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Preface

This book is an exposition of the technique of surgery on simply-connected
smooth manifolds. Systematic study of differentiable manifolds using
these ideas was begun by Milnor [45] and Wallace [68] and developed
extensively in the last ten years. It is now possible to give a reasonably
complete theory of simply-connected manifolds of dimension Z 5 using
this approach and that is what I will try to begin here.

The emphasis has been placed on stating and proving the general
results necessary to apply this method in various contexts. In Chapter II,
these results are stated, and then applications are given to characterizing
the homotopy type of differentiable manifolds and classifying manifolds
within a given homotopy type. This theory was first extensively developed
in Kervaire and Milnor [34] in the case of homotopy spheres, globalized
by S.P.Novikov [49] and the author [6] for closed !-connected
manifolds, and extended to the bounded case by Wall [65] and Golo [23].
The thesis of Sullivan [62] reformed the theory in an elegant way in
terms of classifying spaces.

Many applications have been omitted, such as applications to
embedding theory [247,[38], [39],[25], [8].[9],[26],[27], study of
manifolds with =, =Z [10], diffeomorphisms [11], and others. An

_exposition of applications to the theory of differentiable transformation

groups is given in [12]. For a general discussion of surgery on non-
simply-connected manifolds we refer to [66]. For extensions of the
techniques to piecewise linear manifolds, we refer to [13] and [62]. In
particular, the problem of computing with the classifying spaces for the
PL theory has been now very well dealt with by Sullivan, and the recent
work of Kirby and Siebenmann has shown how to extend all these
results to topological manifolds. Discussion of these and many other
beautiful developments are beyond the scope of this work, but I have
tried here to introduce some of the basic ideas in the area of surgery,
whose latest developments are so much involved with many of the most
striking recent results in topology. A short exposition of some of the
later developments can be found in my expository article “Manifolds
and homotopy theory” in the Proceedings of the Amsterdam Conference
on Manifolds, 1970, published by Springer.
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The order of the chapters will not suit every taste. In particular,
much of the contents of Chapter I will be quite familiar to many, and
many readers will find more pleasure and motivation in beginning with
Chapter II, and using Chapterl as a reference. The main ideas and
results of surgery are in Chapter II while Chapter1 develops some
necessary tools in the theory of Poincaré complexes. Chapter 111 is an
account of the simply-connected surgery obstruction, the index and
Kervaire (Arf) invariant. Here, we have been forced to quote some
rather difficult facts from the theory of integral quadratic forms, but
we have developed everything needed m the theory of Z,-forms. The
treatment of the Kervaire invariant is based on [7], and we include a
treatment of product formuli in § 5 of Chapter III. Chapter IV proves
the main theorem of surgery on 1-connected manifolds, following
generally the point of view of [34]. In Chapter V we discuss “plumbing”,
which would have appeared in part II of [34]. .

In a later paper I hope to give a unified account of the applications
of surgery to the study of submanifolds and “supermanifolds”, based on
the point of view of this book, (compare [8], [9], [10]).

This book was written partially at Princeton University and partially
while the author was visiting at the Faculté des Sciences at Orsay of
the University of. Paris, and is based on courses given at Princeton
19661967, and at Orsay 1967—1968. 1 should like to thank also the
Institute des Hautes Etudes Scientifiques, for their kind hospitality
during that year, and the Mathematical Institute of the University of
Warwick.

1am much indebted to many who made helpful comments and pointed
out small mistakes, in particular, to David Singer, D.B.A. Epstein,
Steven Weintraub, Michael Davis, and William Pardon. I was partially
supported by the NSF while this work was under way.
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I. Poincaré Duality

In this chapter we will develop the properties of Poincaré duality spaces
and pairs which play such an important role in the study of manifolds.

We begin in § 1 by studying the products; (slant, cup and cap) which
relate homology and cohomology theories. In §2 we study Poincaré
duality in chain complexes and develop in this algebraic context the
results needed for studying spaces or pairs, (such as compact manifolds
or manifolds with boundary) for which Poincaré duality holds. We call
them Poincaré complexes and pairs. In particular we study kernels and
cokernels associated with maps of degreel."In §3 we study special
forms of Poincaré duality, such as that for a bounded manifold with
two pieces of boundary, and use ‘these resuits to define ‘the sums of
Poincaré pairs and maps of degree 1. Then we use these résuits to prove
Poincaré duality for smooth manifolds. In §4 we discuss the Spivak
normal fibre space of a Poincaré complex or pair, and ‘prove Spivak’s
theorems on their existence and uniqueness.

Note that all chain complexes will be assimed free over Z'ia each
dimension. '

§ 1. Slant Operations, Cup and Cap Products
Let C be a chain complex, C= ) C;,d:C;~C,_;. Let C*=") C7,

iz0 C 20
C "= Hom(C;, Z) be the dual (cochain) complex, where §: C"'»C~ ™!
is defined by dc=(—1)'cde C™' " if ce C™\. HYC)= H_,(C*).
If C,C are complexes, define C®C by (CQC),= Y. C,:®C;

i+j=n
and d(c®c)=0c®c +(~1)fc®dc, if ce C,. !
Define a map called the slant operation

[H(€C®C),R(C)*—C,_,

by the formula a/b= X b(a})a; where a= X g;®4d;e C®C, and b(x)=0
ifdimx=+k.
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2 1. Poincaré Duality

Now we note that the slant operation is a chain map.
For we have da= X da;®a; + (—1)*a,®0da; if dima; =d,, so that

(0a)/b= Z b(a)da,+(—1)%b(0d))a; .
Then b(84}) =0 unless dimfa; =k so d;=n—k — 1 and we get
(Ba)/b=0(a/b) + (— 1" *"1a/(bd)
=d(a/b)+(—1y"*"ta/(~1)*3b
=d(a/b)+(—1)""'a/éb.
So 8(a/b) =(da)/b + (— 1)'a/db and / is.a chain map.

Since / is a chain map, it induces a map H,(C® C)®C'*)—H,_(C).
Composing with the natural map .

H(C®C)®H*(C)—H,(CR®C)®C*)
we get:the slant operation
/: H(CR®C)YQ® HHC)—H,_(C).

Now let C; be an augmented chain complex with a diagonal map
4:C—-C®C such that (e®@1)4(c)=(1L®¢e)4(c)=¢, where ¢: C—Z is
the augmentation, and we identify .C = CQZ =Z® C. Then. 4 induces
on C* the structure of a ring with unit by C*®C*—»(CR C)*4C*,
where C*® C*—(C® C)* is the obvious inclusion. This i§ called the
cupproduct, and onthe cohomology levelinduces H*(C)® H*{C)— H*(C),
also called the cup product, x@p—xuvy,

Using 4, we may define the cap product

N:C,®C*—C,_,

by the formula anb =(4a)/b. Since N is the composite of chain maps 4
and /, it follows that n is a chain map and induces

N : H(C)@H(C)—H,_(C).

More generally suppose 4, B, and C are augmented chain complexes
and let 4: A—B®C be a chain map. Then similarly to the above we
get a pairing in cohomelogy

v : H?(B)® HY(C)—HP*%(A)
and a cap product
N H(A)®@HYC)—H,_4(B).
L.1.1 Proposition. Let xe A,, ye C ™%, zeB""*. Then z(xy)=(zuy)(x).
Proof. xny=(4x)/y= Z y(x}}x; where Ax= X x;®x}, x;eB, x;€C.

Then z(xny) = Zy(x)z(x) = 2@y} (X x,®x) = (z@y{4x) = 4*(z®y)(x)
=(uy(x). O
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1.1.2 Corollary. Suppose we have a commuitative diagram:
A 4 BRC
Azl lm@l
B®C 24> B®DRC.
If xeA,,ye C*,ze D79, then

xny)nz=xn(zUy)eB,_ 4,4

where xnye B, _y,z0ye C' "*79, cup and cap products being defined by
the appropriate diagonal 4;,i=1,2,3 or 4, in each case.

Proof. Let we B~®~*~9_ By (L.1.1),
wxn(zuy)=Wwoulzuy)x),

and
wul(zuy)=45(w®43(z®y) =431 4 (W®:z®Y)
=AFA1®H(wRz®y)=Wwuzuy,
and
(wuz)uy)(X)=WwWuz){xny)= w((xny)nz), by (I.L1).
Hence
w(xn(zuy))=wl(xny)nz)
for any

weB @59 50 xm(zuy)=@xnpnz. O

1.1.3 Corellary. Let f:A— A, g: B—B', h:C—C’ be chain maps
such that
A—4——B®C

S 9@k

Ar __‘M__’ BI ® Cl
commutes.
Then g, (xnh*y)= (fNNY, for xe H(A),y' € H*C).

Proof. By (L1.1), if z € B'*, then
Z(g(xnh*y))=(g*(2)) (xnh*y) = (g*Z' Vh*y)(x)
=(f*( Uy =(ZUY) ([, () =2 (f,)nY).
Hence g, (xnh*y)=(f,(x)ny". O
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Let 0— A- B-4C—0 be an exact sequence of chain maps, where
i: A— B is a map of chain complexes with diagonal maps, so
A L B

4 4

ARA—® ,B®B

commutes. Then we may define 4,: C—>B®C, by 4,(c)=(1®))(4b),
where be B and jb=c. If jb=jb=c then b=b+a, ac A and
Ab'=Ab+ Aa, where 4dae A®.A. Hence (1®j)(4a)=0 and 4, is well
defined. Similarly define 4,(c)=(j® 1)4(b), and this is also well defined,
4,:C—-C®B.

Then 4, and 4, define cup and cap products, in particular,

A H(C)® H*C)— H,_,(B)
A : H(C)® H4(B)— H,_ (C).

Let 8:H(C)—H,_,(4) and §: H*"'(4)— H*(C) be the boundary
and coboundary operators-associated with the exact sequences.

1.1.4 Propoesition. Let xe H,(C), ye H*(C), z€ HYB), ue H*"1(A4).

Then
(i) j,(xny)=xNj*y,
(ii) d(xnz)=(0x)N(i*z2),

@ii)) (— 1" 1xn(Su) =i, (Oxu).

Proof. Let jc be a chain representing x, c € B, beC~ * representing y.
Then xNy is represented by (1®j)4c)/b= Z ¢;®jci/b= T b(jc))c;. Then
J(xny) is represented by T b(jc))jc; = Z ((bj)(c))jc;=(i® 1)Ac/bj which
represents x Mj* y. This proves (i).

To prove (ii) we first recall the definition of d: H,(C)— H,_,{A4). If
x e H,(C) is represented by a chain jce C,dc=ir, and dx is represented
by the chain r. Let Ar=Xr,®r,dc=Z¢;®c. f beB %isa cocycle
representing z e H4(B), then 6xm i*zis represented by

Ar/i*b = Ar/bi= Z (bi(r))r; .
Then

i(4r/bi)= X (bi(r))ir, = i(Ar)/b = Ad¢/b=Ac/b=d(dc/b), since 5b=0.

But xnz is represented by (j® l)dc/b=j(d¢/b) so that d(xnz) is
represented by ae A such that ia=d(4¢/b). Hence i(a)=i(4r/bi), and
since i'is mono, a= Ar/bi and d{xN2) =dxNi*z.

In (iii), let re A* be such that r represents ue H*"1(A), let se B* so
that r=i*s=ysi, and let t € C* so that és=(—1)*"'s8 =j*t=1j. Then ¢

represents due H*(C). If ce B, such that jc represents x e H,(C), and

§ 1. Slant Operations, Cup and Cap Products 5

ae A,_, such that ia=dc¢ then a represents dxe H, ;(A4). Suppose
Aa= X a;®a; so that i@ida=Adia=A40c, and Ac=Zc;@c;. Then
i, (0xNu) is represented by

i(da/ry=i(Z r(@)a)= Z r(a)ila) = Z (si(a))i(a;) =(4dc)/s=(04c)/s.
Since / is a chain map, we have ’
d(Ac/s)=(@Ac)s+(—1ydc)ss.
On the other hand
Acfds = Acfi*t =(jAc)/t =(djc)/t

so that Ac/ds represents xn(du). Since d(4c/s) is a boundary in B, the
homology classes of (94c)/s and (—1)""'4c/ds are the same and (jii)
follows. [

1.1.5 Theorem. Let 0—s A-> B-i»C—0 be exact, x € H,(C), i a map
of chain complexes with diagonal. Then

— H{A) —>—— HI*(C)—> -

*

oo HY(C) —L HY(B)

nx nx ndx nx
R m—q(B)—A_) Hm—q(c)_a—') Hm-q——l(A)'l—*') Hm—q—l(B)'—)

is commutative, up to sign.

Proof. Let y e HY(C). Then xnj*y=j (xny) by (1.1.4) (i). If ye HY(B),
then d(xny)=(@x)ni*y by (1.14)@i). I ue HY(A), then

(=1 Ixnou=i(0xnu),

by (1.1.4) (iii), Hence the first two squares commute and the third com-
mutes up to-sign. - -[]

1.1.6 Proposition. Suppose 0—A-L>B-1,C—0 is an exact sequence
of chain complexes, where A= A"+ A", the sum (not necessarily disjoint)
of augmented chain complexes with diagonal map, and i: A—B'is a map
of augmented chain complexeswith diagonalmaps. Let C' = B/A’, C" = B/A".
Then there is a natural diagonal Ay:C—C'®C" with the following
properties: Letj : B—C',j" : B—C",y' : C'—C, " : C"— C be the natural
maps. Let x € H,(C), ye H*(C), z€ H,(B), ue HI(C"). Then

@) xnj*u=n (xoue H,_,(C),
(i) jo(znj™*u) J*znueH AC),

(iti) ju(xny)=xnn"*ye Hn—k(C')-

The proof consists of routine chain arguments as:in (1.1.4) and we
omit them.



|
N
i

6 1. Poincaré Duality

Now we bring in spaces.

1.1.7 Theorem. If C=C,(X), the singular chains of a topological
space X, and A:C—CQC is the diagonal induced by d: X—X x X,
d(x) = (x, x) and the Eilenberg-Silber map (see [21])

C.(X xX)—C(X)®C,(X),

then all the results of this section hold for the various products induced by A.

The proof is trivial.

Analogous to the results on cap products, we may deduce similar
properties of the various cup products in these situations. These may
be deduced directly, or using the results on cap products and (1.1.2).

I.1.8 Lemma. Let C—C'® C" be a diagonal C',C" complexes with
locally finitely generated homology and, let c€ C,, {c} =v e H,(C). Then
va: HY(C")—H,_ (C') is an isomorphism for all g, if and only if the
pairing induced by cup product w:H" {C'QZ,)QHYC" ®ZL,)—1ZL,,
Y(x®y)=(xwy) (v) is non-singular for each prime p, for all q.

Progf. ¢~ : C"*—C' is a chain map inducing v~ on the homology
level. Then v is an isomorphism if and only if the homology of the
mapping cone M of the chain map cn, is zero, (see [22; V § 13]).
Since C”* and C’ have localty finitely generated homology, ‘it follows
that M has locally finitely generated homology. The Universal Coefficient
Theorem (see [22;p. 161]) then shows that H (M)=0 if and only if

H MQ®1Z,) =0 for all primes p. But M ®1Z, is the mapping cone of
e C”*@Z ,—C'®L,, so H (MQZ,)=0 1fand only if

vy HY(C' ®T,)— H,_,(C' ®L,)

is an isomorphism for all g. But H* " %C'®Z,) = Hom(H, . (C'®Z,).Z,).
Hence v : H(C"QZ,)—H, (C'®L,) is an 1somorph:sm if and only
if the pairing H" %(C'®Z, )®H4(C”®Z »— L, given by x®y—x(vny)
1s non-singular. But x(vn y) (xuy)v) by (L1.1). T

§ 2. Poincaré Duality
Since most of the results we give here are of a purely algebraic nature,
we will state them in the algebraic context of chain complexes. All
statements translate immediately into topological-ones, taking the chain
complex of a space.

All chain complexes C considered in §2 will be assumed to have
locally finitely generated homology, ie. H/{C) is a finitely :generated

§ 2. Poincaré Duality 7

Z-module for each i, and also we will assume C; =0 for i <0. A geometric
chain complex will mean an augmented chain complex C with a diagonal
map 4:C—CQ®C and a chain homotopy H between 4 and T4, so
that 9H + H0= A4 — T4, where T(a®b)=(—1b®a, ¢ = (dima) (dimb).
A geometric chain map will be a chain map f: C—C’ where C,C’ are
geometric complexes, such that Af =(f® f)4 and Hf=(f® f)H. A
geometric chain pair (B, A) will be a geometric chain complex B with a
subcomplex A4, which is a direct summand as a graded module and a
geometric chain complex, such that the inclusion A CB is a geometric
chain map. The chain complex of a space is the prime example of a
geometric chain complex. We also denote by (B, 4) the free chain
complex B/A.

