O. 

Let us assume then that u(f, b) = 0 and show how to construct a 
normal cobordism of (j, b) to a homotopy equivalence. 

First suppose m = 2q and q is even. Then u(j, b) = ! J(j), so if 
u(j, b) = 0, then J(j) = signature of ( , ) on Kq(M, aM) = O. By (IV. 1.13), 
we may assume that Ki(M)~Ki(M, aM)=O for i<q, and free for i=q. 
By (Ill.1.3), there is an x' E Kq(M, aM) such that (x', x) = 0, so by (IV.4.1), 
[M]nx' =X EKq(M)can be represented byq>: sq x Dq-intM, q>*(J-L) = x, 
J-L generator of Hisq x ~), and the surgery based on q> defmes a normal 
cobordism of (f, b). But we may choose x' to be indivisible, i.e. a generator 
of a direct summand of Kq(M, aM). Hence, by (IV.2.14) 

rank Kq(M') < rank Kq(M) , 

f' still q-connected, where M', f' : (M', aM)-(A, B) is the result of the 
normal surgery based on q> (Actually (IV.3.2) shows that the rank goes 
down by 2). Since (J, b) and (f', b') are normally cobordant, J (j') = I (f) = 0, 
and we proceed in this fashion until Kq has been reduced to zero and we 
get a (q + l)-connected map. 

If m = 2q, q odd, the u(j, b) = c(f, b) = Arf invariant of V' on 
K~(M. aM; 7lz). If u(f, b) = 0, from (III.1.8) for example, we may deduce 
the existence of YE Kq(M, aM; 7l z) with V'(y) = O. If f is q-connected, 
then Kq(M, aM; 7lz) = Kq(M, aM)®7lz, and y = (x'h for some 
x' EKIl(M, aM), x' indivisible. By (IV.4.1~ X= [M]nx' is represented by 
q>: sq x ~-intM, q> defining a normal cobordism, and by (IV.2.14), 
rank KiM') < rank Kq(M), f' still q-connected. Also u(j',b')=u(J,b)=O 
since (f', b') and (f, b) are normally cobordant, so we may proceed as 
above till we obtain a (q + l)-connected map. This finishes the proof of 
(IV.2.1) and the Fundamental Theorem. 0 

It remains then only to prove (IV.4.1), to which we devote the rest of 
this chapter. 

Let (f, b) be a normal map f : (M, aM}-(A, B), dimM = m = 2q, and 
suppose f is q-connected. Let x E KiM) be represented by an embedding 
oc: Sq-intM, let ,q be the normal bundle of oc(sq) in M, and let 
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M=MUDq+1,j:M-A an extension of f· Let (!)E1tiVk.q) be the 
~ --

obstruction to thickening M and f to a normal cobordism (see (IV.1.6», 
and let i3 : 1tiVk,q)-1tq-1 (SO(q» be the boundary in the homotopy exact 
sequence ofthe fibre bundle p: SO(k+q)- Vk,q = SO(k+q)/SO(q)with 
fibre SO(q). 

IV.4.2 Proposition. i3(!)= characteristic map of' E 1tq_1(SO(q». 

Proof. Let Xo E sq be a base point so that if h: sq-SO(q + k)jSO(q) 
= Vk,q represents (!), h(xo) = pe/D), where p: SO(q + k)- Vk.

Z 
is projection 

and ,1o E SO(q + k) is the base point, a (k + q)-frame in R +q, p(f) = the 
first k elements of the (k + q) frame /, so that p(f) is a k-frame. Divide 
Sqjnto two cells, Sq=D'!tuD'!.., x o ED'inD'!..=Sq-1=i3D'i=i3D'!... We 
may assume that h(D'!..) = pe/D), since D'!.. is contractible. Let 
h:D'i-SO(q+k) such that h(xo)=,1o and ph=h on D'i. Then 
ph(Sq-1) = h(Sq-l) =p(fo), so that the first k elements of h(y) for y E Sq-1 
~re the base frame of Vk,q. Hence there is a map y: Sq-1_S0(q) such that 
h(y) = ,1o(iy(y)~ where i: SO(q)-SO(q + k) is the representation of SO(q) 
acting on the subspace of Rq+k orthogonal to the space spanned by 
p(/o)' Then y represents i3(!)E 1tq - 1 (SO(q», by the definition of i3 (see [60]). 

Now' is the orthogonal bundle to the trivial bundle spanned by hex), 
for x E sq. Since h(D!) = p(!o), the last q vectors in/ ° ~ve a trivialization 
of , over D!, and since ph = h, the last q vectors of hex), x E D'i, give a 
trivialization of, over D'i. Since y(y) for YE Sq-1 sends the last part of 
,10 into the last part ofh(y), it follows that y is the characteristic map of, 
(see [60; (18.1)]). 0 

Now from results of IV., § 1 we may derive easily 

IV .4.3 Proposition. The boundary a: 1tq(Vk,q)-1tq-1 (SO (q» is a mono­
morphism for q =1= 1, 3 or 7. 

Proof. Considering the inclusion of total spaces, SO(q + 1) in 
SO(q + k}, and the projection SO(q + k)-SO(q + k)/SO(q -1), we get 
the commutative diagram where P1' pz and P3 are projections of fibre 
bundles, i1 , iz and i3 inclusions of the fibres: 

SO(q) --_, SO(q) p') SO(q)jSO(q-l)= Sq-1 

iJ li2 li3 
SO(q+ l)~SO(q+k)-----+1 Vk+1,q-1 

pi lp2 lp3 
j' V. V. sq=v l,q I k,q ------"+) k,q' 
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Let Oi' i = 1, 2, 3 be the boundary operators associated with the bundle 
projections Pi' By (IV.1.9), if q is even, then P~01 :1tisq)-+1tq_1(Sq-1) 
is multiplication by 2, hence is a monomorphism. But by commutativity 
of the diagram, p~ 01 = 03j~. Hence j~ is a monomorphism, and since by 
(IV.1.12) 1tq(Vk,q) = 'lL if q is even, it follows that 03 = 0 is a monomorphism 
if q is even. 