A geometric chain complex C will be called a Poincaré chain complex
of dimension n, if there exists ue H,(C) of infinite order such that
pn: H{(C)— H,_,(C) is an isomorphism for each k.

A geometric chain pair (B, A) will be called a Poincaré chain pair of
dimension m if there is an element ve H,(B, A)=H,(B/A) of infinite
order such that vn: HYB)—H,,_,(B, A) is an isomorphism for all g.
The element v (or y) is called the orientation class of (B, A) (or of C),
and the choice of v (or p) is called an orientation of (B, A) (or of C). If
(X, Y) is a pair of CW complexes which satisfies Poincaré duality (i.e.
whose chain complex is a Poincaré chain pair) then we call (X, Y) a
Poincaré pair, while if Y=0 so X satisfies Poincaré duality, we call
X a Poincaré complex.

)

1.2.1 Proposition. Let (B, A) be a geometric chain pair -such that
H(B, A)=7 with generator v. Then the following three conditions are
equivalent :

(@) v : HYB)— H,,_,(B, A) is an isomorphism for each q.

(b) vn: HY(B, A)— H,,_ (B) is an isomorphism for each q.

(c) The pairing w: H"(B Z)Y®H"" B, A;Z,)—~1L, given by
p(x,y) = (xUy)(v), is non-singular for every prime p, each q.

Proof. By (1.1.8) (b) and (c) are equivalent. By (1.1.8) (a) is equivalent
to the statement that the pairing.

v :HYB, A; Zp)®H”'_‘1(B®Zp)-—>ZP, P' Y ®x)=(yux)W),

~ is non-singular for all prinies p, all q.

Since (B, 4) is a geometric chain pair there is a chain homotopy H
between 4 and T4 and H(A4) C A® A. Hence H induces a chain homotopy
between 4': C—CQ®B and T4”: C— CQ® B, where C = B/A. It follows
that ' (y®@x) = (— 1)1 Py (x®y). Hence y is non-singular if and only
if ' is non-singular, and the Proposition follows. []
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1.2.2 Theorem. If (B, A) is a Poincaré chain pair of dimension m,
then the diagram commutes up to sign:

— HY(B, A) —L— HY(B)

178} [7s [GAZTaY v

i*

HY(A)—>— H**'(B, A)—

—H,_(B)——H,_,B,A——H,_, (A)—*—H,_,_,(B)—

and all the vertical arrows are isomorphisms.

Proof. By (1.1.5), the diagram commutes up to sign. Since (B, 4)is a
Poincaré chain pair, v : HY(B)— H,,_ (B, 4) is an isomorphism for all q.
Hence by (L.2.1), vo: HYB, A)— H,,_,(B) is an isomorphism for all q.
Then by the Five Lemma (6v)n : HY(A4)—H,, _; _,(4) is.an isomorphism
forallg. O

1.2.3 Corollary. If (B, A) is a Poincaré chain pair of dimension m,
then A is a Poincaré chain complex of dimensionm—1.

Proof. By (1.2.2), (0v)n : HY(A)—H,,_,_,(A) is an isomorphism for
all ¢, so it remains to check only that dv is of infinite order in H,,_,(A4).
However, if N(0v)=0, some N, then N(0vnx)=0, xe€ H*{4), so that
NH,(A)=0. But 4 is an augmented complex so that Z e Hy(4), and
hence N(dv)#0forall N. [

We will make a convention that a Poincaré chain pair (B, 4) where
A =0 will mean a Poincaré chain complex B.

If v is the orientation.class of the Poincaré chain pair (B, 4), then dv
will be the orientation class of A, by convention (“compatibly. oriented”).

If (B, A) and (B, A') are oriented Poincaré chain pairs of dimension
m, a chain map f: (B, A)—(B’, A"y will be said to have degree 1 if f, (v})="v,
where v, v' are the orientation classes of (B, 4) and (B’, 4') respectively,
where f,: H (B, A)— H,(B', A'). We denote the induced map on H,.(B)
by f, : H,(B)— H,(B'), and similar notation in cohomology.

1.2.4 Lemma. If f:(B,A)—(B,A") is a map of degree 1, then
f'=f|A:A—A'is a map of degree 1.

Proof. f (v)=V, so f (0v)=0f,(v)=0JV'. But dv and 0v' are the
orientation classes of A and 4. [

1.2.5 Theorem. Maps of degree 1 split, i.e. with notation as above,
there exist

o, i H (B, A)—H,(B, A), B, H (B)—Hy(B),
o* : H*(B, Ay— H*(B', A)), * : H*(B)— H*(B’)
such that f*a*= l,f*ﬂ*= 1,“*]‘*: l,ﬁ*f*zl.

§ 2. Poincaré Duality 9

Proof. Let P: H, (B, A)—H%B) and P:H,_,(B)—H%B, A) be
the inverses of the Poincaré duality maps, so that v N P(x) = x, v " P(y)=y,
xeH,_ ,B,A)ye H, _,(B"). We define:

(X)) =vn f*(P(x)),x € H,_ (B, 4)
B, =vOf*(P(), ye H,- (B)
oa*(u) = P(f,(vhu)), ue HY(B, A)
B*(v)= P(f,(vnv)),ve HY(B).
Using (1.1.3), we have
[ (@)= filvn F*P(x) = f0)NPX)=V O P(x)=x.
Similarly
FuBO) = F v f*EB)=v P =y.
Also
Vaukf*@) =V aPB(f,0n f*@) = fubn f* @)=z,
for ze HYB', A"). Since v'n is an isomorphism, a* f*(z)=z. Similarly,
one shows B¥f*(w)y=wforwe HY(B). O
It follows from (I.2.5), that there are direct sum splittings
H,(B, A)=ker f, + imagea,, H,(B)=kerf, +im§,,
H*(B, A)=imf* + kero*, H*(B)=im f* + ker f* .
* Let us establish the following notation that will be used throughout
this book. Let
K (B, A)=(kerf,), CH,(B, A),
K (B)=(ker f,),C H,(B),
KB, A) = (kera*}¥C HY(B, 4),
K*(B) = (ker p*)* C H1(B),
K (B, A;G)=(kerf,),C H,(B, 4; G), etc.
Then we may derive the following properties of K, and K*:
L2.6. v preserve the direct sum splitting, so
v KB, A)CK,,—,(B), vnKUB)CK,_,B,A4)
and vo:K4B, A)—K,_,(B) and vn:KYB)—>K,_,(B, A) are iso-
morphisms, (“K* and K, satisfy Poincaré duality”).

L.2.7. In the exact homology and cohomology sequences of (B, A), all
the maps preserve the direct sum splitting, so induce a diagram, com-

i
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mutative up-to sign, with exact rows:
IR K"_I(A)—a—>K“(B,A) £, K%(B)

i*

> K9(4) —2— -
avn vn vn avn
25 Ky (A > K, L (B)—> K,,_,(B,A)—> K,,_,_1(A) 2>
(In particular we have relations
lyVe=Ogiys Ve H(A)—H(A),i: A'> B, etc.)
L2.8. The Universal Coefficient Formulas hold for K* and K,, ie.
K, (B, A4;G)= K (B, A)® G + Tor(K,_, (B, 4), G)

K,(B; G)= K, (B)®G + Tor(K,(B), G)
K%(B, 4; G)=Hom(K (B, A), G) + Ext(K,_, (B, A), G)
K%(B, G) = Hom(K (B), G) + Ext(K,_, (B), G).
It is useful to have following interpretation of (1.2.6):

L2.9. Under the pairing HYB; F)@H""%B, A; F)—F, given by
(x, y) = (x y) (), (F a ring), K" ~%(B, A; F) is orthogonal to f*(HYB'; F)),
K%(B; F) is orthogonal to f*(H™ 4B’; A'; F)), and on
_ K%B; F)® K™ (B, A; F)
the pairing is non-singular if F is a field. If F =17 it is non-singular on
K%(B)/torsion ® K™~ %B, A)/torsion.

Proof of (1.2.6). Let ue K%B, A). Then a*(u)=0, and a*(u)=P(f, (vou)).
Since P is an igomorphism, fivnw})=0, and vrueK, _ (B). Also
o fH2)=v f(P(V'N2))= B, (V' Nz), so vnimf*Cimp,, and v~ pre-
serves one of the direct sum splittings. The other follows in a similar
way. Then; since v is an isomorphism, it follows that each summand
is mapped isomorphically.

Proof of (1.2.7). Using Poincaré duality (1.2.6), it suffices to show
that the homology maps preserve the. summands in the splittings. Since
K, are defined as kernels of the homology maps, they are clearly preserved,
80 iy,j, and 0 send K, into K.

Denote by y,:H/(A)—H(A4) the splitting of f,=(f|A),, and
P':H, _,_,(A")— H(A'), the inverse of Poincaré duality.

Let ze Hy(A), so p,(2)=0vn f*(P'z). Then by (L.14) (i),
L0 @) =(=1""tvndf*(P'2). Thend f* = f*5,and(— 1)" v (6 P'z)
=1,(0v'" P'z)=1,(z). Hence 6 P'(z) = P(i, (z)) and

L @) =(—=1)"" v fHE P (2)=(—1)"" v f*P(i, 2)=(—1)" a0, 2)

80 i, 7, =(—1)""'a,i,, and i, preserves the direct sum splitting, ie,
i (imy,)Cimao,. :

§ 2. Poincaré Duality i1

Let ye H(B), so B, ()=vnf *(P(y)). Then by (1.1.4) (i),
JuBaO) =i FHPON) = v FHEO) = v T *i*PG).
Now 3 _ B
vaj*Py=j,0'nPy=j,0), so /*PG)=Piy.
Hence j,B,(0) =vOf*Pj,y=0,j,y, SO j By =0,j,, and j, preserves
the direct sum splitting, i.e. j(imf,) Cima,.

Let xe ng(B’, A), so ogj(x) =vn f*P(x). Then by (L.1.4)(i)
da,x=08(vn f*P(x))=0vni*f*P(x)= v f*i"™* Px.

Now i"* P(x) = P'9x, since by (1.1.4) (ii) (9v)ni™* P(x) = 0(v'n Px) = dx.
Hence da,x=0vn f*P'0x=7,0x Therefore do,=17,0, and
d(ima,) C imy,, and .0 preserves the direct sum splitting. [

Proof of (1.2.8). We have the exact sequence of the map f

"'_’qu{-l(f)—_a—-) Hq(B’ A)_—L*—_’ Hq(Bls AI)_)"'

where H,(f) is the homology of the mapping cylinder of f, which is a
free chain complex since (B, A) and (B', A’) are free. Hence the universal
coefficient formula holds for H,(f). But 8 maps H,(f) isomorphically
onto K, (B, A)=ker f,,since f, is split, and hence the Universal Coefficient
formula holds for K, (B, A). Similar proofs hold in the other cases. [

Proof of (1.2.9). By (1.2.6),
(+A KB, 43 F))C K o(B: F) = (ke [yl
fe:Hpy(B; )= H,_ (B, F).
Then using (1.1.2), if xe K%B, A; F),y'e H" " %(B’; F), we have
vy o) ={F*Y)vnx)=y (frnx)=0

since vAxe K,,_,(B, F)= (ker f,),,_,. Hence K%B, 4;F) is orthogonal
to f*H*(B'; F). Similarly one may show K™ %B;F) is orthogonal to
f*H™"%B, A; F). But since the pairing is non-singular if F is a field on
all of H4B,A;F)@ H* %B;F), it follows that the restriction to
K%(B, A; FY® K™ %B; F) is non-singular.

Now if F=Z, and if gx =0, geZ, then g(x, y)=(gqx, y)=0 any y.
Since the values of (, ) are in Z, this implies that (x, y) =0. Hence Torsion
K%B, A) annihilates K™~ %(B) and Torsion K™ %(B) annihilates K%(B, A).
Hence we have an induced pairing on

(K*(B, A)/torsion)® (K™ 4(B)/torsion)—Z .
Tensoring over @, it follows from the result with F =@ that
K(B, A)/torsion— Hom(K™~%(B)/torsion, Z)



12 1. Poincaré Duality

is a monomorphism. If it is not an isomorphism, then tensoring over Z,
for some prime p, it has a kernel. But the result with F =Z, implies this
is not the case, so the result follows with F=Z. []

§ 3. Poincaré Pairs and Triads; Sums of Poincaré Pairs and Maps

In this section we will consider geometric chain pairs, all maps will
be assumed to commute with the diagonal map and all inclusions of
subcomplexes will be assumed to split, and commute with the chain
homotopy of the diagonals. That is to say, in the notation of § 2, we
assume all pairs involved are geometric chain pairs.

L.3.1 Preposition, Let (B, A) be a geometric chain pair,
A=A1 +A2,A0=A1(—\A2,

where (A, A),-and (A;, Ay), i=1,2 are geometric chain pairs. Then there
is a diagonal defined 45 : AJA,— AJA,® A, such that the diagram

AyjAg—22— A4,/4,® A,

AjA, —2— 4/4,® A,

commutes, where Ay/A,— A[A, is the isomorphism induced by the inclusion
(Ay, Ag)—(A, A,). Further the cap product defined has the following
properties:

HYB, A;)—F—— H%(4, A,)
@ ve avn commutes,
H,,_ (B, 4;) — H,_,-1(4y)
HY"'(4,4,)—2— H%B, 4)

(ii) v L vn commutes up to (— 1)1,
Hm—q(Al ) __l!——> Hm—q(B)
HYB)——F—— H%(4,)
(iii) v @ne commutes,

Hm—q(B’ A) — Hm—q—l(A’ AZ)
where ve H,(B, Ayand 0. Hy(B, A)—H;_(4, A,) so 0ve H,,_,(4, A,).
The proof of (13.1) is routine and we omit it.

N
#
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Suppose B= B, + B,, Bo=B,nB;, 4;=B;n4, all pairs are geo-
metric chain pairs, so that we have chain isomorphisms:

B,/(By+ A;)—B/(B,+ 4),
B,/(Bo + A,)— B/(By + A4),
(corresponding to excisions in the geometrical picture). Also we have
Mayer-Vietoris sequences (see [22]).
+—H_ 1 (B)— H,(Bo)—H, (By) + Hy(By)— H(B)—---
c.+—> H(Bo, Ag)—> H,(B, A) =2 H (B, Bo + A) + Hy(B3, Bo + 4;)

Mz‘*Hq—x(Bo’ Ag)— -+
= H, (B, A)—2— H (By, Ao)— H,(By, Ay) + H (B, 4,)
— H,(B, A)— .

Here 8, : H,(B,, By + A;)—H,_1(Bo, 4¢) 1s defined by the composite

H (B, By + 4,) —2 > H, (Bo+A)—H, 1(By+ 4y, 4,)

a1 =
H,_1(Bo, 40)
Jji:Hy(B, A)—H, (B, B+ A;) is defined by the composite
H,(B, A)—H,(B, B, + A)

4 J1
H,(B;, By + A;)

and so forth, so that 9y = 8,j, = 0,j,, etc.

1.3.2 Theorem. (Sum Theorem for Poincaré pairs). With notation as
above, any two of the following conditions imply the third:

" (i) (B, A) is a Poincaré chain pair with orientation v € H,(B, A)

(ii) (By, Ao)isa Poincaré chain pair with orientationd,v € H,,_1(Bg,4o)

(iii) (B;; Bo+A;) are Poincaré chain  pairs with orientations
vi=ji{(v)€ H(B;; Bo + 4), i=1,2.

Proof. From (1.3.1) we have the following commutative diagram
(up to sign) with the Mayer-Vietoris sequences:

—— HI"}(Bg)—2— HY(B)———————— HY(B,) + H(B)————"

aovnl v . wntvan

_)Hm—q(BOs AO)'—)Hm—q(Bs A)'—)Hm—q(Bl’ BO +A1) +Hm—q(B29 BO +A2)—‘)

The result then follows from the Five Lemma. [
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1.3.3 Corollary. Let (B, A), (B, A’) be Poincaré pairs with B= B, + B,,
B'=B; + B,, as above. Suppose f:(B, A)— (B, A") is a chain- map
f(B)C B;. Suppose (B, Aq) and{(By, Ag) are Poincaré pairs with orientations
0oV, OgV', (v, V' are orientations of (B, A), (B, A’) respectively). Then the
following three conditions are equivalent :

(a) f has degree 1.

(b) fo=f1(Bg, 4,) has degree 1 with respect to the orientation dyv.

(© fi=fI(B;, By + A;) have degree 1 with respect to the orientations v,.

Proof. Consider the maps of Mayer-Vietoris sequences induced by f,
and the result is immediate. [

Thus (1.3.2) and (1.3.3) allow one to define the sum of Poincaré pairs
and the sum of maps of degree 1, namely (B, A4) is the sum of (B,, B, + 4,)
and (B,, By + A4,) along (By, Ay), and f is the sum of f, and f,. Note
that the orientations must be compatibie.

Another refinement of Poincaré duality is the following:

1.3.4 Theorem. Let (B, A) be a Poincaré chain pair of dimension m,
and suppose A=A; 4+ A,, Ay = A; " A,,(A, A;) are geometric chain pairs,
i=0,1,2, and A, is a Poincaré chain complex of dimension m— 2, with
orientation 0y0(v), where Qv is the orientation of A, 0, as above. Then
v HYB, A))—H,,_ (B, A,) is an isomorphism for all q.

Wecall (B; 4,, A,)a Poincaré chain triad, and the analogous situation
for spaces (X ; Y;, Y,) will be called a Poincaré triad.
Proof. We consider the diagram

o> HU N Ay, Ag)S> HI(B, A)— HI(B, A;)— HY(A,, Ag)— -
""—)Hm—q(Al)_)Hm—q(B)_’Hm—q(B’ Al)_’Hm—q—l(Al)_)"' .
Here 4 is defined by the composite:
HY YA, Ag)EHI"Y(4, A,)% HY(B, A)

where &' is the coboundary of the triple (B, 4, 4,), so tha? the upper
row is the exact sequence of this triple with H*(4, A,) replaced by the
isomorphic H*(A;, Ay). Here v; = image of 9'(v), where

(')’ : Hm(B’ A)_)Hm—l(A9 AZ) s

v is the orientation of (B, A). It follows from (1.3.1) that the diagram is
commutative up to sign, and from (1.3.2) it follows that v, is an
isomorphism. Hence the result follows from the Five Lemma. [J

All the results may be applied to topological spaces, where the chain
complex of a pair of spaces (X, Y), YCX, is a geometric chain pair,

e

e
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(where the diagonal map of the chain complex is induced by the diagonal
map of spaces x+>(x,x), and the Eilenberg-Silber map, for singular
chains [21]).

Our results yield a proof of the Poincaré duality theorem for differ-
entiable manifolds. First let us recall the notions of orientability for
manifolds.

Let M be an m-dimensional manifold with boundary M, so that
each point in M has a neighborhood homeomorphic to the closed unit
ball D™ in R™ (as usual we assume M is Hausdorff). Points in
intM =M — éM have neighborhoods homeomorphic to the open ball,
while points in M do not. It follows by excision that for x e int M,

H, (M, M —x)=H, (D", D"—0)=Z.

By an orientation of M, we will mean a choice of generatory, of
H, (M, M — x) for each x € int M which are compatible in the following
sense:

Let | be a simple differentiable arc in int M joining x, to x,. Then
the inclusions

EM—1-M—-x;, =12,

are homotopy equivalences, so

(n H M,M—-)—H,(M,M—x)
>
are isomorphisms, i= 1,2, and

62*6;‘1 (')’xl) =Vx, -

1.3.5 Theorem. If (M,0M) is a compact orientable differential m-
manifold with boundary, then (M, 8M) is a Poincaré pair.

Proof. Use induction on the dimension m, m =0 being trivial, so we
assume the theorem proved for dimension m— 1. We then have the
following special case:

1.3.6 Lemma. (D™, S™ 1) is a Poincaré pair, where D™ is the unit disk
in R™.
Proof. H(D™, S™ )= for i =m, 0 otherwise, H(D™)=1Z for i =0,
0 otherwise. Since cup product has a unit, p : H*(D™)@ H*(D™, " ~1)—1Z,
where p(x®y)=<{xuy, v), (v generates H,(D", S""1)) is non-singular.
' Then it follows from (1.1.8) that (D™ S™ ') is a Poincaré pair
with orientation v, and the lemma is proved.
Now we use results of M. Morse (as exposed-in [41]). Let us:assume
that M is-connected. By choosing a function f on M with one minimum
in the interior of M and isolated non-degenerate critical points, we may
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use the Morse lemma to write

q
M= ) M, M;CM;,, My=Dg,M,,, =M;UD},,
i=0
and M;n D™, = N""!, a compact differentiable manifold with boundary,
N,=S8*x D" *"! some k=0, N" "' COM"ndD?,.,. Now use induction
on i. For i=0,(M,, 0M,)=(D%,S3"') is a Poincaré pair by (1.3.6).
Suppose (M;, 8M,)is a Poincaré pair. Then since (N, d N)) is a differentiable
manifold with boundary, of dimension m — 1, by induction (on m)it is a
Poincaré pair. Therefore if the orientations are compatible, we may apply
(L3.2) to show M;,, =M;uD7,, and its boundary is a Poincaré ‘pair.

Now N, =8*x D™ %1, for some k, and if k>0, N, is connected so
that one can choose the orientations of M;, D7, and N, compatibly,
since both orientations of N; come from orientations of M; and D7, ,.
If k=0, however, there are four orientations of S x D™ ™%, and if we take
one coming from dM;, we must show it comes from an orientation of
oD .

Now M™ is an orientable manifold, so that each M;"C M™ is also
orientable. That means that one can choose generators for H, (M, M — x),
each x € int M, in a compatible way, so that if | is a simple curve joining
Xo to x;, there is a generator of H,(M,M —I) which goes onto the
given generators of H, (M, M —x,), i=0, 1.

1.3.7 Lemma. If (M,0M) is an n-manifold and an n-dimensional
Poincaré pair, then the image

jeMle H(M,M—Xx), j. :(M,0M)—(M,M —Xx),

all x e int M, defines an orientation of M in the sense of manifolds, where
{Mle H,(M, 0M) defines an orientation.of (M,0M) as a Poincaré pair.

To define the compatible orientation of dM at a point ye dM, we
take a curve 1C'M such that the initial point is y and rest of the curve
lies in int M. Then the orientation of M defines -a generator of
H,(M,(M —1)udM). Then the boundary operator for the triad
(M; M —1,0M)is a map

8: Ho(M.(M —0dM)— H,,_(0M,8M~(M —D)=H,,_,(0M,0M — ),

and we take the image of the generator of H,,(M, (M — )udM) to define
the compatible orientation of M. One shows easily that it is well defined.

Now suppose again N, = M;n D% ; = dM,ndDT, ,,etc, N=S°x D"~1
and M, and D, are oriented as Poincaré complexes so that the induced
orientations (as manifolds) agree on —1xD™""! CS°x D™ 1. It follows
that this choice determines an orientation on M; ., —(1 x D"~1). Simi-
larly we may orient M; and D, ,, so that the orientations are compatible
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on 1xD™ 1 so'determine an orientation on M., —(—1xD""Y), so
that the two orientations agree on interior D7, ,. Since M, , , is orientable,
these orientations of M,,; —(—1xD™"!) and M,,, — (1 x D™"1) come
from an orientation of M,.,, so that the orientations of M; and D,
are compatible on N=8°xD""'. [

A similar argument may be applied to piecewise linear manifolds
using skeletons and regular neighborhoods instead of Morse functions.

§ 4. The Spivak Normal Fibre Space

In this section we introduce the Spivak normal fibre space of a Poincaré
duality space (see [57]), This space will play an analogous role to that
played by the normal bundle of a differentiable manifold in a high
dimensional sphere. First we give some results which describe how to
obtain spherical fibre spaces.

1.4.1 Theorem. Let (X, Y) be a Poincaré duality pair of -dimension
n+k, X 1-connected, n,(X, Y)=0, and suppose X is a Poincaré duality
space of dimension n. Then the inclusion map i: Y— X is equivalent to a
fibre map with fibre the homotopy type of S*~1.

We also have a relative version:

/ 1.4.2 Theorem. Let (X, Y) be a Poincaré duality pair in dimension
2n+k, with X l-connected. Let Y=Y, 0Y,, Y,=Y,NnY,,7,(X, ¥,)=0,
and suppose Y, is Poincaré duality space of dimension n+k—2 and
(X, Y,) is a Poincaré pair of dimension n. Then the inclusionmapi. Y, —X
is equivalent to a fibre map whose fibre is homotopy equivalent to S*™*.

1.4.3 Lemma. Let n: E— B be a fibre map with 1-connected fibre F
and base B. Then F is a homotopy S*~* if and only if H(n)=0 for i<k,
and. there is an element U e H*(x) such that v U : H™(B)— H™**(n) is an
isomorphism for all m (i.e. the Thom isomorphism holds).

Proof. Since F and B are 1-connected, so is E. Since © is a fibre map,
7;(F)— ;. (%) is an isomorphism for-all i (see [28]).

If F=S* ! then 7,(S*"}) =0, i<k—1,s0 n{n)=0for i<k, and by
the Relative Hurewicz Theorem H(n)=n(n)=0 for i<k and
H,(n) = m,(n) = 7 (F) =Z. Then by the Universal Coefficient Theorem
H*(m)=17, and let U be a generator. Then L U : H4(B)— H*"*(r) comes
from a cochain map, namely Uu, where u is a cochain representing U,
and vu:CYB)—C?**(n). Since i*U is a generator of H*(F,F),
i:(cF, F)—(E, E), E the associated cone fibre space of E, (see [7;
Appendix] and (L.4.5) below) it follows that wu preserves the filtrations
in C%B) and C?**(n), and induces a map of the spectral sequences
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E;(B)— E ,(n). Thespectral sequence E,(B) is trivial, H¥B)~ E,(B)= E .(B),
and E%%m)= H?(B; HYcF,F)) and E (%)= G(H*(n)), (G meaning the
associated graded group). Since F=S*"!, HcF,F)=0,q+k, HYcF,F)=1.
It follows since d, changes fibre degree for r = 2, that d, =0 all r, in E, (%),
and E,(n)=E_(r). Now uU:H?(B)—HP?(B, H*(cF,F)) is an iso-
morphism, so the map E,(B)—E,(n) is an isomorphism. Hence
E (B)~—>E(n)-is an isomorphism, and since the associated graded
groups are mapped isomorphically, we have U U : H?(B)— H?*¥() is an
isomorphism for all p.

Now let us suppose that Hi(x)=0, i <k, and U e H*(n) such that
VU : H(B)— H%"¥(z) is an isomorphism for all q. Then by the Relative
Hurewicz Theorem H(n)=mn,(r)=0 for i<k, so n;(n)=mn,;.(F)=0 for
i<k. Now H*(n)= H°(B)=1Z, since B is O-connected, while

H**Y(m)=H'(B)=0,

and hence H,(m)=Z, by the Universal Coefficient Theorem, and
Hman(r)=n,_;(F)=Z. Since F is 1-connected, it remains to show
that H"\(F) = H'(cF, F) =0 fot i % k, in order that F should be homotopy
equivalent to S~

Now since LU :HYB)— H?"*(n) is an isomorphism, and since
E%9(m) = H?(B; H%(cF, F)) it follows first that

Hm)= H°(B; H¥(cF, F)) @ H*(B)=Z,
U is a generator, and that
v U : EZ°(B)— E5"*(n) = H?(B; H*(cF, F))

is an isomorphism for all p.

If VU E_(B)—E,(n) is not a monomorphism, then for some
xe FPH*(B), xu U € FF*' H*(r) for some | = 1. Then xu U represents an
element in E!} "*~!(z) for some | > 1. Since E5%(n)= H?(B; HYcF, F))=0
for g<k, it follows that E{Y"¥~!(m)=0 for I=1, and hence xU U =0.
Since w U «H*(B)y— H*(r) is an-isomorphism,; it follows x =0 and hence
v U : E%%(B)— EP;*(n) is a monomorphism.

Since E%%m)=0 for g <k, it follows that ER*(m) is a quotient of
ES*(n), and since wU:E%2°(B)—E%*(n) is an isomorphism and
VU E%°(B)=> EE*(n) is a monomorphism, it follows that

v U : E&°%(B)— EZ¥(n)
is an isomorphism and E%*(rn)="EZ*(n) for all p, and hence

EP-*(m)nimaged, =0
forallp,r=2.
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Suppose H(cF,F)=0 for k<j <1, and H'(cF, F)=+0. Then
ES-{m)= H%(B; H'(cF, F)) = H'(cF, F)

and the only group E&%(r) with g < lis E%*(r). Since E§*(n)nimaged, =0,
all r, p, it follows that E3-'(n)=E%'(n), and hence H'(r) contains some
element x, such that i*(x)+0 in H'(cF, F),!> k. But, if ye H*(B) then

*(yu U)=j*(y)ui*(U), j:(point)—B.

Hence i*(yu U)=0 if y e HY(B), 4>0, and since U U is an isomorphism,
it follows that i*(H'(n))=i*(H'"*(B)uU)=0 if I>k. It follows that
Hi(cF, F)=0 for j+k, hence F is a homology §*~*, 1-connected, so by
the Theorem of J. H. C. Whitehead, F=$*"'. O

Proof of (14.1). Replace the inclusion i:Y—X by a fibre map
7. E— X, with fibre F. Then n(F)~n,(X,Y)=0, and we may apply
(1.4.3) as follows: Let pe H,(X) be such that un : Hi(X)—H,_,(X) is
an isomorphism for all g, since X is an n-dimensional Poincaré duality
space. Let ve H, (X, Y) be a generator, so that v : HY(X, Y)—H k=g X)
is an isomorphism for all g, since (X, Y)is an (n + k)-dimensional Poincaré
pair. Let U e H¥(X, Y) be such that vn U = u. Also note that H(X)=0
for i>n, so H(X, Y)=0 for j <k. If x e HY(X), by (1.1.2)

AEu)=nU)nx=pnx.
/
" Hence (vn)o (U U)= un is an isomorphism, and (vn) is an isomorphism,
» 50 UU : HY(X)— H%*¥(X, Y) is an isomorphism. But

H*@) = H*()= H*(X, Y),

and applying (14.3) it follows that the fibre of 7 is homotopy equivalent
toS¥1. O

Proof of (14.2). Replacing i: Y;— X by a fibre map n: E—X with
fibre F we note that m, (F) = n,(X, Y;)=0.

Now let us apply Theorem (1.3.4) which tells us that (X; Y;, Y;)is a
Poincaré triad, and v : HY(X, Y)— H,,— (X, Y}) is an isomorphism,
G.)=@1,2) or (2,1), v a generator of H,..(X,Y). Since (X, Y,) is an
n-dimensional Poincaré pair, H/(X, Y,)=0 for j>n, and pe H (X, 1)
such that un : HYX, Y,)— H, _(X) is an isomorphism. Then

Hq(X, YZ)’E Hn+k—q(X’ Yl)

so H,(X,Y,)=0 for i<k. Let Ue HYX, Y;) such that vaU=p. Then
ifx e HY(X), by (1.1.2), va(xu U)=(vn U)nx = unx,sovn) e (W U)=pn
is an isomorphism and v is an isomorphism so U U is ‘an isomorphism.
Hence by (I.4.3), the fibre map n equivalent to i: Y;— X has fibre a
homotopy §*'. O
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For a spherical fibre space £, we define its Thom complex
TE)=B{J (Eo),

where n: E;— B is the projection of the total space E, onto the base
B, cE, is the cone on E,.

1.4.4 Theorem. (Spivak). Let (X,Y) be an n-dimensional Poincaré
duality pair, with X 1-connected, Y a finite complex, up to homotopy type.
Then there is a spherical fibre space (£): 7 : E,— X with fibre a homotopy
S*=1. and an element o € m, . (T(), T(¢|Y)) such that

hanU=[X]eH,(X,Y).
We call ¢ the Spivak normal fibre space of (X, Y).

Proof of (1.4.4). Let us suppose first Y =0,s0X is a Poincaré duality
space. Since X is 1-connected and H/(X)=0 for j>n it follows easily
that there is a finite n-complex K and a homotopy equivalence g: X —K
(see [16, Exposé 22 Appendix]). Using standard arguments K C S"**as a
subpolyhedron for sufficiently large k, k=3. Let U""* be a . .regular
neighborhood of K in S"** so that U"** is an (n+ k)-manifold with
boundary dU"** U CS"** and ¢’ : X— U is a homotopy equivalence,
(¢’ =(inclusion) - g). Since K is an n-complex, U an (n+ k)-manifold, it
follows from general position arguments that #,(U — K)—=,(U) is an
isomorphism for i<k —1 and onto for i=k—1. Since U is a regular
neighborhood of K, dU—(U—K) is a homotopy equivalence, so
n(0U)—n,(U) is an isomorphism for i<k—1, onto for i=k—1.
Hence =#(U,0U)=0 for i<k-1. Since X is 1-connected, U is
1-connected and since k= 3 dU is 1-connected and n,(U, U)=0. Then
(U, dU) satisfied the conditions of (1.4.1), so that the inclusion dU—U
is equivalent to a fibre map with fibre a homotopy §*~*. The pull back
of this fibre space to X is (§):n: E,— X.