If q =l= 1, 3 or 7, q odd, then by (IV.U1) ker i* = 'lLl' where 
i*:1tq_dSO(q»)-+1tq_1(SO(q+1»). Hence 01 is onto 'lLl C1tq_1(SO(q») 
and since j~ : 1tq(sq)-+1tq(Vk,q) is onto by (IV.1.12), 01 = 03j~, it follows 
that 03(1tq(Vk,q»))'lL2. Since 1tq(Vk,q)='lL2 for q odd by (IV. 1.12), it follows 
that 03 = 0 is a monomorphism for q =l= 1, 3 or 7. 0 

Thus for q =l= 1, 3 or 7, the obstruction (!) to doing normal surgery on 
sq C M 2q can be identified with the characteristic map of " its normal 
bundle in M, (I) E keri* C 1tq- 1 (SO(q»), and is therefore 0 if' is trivial. 
Now keri* is generated by 01 (i1 where i E 1tq(S~ is the class of the identity, 
so that 01 (i) is the characteristic map for the tangent bundle 1: of sq. It 
follows that (!) = A(01 (i»), some A E 'lL. 

Now if q is even the Euler class X(1:)=2gE Hq(Sq), where 9 is the 
generator such that g([sq]) = 1. This follows from the general formula 
X(1:M) = X(M)g, or may be deduced for M = sq, q even, using the fact that 
1: M is equivalent to the normal bundle of the diagonal M in M x M. For if 
U E Hq(E, Eo) is the Thorn class, it follows from (IV.2.8) that 

[SI/. x StJ.]n'1* U = [sq] (8) 1 + 1®[SIJ.] 

the homology class of the diagonal, where '1 : sq x Sq-+E/Eo is the natural 
collapse. Hence 1'/* U = 9 ® 1 + 1 ® g, and 

1'/*(U2) = (1'/* U)2 = (g® 1 + 1 (8)g)2 = 2g(8)g, 

if q is even. Since 1'/* is an isomorphism on H 2
q, it follows that U2 = 2g U, 

so X(1:)=2g, since by definition X(~)U~=(U~)l, for a bundle~. 
Now the Euler class is represented by the universal Euler class 

X E HIJ.(BSO(q»), where BSO(q) is the classifying space for oriented q 
plane bundles (see [60] or [32]). That is, if c: X -+ BSO(q) is the clas­
sifying map of a q-plane bundle ~ over X, c*(y) = ~, where y is the universal 
q-plane bundle over BSO(q), then X(~)=c*(X). If c:SIJ.-+BSO(q) 
repres.ents 1:sq, then c* (X) = 2g, as above, but if c' : SIJ.-+ BSO(q) represents 
A(1:sq) ID the homotopy group 1tIJ.-1(SO(q»), then AC and c' are homotopic, 
i.e. {AC} = {c'} in 1tq(BSO(q»). Hence c'* = AC*, so we get: 

IV.4.4 Lemma. If q is even and 02 (!) = A01 (i), then X(O= 2Ag, where' 
is the normal bundle of r:t.StJ. in M 2q, representing an element in K (M), 
(I) the obstruction to doing a normal surgery on sq. 0 q 
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IV.4.5 Lemma. X(,)[sq]=(x',x'), where [M]nx'=x, r:t.:S
q
-+M2q 

is an embedding representing x E KiM), , the normal bundle of r:t.(StJ.), as 
above. 

Proof. x(()U = U2 by the definition of X, where U E Hq(E(')fEo(C») 
is the Thorn class. Clearly (X(m [sq] = (X(,)U) [E] = U2[E] = ('1* U)2[M], 
where [E] E H2q(E(WEo(m is the orientation class, so [E] = '1* [M], 
where 1]: M/oM-+E/Eo is the natural collapse. 

By (IV.2.8), [M]n1]*U =X, so that 1]*U =x'. Hence 

xC') [SIl] = (1]* ul [M] = (X')2 [M] = (x', x') . 0 

By (IV.4.4) and (IV.4.5), for q even, (x', x') = lA where 02 (I) = A01 (i). 
By (IV.4.3) 02 is a monomorphism for q even, so we may identify (I) with 
(x', x'), which proves the first part of (IV.4.1), i.e. for q even. 

The result for q odd is more delicate since it is not dependent only on 
the normal bundle' of SI/. in M2 q if q = 1, 3 or 7, and even for q =l= 1,3 or 7, 
it is more difficult to detect the normal bundle C· 

Let r:t.i: Sq-+M21/., i = 1,2 be embeddings representing Xi E Kq(M), 
where as usual (f, b) is a normal map f: (M, oM)-+(A, B), 

(f I oM)*: H*(oM)-+H*(B) 

an isomorphism. Suppose r:t.1(Sq)nr:t.l(Sq)=0, and let (1)1 and (!)2 be the 
obstructions to doing normal surgery on r:t.1 (sq) and r:t.2(SIJ.) respectively. 
Join r:t.l (sq) and r:t.2(SIJ.) be an arc in the complements, and by thickening 
this arc to a tube T = JY1 x [1,2] we take 

(r:t.l (sq) - (JY1 x 1»)u 00 Tu(r:t.2(Sq) - (Dq x 2») 

where 00 T = oDq x [1,2], DIJ. x i = T n IX; sq. This gives us an embedding 
r:t.: sq-+ M 2q representing Xl + Xl' which can be made differentiable by 
"rounding the corners." 

IV.4.6 Lemma. (I) = (!)1 + (1)2 in 1tq(Vk•q)· 

Proof. If we thicken the embedding of T C M by multiplying by [0, e] 
we get an embedding of T x [0, e] in M x I and if we have MC Dm+k, 
M x I C Dm+k x I, this gives us T x [0,8] C Dm+k x I, and if r:t.iS

q 
= oD1+ 1, 

D1+ 1 C Dm+k x I meeting Dm+k x 0 transversally in r:t.i(Sq), so then we 
may assume a neighborhood of a;(Sq) in D1 + 1 is just r:t.i(Sq) x [0, e J. If 
we take 

Dq+ 1 = Dj+ 1 - (Dq.x 1 x [0, e])u (oDIJ. x [1, 2] x [0, e]) 

0(Dq x [1,2] x e)uD1+ 1 - (Dq x 2 x [0, e]), 

then this is a (q + 1) cell meeting Dm+k x ° transversally in a(Sq), and we 
may smooth this Dq+ 1 and r:t.(sq) together by "rounding corners." 
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The resulting Dq+1 is the union of three cells, Dq+1=A1uBuA2, 
where Ai = D'f+ 1 - intCi where Ci is a (q + i)-cell, aCinaDi = Fi, Fi a 
q-cell in aDi, BnAi = aCinAi c aB, and 

aB - (aCI nAI)- (aC2nA2) = sq-1 x I. 

Since the definition of the obstruction (9 does not depend on the 
choice of the framing of the normal bundle y of the disk Dq+ 1, we may 
assume that the framings over Dq+ t, D1+ 1 and D1+ 1 have been chosen 
so that the framings over· Dq + 1 and D'f + 1 coincide over Ai' i = 1, 2. 
Further we may assume that the framings of v, the normal bundle of M in 
Dm+k over IXSq, IXl sq, IX2 sq, induced by b, have been chosen so that over 
Fi they are all the same, coming from a framing of v IT, (T is a cell), and 
the framings ofy, Yl and Y2 may be assumed to extend that of v over 
T nIXSq, T n IXi sq, i = 1,2. Thus the three maps p, Pi' i = 1,2, P : aSL .,. Vk,q' 
etc. defining (9, (9i,i = 1,2, may be taken to be the base k-frame over 
TnIX~, TnIXiSq, i = 1, 2, and PIIXi(Sq)nIX(~)= Pilai(Sq)na(Sq). It follows 
that for the homotopyclasses {P} = {Pd + {P2} in 1tq(Vk ,q) or (9 = (91 + (92' 

D 
IV.4.7 Lemma. If (9 = 0, then tp(x'h) = 0, with notation as above. 

. Proof. Since (9 = 0, we have a normal surgery based on IX : se..,. M 2
q, 

so that the trace is a normal cobordism w 2q+\ aw =Mu(aM x I)uM', 
and if i : a w - W is inclusion, i* k* x = 0, where k : M - a w. It follows 
from (I.2.7), that x" = i* z, Z e Kq(W), where [aW]nx" = k*x,x" eKq(oW) 
and Kq(W) is defined by the map of F: W-A x I extending-f on M. 

It follows from (III.4.13) that tpo(i* zh) = tpo(x"h) = 0, where tpo is 
defined on KQ(aW;Z2), for the map aF:aW-AxOuBxluAx1. 
Now aF is clearly the sum of (f, b) on M and (f', b') (the result of the 
surgery) on M'. By (III.4.15) tpo('1*(x'h) = tp(x'h), x' E Kq(M, aM), so it 
remains to show that '1* (x'h = (x"h, ('1 : aw - M/aM). 

Consider k* x = k*([M] n x') = k*('1*[a W] n x') = [a W] n '1* x', 
using identities of the cap product (compare IV.2.8) so that since 
[a W] n x" = k* x, it follows that x" = '1* x', and hence tp(x'h) = O. D 

Now we prove that (9 = tp(x'h). If (9 = 0, then tp(X12) = ° by (IV.4.7). 
So it remains to show that if (9 = 1 then tp(x'h) = 1. 

By taking the connected sum with the map sq x Sq_S2q, or alter­
natively doing a normal surgery on a Sq-l C D2q C M 2q, we may add to 

§ 4. Proof of the Fundamental Theorem for m even 113 

K (M) the free module on two generators ai' a2 ,corresponding to 
[S~] @ 1 and 1 @[sq) in Hq(Sq x sq) and add to Kq(M, aM) the elements 
gl' g2 such that [M *(sq x Sq)]ngi =ai, with (gl' g2)= 1, (gi' gi)=O, 
i=1,2, orthogonal to the original Kq(M,oM), and tp(gl)=tp(g2)=0. 
Hence tp(gl + g2) = tp(gl) + tp(g2) + (gl' g2) = ° + ° + 1 = 1. If 
P : sq-M * (sq x sq) represents the diagonal class 

a1 + a2 e KiM * (sq x sq») , 

it follows from (IV.4.7) that the obstruction (9 to surgery on p, (9 = 1, 
since if it were ° then tp(g 1 + g 2) would be 0. Then on the sum embedding 
IX + P representing x + (a1 + a2) the obstruction (9" = (9 + (9' by (IV.4.6), 
so that (9" = 1 + 1 = O. Hence tp(x'h + (gl + g2») =0 by (IV.4.7). But since 

(x'h, (gl + g2») = 0, 

tp(x'h + (gt + g2») = tp(x'h) + tp(gt + g2) = tp(x'h) + 1 = 0, 

so that tp(x'h) = 1. D 



V. Plumbing 

In this chapter we will describe the process of "plumbing" introduced 
by Milnor [47], which constructs manifolds with prescribed quadratic 
forms in the middle dimension. See Hirzebruch [31] for another dis~ 
cussion. 

§ 1. Intersection 

In this paragraph we review the intersection theory of submanifolds of a 
manifold. 

Let Nf, Ni. be smooth submanifolds of a smooth manifold Mm, 
m = p + q. (Smoothness may of course be replaced by much weaker 
conditions in what follows.) A point x E N1nNz will be called a discrete 
point if x has an open neighborhood V in M such that V nNI n Nz = x. 
If every point of NI nNz is discrete, then NI nNz is a discrete subset of M. 

If x E NI nNz is discrete and V is open in M such that V nNI nNz = x, 
then (V - NI)U(V - Nz) = (V - x). Hence we have a pairing given by 
relative cup product 

V.1.t 

Hq(V, V-NI)®HP(V, V-Nz)~Hp+q(V, V-x). 