Then T(§)=X U (cEy), so it follows that T(E) = U U (cdU)=U/oU.

Since Un*kC §*¥¥, the natural collapse #: S***— U/oU has the property
that n,(generator) = generator of H,.,(U/dU). Hence the homotopy
class « of the corresponding map $"**— T(£) has the required properties.

In case Y 30, we will make a similar argument using (1.4.2) instead
of (1.4.1). One embeds Y in $"**~! using the fact that it is the homotopy
type of a finite complex. As above, X is the homotopy type of a finite
complex, and we may assume (replacing X by the mapping cylinder of
Y—X) that Y is a subcomplex of X with a neighborhood Y xIC X,
Y=Y x0£ Y xI. Extending to an embedding of Y x I— D"** such that
the coordinate in I goes into the radial coordinate in D"** we get
Y x 1 C Interior D***, and if k is very large we may extend to an embedding
of X in D"** with XmS"”‘ 1 =Y. Then one may apply (1.4.2) to the
regular neighborhood of X in D"*¥, where the intersection of this neigh-
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borhood with S"**7! is a regular neighborhood of Y. (One uses the
star of X in the second derived subdivision.)

Let B = regular neighborhood of X in D"*¥ C=Bn§"**~! = regular
neighborhood of Yin $"**~! E = closure of B—C, E, = EnC=0E=0C.
Applying Theorem (1.4.2), it follows that E—B is equivalent to a
spherical fibre space &, (which we denote by the same letters). However,
E; — C may not be spherical. Set £’ = i*(£): E'— C, the induced spherical
fibre space over C. Since the diagram

E,——E

|

¢——5

commutes, we may factor E;,— E through E’, so that we have a map
of pairs e:(E, E,)—(E, E') lying over the identity map of (B, C). Since
(E, E") is a fibred pair over (B, C) with fibre a homotopy S*~* and (B, C)
is a Poincaré pair (it is homotopy equivalent to (X, Y)) it follows that
(E, E') is a Poincaré pair and that (E, E,)—(E,E’) is a map of degree 1.
Since e: E—E is the identity, it follows that e, : H,(E, E\)—~H,(E, E)
is an isomorphism; using (1.2.7). Hence we get e : (B/E, C/E,)—(B/E, C/E),
and B/E=T(¢&), B/E'=T(¢), so &:(B/E, C/E,)—(T(£), T(¢"), and &, is
/an isomorphism in homology. There is the natural collapsing map
a:(D"*k "1 (B/E, C/E,) so that &,(a)€ m,+(T(&), T(£)) has the
*property h(€,(0))nU=[X]e H,(B,C)=H,(X,Y), which proves (1.4.4)
forY+=0. O

Before we go on to study the properties of the Spivak normal fibre
space we first recall some properties of spherical fibre spaces.

1.4.5. Any spherical fibre space can be embedded (up to fibre-homotopy
equivalence) as.a subfibre space of a fibre space. with contractible fibre
{analogous to the disk bundle for a linear fibre space).

This may be proved by first replacing the projection by an inclusion,
then replacing the inclusion by the space of paths fibration, so.that the-
contractible fibre is the path space of the base. We leave details to the
reader (cf. [ 7, Appendix]).

For a spherical fibre space ¢ we will denote its total space by Ey(£),
and E (&) C E(£) = the fibre space with contractible fibre. With the aid
of E(¢) we may now imitate some of the contructions of linear bundle
theory in the category of spherical fibre spaces. For example to define
Whitney sum of &, and &,, we first take E(£;)xE(£,) over X x X and
define E(¢; +¢&,)=A*(E(¢,)x E(¢,)) 4: X— X x X, the diagonal. Then
Eolé + &;)= AH{Eo(E,) x EE)UE(E) x Eol&,))
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It is easy to see that the Thom complex T(¢)= Eo(¢ + &')/o X, where
¢! is the trivial line bundle, a: X —E(£ +¢!) is the canonical cross
section.

If a is a spherical fibre space let End(x) denote the group of fibre
homotopy classes of fibre maps a—a covering the identity of the base
space. Then there are natural maps End(e)—End(x+¢'), ff+1.
Define the stable equivalences of « to be ()= 1;1}11 End(x + &"). Clearly

&(a)= & +¢'). Now End(x)—End(x+0a~!)=End(e®9), ff +1, de-
fines a map a: &(x)—&(¢) and End(e?)—End(x + &), g1+ g defines
b: &(e)— &(w), and clearly ab=1, ba=1. So we get

' 1.4.6 Lemma. The group of stable equivalences is independent of the
fibre space, ie. £(x)=&(P), any two spherical fibre spaces a, B over X.

Clearly the result above holds for any category of fibre spaces, such
as linear bundles, piecewise linear bundles, or topological fibre bundles
with R” as fibre, as long as Whitney sum and inverses are defined, and
was first proved by Hirsch and Mazur [29].

1.4.7 Propesition. End () =[X, G,1; if a? is fibre homotopically trivial,
where G,=space of homotopy equivalences of 8771 to itself, with the
compact-open topology.

Proof. Consider first the product space X x $¢7'. Pick a point x€ X,
and considerj, : 87— X x §771,j.(s) = (x, s), s€ $7~ !, and the projection
p: X x 891 — 8171 If fe End(e9, then define n(f): X—G, by

n(f)(x)=pfj,: §* =571,

Since f is a fibre. homotopy equivalence it follows that #(f)(x) is a
homotopy equivalence, so #(f)(x) € G,. It is easy to verify that #(f)isa
continuous map and that a fibre hemotopy is sent into.a homotopy of
n(f), so that n : End(¢9)—[X, G,].

If « : X— G, then « defines a continuous map g(x): X x §%~ 18971,
using the exponentlal” law  ((S271)STTIX = (ST HFST!, Define
ple@): X x84 1> X x 8771 by y(e(@) (x, s) = (x, e(@) (x, 5)). It follows
that y(g(x)) is a map of fibre spaces, and a homotopy equivalence on
each fibre. One checks easily that yg defines a map w: [X, G,]— End(¢)
and nw=1,wn=1, so the groups are isomorphic. The proof is'now
completed by:

148 Lemma. If b:a—f is a fibre homotopy equivalence, then b
induces an isomorphism b, : End (x)— End ().

Proof. Let b’ : B—a be an inverse for b so that bb’ and b'b are fibre
homotopic to the identity. If f:a— a, define b,, f: f—B by b, f=b'fb.
It is easy to verify this induces an isomorphism b, : End(¢)— End(f).

i
i
!

i
i
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1.4.9 Proposition. Let F, = space of base point preserving homotopy
equivalences §*—8% F,CG,,,. Then the evaluation e:G,,,—S% e(f)

= f(*), * € 87 a base point, defines a fibre map with fibre F,.

Proof. See Spanier [55].

Now F, = the identity component of Q5% (see [55]) and the sus-
pension of maps ylelds maps G,,; G,y F, —>Fq+1, and the induced
Q151 QI+189%1 i simply the usual suspension map. Hence by the
Freudenthal Suspension Theorem 7,(F, ,,, F,) = O for n < g — 1 (see [55)),
and [K, F]1=[K, F,,,] if the dimension of K <qg—1. It folows from
(L.4.9) that the same result holds for' G, since F,C G ., induces iso-

morphism on 7; i<qg—1:

1.4.10 Proposition. 7,(G,+;,G,)=0 for nsq~2, s0 [K,G,]1=[K,G,,,]
for dimension K < g — 2.

We get from (1.4.7) and (1.4.10):

L4.11 Corollary. End(e?) = &(x) if o is fibre homotopy trivial and
dimension of base space < q — 2.

Now we can prove:

. L4.12 Theorem. End(¢?) =~ End(e? +¢') so End(9) = &(w), provzded
the dimension of the base space < g — 2.

Proof. We proceed by induction on dimension and on the number of
tells. If there is only one cell then « is fibre homotopy trivial since the
base is contractible, and then the result follows from (I4.11).

Now suppose X =X ue", n<qg—2, and End(x| X ;)= End(a+&'|X,).
Let f: a+ &' —a + &' be a fibre homotopy equivalence. Since f (o + 2!} X )
is_hometopic to go+1, where go:a|X,—a|X,, using the covering
homotopy theorem, we may assume (by changing f by a fibre homotopy)
that f|((“+31)lXo) go+1.

Let de"= =e"n X, then aje” is fibre homotopy trivial, since ¢
is contractible, and thus «|S"~! is fibre homotopy trivial. Pick a fibre
homotopy equivalence between aje” and e"x S77!, and keep it fixed
during the remainder of the argument.

With this representation of a|e”, we get a representation of f|(a+¢t|e”),
asa mapf e >< S7—¢" x §4, degree 1 on each fibre, and 15"~ x §7=Sg,
where gq : x8§771—8§""1 x§%7! and § means suspension on each
fibre x x §9° 1

Hence f, g, defineamap a: (", S""l)—>(Gq+1 » G But (G, 1 ,G,)=0
for n<g—1 by (1.4.10) so a is nullhomotopic. It follows that g, extends
to g:e"—G, and f is fibre homotopic to g+ 1 keeping f|S"! fixed.
Hence End(x)— End (x +¢&') is surjective. A similar argument about a
fibre homotopy between g, + 1 and g, + 1 shows the map is injective. [
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Now we recall the theory of S-duality as developed in Spanier [56].

If A-and B are two spaces with base points a, € 4, by € B, the “wedge”
AvB=Axbyguay;x BCAxB. We denote the “smash” of 4 and B by
AAB=AxB/AvB.

A map o : A A B— 5" will be called an n-duality map if

a*(g)/: Hy(A)—H""%(B)

is an isomorphism for all ¢, where g e H*(S") is a generator. A and B
will be said to be n-dual in S-theory if some suspension X* 4 is homotopy
equivalent to S"*1*¥*4_ 34B for an embedding of ZB in S**1tkte
k and g arbitrarily large.

Theorem (Spanier). A and B are n-dual in S-theory if and only if
there is a n + k-duality map Z* A A B— S"** for some k.

In the theory of S-duality developed by Spanier and Whitehead they
consider the S-groups {X, Y} = h_m} [Z*X, 2*Y], where [4,B] =the set of

homotopy classes of (base point preserving) maps of 4 to B. The
equivalence class of f: X—Y in {X, Y} is denoted by {f}. If 4 and 4’
are n-dual in S-theory and B and B’ are n-dual in S-theory, then they
defined D, : {A4; B}—{B’, A"} which they proved to be an isomorphism
of groups. If f: A—B is an inclusion, BC S"*?, then clearly S"*!—B
is included in S"*! — A and this inclusion represents D,({f}) in {B, 4}
The general case can be reduced to this by replacing B by a regular
neighborhood in a high dimensional sphere.
In terms of n-duality maps Spanier [56] showed the following:

Theorem (Spanier). Let a: AA A"—S" and B: BA B'—S" be n-duality
maps and let f+A— B, g: B —A" Then f and g are n-dual in S-theory
gy =D,({f}) if and only if the following diagram (or some suspension
of “it) commutes up to homotopy

AAB —LL S BAB

Jo |

ANA 2 §7

Now if 4 and A’ are n-dual and B and B’ are m-dual, it follows
easily that AA B and A’ A B’ are (n+ m)-dual, (all in S-theory). Hence
the condition «:AAB—S* such that a*(g)/: H(4)— H* %(B) is an
isomorphism all § is equivalent using S-duality and Alexander duality
between homology and cohomology, with thefollowing: B: S™" *—A'A B’
such that B, (g)/: HA)— H,, ., —,(B') is an isomorphism all ¢. But
takingB=A',B'=A,n=m=k,wegetf:8"— B A,B,(g)/: H{(B)— H,_,(A4),

!
%
|
%
|
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an isomorphism, all g. Thus we get an equivalent formulation of the two
theorems of Spanier above:

Ann-dualitymapisamap f8: §"— A A Bsuchthat 8, (g)/: H{(A)— H,_ (B)
is an isomorphism for all q.

1.4.13 Theorem. A and B are n-dual in S-theory if and only if there
exists an n-duality map B :S"— A A B.

1.4.14 Theorem. Let o:S"—A A A', B:5"— B A B’ be n-duality maps,
andlet f: A—B,g:B'—A'. Then {g} = D,({ f}) if and only if the diagram

St—=2 5 ANA

) 1 lm \

BAB —1*,BAA
commutes up to homotopy.

Now we may prove (following Wall [677) an enriched version of the
uniqueness theorem for the Spivak normal fibre space.

We use this strengthened version of Atiyah’s generalization [4] of
the Milnor-Spanier Theorem [43]:

. 1.4.15 Theorem. Let (X, Y) be a Poincaré duality pair of dimension
.m, X l-connected, v its Spivak normal fibre space as defined above. If ¢
\is another spherical fibre space over X then T({)/T(E|Y) is S-dual to
sT(v+ (— &) (where — ¢ is the inverse of &).

Proof. We construct a duality map as in (1.4.13). Now
v+ (=8 +E&=v+e, e=trivial,

and v + ¢ is then induced by the diagonal 4: X— X x X from the fibre
space (v +(— &) x & over X x X. Call ¢ (v +&)—(v + (— &)) x ¢ the map
of fibre spaces. Consider the diagonal as a map of pairs (X, Y)— X x(X, Y)
and consider ¢ as a‘map of pairs

C:(E(v+e), E(v+&)| Y)UEy(v + £))
—EQ + (= &), Eo(v + (= &) x (E), E| Y)UE(8)).
The subspace of the product pair is
(Eo(v +(— E) X EQ)U(EW + (— &) x (EE| V)V Eo(®))

so that includes all of Eo((v + (— &) x &)U E({(v + (— &) x £)| Y) so that §
is a map of pairs. Collapsing subspaces, g induces a map of Thom
complexes

¢ (T +8), T+ V)= (T( + (= §)), ) x (T(E), T¢I Y)).



26 . I. Poincaré Duality

Then the following diagram is commutative
H (T +e), T +¢| Y))—&— H, (T + (- &), 0)x(T(), T¢I Y)))
nUe n(U1uU3) (*)
H,(X,Y) 4s — H (X x(X,Y))

where U, i=0, 1,2 are the three Thom classes, and ¢'*(U, L U,) = U,.
Since v+ ¢ is the Spivak normal fibre space of (X, Y), there is an
4 € T4 (T + ), T(v +¢| Y)) such that h(w)n U, =[X]e H,(X, Y). We
claim

Qi S" =T + (- O)A(TE)/TEIY))

is a duality map (see (1.4.13)). For any element in H*(T(v +(— &))) is of
the form xu U,, xe H*(X), by the Thom isomorphism theorem. Then

(€04 @)/(xL UD)N U, = (@, (h(@)/xw U v Uy)
= (Q’*(h(“))n (Uyv Uz))/x = 4, (h@)n Uy)/x
= 4,([X]/x=[X]nx.

Thus since [ X] N is an isomorphism, and N U, and U U, areisomorphisms,
it follows that (¢'a), (g)/ is an isomorphism, and hence ¢'a is a duality
map. []

Now we wish to consider the relation between the isomorphism of
(L.4.6) between the stable. equivalences (&) and &{v +{—¢)) and the
duality (1.4.15) between the Thom complexes. We recall that if § is a
trivial fibre space and b:8-—0 is an equivalence of it, b+>b+ 1 defines
a. homomorphism &(f)— &0 + £), and b—1 + b defines

E@)—EV+(—8+0)

which induce the isomorphisms y : £(6)--&(&) and y'&B)—E(v+ (— &)
of the stable equivalences (see (1.4.6), (1.4.12), etc.).

1.4.16 Theorem. Using the duality of (1.4.15) between T(&)/T(E|Y)
and T(v + (= &)), then T(y(b)) is dual to T(y'(b)).

Proof. We recall that the duality map of (1:4.15) is.induced. by the
fibre space map v + e — (v + (— £)) x £ covering the diagonal considered as
amap X — X x(X, Y). Then the natural map a: S"** - T(v+¢)/T(v+¢| Y)
composed with the map induced by the fibre space map yields the duality
using (1.4.13).

If we add two trivial factors 6 we get

g v+e—-V+(—=EH+0)xO+¢).