Now suppose M, NI and Nz are oriented, so that for each point x EM 
we are given a generator [Ml~ E Hm(M, M - x), (for yE NI we are given 
[NI], E H p(NI, NI - y), for Z E Nz we are given [Nz]z E Hq{Nz, Nz - z»), 
in a compatible way for all the points x E M (y E NI' Z E Nz), (see the proof 
of (1.3.5»). Let E i , i = 1, 2 be a tubular neighborhood of Ni in M, E? = the 
complement of the zero cross~section. Then the inclusion 

(Ei' E?) C (M, M - Ni) 

is an excision, so H*(M, M - Ni) ~ H*(E i , E?). By the Thom isomorphism 
theorem if ~i are oriented there are elements VI E Hq(E1 , El), 
V z E HP(Ez, Ez) such that r* Vi is a generator of H*(V, V - Ni), for any 
small neighborhood such that V = A x B, B a ball in Ni' V nNi = 0 x B, 
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r denotes inclusion and such that U Vi and n Vi induce isomorphisms, 
(see (1.4.3), (11.2.3), (II.2.6»). Let us assume all orientations are chosen 
compatible so that [M]xnr*Vi = [N;]x for x E Ni' 

Then we may define the sign or orientation of a discrete point 

xENlnNz by 

V.1.2 
sgn(x) = (r* VI ur* Vz) [M] x , 

(using (V.U»). . . ., 
We shaH call x a (homoiogically) transversal pomt of mtersectlon If 

sgn(x) = ± 1. This will obviously be the case for transversal intersections 
in the usual geometrical sense. 

Recall the definition of the intersection of homology classes (see IV § 2). 
Let W be a compact oriented manifold with boundary, and let x E Hp(M), 
YEH(M,aM), p+q=m. Define x·y=(x',y')=(x'uy')[M], where 
x'EHm-P(M, oM), y'EHm-q(M), such that [M]nx'=x, [M]ny'=y. 
The same definition also works for x, yE H*(M), i.e. X· Y = X· j*y. 

Suppose Nf, Ni. are compact oriented submanifolds of Mm, a ~ompact 
oriented manifold with boundary, m = p + q, and suppose NI IS closed 
and aNz C oM, and aMnN1 =O, aMnNz = aNz· Let NI, Nz and M 
be oriented, and suppose NI intersects Nz (homologically) transversally, 
and let i j : Nj~ M be the inclusions j = 1,2. 

V.1.3 Theorem. 

(il*[NtJ)·(i z*[Nz])= L sgn(x). 
xeN. "N2 

In other words the intersection of the homology classes counts the 
number of intersection points, with the sign. 

Proof. Let VI E W-P(E1 , El), V z E Hm-q(Ez'~) be the Thom 
classes of the normal bundles of NI and Nz (notation as above). Let 
ki:(Ei,E?)~(M,M-Ni)beinclusions(excisions),j:(M,aM)~(M,M-NI), 
I: M ~(M, M - Nz). Let ui E H*(M, M - Ni) be such that kt Uj = Vi' and 

let Xl = rUl' Xz = l*ul' Then 

V.t.4 
[M]nxj=ij*[Nj], j=1,2. 

For by (IV.2.7), il·([NtJ)= i1 .. ([E]nVt ) = [M] nj*U1 = [M]nxl' (simi~ 
larproofforj = 2). Hence, by definition (il·[NtJHil.[Nz]) = (Xl uxz)(M]· 
But Xl u Xl = (j* uI)u(l* Uz) = h*(UI UU1)' where 



116 V. Plumbing 

Hence (Xl UX2) [M] = (h*(u l UU2») [M] = (U l UU2) (h*[M]). Now 

h*[M] =q* 1: [M]x' 

q: U(Vx, Vx-x)-(M, M-(Nl nN2»), 

(Xl UX2) [M] = 1: (U l UU2)(q*[M]x)· 
xeN,nN2 

Since ktu; = U;, it follows that 

(Ul uu2)(q*[M]x) = (r* Ul)u(r* U2») [M]x = sgn(x), 

and the result follows. 0 
Now let Nq be a closed submanifold in interior of M 2 q, and let 

cq be its normal bundle. If we make N transversal to itself (using 
for example Thom's transversality theorem), then (V.1.3) implies that 
i*[N]· i*[N] = 1: sgn(x), the summation running over points X common 
to the two copies of N. However this self-intersection number is also 
interpretable in terms of C: 

V.1.5 Proposition. i* [N] . i* [N] = x(O [N] (see (IV.4.5)). 

Proof· By (IV.2.8), [M]ng* U =i*[N] whereg:MjoM-EjoE= T(C), 
E = total space of, is a tubular neighborhood of N. Hence 

i*[N]· i*[N] = (g* U)2 [M] =(U2) W*[M]) = (X(O U) ([E]) 

= X(C) ([E] nU) = X(C) [N]. 0 

§ 2. Plumbing Disk Bundles 

Now we describe the process of "plumbing" disk bundles over manifolds. 
Let 'r be a q-plane bundle of a q~dimensional smooth manifold Nt, 

and let Ei = the total space of the closed disk bundle associated to Ci' 
We shall suppose Cl' Ni and E; oriented compatibly, i = 1,2. 

Let X,E Nt, i = 1, 2, and let IY{ be a ball neighborhood of X; in Ni' 
Since IY{ is contractible, Ci is a product over DJ, so that a neighborhood 
of Xi in E; is diffeomorphic to DJ x IY{', X xVf being the fibres of E;. Let 
h+ : Df-IYf, k+ : Df -D~, (L : D1-m'), (k_ : Df -m) be orientation 
preserving (orientation reversing) diffeomorphisms. 

We define the "plumbing" of El with E2 at Xl and X2 by taking El U E2 
and identifying D1 x Df with D~ x m' by the map h (x, y) = (k+ y, h+ x) or 
by the mapL(x, y)= (k_y, h_x), I± : Dl x Di -+D2 x D;. We shall say we 
plumb with sign. + 1 if we use 1+, with sign -1 if we use L. (Note that we 
could have used only one manifold, plumbing together 2 points on it, 
i.e .... taking El = E2') We denote the result of the plumbing by E I oE2, 
which can be made differentiable by straightening the angles. Since 1+ 
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and L are both orientation preserving if q is even (reversing if q is oddi), 
E I oE2 can be oriented compatibly with N l , Cl' N2 and '2 if q is even 
(with N l , Cl' -N2' C2 if q is odd). Note that N;cE i cE 1oE2, and that 
N1 n N2 = Xl = x 2 , which is a transversal intersection, and that 
Sgn(Xl) = + 1 if we used h, sgn(x1) = -1 if we used L. 

If we choose several different points in Nl and N2 , then we may 
plumb El and E2 together at several different points simultaneously with 
a prescribed sign at each point. If we plumb at n12 points with sign + 1 
for example, we get a manifold E I oE2 with N i CE;CE I OE2 and with 
il.[Nl] . i2.[N2] = n12 (see (V.1.3)~ If we take a third manifold Nj and 
a q-plane bundle C~ over N3, we may plumb E3 with E2 at In231 points, 
and with El atln1 31 points with sign = signn;j, by simply avoiding the 
finite number of points of N2 and NI involved with the plumbing of El 
and E2, and get a manifold E 1 oE2oE3 with N;CE;CE1oE20E3, 
and i* [Ni] . i* [Nj] = nij, where i * j. (Here we take n ji = nij if q is even, 
nji= -nij if q is odd.) We may continue this process to plumb together 
m-different manifolds El' ... , Em' E; = total space of e1 over N;q, i = 1, ... , m, 
and with prescribed intersections between N; and Nj for i * j. The self· 
intersections of the N/s are determined by the Euler class X(Ci)' by (V.1.5). 

V.2.1 Theorem. Let M be an n x n matrix with integer entries, 
symmetric, and with even entries on the diagonal. Then for k> 1, there is a 
manifold W 4k with boundary such that: 

(i) W is (2k -l)-connected, oW is (2k - 2) connected, H2k(W) is 
free abelian and, 

(ii) the matrix of intersections H2k(W)®H2k(W)--+Z is given by M 
(or equivalently the matrix of the bilinear form ( , ) on Hk(W, oW»), 

• (iii) there is a normal map (j, b), f: (W, OW)_(~k, S4k-l), so that 
in particular M is the intersection matrix also on K 2k(W). 

Proof. Let M = (mij), i,j = 1, ... , n, mij= mjl, mij = 2A;, all i,j. Let 
S1, i= 1, ... ,n be q-spheres, q=2k, and take CJ over S1 to be ~'t'Sq, i.e. Ai 
times 't'Sq in the homotopy group 1tq(BSOq} or 1tq _ 1 (SO(q»). By (IV.4.4), 
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X(Ai'rSq) = 2~[Sn SO by (V.1.5) the intersection number of S1 with 
itselfin Ei is 2Ai = mii' . . 

Now plumb together the E/s, i = 1, ... , n, ~lumblI~g Ei wlth Ej at 
\m .. \ points with sign = sign ofmij' Call the resultmg marufold U. We shall 
sa~ U is the result of plumbing by the matrix M. Then S1 C E; C U and 
i*[SJ . i*[Sj] = mij' by the constructi~n. . 

Since each Ei has S1 as a deformation retract, and EinEj= u (dlsks), 

it follows: 
V.2.2 Lemma. If U is the result of plumbing by the matrix M, then U 

haso deformation retract uS?, where S1nS, = \mij\ points. 

It follows easily that 
V.2.3 Each component of U is the homotopy type of a wedge of 

q-spheres and i-spheres. . ' . 
For taking the union of two q-spheres wlth (n + 1) pomts ~ com~on 

is the homotopy type of sq v S'l V VnS1. Then (V.2.3) follows by m~uct.l~n. 
Now we have constructed U so that it is oriented, and hence 'ru 18 t~vlal 

on the i-skeleton of U. On each EjC U, 'ru\E j = 'rsq + Ai'rSq, and smce 
'r +61 is trivial it follows that 'rU+61\Ej is trivial, and hence 'ru\S1 is 
tri~al. It follows from (V.2.2) and (V 2.3) that 'ru is trivial, since it is 
trivial on each piece of the wedge. It follows that the normal bundle v 
of (U,oU)C(.02q +\S21l+k-1) is trivial, k large. Let b':v_R

k 
be a 

framing, Rk = the trivial bundle over a point. 
Let lU]eH2 (U,oU) be the orientation class, o[U]eH2Q - 1(oU) 

the orientation ~lass of OU. Take a map f': oU_S
2q

-
1 

such that 
f '*(g)(41[U]) = 1, geH2q-1(S2 q -l) a gener~tor, a~d. extend f~ to 
f: (U, oU)_(D2Q, S2Q-1), which is possible ~mce p Q 18 contracttble. 
Let ek be the trivial bundle over D2

q, E<e)=D Q x R and define b:v-e 
by b(v)=(f1tv,bJ (v»), where 1t:E(v)-U is projection. This defines a 
normal map (f, b) as in (V.2.1) (iii). 

Now let us look at the effect of plumbing on the boundary of the 
manifold. We see that for plumbing at one point, 

O(El DE2) = (OEl - D'{ x SIl- 1)u(oE2 - D~ x SIl-
1
). 

Now oE.-m x SI1-1 has the same homotopy type as oEj-SQ-l, and 
since codim~nsion SIl- 1=q, 1tjOEi-IYlXSQ-l)-1tiOEi) is an iso-
morphism for j ~ q - 2. Also . 

(OEl - DY x Sq-1)n(oE2 - D~ x SQ-1) = Sq-l x Sq-l 

which is (q - 2) connected. 
If E' is the total space of (1 over S1, then oE; is (q - 2)-connected, and 

it fono~s that 0(E1 DE2 D··· DEJ is the union of {q - 2)..connected parts 
along a large number of (q - 2)-connected subspaces. 
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V.2.4 Lemma. If q > 2, then for each component X of El DE2 D·· 'DEn 

we have 

(a) 1tl(OX)~1t1(X) is free 
(b) Hi(OX)~Hi(X)=O for 1 <i<q-1, where the isomorphisms are 

induced by inclusion. 