S e

=

///W/r i

L
o
N

e
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On ((v+(—&)+0)x(@+¢& we may consider b, =(1+b)x(1) and
by=(x(bx1). Now v+&=v+(—&)+04+0+¢&, and on 0+6 the
equivalences b + 1 and 1 + b are homotopic. Then b;g=o(1 + (b + 1)+ 1)
and byp=¢(1+ (1 +b)+ 1) on (v +(— &) +(8+0) + £ s0 by g is homotopic
to b,p as an equivalence of fibre spaces. It follows that b, g'a is homo-
topic to b,0'a and thus the diagram below commutes up to homotopy:

Smrk___ee L 4AB
o' 1AT(b+1)

AAB-TUION, 44 B

where A=T(v+(—&)+80), B=T(@0+ &)/T(O+&)|Y), ¢ is as in (1.4.15)
and T( ) indicates the induced map of Thom complexes. Then (1.4.14)
implies that T(b+ 1) on Bis dual to T(1+b)on A. [J

Let 6 be the trivial spherical fibre space of fibre dimension k—1 over
B, k>> dimB. Let b:6— 0 be an oriented fibre homotopy equivalence,
and let B e n*(T(8)) be induced by a fixed fibre homotopy trivialization,
E°(0)— S*"'. Then if h': n*— H* is the Hopf homomorphism,

K (g) = g* (generator), g: X —S*,

then K'(B) is a Thom class of T(f) since j*h'(8)=generator of H*(S¥),
. j:S*—T(6) coming from the inclusion of the fibre, and W' (T(b)*(B)) is

also a Thom class. Let £,(&) =the group of stable orientation preserving
# fibré homotopy equivalences of the fibre space &, &4(&) C £(&).

1.4.17 Propesition. The map v : &,(0)— n*(T(6)) induced by
w(b)=T(h)*(P) induces a 1—1 correspondence between &,(6) and
(j*h") ! (generator) C n*(T(H)).

Proof. Suppose b,:60—0, i=0,1 and T(by)*(f)=T(b)*(B) in
(T (0)). Let H:T(0)x I—S* be a homotopy between them, so that
H(x,)=T(p), i=0,1, p;: Eo(6)—S** is such that b,(x, t)=(x, pi(x, 1)).
Then since T(@)=BxS*/Bx#*,+eS* we get BxS*xI-LT(H)E S
and this induces a fibre homotopy between the images of b, and b, in
&(6+¢"). Since k> > dim B, it follows from (1.4.12) that {b,} = {b,} in &(6).

If Ben*(T(P)) is such that j*h'(B)= generator of H*(S¥), then the
composite BxS*% T(0)£LsS* is of degree 1| on-each fibre; so
b{x, t) = (x, Bn(x, 1)) is a fibre homotopy equivalence, so the map is onto
(7*1')"*(generator). [

Let v be the Spivak normal fibre space over a Poincaré pdir of
dimension m, a€n,, . ,(T(v)/T(¥|Y)) such that ()N U = [X], (k>>m). If
b:v—v isa fibre homotopy equivalence of v with itself, then o' = T(b),, ()
has the same property, i.e. ()N U=[X].
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1.4.18 Corollary. The mapping vy : 85(v)— 71 (T(v)/T(v| Y)) given by
p(b) = T(b),(«) establishes a 1—1 correspondence between &,(v) and the
subset K C 7t 41 (T()/T(v|Y)), K ={B| (B U =[X]}.

Proof. By (1.4.16) there is a commutative diagram:

&o(2) —t— Eo(8)—L— &,(v)

{4, 4} Z {B, B}

where A = T(g), e =a trivial bundle, (e=v+(—V)), B=TW)/TH| V), n, 7
give the reduced maps of Thom complexes, & is the Spanier-Whitehead
duality, {, } denoting homotopy classes of maps in S-theory. Now we
have another commutative diagram

{4, A} —2—{B, B}

{4,8} —2— {s"**, B}

where 2’ is an isomorphism of groups, from Spanier-Whitehead duality,
and ¢'(g) = g*(B), e(f) = £, (@), a e {4, §} ='(T(e)),

Be {S™*%, B} =, (T()/T(|Y)),

as above, where f is chosen so that Z'(f) =a.

By (1.4.17), the composition €'y’ : &,(0)— {4, 8"} =n'(T(e))isa 1 -1
correspondence onto h'~!(k'(B)), and since 2’ is an isomorphism it
follows that eny : &(8)— {S™**, T(v)/T(v| Y)} is a 1—1 correspondence
on h~*(h(x)), and since y is an isomorphism by (1.4.6), the result follows. [J

Now we may prove the uniqueness of the Spivak normal fibre space,
in the'‘enriched version of [67].

1.4.19 Theorem. Let £, and &, be (k— 1)-spherical fibre spaces over
a Poincaré pair (X, Y) of dimension m, k>>m. Let ;e m,, . (T(E)/T(&|Y)),
i=1,2 be such that hoa)NnU,=[X]. Then there is a fibre homotopy
equivalence b: &, — ¢, such that T(b), (a,)=o0,, and such a b is unique
up to fibre homotopy.

1.420 Lemma: &, and &, are fibre homotopy equivalent.

Proof. By (1.4.15), if v is the Spivak normal fibre space of (X, Y) then if
E=¢, T(E)/T(£|Y)is S-dual to T(v + (—¢&)). Since o € 7,,, . { T(E)/T(¢] Y))
such that h(@)nU, it follows that 9'(x)=Ben'(T(v+(—¢&)) is such
that j*'(f) is a generator of H'(S"), and hence the composite

Eqv+ (=8 + &)= T +(—&)—8

- s
R R e A

-

!
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defines a fibre homotopy trivialization of v +(— &)+ ¢!, so that & = ¢, is
fibre homotopy equivalent to v + ¢*. Hence ¢, is fibre homotopy equivalent
to &, O

_fibre-hemots L ometopy-equivalentto., .

Proof of (14.19). By (1.4.20), there is a fibre homotopy equivale;?e
by : & —¢,. By (1.4.18), there is a fibre homotopy equivalence b, : &,—¢,
such that T(b,), (T'(b), () = a,. Hence T(b,b,), (o) = .

If by,b,:¢,—¢&, are two fibre homotopy equivalences such that
T(b,)y () = T(by), () = a3, then T(b3'by), (o) =0c,. By (1.4.18), b;'b,
is fibre homotopic to the identity, and hence b, is fibre homotopic
tob,. O



I1. The Main Results of Surgery

In this chapter we shall try to give the main results of the theory of
surgery on simply-connected manifolds and give some of the most general
and important theorems on the structure of differentiable manifolds
which result.

In § 1 we give without proof the main technical results of surgery,
the proofs being given in Chapters III, IV and V. They are all stated
without reference to surgery as such, but in terms of “normal cobordism”
of “normal maps” which are defined in § 1. Surgery is a process used to
construct normal cobordisms: In § 2 we discuss some generalities about
the relation of normal maps and cobordisms to homotopy groups using
transversality. In § 3 we give some of the main theorems on the homotopy
type of manifolds and the classification of manifolds. In §4 we describe
a-dual approach, which gives the classification theorem a more functorial
form.

§ 1. The Main Technical Results

Let (X, Y) be a Poincaré pair of dimension m (see I § 2), where Y may be
empty. Let (M, 0M) be a smooth compact oriented m-manifold with
boundary, and let f : (M, OM)—(X, Y) be a map.

A ‘cobordism of f, is a pair (W, F) where W™*! is a smooth
compact (m+1) manifold, oW =M"OUUUM™, oU=0MudiM'
FyW, Uy~>(X, Y)yand FIM=f. f U=0M xI and F(x, t)= f(x) for
xedM, tel, then (W, F) will be called a cobordism of f rel-Y. If we pick a
function. g : W— [0, 1] such that g(M)=0, g(M’) =1, then

G=(Fxg):(W,U)—»(Xx[0,1], Yx[0,1]),
and G can be considered
G (W, 0W)>(X x[0,1], Xx00Y x[0,1JuX x1).

If (W, F) is a cobordism rel Y, ¢ can be chosen so that G(x, ) =(f(x), ),
xedM,tel.
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Let us assume that k>>m, and that (M™, M) is embedded in
(D™*k, §m+k—1) with normal bundle v*, so that v| M = normal bundle of
oM in SmHET1

Let & be a k-plane bundle over X, k>>m. A normal map is a map of
degree 1, f:(M,0M)—(X,Y) together with a bundle map b:vF—¢*
covering f. A normal cobordism (W, F, B) of (f, b) is a cobordism (W, F)
of f, together with an extension B : w*—&* of b where * is the normal
bundle of W™* ! in D™** x I, where
(M,0M)C(D™+Ex 0, 8™+~ 1x0), (M, oM)C(D™"*kx1, 8™+~ 1x1),
and UmCS™*tF "1 x I

A normal cobordism relY, is a cobordism relY such that it is a
normal cobordism and B(v, t)=b(v)forvev|dM,te L

Now we can state the surgery problem:

Problem. Given a normal map (f,b), f :(M,dM)—(X,Y), b: v*—&,
when is (f, b) normally cobordant to a homotopy equivalence of pairs?

We may also state:

Restricted Problem. Given a normal'map (f, b), f : (M, dM)}={X, Y),
b:v—¢&, when is (f,b) normally cobordant relY to (f’,b’) where
f':M'—X is a homotopy equivalence?

Of course, if 0M =@, the restricted problem is the same as the un-
restricted one.

11.1.1 Invariant Theorem. Let (f, b) be a normal map, [ . (M™, 0M™)
—(X,Y) etc., such that f|0M induces an isomorphism on' homology.
There is an invariant o(f, b) defined, 6 =0if mis odd, 6 € Z if m =4k and
o€, if m=4k+2, and such that ¢(f, b)=0 if (£, b)is normally cobordant
to-a map inducing-isomorphism on komology.

Actually o will be defined in more generality for normal maps of

" Poincaré pairs (see Chapter I1II).

11.1.2 Fundamental Surgery Theorem. Let (f,b) be-a normal map
[ M, dM)Y—(X, Y), b.: v—¢& as usual and suppose ‘

(1) f|0M induces an isomorphism in homology

(2) X' is l-connected

@B) m=5.

If m is odd then (f, b) is normally cobordant relY to ‘a homotopy
equivalence f':M'—X. If m=2k, (f,b) is normally cobordant relY
to (f',b') such that f':M'—>X is a homotopy equivalence if and only if
a(f, b)=0. |

This theorem is contained essentially in the work of Kervaire-Milnor
[34], Novikov [49], [50], and the author [6].

Kervaire-Milnor proved but did not publish the following (see also

[313):
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11.1.3 Plumbing Theorem. Let (X,Y)=(D", 8" 1). If m=2k>4,
then there are normal maps (g,c), g:(M,dM)—(D™ 8" 1), c:vi—e*
= trivial bundle, with g|0M a homotopy equivalence and with a{g, c)
taking on any desired value.

It is proved by a technique called “plumbing”, and hence its name.

For applications, we will need several properties of the invariant o.

Let (f, b), f:(M,dM)—(X, Y), etc. be a normal map. Suppose (X, ¥)
is the sum of two Poincaré pairs (see (1.3.2)), i..

X=X1UX2, XO=X10X2, Y;=AXlnY, i=0,1,2,

and (X;,0X;) where 0X,=X,0UY;, are Poincaré pairs i=1,2, with
orientation compatible with that of X.

Suppose also that
M™ =MinUM£n, Mo = Ml an C aMl maMz, 6MOM, C aMi, (M, 5M,)

are compact smooth manifolds with boundary i = 0, 1, 2. Suppose further
that. f(M,)CX;, and set f;=f|M;:(M;, 0M)—(X;,0X,), i=1,2. Since
v,=v|M, is the normal bundle of M,CD™**, i=1,2, if b;=b|v, then
(f:, b,) are normal maps, i = 1, 2. We will say (f, b) is the sum of (f;, b;)
and (f,,b,). If f|OM and f;|0M, i=1,2 induce isomorphisms in
homology then ¢ is defined for each map.

11.1.4 Additien Property. Suppose (f, b) is a normal map which. is the
sum of two normal maps (f,, b)) and (f, b,) as above, and such that
floM, f10M; i=1, 2 and My induce isomorphisms in homelogy. Then

o(f,b)=0(f}, b)) +0(f2,b,).
H.1.5 Cobordism Property. Let (f, b) be a normal map
f:M,0M)—(X,Y), b:v—o¢,

and set f'= f|6M :0M—-Y, b’ =b|(v|dM):v|OM—E|Y.If m=2k+ 1,
then o(f’,b)=0.
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=

11.1.6 Index Property. Ifm=4k, (f; b) a normal map, then
8c(f, b)=index M —index X, and index M =L, (p,({™Y), ) [X1,
where L, is the Hirzebruch polynomial, and index X = signature of the
quadratic form on H**(X; Q) given by {xUy, [ X1, where [X] is the
orientation class of H 4 (X).

IL1.7 Product Formulas. Let (f,, b)), (f,, b,) be normal maps,
fi:(M;, OM)—>(X;, 0X,). Suppose 6(f, X f2, by X by), a(fy, b))=0, and
6(f2, by} =0, are all defined (i.e. fi % f,10(M x M,), f;|0M,,i=1,2 are
all homology isomorphisms with appropriate coefficients). Then

@) o(fyx f2 by xby)=IX)o,+ I(X,)6,+ 80,0, when dimension
M, x M, =4k, where I(X)) is the index of X;.

(i) o(f1 X f2, b1 x by) = x(Xy) 0, + x(X;) 01, when dimension M; x M,
=4k + 2, where y{X;) = Euler characteristic of X;.

Note that I{X)=0 by definition if dimX 3= 0(mod4).

The three theorems and the four properties of the obstruction .o are
the main technical results in the theory of surgery on simply-connected
manifolds. In the next sections we will show how to deduce some of the
main theorems of the subject from these results, and we will prove the
technical results in later chapters.

| § 2. Transversality and Normal Cobordism

In this section ‘we recall the transversality results due to Thom which we
shall need, and derive from them'the relation between normal cobordism
classes and homotopy classes of maps.

Let Z be a space and suppose there is a vector bundle & with base
space X embedded as an open set in Z, where X is the homotopy type
of a finite complex. Let M* be a differential manifold and f:M—Z
a continuous map.

We shall say that f is transversal to X CZ if f~' X = N*~* a smooth
submanifold of M with normal bundle v*, and f restricted to a tubular
neighborhood of N in M is a linear bundle map of v into £&.

This definition is usually given as-a theorem which follows from the
usual notion of transversality, but this is exactly what we need so we use
it as the definition. The proof of the following theorem, which is due to
Thom, may be extracted from many standard treatments (see [64], [1]).
The fact that X is not a smooth manifold makes no difference; for example
one could replace X by an open subset of euclidean space; by taking a
regular neighborhood, and get a Z of the same homotopy type, or-on the
other hand one notes that none of the arguments of the transversality
theorems use differentiability in the base, but only in the fibre.
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11.2.1 Thom Transversality Theorem. Let A be closed in'M and
suppose that f restricted to an open neighborhood of A is already trans-
versal to X. Then there is a homotopy of f rel A to f' such that f' is trans-
versal to X.

Actually this homotopy can be taken to be very small in some metric,
but such refinements will not concern us.

Suppose £ is a linear k-plane bundle over X. We recall the definition
of the Thom complex T'(¢) of the bundle £ : T(£) = E(£)/E(£), where E(£)
is the closed disk bundle associated with £, i.e. with fibre D*, and E4(¢)
is the associated sphere bundle, i.e. with fibre $¥~!, so that E(£) C E(£).

Recall that & + ¢, where ¢! is the trivial line bundle, has as total space
the total space of ¢ times R'. Thus E(( +&')=E" (£ +e')UE (¢ +¢')
and E,(&+&!)=Eg (& +&')UEq (£ +¢') where E* (¢ +¢') is the subset
where the coordinate t in R! is 20, E~ (£ +¢') where t £0, etc. Then
E(£)C E(E+¢') as the subset where t =0, and E(¢)=E* (£ +&)nE (£ +¢')
and Eo (&) = E¢ (€ +&')nEg (£ + &'). Also the projection of total space on
the first factor (i.e., forgetting the coordinate ¢t in R') induces a map
p: E(¢ + &' )— E(€) such p’ = p|Eg (£ + &'): Eg (¢ + ¢')—E(£) is a homeo-
morphism, and p'|E} (¢ +e')nEg (¢ +¢') is a homeomorphism (the
identity) onto Ey(£). For in each fibre we note that p looks like the
projection of a disk onto a disk one dimension lower:

Eg

Eq

E@)

Hence it follows that
T(&)=E@)/Eo() = Eg (¢ +e")Eg (¢ +e")nE5 (¢ +6)
=Eo(¢ +&")/Eq (§+¢")

(where = means homeomorphic).