Proof. X is the union of simply connected parts along simply con­
nected subspaces, and similarly for oX if q > 2 by our above remarks. 
Hence 1t1(oX) and 1tl(X) are free by van Kampen's theorem. The com­
ponents of the intersections for the union which gives oX are in 1- 1 
correspondence with the intersections in the union which gives X, 
i.e. Sq-l xSq-1CDIlXDIl, and hence 1tl{OX)~1tl(X), This proves (a). 
Part (b) follows by a similar argument using the Mayer-Vietoris 
sequence, and the fact that every component involved is (q - 2) con­
nected. D 

V.2.5 Complement. If q=2, 1t1(0X) may not be free, but 1t1(X) is 
free and 1t1(OX)-1t 1 (X) is onto. 

The proof is similar. 

Now choose an SI C oX which represents a free generator 9 of the 
free group 1tl (oX) ~ 1t1 (X). In this low dimension there is no obstruction 
to doing a normal surgery on sI, (see (IV.1.6) and (IV.1.12»), so the trace 
V of the surgery has the homotopy type of 41 X u D2, and there exist 
1: v_S2q-l, b:w-e extending (f\oX, b\oX), (w = normal bundle 
of V in Dm+k x J). Then Xl =XuV along oX has the homotopy type 
of X u D2 and hence 1t1 (Xl) ~ 1tl (X)/(g), (g) = smallest normal subgroup 
containing g. Since 9 is a free generator of 1t1(X), 1t1(X1) is free on one 
less generator, and since dim oX = 2q -1> 3, it follows from (IV.1.2), 
(IV.1.3) that the same is true for OX1 (where OV = oXuoX1) and 
1tl (oX1) ~ 1t1 (Xl)' Also it follows easily from the homology sequence 
of the pair (Xl' X) that H;(X) ~ Hi(X1) for i =!= 1, and similarly 
Hi(OX1)~H;(oX) for 1 <i<2q- 2, by a slightly different argument. 

The maps (f, b) and (J, b) on X and V fit together to define a new 
normal map (f1' b1), fl : (Xl' oX1)_(D2

q, S2 q-1). 
Continuing in this way, doing surgeries on circles in the boundary 

and adding the trace to the manifold, we eventually arrive at an Xno 
1t1 (Xn) ~ 1t1 (0 Xn) = 0, Xc Xn and Hi (Xn) ~ Hi(X) for i =1= 1, Hi(OXn) ~ H;(oX) 

, for 1 < i < 2q - 2. Take the connected sum along the boundaries of these 
Xn's for all the components and call the result W, so that U C W. 

Thel;l W is connected, 1tl(W)=O and Hi(W)~Hi(U), i> 1 and 
since H;(U) = 0 for 1 < i < q it follows that W is (q - 1) connected, and 
similarly, Hi(OW)~Hi(OU) for 1 <i<q-l so that oW is (q-2) con­
nected, so (V.2.1) (i) is satisfied. We have constructed normal maps 
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(fn' bn) for each component Xn, so that a normal map is defined on the 
connected sum along the boundaries, which proves (iii). 

Now in U C W we have the embedded spheres Sf C u2
q with normal 

bundle '1, and by our construction M is the intersection matrix ofthe S1. 
But i*[8f] give a homology basis of Hq(U), and hence for Hq(W), and the 
intersection numbers are the same, depending only on a neighborhood 
of the embedded manifolds 81. Hence M is also the intersection matrix 
for W, which proves (V.2.1) (ii). 0 

V.2.6 Complement. When k = 1 we may do the construction above 
to obtain W 4 with the given properties, but 11:1 (OW) will in general be 
larger than 11:1 (W). 

For in dimension 3 it is hard to calculate the effect of surgery on 11: 1 • 

V.2.7 Lemma. In the construction of (V.2.11 oW is a homotopy sphere 
if and only if the determinant of M = ± 1. 

Proof. Consider the exact sequence of(W, oWl, 

0-Hq(oW) ~ Hq(W) ~ Hq(W, oWl ~ Hq- 1 (oW)-O. 

(We have Hq+ l(W, oWl;;::: Hq-l(W) by Poincare duality, H.(W) is zero for 
s~q-l since W is (q-l)-connected, so Hq-l(W)=O by the universal 
coefficient formula, which produces the zero on the left.) Now by Poincare 
duality the intersection pairing on Ht<W)®Ht<W,oW)-71 is non­
singUlar, since HiW) and Hq(W, aWl are free, (see IV § 2, property (a) 
ofintersection~ Hence on Hq(W)®Hq(W)-Z, the intersection product 
as a map a: Hq(W)-Hom(HiW),Z) is a monomorphism if and only 
if image i* = kerj* = 0, and is onto if and only if 0 = O. Since i* is a mono­
morphism and 0 is onto, it follows that a is a monomorphism if and only 
if Hq(oW) =0 and a is onto if and only if Hq_t(oW)=O. So a is an iso­
morphism if and only if Hq(oW)=Hq_1(oW)=0 and oW is a homotopy 
sphere (since it is a closed (q - 2)-connected manifold). But a is an iso­
morphism if and only if detM = ± 1. 0 

Now consider the following 8 x 8 matrix (see Hirzebruch [31]) 

2 1 
1 2 1 

1 2 1 

Mo= 
1 2 1 

1 2 1 0 1 
1 2 1 0 
0 1 2 0 
1 0 0 2 

with zeros in the blank area. 
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V.2.8 Lemma. Mo is symmetric, even on the diagona~ detMo = t. anti 
signature M = 8. 

Proof. The first two statements are obvious. To prove detMo = 1 
and sgn Mo = 8, we will perform elementary transformations on Mo by 
subtracting A(i-th row) from j-th row, then A(i-th column) from the j-th 
column, A a rational number. This corresponds to pre- and post-multi­
plying Mo by elementary matrices 1+ A(eij) and 1+ A(eji), where 
I = identity, eij is the matrix with 1 in the ij position, zero elsewhere. 
This process changes neither the determinant (since det{I + A(eij» = 1) 
nor the signature. 

We start with the operation! the first subtracted from the second. 
This makes the upper left corner 

(

20 0 
! 1 
1 2 

the remainder being unchanged. Then j times second from the third gives 

i times lrd from 4 th gives 

2 0 

o ! 0 
011 

1 2 

2 0 
o ~ 0 

o t 0 
Oil 

1 2 



! times 4 th from 5 th gives 

2 0 
0 ! 0 

0 4 0 "! 