Now let a: X—Ey(¢ +¢') be the canonical cross-section where
ofx)={0, —1) in the fibre over x ¢ X, i.e. the unique point with t co-
ordinate = —1. Let ¢:[0,1]—[—1,1] by o(t)=2t— 1, so that ¢ is'a

.

e S,

e
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homeomorphism. Then define ¢ : E§ (¢ + &')— E (¢ + &%) by

¢(b )= (————~“‘Q(” b, Q(t)) ,

Ib|

for be E(¢) such that [b|?+ |t|* =1, so that (b, t) € Eo(¢ +¢&') and |b| 4-0.
If |b| =0, then t=1, and we define ¢'(b, 1)=(b, 1). It is then clear that
¢ induces a homeomorphism between Eg (¢ +&')/Eg (£ +e')nEq (E+¢Y)
and E,(& + &')/a(X), so that

I1.2.2 Proposition. T(¢) is homeomorphic to Eq(& + &')/a(X).

11.2.3 Thom Isomorphism Theorem. Let &* be a linear k-plane bundle
over a connected space X, and let j: (D, S~ 1)—(E(£), Eo()) be the map
induced by the inclusion of a fibre D* into E(), n:E()—X. If
U e HYE(E), Eo(§)) is such that j*U generates H*(D*, S*~') then
@ : H{(X)— H M(E(&), Eo(&)) is an isomorphism, where ®(x)= Uun*(x).
Further there is always sucha U withZ, coefficients, (i.e. with H* = H*(;Z,)
in the statement) and the existence of such a Ue H*(E(&), Eo(é);Z) is
equivalent to the orientability of &.

The element U will be calied the Thom class of &.
Here the U product is the relative one

H*(E(&), Eo() @ H*(E(£))— H*(E(), Eo(£))-

| This theorem has many modern proofs, for example using a spectral
sequence (see (1.4.3)) or using a Mayer-Vietyoris theorem (see [44} and
also [32]). One can use (IL.2.2) and standard methods of studying
H*(Ey(€ +¢')), for example. The theorem holds in more generality for
spherical fibre spaces, and also has a converse in this context, essentially
due to Spivak (see (1.4:3)).

Since the collapsing map ¢ : (E(&), E¢(&))—{T(£), *) induces an iso-
morphism in cohoniology, we get as an-easy corollary:

11.2.4 Corollary. If £ isorientable, (or otherwise with Z, coefficients)
the map ®@:HYX)—HI™MT()) given by ®(x)=p* '(xUU) is an
isomorphism, for all q.

(A* denotes reduced cohomotogy.)

Let Y CX be a closed subset and let £'=¢|Y. Then a relative cup
product is naturally defined:

HY(E(Z), Eo(&)® H{E(E), E(€))— HT* (E(8), Eo(§)UE(Z)).

The projection =:{E(&), E(¢))—(X,Y) induces an isomorphism in
cohomology, as does the natural collapse of Eq(¢) which defines

1< (E), Eo(O)VEE)—(T(), TEY).
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Hence we get a cup product
HY(TQ)®H'(X, Y)—H"(T(), T(£)).

I 2.5 Corollary. If & is orientable (or otherwise with'Z, coefficients) the
map @ : HYX, Y)— H*""*(T(&), T(¢") given by ®(x)=Uuvx, is an iso-
morphism, for-all q.

The proof is a simple application of the Five Lemma, using the
commutative diagram:

> HY(X) — HYY) — H"'(X,Y) — H''(X) —--

N

= H*HT(Q) 5 HTMT(E) — HT Y T(©), TE)— HHHTE) — -

where U’ = g*(U). Here g: T(&)— T(&) is the inclusion, and it follows
that U’ = g*(U) has the property that restricted to the fibre,j' *g*U = j* U
generates H*(S*), where j':S*— T(£), j: S*— T(f) come from the in-
clusions of the fibres, so gj’ =j. Hence, by (11.2.4), the maps-on the spaces
are isomorphisms, so by the Five Lemma the map of pairs is an iso-
morphism. (Here note that the restriction of an orientable bundle is
orientable.)

Using the relation between U and ~product developed in Chapter I,
we may easily derive homology versions of the Thom isomorphisms:

I1.2:6 Theorem.. - With the hypotheses of (11.2.4); the map
MU vHy, ((T())— H(X) is an isomorphism for all q.

I1.2.7 Theorem. With the hypotheses of (11.2.5), the map
NU:Hy (l(T(C), T(E)— Hy(X, Y) is an isomorphism for all g.

Proof. Considering the orientable case, n U is induced by a chain
map (see Chapter 1), so-it.-follows that U is an isomorphism if and only
f.nlU;: Hq+k(T (6);\Zp)—»Hq(X ;Z,) is _an isomorphism for all g, all
primes p. (In the non-orientable case; we only consider Z, anyway.)
Letye H,,(T(¢); Z,). If x € HYX; Z,), then by (1.1.1) using the evaluation
of cohomology on homology, x(y nU)= (xu U)(y). Since

VU HY(X;Z,)—H" YT () Z,)

is an isomorphism, it follows that x(ynU)=0 for all x if and only if
y=0. Hence n U is a monomorphism. Now

H"H(T(€);Z,) = Hom (H+(T®): Z,), 1)

and HY(X; Z,)=Hom(H,(X; Z,), Z,) and HYX; Z,)= H**XT(¢); Z,)
by the Thom isomorphism w U. Hence the homology groups H,(X;Z,)

i
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and H,,(T(£);Z,) have the same rank over Z,, and hence the mono-
morphism N U is an isomorphism. This proves (I1.2.6). A similar argument
proves (IL.2.7). 3

Now let f:(X,Y)—(X",Y") be a map, & and &* linear k-plane
bundles over X and X' respectively, and b:{—¢’ a linear bundle map
covering f. Let T(b): T()— T(£') be the induced map of Thom complexes.
Assume either £’ (and hence &) orientable or use Z, coefficients below.

I1.2.8 Lemma. T(b)*(U')=U where U'e H¥(T(&")) is such that j'* U’
generates H*(S¥) (as above), similarly for U.

Proof. Since b is linear bj=j', where j, j' are inclusions of fibres,
and the result follows. [

11.2.9 Theorem. (Naturality of the Thom Isomorphism). With the
above hypotheses, if @ and &' are the Thom isomorphisms in ¢ and &
respectively, then T{hy*®' =@ f* and Tb), (X)NU'= f (xAD),
x € Hy, ((T(C), T Y)).

Proof.

T(h)* ®'(y)= THY*(U'un*(y)) = TGP (U )ob*n ¥(y)= Uur* f*()= B *(y).

Similarly,
fexnU)=f (xnThy*U)=TOH),x)nU".

* Here we may think of the map of pairs b:(E(&), Eo(£))—(E(£"), Eo(E)

instead of T'(b) in order to find the necessary identities between U and N
in Chapter . J

11.2.10 Corollary. With notation as above, suppose (X,Y) and
(X', Y') are Poincaré pairs of dimension n. Then the degree of f is equal
to the degree of T(b), in particular, f,:H/(X,Y)—>H(X,Y') is an
isomorphism if and only if T(b),.: H, 4 ,(T(Z), T€1 V)= H, (T, T’ Y)
is an isomorphism.

Proof. If [X]eH,(X,Y), [XTeH(X,Y"), ve H,(T(§), T¢IY))
v e H . (T(&), T |Y") are generators such that vaU=[X],
VAU =[X"], then from (IL2.9), f, [X]=(T(}),()NU and the
result follows. {7

Let X be a space, £* a k-plane bundle over X, Y closed subset of X,
and suppose the total space E() of the associated unit disk (D¥) bundle
is embedded as a closed subset of a space Z, such that interior of E(£)
is open in Z, and such that E(£|Y)C Z, a closed subset of Z. Hence
Z=E(()UA, Z' =E(|Y)u A, where ‘

E@Q)NA=Eo(S), ECIY)NA'=Eo(|Y), A'=AnZ'.
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I:2.11 Definition. We define the natural collapsing map
n:(Z, 2y~ (T(&), T(]Y)) extending the identity map of E(£), such that
n(4)=*.

If X is a smooth manifold with boundary Y embedded with normal
bundle & in a smooth manifold Z with boundary Z’ then we get such a
situation. In that case we get:

1.2.12 Lemma. Suppose (M, M) is an oriented smooth manifold of
dimension n embedded with normal bundle v* in an oriented smooth (n + k)-
manifold W, with 0M C 0W. Then the natural collapse

1+ (W, 8W)—(T(v), T(v|6M))

has degree 1, ie. n,:H,, (W,0W)—H,, (T(), Tv|0M)) is an_iso-
morphism, n, [W1nU =[M] for the appropriate choice of U e H¥(T(v)).

This is geometrically clear, and can be shown purely algebraically by
looking at an appropriate diagram.

Let (X, Y) be a Poincaré pair of dimension n, & an oriented linear
k-plane bundle over X, k>n. Let (f,b) be a normal map so that
(M, dM)—(X,Y) is @ map of degree 1, M a smooth oriented n-
manifold with boundary, v* its normal k-plane bundle in (D"*%, S"**~1),
b:v—¢ a linear bundle map covering f. Then b induces a map of Thom
complexes T(b):(T(v), T(v|0M))—(T(), T(£]Y)). Let

n: (D" ST (T(v), T(v|OM))
be the natural collapse, and consider the composite
T(b)n: (D™, 8" H)—(T (), T(¢|Y)).

The homotopy class of T(b)y in =, ,(T(&), T(£]Y)) will be called the
Thom invariant of the normal map (f, b).

1L2.13 Theorem. The Thom invariant of (f, b) depends only-on the
normal:-cobordism class of (f, b), and defines a 1 — 1 correspondence between
normal cobordism classes of normalmaps, and elementsae ., . { T(E), T(E|Y))
such that Mo)nU ={X1eH(X,Y), where h:n,,,—H, . is Hurewicz
homomorphism, and [ X] is the orientation class, U € H*(T(£)) is the Thom
class for £.

Proof. Suppese (f, b) is normally cobordant to.(f’, b)) so that there
is a manifold W"*! with OW=MUVUM/, 8V=0MudéM’, a map
F: (W, V)=>(X,Y) with FIM=f, FIM'=f', and B:w-—¢ a linear
bundle map, where @ is the normal k-plane bundle of

(W, V)C (D" ex I, 8" 1 xI), WAD"**x0=M, WnD"**x1=M",

. T
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and the restrictions of B to the two ends give b and b’ respectively. Then if
n:(Dan’ Sn+k— 1)——>(T(v), T(V‘@M)), nr:(Dan, S”+k—l)'—->(T(V'), T(V'!@M'})
and (:(D"**xI,5""*"1x )—(T(w), T(w|V)) it follows easily that
T(B){|D"**x 0= T(b)y and T(B){|D"**x 1= T(b")y, so that the Thom
invariants are homotopic.

Now let a €7, . (T(), T(¢|Y)) such that h(@)nU=[X]. Let
f (DR ST (T(€), T(E]Y)) represent a and by the Thom Trans-
versality Theorem (I1.2.1) we may assume f is transverse to X -and. Y
in T(¢) and T(¢|Y), so that f (X, Y)=(M, 8M) a smooth n-manifold
with boundary and f restricted to a tubular neighborhood of X or Y
is a linear bundle map b of the normal bundle v of (M, 6M) C (D" **, §"*k—1)
into & Now if we take g= f|(M, dM), we claim that g, (IM])=[X],
where [M]=1,()nU,, where n:(D"**, S"**~1)—(T(v), T(v|6M)) is the
collapse, 1€ H, ., (D***, S"**~ 1) is the generator (for a fixed orientation
of D"**¥ and U, e H*(T(v))is the Thom class of the bundle v, U, = T(b)* (V).
For we have that

9+(IMY) =g, ()N U,) =g, Thy*U))
=T®B) 1,0V = f ()NU
=h(@)nU =[X]

using (I1.2.9). Hence (g, b) is a normal map and the Thom invariant map

is onto m,,,(T(8), TE| Y)).
Now suppose the Thom invariants of two normal maps (f,b) and
* (f',b') are the same, so that there is a homotopy

H: (D" x I, "%~ 1 x )—(T(&), TE|Y))

between T(b)n and T(b)n'. Using the Transversality. Theorem (IL.2.1)
again, we may change H, leaving it fixed on D"**x 0 and D"** x 1 so that
it is transversal to X and Y, and then it follows that the inverse image of
(X, Y) under this new map is a normal cobordism between (f,b) and

(f,0). O
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Let us denote by h:r;— H; the Hurewicz homomorphism, and if & is a
linear oriented k-plane bundle over X, let U e H¥(T(£)) be its Thom
class, s0 that "U : H, . (T(£))— H,(X) and

AU Hy (TE), TEIY) > Hy(X, Y)

are isomorphisms (Y C X), (see (IL2.6), (IL.2.7)).
The following theorem is due independently to Novikov [50] and
the author [6].
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11.3.1 Theorem. Let X be a 1-connected Poincaré complex of dimen-
sion m=5, ¢ an oriented linear k-plane bundle over X, k>m+1,
4 € T 1 (T(E)) such that h(@)nU=[X], Ue H*T(&) the Thom class,
[X1 e H,,(X) the orientation class. If

(i) mis odd, or

(i) m=4k and Index X =(L,(p,((7 "), ..., p (™)) [XT,
then there is a homotopy equivalence f : M™— X, M™ a smooth m-manifold,
such that v= f*(&), v = normal bundle of M™C S™**, and f can be found
in the normal cobordism class represented by a.

Proof. By (11.2.13), there is a normal map (f, b), f : M— X such that
o« = Thom invariant of (f,b). By the Fundamental Theorem (I1.1.2),
(f, b) is normally cobordant to a homotopy equivalence if m is odd,
and if m = 2q then (f, b) is normally cobordant to a homotopy equivalence
if and only if of f b) 0. If m=4k, by the Index Property (11.1.6),
o(f, b)=(Li(py (&™), ..., )) [X]-index X which =0 when (ii) holds. [

If m = 4k + 2, it may be difficult to evaluate a(f, b).

IL.3.2 Remark.If m =6, 14, 30 or 62, then with the above hypotheses
there is a homotopy equivalence f:M™— X, with f*(£)=v as above,
but f may not be representable by a normal map with Thom invariant o.

Define the connected sum of normal maps of manifolds: Let (f;, b,)
and (f,, b,) be normal maps, f;: M"— X,. Let M? =M, — intD?, D" an
m-cell in M;, and let X° C X be a subcomplex such that X;=X?uD?",
D;n6X,=0and H,(X?, 3X,)=0. It is an easy exercise to find a representa-
tion of X, of this type. We may assume using the homotopy extension
theorem that f,"'(D)=D,, f;|DF:Dr*—D¥CX, i=12 and if
h:D,—D,, h': D}— D/, are orientation reversing difffomorphisms, we
can arrange that #'(f;|D,) =(f,1D,)h.

Let M? = M, — int D, X? = X; — int D}, and define M, $ M, = MU M?
with 8D, identified to 8D, by h|dD,, X, % X, =X?UX? with aD;
identified to dD’, by h'| 3D}, and make M, # M, differentiable. Then the
restrictions of f; and f, to M? and MY are compatible with the identi-
fications and define a map fi# fo M, #M,—> X, #X,. It follows
from (1.3.2) that (X, # X,, 0X,U0X,) is a Poincaré pair, and f, 3 f, is a
map of degree 1. By choosing a bundle equivalence of &,|D] with &,| D),
covering h" we may define &, # &,, a k-plane bundle over X, #X,, and
we may arrange, using the bundle covering homotopy theorem, that b,
and b, are compatible to give a bundle map b, #b,:v,—&, #&,,
where v, is the normal bundle of M, # M, in D"™** v, |M? =v;|M? and
b, # b, |(v;IM®)=b;|(v;{M?). Then (f, # f,, b, #b,) is the connected
sum of (f;, b;) and (f5, b,), and it follows from results of [17] and [51],
that it is independent of the choices involved.
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In case 0M; and Y, are non-empty, (f;, b)) normal maps,
fi:(M;, 0M;)—(X,, Y), we may define the connected sum along com-
ponents of the boundary as follows: Consider the Euclidean half disk
H™ ie. H"={xeR™ |x| £1, x,,=0}, so that D"~ ' c 0H. Find differ-
entiable embeddings (H™, D7~ ') C (M!", 8M,), and define

(M2, oMP) = (closure M; — H;, M, —intD)).

Let (X, Y)=(X", Y2)U(H;, D' "), such that H,_,(Y%)=0, a rep-
resentation which can be made (if necessary changing (X;,Y,) by a
homotopy equivalence). Let D®=0H — intD™ !, and let

M, IIM, = MO UMY

with D9 COM? identified with D} C dM3, by an orientation reversing
diffeomorphism. Then M,IIM, may be made differentiable and
o(M; 11 M,)=0M, 4 0M,. One may proceed similarly to the .above
discussion of the closed case to show that there is defined

(f1 11 f3,b,10by), fiLLf, (M, IIM,, (M, IM,))— (X, 11 X,, Y, 4 1,), etc.

Then this is a sum of normal maps which is exactly the situation in
(I1.1.4), where the intersection of the two parts (M, and X|, in notation
of (I1.1.4)) are (m — 1)-cells.

1133 Lemma. (XLID™ Y#8S" 1)=(X,Y).
The proof is obvious. [J
I1.3.4 Proposition. Let (f,b), (g, c) be normal maps,
f:(M™ oM)—(X,Y), g:(N,0N)—(D", 8" 1), etc.
Then (f L g, b U ¢) is normally cobordant to (f, b).

Proof. By (11.3.3), we may assume f Il g:(MIIN, o6(M UN))—(X, Y),
and since D™ is contractible, we may assume (fIIg)(N°)CY. Take
W=(MIIN)xI and define UCoW as follows

U=(N°x0)u(dM LI N)xI).
Then
OW=MOUUMIN), (fHg)p,(U)CY, (p,:(MUIN)xI->MIIN),

and it is not hard to see that b I ¢ may be arranged to make W a normal
cobordism. [ :

I1.3.5 Propesition. If (f,b) is a normal map, f .(M™, dM)—(X,Y),
and (h,d) is a normal map h:(V™"*1,0V)—(D™*1,8™), then (f % (0h),b 4 (0d))
is normally cobordamt relY to (f,b) (where 0h=h|oV, dd=d|0V).
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Proof. Take (F,B)=(f x1,bx1).
fx1:MxLoMxD)—XxI,Xx0uY xIuXx1).

Then (F, B) is a normal map, and if we take (F 11 h, B11d) along an
m-cell in M x 1, the result is a normal cobordism rel Y between (f, b)
on M x 0 and (f# (0h), b #(éd)) on (M x l)#’(aV) O

I1.3.6 Theorem. Let (X,Y) be an m-dimensional Poincaré pair with
X 1-connected, Y+@, m=5, and let (f,b), f:(M,0M)—(X,Y) be a
normal map such that (f|0M), : H,(0M)— H (Y) is an isomorphism.
Then there is a normal map (g, ¢c), g: (U"‘ dU)— (D™, S™ 1), with (g|oU)
a homotopy equivalence, such that (f g, b1l c) is normally cobordant
rel Y to a homotopy equivalence. In particular, (f, b) is normally cobordant
to a homotopy equivalence.

Proof. Let (g,c) be such that o(g,c)= —a(f,b), which exists by
(IL1.3), The Plumbing Theorem. By (IL.14), the Addition Property,
o(flL g, bU c)=0(f,b)+a(g,c)=0, so by the Fundamental Theorem
(IL.1.2), (fllg, b1 c) is normally cobordant relY to ( f',b"), where
f':M'—X is a homotopy equivalence. By (11.3.4), (f,b) is normally
cobordant to (f,b). [

Recall thata cobordism W™*! between Mmand M™, 6 W=MuUUUM,
is called an h-cobordism if all the inclusions MC W, M'CW, éM CU,
and dM’ C U are homotopy equivalences. We recall that Smale [54] has
proved that if m 2 5, U is diffeomorphic to dM x I and W is 1-connected,
then the dlffeomorphlsm of U with M xI and the diffeomorphism
M— M x 0 extend to a diffeomorphism of W—M x I. In particular M
is diffeomorphic to M'.

From this we can deduce the classification theorem of Novikov [49].

11.3.7 Theorem. Let (f;,, b)), i=0, 1 be normal maps f;:M"—X,
X 1-connected Poincaré complex of dimension m =4, and suppose fo, f,
are homotopy equivalences. If f, is normally cobordant to f,, then there
is a normal map (g,c), g:(U™*,8U)—(D™*',S™), (g|dU) a homotopy
equivalence, such that (fo, bo) is h-cobordant to (f,11g|oU, b, c|oU). In
particular M, is h-cobordant to M; if m is even, and to M, 4 (OU) if m
is odd.

Proof. Let (F,B), F:(W,MyUM;)—(X xI,X x0uX x1) be the
normal cobordism between (f,, bo) and (f;, b,). Then (F; B) is-a normal
map, and F|dW = F|M,uM, is a homotopy equivalence by hypothesis,
so (I1.3.6) applies. Adding (g, ¢) along M,, (I1.3.6) implies that (F, B) Li{g, ¢)
is normally cobordant rel X x0u X x 1 to (F', B),

F' (W', MyuM)—(X x I, X x00X x 1),
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and F': W'— X x I is a homotopy equivalence, where

Mo=My, M =M, #0U,F'\M{=f/, fo=fo, fi=fi#0g.
Then

M, — W

;i l JF'

Xxj——XxI

is commutative, f;, F' and X xiCX xI are homotopy equivalences
so ji:M;CW’, i=0,1 are homotopy equivalences, so W' is an
h-cobordism. [

11.3.8 Corollary. Let M, M’ be closed smooth 1-connected manifolds
of dimension =5. A homotopy equivalence f : M— M’ is homotopic to a
diffeomorphism ' M #X—M' (where M=M#2X as a topological
space), for some homotopy sphere % =0U, U parallelizable, if and only
if there is a linear bundle map b : v— V' covering f such that T(b), () =¢/,

o, o natural collapsing maps o € 7, ., (T(V)), &' € 7, 41 (T(V))-

Proof. If f is homotopic to such a diffeomorphism f’ then
df’ 1) 45—> 1) induces a map of normal bundles b’ : vy, ;—> vy Which
ssends the collapsing map into the collapsing map. But the map which
collapses X to a point M # 2— M is normally cobordant to the identity
M->M, so the result follows in one direction.

The other direction follows from (11.3.7). J

Thus the homotopy spheres 0 U which are boundaries of parallelizable
manifolds U, play an important role in. studying closed manifolds.
Removing a disk from interior of U, we see that these are the homotopy
spheres which admit normal maps which are normally cobordant to
€1,b), 1: S™— S™ is the identity. By (I1.3.7) if m is even, éU is-h-cobordant
to S7. If m=4k + 1, since the obstruction ¢ to making an h-cobordism
is in Z,, by the Addition Theorem U # dU is h-cobordant to S™. I
m=4k — 1, there are parallelizable manifolds W** with non-zero index
and OW =S, (see [37]). Let N,=g.c.d (index W*¥) over such W4k
Now W —intD™ defines.a normal cobordism between S™ and S™, and
for this normal cobordism o=1/8 (index W). Hence 8|indexW by
(I11.3.10), so 8|N;,. It follows that if index U =nN, then U lI1 {—nW) has
index 0, and hence U # (—nS™)= U is h-cobordant to S™. If we define

bP™*! to be the set of h-cobordism classes of homotopy m-spheres which
bound parallelizable manifolds made into a group using the connected
sum operation, we may deduce the theorem of Kervaire-Milnor [34]:
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11.3.9 Theorem. bP"*'=0 for m even, m =4, cyclic of order at
most 2 form=4k + 1, cyﬁic of order N,/8 for m=4k— 1.
) &

Proof. We have shown above that bP™"*! =0 for m even, and that
2x=0 for xebP***2 and nx=0, for xebP**, n=N,/8. Let (g,c),
g:(U,8U)—(D™"1,8™ be such that o(g,c)=1, (using the Plumbing
Theorem (I1.1.3)). f =™ e bP™+!, 2" =0W™* ! and (f, b) is a normal map
f:(Wy, Z"US™)—(S" x I, S"x 0US"x1), Wo=W —intD™*!, then if
o(f,b)y=r, a((f,b)LI(—7r)(g,.c))=0 by the Addition Theorem (IL.1.4),
(where — indicates negative orientation), where the sum is along a disk
in S"C 8W,. Then Z is h-cobordant to (—r)(0U) by (I1.1.2). O

More details on the exact order of bP™*1, the group structure, etc.,
are found in [34].

Now we have the theorem of Wall [65].

11.3.10 Theorem. Let (X, Y) be a Poincaré pair of dimension m =6,
X and Y 1-connected, Y +@, and let & be a k-plane bundle over X,
o€ My ik (T(E), TEIY)) such that hWl)nU =[X]€ H,(X,Y). Then the
normal map represented by o is normally cobordant to a homotopy
equivalence (f, b), f : (M, dM)— (X, Y), which is unigue up to h-cobordism.
Hence (X, Y) has the homotopy type of a differentiable manifold, unique
up to h-cobordism in the given normal cobordism class.

Proof. Let(f',b"):(M’',0M")—(X, Y)be a normal map representing .
By the Cobordism Property (11.1.5), a(f'|OM’,b'|0M")=0, so by the
Fundamental Theorem (I1.1.2), (f'|0M’', b'|0M’) is normally cobordant
to a homotopy equivalence. This normal cobordism extends to a normal
cobordism of (f',b) to (f",b") such that f"|0M" is .a. homotopy
equivalence (compare with proof of (11.3.4)). By (11.3.6), ( /", b") is normally
cobordant to a homotopy equivalence, (f, b).

Let (f;, b)), i=0, 1 be two normal maps which are homotopy equiv-
alences, and in the class of a, 5o (f,, by) is normally cobordant to ( f,, b,).
Let (F, B): be the normal cobordism, F: (W, V)—(Xx1I, Y xI),
OW=M,uVUM,;, OMyudoM, =0V, F(x)=(fi(x),i) for xeM,CW.
This gives a normal map into (X xI, X x0uYxIuX x1) and by
(11.3.6), (F, B)1I{g, c) is normally cobordant rel{(X x0UY xJuX x 1)
to a‘homotopy equivalence, where g : (U, 8U)—(D™* 1, $™. But if (g, )
is added to (F, B) along a disk in V, then M, and M, and F|M, = f, remain
as they were, so we get an h-cobordism between M, and M, (or between
(fo-bo)and (fi,by)). O

Similar to (I1.3.8) we obtain

11.3.11 Corellary. Let M, M’ be compact smooth l-connected
manifolds, of dimension m= 6, and with 0M, OM' 1-connected and non-
empty. Then a homotopy equivalence f : (M, dM)—(M’, M) is homotopic

el s ey,
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to a diffeomorphism f':M—M', if and only if there is a linear bundle
map b:v—v' covering f (v,v' normal bundles of M, M’ in D™ *) such
that T(b), () =o', (where a, o’ are the homotopy classes of the collapsing
maps, & € Ty, 4 (T(V), TV |OM)), &' € 0,1 (T(), T(v'|OM")).

§ 4. Reinterpretation Using the Spivak Normal Fibre Space

Now we shall reinterpret the results of 11 § 3 in the terms of the Spivak
normal fibre space. In particular we will describe the classification
theorem of Sullivan [62] from this point of view, rather than the “dual”
approach of [62].

Now we refer to the work of Stasheff [58] or Brown [14], which
shows that there is a classifying space, called Bg_, for fibre spaces with a
homotopy (n — 1)-sphere as fibre, in the appropriate category of spaces.

I1.4.1 Theorem. (Stasheff). Consider the category € of spaces with
the homotopy type of locally finite CW complexes. Then there is Bg, in¥®
and a (n— 1)-spherical fibre space vy, over it such that if X is in € and &

~ is an (n— 1)-spherical fibre space over X then there isamap f:X —Bg_

such that f*(y,) is fibre homotopy equivalent to &. Further, if &, = fi¥y,
and &= [V, f;: X—Bg,, and &, is fibre homotopy equivalent to ¢,

"then f, is homotopic to f,.

We refer to [58] for the proof.

Let B be the classifying space for k-spherical fibre spaces where k
is large. Its homotopy type in low dimensions (i.e. <k — 1) is independent
of k, so we suppress k in our notation. This fact is a consequence of the
Freudenthal Suspension Theorem, (compare (1.4.10)). Similarly if B,
is the classifying space for (k + 1)-plane bundles, the homotopy type in
low dimensions is independent of k and we omit k in the notation (see
[44, 32]). Since the complement of the zero cross-section is a k-sphere
bundle, we have a natural map ¢ : B,— Bj.

I1.4.2 Corollary. Let X be a 1-connected Poincaré duality space of
dimension n = 5, and let f : X — Bg be the classifying map of its Spivak nor-
mal spherical fibre space. If n is odd, X has the homotopy type of a smooth
manifold if and only if f factors through g: Bo— Bg. If n=4k, X has the
homotopy type of a smooth manifold if and only if there is a g: X — B,
such that eg~ f and (L,(g*(w™"),[X]) =indexX, where o is the
canonical linear bundle over By,.

11.4.3 Corollary. Let (X, Y) be an n-dimensional Poincaré pair with
X and Y 1-connected, Y 0 and n 2 6, and let f : X - B be the classifying
map of its Spivak normal spherical fibre space. Then (X, Y) has the homo-
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topy type of a smooth manifold with boundary if and only if f factors
through ¢ : Bo— Bg;.

If v* is the normal spherical fibre space of X, X a Poincaré duality
space of dimension n, or (X, Y) a Poincaré duality pair, then by definition
there is an e, ., (T(V)), or aemn, . (T(v), T(v| Y)) such that h(@)n U=[X].
Then if g : X— By such that gg ~ f, then (gg)* (y)=v and (¢g)* (y) =g*(*7),
where ¢*(y) = canonical bundle over B, . Hence g*(¢*y)=¢ is a linear
k-plane bundle over X which is fibre homotopy equivalent to v. Hence,
there is o € M, +4(T(&)) or o ex,  (T(€), T(¢|Y)) with h(@)nU=[X].
Then (I1.4.2) and (11.4.3) follow from (11.3.1) and (11.3.10). O

In [7,§ 4], we studied the general situation of “reducing” the structural
group of a bundle, or giving it a “structure” in another theory, which we
shall specialize here in the context -of spherical fibre spaces and linear
structure.

Let £ be a k-spherical fibre space, over a finite complex X, k very large.
A linear structure on & will be a map of fibre spaces o: £ — 7 (of degree 1 on
each fibre), where 7= ¢*(7), 9: Bo— Bg, y the canonical k-spherical fibre
space over Bg, so that 7 is the canonical bundle over B,. Two linear
structures g, o, : £ 7 are equivalent (or concordant) if there is a linear
structure A: é x I -7 such that A(x,)=o(x), i=0, 1, xeé.

Let G/O be the fibre of ¢ (if ¢ has been made into a fibre map
@ : Bo— Bg). One can identify this fibre in a natural way with the orbit
space of G by the action of O, where G = {f : S*—S*, degf = + 1} with
the compact open topology, O=0,., is the orthogonal group, k
very large.

H.4.4 Theorem. Equivalence classes of linear structures on & (provided
there exists one) are in 1 — 1 correspondence with [ X, G/O], the homotopy
classes of maps of X into G/O.

This is a special case of the situation considered in [7;(4.2)]. We
outline the proof in this context, referring to [7] for some of the detailed
arguments.

Proof. Let B:7—7 be the map of fibre spaces covering ¢ : Bo— Bg,
and let @:&—y be a classifying bundle map for & A normal linear
structure on ¢ will be a linear structure «:&—7 such that fa=7. An
equivalence A : & x I—7 will be called normal if f4=&p,,ip,:ExT—E
is. projection. Let F(£)(%(&)) denote the set of equivalence (normal
equivalence) classes of linear structures (normal linear structures) on £,
Clearly there is a natural map &: % (&)— F(£).

4.5 Lemma. ¢isa l—1 correspondence.

Proof. Using the covering homotopy theorem one can easily show
any o« is equivalent to o, which is normal, by covering the homotopy of

e
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ga to a by a homotopy of B« to &, (where a: X— By, a: X — B are the
maps induced on base spaces by «, @). A similar argument on an
equivalence between normal structures, shows that one can find a homo-
topic normal equivalence (see [7, (4.1)]). O

I1.4.6 Lemma. If ¥,(&) is non-empty, then %,(£)=[X, G/O].

Proof. Let By, , Bg, be the classifying spaces of k-plane bundles, (k — 1)
spherical fibre spaces, and let B, = U By, , B = U Bg,, be the limit spaces.
Let g,: By, — Bg, be the map inducing the canonical bundle, and let
@ : B,— B be the limit map.

Now B, and B, are H-spaces with multiplication induced by Whitney
sum and g¢:B,— B; is a multiplicative map. Hence G/O, the fibre,
is also an H-space. Also the inclusions induce isomorphisms

[X, By 1=[X, Bol, [X, Bg 1= [X, B6l. [X, G,/O,] = [X, G/0],

for dim X < k — 1. Hence we may multiply maps into Bg,, By, , G,/0; = the
fibre of g, provided the domain X has dimension <k —1.

If o: £—7 is a representative of an element x in & (£), then fu=a,
so if a covers a: X—B,, then ga=a. Take a,:&—7 representing a
fixed element x4 € F(€), oo cOVers ag.

Now the structures in () are in 1—1 correspondence with

- homotopy classes of maps a: X — B, such that

; X\70

commutes, and homotopies such that

ﬁp\ / [
Bg
commutes.