0 i 0 
0 6 1 0 1 3" 

1 2 1 0 
0 1 2 0 
1 0 0 2 

Now subtract! (8th) from 5th to get in the lower right corner 

?o 1 0 0 
1 2 1 0 
o 120 
000 2 

Now carry on as before, subtract ¥(5th) from 6th, then i(6th) from 7th, 
with the final result, the diagonal matrix: 

2 

7 
TU 

1 
"4 

2 

Since Do is diagonal and all entries are positive, sgnDo = sgnMo = 8. 
One checks that the product ofthe entries is 1, so detDo = detMo = 1. 0 

Hence, putting together these results we get the Plumbing Theorem 
in dimensions 4k, due to Milnor. 

V.2.9 Theorem. Let k> 1. There is a normal map (f, b), 

f: (W, aW)_(D4k, S4k-1) 

such that (fI a W) is a homotopy equivalence and O'(f, b) = 1. 

Proof. Let (W4k, aWl be the manifold with boundary construoted in 
(V.2.1) using the matrix Mo. Since detMo = 1 by (V 2.8), it fo1iows'from 
(V.2.7) that aw is a homotopy sphere. By (V.2.l) (ii), (Hi) the .intersection 
product on K 2k(W) or ( , ) on K2k(W, aWl has matrix Mo, and by 
(V.2.8), sgnMo = 8. Hence if (f, b) is the normal map 

f: (W, aW)_(D4k, S4k-l) 

of (V.2.l) (iii), it follows that O'(f, b) = t l(f) = isgnMo = 1. 0 
It is interesting to note that if we plumb by the matrix Mo the result 

W is already (2k-l)-connected with aw a homotopy sphere. In fact 
we have the following graphical analysis, observed by Hirzebruch: 

If we plumb together n q-disk bundles over spheres S4 we represent 
each sphere S1 by a vertex of a graph, and join the two vertices by an 
edge for each point of intersection. Thus Mo is represented for example 
by the graph 

(This is the Dynkin diagram of the exceptional Lie group Ea.) 

V.2.10 R.emark. The plumbed manifold has a one skeleton of the 
same homotopy type as the graph. In particular it is 1-connected if 
and only if the graph is 1-connected 

If we place on each vertex of the graph the self intersection number, 
or more generally, the bundle over S1, then the graph describes plumbing 
of disk bundles over spheres completely. 

To describe the plumbing necessary in dimension 4k + 2, we must pay 
more attention to the bundle map part of the normal map. 

Let (f;, bi) be normal maps fi: M14 - S24, bi : Vj-', etc. Let 
S24 = D;4uD:q. By the homotopy extension theorem we may change ./; 
by a homotopy, to get If such that fHx) E D:4 for x E M j - intDrq, for 
some disk Df4 C Ml4, and fll Dfq = hi is a previously given ditTeo­
morphism of degree 1, hi: i>fq-D;4, and we may cover the homotopy 
by a bundle homotopy of bi' to a new map b~. If h : D1 - D2 is the diffeo­
morphism defined by hi 1 h1 = h then h is covered by a bundle map 
c: vd D1-V21D2 in a natural way. Then we may change b~ by a bundle 
homotopy to b1 so that b~ c = b'i over Diq 

(since Diq is contractible). 
Now take the normal map (f, b), f: sq x S4_S2 q with bundle map b 

coming from normal line bundles in S2q+ 1. Obviously, (f, b) is normally 
cobordant to an equivalence in two different ways: by 

(Dq+1 X SQ-intl)2q+l) or (S4xD4+ 1 -intD l 4+ 1). 
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Let D~q = ~ x Dq be a neighborhood of a point (xo, xo) E sq x sq 
with Dq x 0 consisting of points (y, y), i.e. a product neighborhood of a 
point on the diagonal, ~ x 0 being a neighborhood of (xo, xo) in the 
diagonal L1 sq C ~ x sq, y x ~ being the normal disks to L1 sq. Consider 
D!q as ~ x Dq, where S2q = D!quD~q. Using the homotopy extension 
and bundle covering homotopy theorems as above, we may change (f, b) 
by a homotopy to (ft, bt) so that ftl Do: Dq x DC ... Dq x Dq = D!q is 
the identity, bt I v I Do = identity, and f1 (sq x sq - intDo) C D~q. We may 
similarly change (f, b) by a homotopy to (f2' b2) so that 

f2lDo: Dq x Dq~Dq x Dq=D!q 

is 1+, b2 is the bundle map induced by 1+ on vID~q, and 

f2(sq x sq - intD~q) C D:'q . 

Let Dill C sq X sq - int D~q be a disk disjoint from Do. Then the restric­
tions define normal maps 

(f/, b;): (sq x sq - intDlo siq-1)~(D!q, S~q-1). 

Let E be a tubular neighborhood of L1sq in sq x sq, with D~q=11:-1(D~, 
Dq C L1 sq, 11:: E~L1 Sll the projection. We may assume that 

/;'(sq x sq - E) C S~q-I . 

NQw if we identify in two copies El' E2 by the diffeomorphism 1+ on 
DOl C El withDo2 C E2, i.e. plumb Et andE2 together, to get V = ElDEz, 
then the restrictions of (fl' b l ) and (f2,b2) agree on E1 11Ez =D~q, so 
that the union defines a normal map 

(g, c), g: (U, OU)~(D21l, S2 q -1). 

Now we have the Plumbing Theorem for dimensions 4k+2, due to 
Kervaire [35]. 

V.2.11 Theorem. For'q odd, ou2q is a homotopy sphere, and u(g, c) = l. 

Proof. The normal bundle of the diagonal L1 sq C sq x sq is equivalent 
to the tangent bundle 't8'l of ~. If q is odd, then X('tS4) =0, so the inter-

section matrix of V is (_ ~ ~) (skew symmetric since q is odd). It follows 

easily from van Kampen's theorem that for q> 1, V is 1-connected, 
since ElIIE2 = D~q and El and Ez are 1-connected if q> 1. A similar 
argument shows oU is 1-connected for q> 1. If q = 1, ° V is a closed and 
connected i-manifold hence a circle. If q> 1, then OU is i-connected 
and the intersection matrix of V has determinant + 1, so of is a homotopy 

sphere by (V 2.7). (Note that for q even, the intersection matm becomes 

(~ ~). so it has determinant = 3.) . 

Now we would like to compute the quadratic form 11' defined in III § 4. 
Since E;C V, there is a natural collapsing map Yf;: UlaV~EJaEi' and 
[V] 11 Yfr (V;) = j;.[Sn by (IV.2.8) (where ji denotes inclusion). Since 
j;.[S{], i = 1, 2 are a basis for Hq(V),jlo [81] . j2.lS1] = 1,ji.[Sn· i;.[S1]-0. 
i = 1, 2, it follows that Xi = Yfi(Vi), i = 1,2 is a symplectic basis for 
Hq(V, av; 71. 2), so u(g, c) = c(g, c) = c(lp) = lp(X t ) 1p(X2)· 

We need the following: 

V.2.12 Lemma. Let vm C wm be the inclusion of a submanifold of the 
same dimension, V and W manifolds with boundary and let Yf: W IoW ~ v/a V 
be the natural collapsing man. Let v = normal bundle of Win Dm+k, so vi V 
is the normal bundle of V in Dm+k. Then the inclusion T(v\V)~T(v) is 
Spanier-Whitehead S-dual to Yf: W/oW~ V/oV. 

Proof. Embed (W, aW) c (Dm+k, sm+k-l) in such a way that 

(V, oV)C (Di+\ 87+k-1) 

where D'f+k C ~+k is a disk of! the radius. Then Dm+k - W is the 
complement ofWvD:)'+k in 8"'+k where DuDo =8"'+k, DIIDo=sm+k-\ 
so DoIIW=aW and WuDO+k is homotopy equivalent to w/aw. 
Hence Dm+k_ W is S-dual to W/oW. Similarly. Dl - V is S-dual to 
v/av, and the inclusion Dl - V into D- W is S-dual to the inclusion 
WuDo into Wu(D-Dl)uDO. But the latter inclusion is homotopy 
equivalent to the collapsing map Yf: w/aw~ V/oV. 

Now the inclusion Dl - Vc D - Wand the inclusion E(vl V) C E(l') 
coincide with the inclusion Dl cD. Thenj: Dl/Dl - E{vl V)~D/D - E(l') 
is the suspension ofthe inclusion D1 - E(v\ V)C D - E(v), andj is also the 
inclusion 

T(vl V) = E(vl V)/Eo(vl V)~ T(v) = E(v)IEo(v). 

Hence the inclusion T(vl V)C T(v) is S-dual (in sm+k+l) to 

Yf:w/aw~v/ov. 0 

V.2.13 Lemma. Let v 2 q C w 2 q be a submanifold with boundary, and 
let (f, b) be a normal map, f: (W, aW)~(A, B) such that f(W - V)CB 
so that (f1V,bIV1 flV:(V,aV)~(A,B) is also a normal map. Let 
Yf: W laW ~ V 1o V be the collapsing map, and let 

11' : Kq(W, a W)~ 71.2 , 11" : KIl(V, a V)~ 71.2 

be the quadratiC forms of III § 4. Then lp(Yf*(x») = 11" (x) for X E Kq(V, oV). 
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Proof. Recall from III § 4 that T(b): T(v)-- T(e), (e over A) is S-dual 
to a map g: Ek(A/B) __ Ek(W/oW), and that Kq(W, oW)~ker(g* E~q 
(see III 4.1). Sincej:T(v!V)--T(v) is S-dual to '7:W/oW--V/oV by 
(V.2.12), it follows that T(b)j: T(v\ V)-- T(e> is S-dual to 

(Ek'7)g: Ek(A/B) __ Ek(V/oV). 

It follows that '7*(Kq(V, oV») C Kq(W, oW). Hence if x E Kq(V, o V), tp is 
defined on '7*(x). Let <p: V/OV--K(Z2, q) be such that <p*(/)=X. Then 
tp'(x)=(Sqz+l(Ek(/»))(Ek(A]), (see III §4) where h=(Ek<p)(Ek'7)g. Also 
since (Ek<p)(Ek '7) = Ek(<P'7), and (<P'7)* (I) = '7*(<p* I) = '7* x, it follows that 
the same formula defines tp('7*(x»), so tp('7* x) = tp'(x). 0 

Now we return to the proof of (V .2.11), and we show that 

tp(x 1 ) = tp(x2) = 1, 

so that a(g, c) = 1. 
From (Y.2.13), we deduce that tp(xt) = tp'(Uj ), where Uj E Hq(Ej , oEj ) 

is the Thom class, tp' is the quadratic form associated to the normal map 
(g I E j , cl EJ By construction g \ E j = If \ E j , where 

If: (sq x sq -intDiq, siq- 1) __ (D2q, S2q-l), 

and (fi, b;) is homotopic to (and hence normally cobordant to) (I', b'), 
which is the restriction of (f, b), I: ~ x Sq __ S2q, described above. From 
the construction of (f, b) and the two different normal cobordisms of 
(f, b) to an equivalence, we may deduce that if y ® 1, 1 ® YE Hq(Sq x sq), 
then tp"(y®1)=tp"(1®y)=O, tp" being the quadratic form associated 
to (f, b). Hence tp" (y ® 1 + 1 ® y) =1. But if U = Thom class of the normal 
bundle of the diagonal Llsq C sq x sq, U E Hq(E/oE), '7: sq x Sq--EjoE, 
then'7*U = y®l + l®y. It is clear that tp" defined by (f,b1I:sq x Sq __ S2q 
is the same as tplll defined by (f', b'), the restriction of (I, b), 

I' : (sq x sq - intDiq, Sfq- 1)_(D2q, S2q-l), 

so that by (V.2.13), tplll(y® 1 + 1 ® y) = tp'(U) = 1. Hence tp(xi) = tp'(U
i
) = 1, 

i = 1, 2, a(g, c) = tp(xt> tp(x2) = 1, and (V.2.ll) is proved. 0 
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