For a and & :{-»y define a map «:¢&-—7 since 7 is induced from

-y by ¢, and similarly a homotopy defines an equivalence in %(¢) and

vice versa. It follows that elements of &,(&) are in 1 — 1 correspondence
with homotopy classes of sections of E— X where E is induced from:the
fibre space By— B with fibre G/O by the map a: X — Bg. Since G/0
acts on B, so that

: ‘G/O x Bo——— B,

BG__l__.,BG
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commutes, G/O acts similarly on E, u:G/O x E—E. If a, corresponds
to a section sy : X —E, then T : G/O x X —E given by T(x, y)=x,5,(}))
defines a homotopy equivalence. Then with this representation other
sections correspond to maps X — G/O x X with component in X being
the identity, or in other words maps X — G/O. Similarly homotopy of
sections corresponds to homotopy in G/0. []

Applying (I1.4.5) and (I1.4.6) yields (I1.4.4). [

If o : £—7 is a linear structure on &, and if a : X — B, is the classifying
map on base spaces, then o defines a fibre homotopy equivalence
[ &—a*@), (7 being a linear bundle). An equivalence A between o,
and a, induces a fibre homotopy equivalence f : & x I— A*(7) extending
Jo, f1 induced on £ x0 and £ x1 by a, and a,. Since 4*(}) is a bundle
over X x I, there is a linear equivalence B: A*(5)— a(7) x I extending
the identity on af(y). Hence b:af(F)—a§(7) x 1, b= Bla¥(7) is a linear
equivalence, and b f; ‘is fibre homotopic to f,,.

Now consider pairs (1, «) where 5 is a linear k-plane bundle over X,
o:&—n is a fibre homotopy equivalence covering the identity of X.
Call such a pair (1, «) a G/O bundle (structure on £). Two G/O bundles
(n;,2;), i=0,1 are equivalent if there is:a G/O bundle (77,%) over X x I,
@:¢xI—7%, and linear equivalences b;:7|X xi—n; such that
b@|€ xi)=uw; i=0,1. This is:equivalent to the statement that there
exists a linear equivalence b : n,— #, such that ba, is fibre homotopic to «;.
Thus we get ‘

11.4.7 Propesition. Equivalence classes of linear structures on & are
in 1 —1 correspondence with equivalence classes of G/O bundle structures
oné 0O

Now let £ be the Spivak normal fibré space of a Poincaré pair (X, Y),
(see I §4).

I1.4.8 Lemma. A normal map (f,b), f:(M,0M)—(X,Y), b:v—y,
n a linear k-plane bundle, determines a linear structure on &, depending
only on the normal cobordism class of (f,b). Two normal maps (f;,b,),
i=1,"2 determine equivalent linear structures if and only if there is a linear
bundle equivalence b’ :n,—n, such that (f,,b,) is normally cobordant
to-(fy,b'by).

Proof.- By (1.4.19) there is‘a fibre homotopy eguivalence b : ¢ — such
that T(h),, (6o) = T(b), (a), where by € ,, 1 (T(&), T(£| Y))isafixed element
such that h(d,)n U =[X], and a € 7, (T(v), T(v|dM)) is the homotopy
class of the collapsing map. By (1.4.19), such an h is unique up to fibre
homotopy, so this defines a map ¢ from the set of normal maps 4" into
G/0 bundle structures on &. If (f;,b,), i=1,2 are normally cobordant,
then n; =1, =7 and T(b,), (a;) = T(b,), () by (11.2.14). It follows then
that the corresponding structures h;: £é—n are homotopic, so the map

- ]

- =
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¢ N —F({) depends only on the normal cobordism class. Hence ¢
defines @q: Ay— F (&), where A, =set of normal cobordism classes.
If @o(fi, by)=@o(f3, b,), then h,=b"h; where b :n,—n,. Then

T(b')y T(hy)y (80) = T(0), T(by)y (1) = T(b"by), (o1)= T(hy),, (B0) = T(b), (02) .

Hence (f3, b,) is normally cobordant to (f,,b'b,). [

Putting together (I11.4.8) with (I1.3.7) and (I11.3.10), and with (11.4.4)
we obtain the theorem of Sullivan [62]:

Let (X, Y) be a Poincaré pair. Define & (X) to be the set of pairs (h, M)
where M is a smooth manifold with boundary, h : (M, 0M)—(X,Y) is
a homotopy equivalence of pairs, under the equivalence relation
(hg, My)~ (hy, M,) if there is an h-cobordism W™*! and a map
H:(W,V)—>(X,Y), @W=MyuVuM,) such that H{M,;=h,, i=0, 1.

11.4.9 Theorem. Let (M,0M) be a compact smooth manifold with
boundary, dimension M = 6, M and 0M 1-connected, )M =+ @. Then & (M)
isin 1 — 1 correspondence with [M, G/0O].

In case dM =@, the analogous theorem holds modulo homotopy
spheres which bound #-manifolds, (compare (11.3.7) and (I1.3.10)), but
in this case the natural expression in terms of an exact sequence {(which
has a generalization to the hon-simply connected case): Let M be a closed

. smooth 1-connected manifold of dimension m = 5.

2

11.4.10 Exact sequence of sargery. There is an exact sequence of sets

Pysy ==& (M) [M, G/0] =P,

where
» 0 iodd
P=17Z i=4k
Z, i=4k+2

where ) is defined by the normal cobordism class, o is the surgery obstruction
of the normal map, and w(x) is defined as below.

Taking connected sum along the boundary of M x [0, 1] and V™*?
where (g, ¢) is a normal map g: V—D™*1, g|0V a homotopy equivalence,
(g, ¢) = x, we obtain a manifold with boundary = MUM # 0V. Define
w{x) to be M0V with the obvious homotopy equivalence which
collapses 0V — cell to a point. This actually defined an action of P, ., on
F(M) as follows: i h: M’'— M represents y e (M), and xe P,,, ,, then
w'(x)e (M) is defined as above. Let w(x, y)= h, (0'(x)), i.e. if (M", k),
R :M"— M’ represents '(x), then (M”", hh') represents w(x, y)€ £ (M).
Then the sequence of (11.4.10) is exact in the stronger sense.
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L4.11. n(») =10, y, Y € ¥ (M), if and only if y' =w(x, y) for some
xe€Pypyq.

The 1piecewise linear version of (I1.4.9) may be proved in a similar
way using p.l. microbundle theory, and surgery on p.l. manifolds (see
[48, 13])and is an important step in the proof of the Hauptvermutung for
t-connected manifolds M, with 0M . 1-connected, dimension M =6,
and H;(M) having no 2-torsion (see [63]). (IL.4.10) and (I1.4.11) degenerate
in the p.1. case, but become interesting again in their non-simply connected
versions (see [66]).
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...L,Hq(X, Y)—L— HY(X)

1. The Invariant ¢

In this chapter we prove the Invariant Theorem of Chapter II, § 1 and
deduce the three properties of o of (1L, § 1).

- We will outline a slightly more general version than that indicated
in Chapter II. Let (X, Y) be an m-dimensional oriented Poincaré duality
pair, ie., there is an element [X] (the orientation class) in H, (X, Y)
such that

[X]A:H(X)— H, (X, Y)

is an isomorphism for all g.
Recall that in Chapter I we showed that [ X}~ :HYX)—H,_ (X, Y)

~ beingan isomorphism for all gis equivalent to [ X} : HY(X, Y)— H,,- (X)

being an isomorphism for all g, and that this implies that in the diagram

i*

> HY(Y) s H"Y(X,Y)—--

L)
[Xin {X1n [Yln {X]nl

_)Hm—q(X)-'—JL—) Hm—-q(X’ Y)_—a;_) Hm—q—l(Y) —L—)Hm—q—‘l(X)_)

“(where [Y]1=0[X]eH,_(Y), i:Y—X, j: X—(X,Y) are inclusions)

all the vertical arrows are isomorphisms. In particular Y is an oriented
Poincaré duality space of dimension m ~ 1.

Let m=4k, and let f:(X,, Y;)—(X,, Y,) be a map of degree 1 of
the Poincaré duality pairs (X, Y),i=1,2such that (f|Y}),: H (Y= H(Y,)
is an isomorphism, :

A cobordism of frel Y, is described by U with subsets

X, X, Yi=XnX;,

such that (U, X, uX}) is an (m+1)-dimensional Poincaré pair, with
orientation [U] compatible with the orientation {X ;] (see 1, §2) and a
map F:(U, Y))—(X,, Y,), such that F|(X,, Y,)=/f. We write below
A=X,0X;. Then I{(f)eZ is defined in § 2 such that if f is cobordant
rel ¥, to a homelogy isomorphism, then I(f}=0.
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Let f:(X;, Y;)— (X, ;) be as above and let v; be a (k — 1)- spherical
fibre space over (X, Y), k large, and b:v,—v, a map of fibre spaces
covering f. Suppose that o€ 7, (T(v,) is such that h(@)nU; =[X,],
so that v, is the normal spherical fibre space of Spivak for (X,, Y;), and
. it follows that h(T(b), (®))n U, =[X], so that v, is the normal spherical
fibre space of (X 5, Y5) (see I, §4 and [57]). Then the pair (f, b) is called
a normal map of the Poincaré pairs, (compare I, § 1). A normal cobordism
of (f, b) is a cobordism rel ¥, of f, as above, and in addition a (k—1)-
spherical fibre space v over U, a map of fibre spaces b:v—v, and an
element A€, .1 +x(T(¥), T(v]A)) such that T (B|(FI(X 1, Y1), (05) = T(b), ()
where 0: 711 46(T@), T A)— T+ TFI X ), T Y,)) is the natural
boundary (again compare IL, § 1).

If m= 4k, and (f, b) is a normal map, then I(f) is divisible by 8 and
we define o( f, b) = LI(f). If m=4k+2, we define o(f, b) € Z,, such that
if (f,b) is normally cobordant to a homology isomorphism with Z,
coefficients, then o(f, b)=0.

We will also deduce the various properties of ¢ needed.

§ 1. Quadratic Forms over Z and Z,

Let V be a finitely generated free Z-module, and let (, ) be a symmetric
bilinear form on V so that

@) () =0, %),

(i) Ax+Ax, =A%)+, ), 41 € Zx,x,yeV.

Choosing a basis {b;} for V,i=1,...,n and letting a;; = (b;, b)) repre-
sent (, ) as a matrix 4 =(a;)), and (x, y)=xA4 y* in terms of this basis,

where x = Y. A;b;, etc. (‘ means transpose). If we change the basis by
i=1

an invertible nxn matrix M so that b’ = Mb, ie., b;= Z;m;b;, then in
terms of the new basis, (, ) is represented by the matrix MAM'. Such
changes are equivalent to doing a sequence of row and column operations
on A, performing the same operation on row and column. For example
we may add A(i-th row) to the j-th row, and then A(i-th column) to the
j-th column.

The bilinear form (, ) defines q: V—Z by g(x)=(x,x). Then
(x, y) =1(g(x + y) — g(x) — q(»)) so that (, ) is derivable from g. Then (, )
is called the associated bilinear form to the quadratic form g.

The bilinear (, ) defines naturally a bilinear form (again denoted

by (, ))on ¥® @ into Q.

IIL.1.1 Proposition. If (, ) is a symmetric bilinear form on a finite
dimensional vector space V' over Q into @, then there is a basis for V"
such that the matrix of (, ) is diagonal.
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The proof is a routine exercise.

Now we may define the index or signature of (,) to be the number
of positive entries on the diagonal minus the number of negative entries
(in the diagonalized matrix). The first number is the dimension of the
maximal subspace on which (, ) is positive definite, (i.e., (x, x)>0,if x +0) -
and the second is the dimension of the maximal subspace on which ()
is negative definite (i.e., (x, x) <O if x = 0). It follows that the signatu;e
is an invariant, i.e., it does not depend on the choice of basis. Hence
we have defined an invariant

sgn : (Quadratic forms over Z)—Z .

We shall call a quadratic form over Z non-singular if the determinant
|Al= £ 1 (i.e, if (,) is unimodular). Over a field we call it non-singular
if |[4] 0. ’

1I1.1.2 Propesition. Let g be a non-singular quadratic fbrm on a finite
dimensional V over R, the reals. Then sgn(q)=0 if and only if thereis a
subspace U C V such that

@) (x,y)=0 for x,ye U.

Proof. Let V., and V_ be subspaces.of V such that q is positive definite
on ,V+_, negative definite on V_, and V. , V_ are maximal with respect to
thls property. Then sgn(g)=dimV, —dimV_. Clearly V., nV_=0 and
since ¢ is non-singular, V=V, + V_. Now

» VinU=V_nU=0
since (, ) is zero on U. On the other hand

dim(V, nV)zdimV, +dimU —dim ¥
dim(V_nU)=zdimV_ +dim U —dimV

so that dimV, =dimV —dim U = $dim V, and thus sgn(g)=0.

If sgn(q)=0, then dim V, =dim V_. Over the reals R, one may find
orthonormal bases for V, and V_, {qa;}, {b;} respectively, i=1,...,n,
suchthat(a;, a;)=0,;, (b;, b)) = — J,;, (a;, b)=0.Thenc; = a; + b,i=1,...,n,
generates U, and (c;, ¢;)=(a;,a)+ (b;, b)=1—1=0, and (¢;,¢)=0, so
g=0onU. [J

Now we state some non-trivial results which we will need, which we
shall not prove here.

II1.1.3 Proposition. Let g be a non-singular quadratic form q: V—1Z,
and suppose q is indefinite (i.e., neither positive definite nor negative definite).
Then there is x € V, x % 0 such that g(x)=0.

For a proof see [45, Lemma 87 (see also [467).
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II1.1.4 Proposition. Let g be a non-singular quadratic form q: V—Z
and suppose 2\q(x,x) for all xeV (we say q is an even form). Then
8|sgn(q)-

For a proof see [46].

Now we consider the field Z, and consider a function q:V—Z,,
where V is a Z, vector space of finite dimension over Z,. We shall call g
a quadratic form if g(0) =0 and

g(x +y)—a(x) —q(y)=(x, )

is bilinear. It is clear that (x, y)=(y, x) and (x, x) = g(2x) — 2g(x) = 0-so ‘

that (,) is a symplectic bilinear form. Thus if , ) is non-singular we may
find a basis a;, b, i=1,..., n for V such that (a;, b)) = 6;;, (a;, a)) = (b;, b)) =0
(see [3]). Thus in case q(ie.(,)) is non-singular with respect to the
symplectic basis {a;, b;} we define the Arf invariant (see [2):

c(g)= ; q(a)qb)eZ, .

We shall show that ¢ is independent of the choice of base, and completely
determines g up to equivalence.

First we consider the 2-dimensional vector space U, with basis
" a,b,(a,b)=1, (a,8)=(b,b)=0. There are two quadratic forms on U
compatiblewith(,),q;: U—Z,,i=0,1,4,(a)=q,(b)=1,and go(a) = go(b)=0.
Note that g;(a + b) =go(a+b)=1.

TI1.1.5 Lemma. Any non-singular quadratic form on a 2-dimensional
space U is isomorphic to either qq or q;.

The proof is trivial.

Obviously g, is not equivalent to ¢,. Also c(go)=0 and c(g,)=1.
Hence the Arf invariant ¢ characterizes non-singular quadratic forms in
dimension 2. ‘

I1.1.6 Lemma. On U + U, g+ qo is isomorphic to q;, + ¢, .

Proof. Let a;, b, i=1,2 be a basis for U+ U so that a;,b; forms a
symplectic basis of the i-th U, and if y;=¢;+¢;, i=0,1 on U + U, then
Pold)=o(b)=0,i=1,2, and y;(a;) =y, (b)=1, i=1,2. Choose a new
basis for U+ U,

a;=a;,+4a,, 1=by+a,,
ay=a,+b,+a +b,, by=b,+a +b.
One checks easily that this defines a symplectic basis and
P1(a) =wo(a),  P1(b)=wo(b)

so that v, is isomorphic to p,. [

S e e s e s e e e
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I1.1.7 Proposition. Let q: V—Z, be a non-singular quadratic form
over Z,. Then q is equivalent to q, +(m— 1)q, if with respect to some
basis c(q) =1, and q is equivalent to mq, if c(q)=0 (dimV =2m).

Proof. If a;,b,i=1,...,n is a symplectic basis for V and if V;=space
spanned by a;, b;, lety; = q| V. Itisevident that g= ) y,, and by (I11.1.5),
i=1

1; is equivalent to either g, or q,. By (I11.1.6), 2q, = 24,, 50 ¢ is equivalent
to either mgq, or q; + (m — 1)g,. But c(gq;, + (m— 1)qo)=1 and c(mg,) =0,
which implies the results. [

To complete the study of non-singular quadratic forms over Z,, it
remains to show that ¢, =g, +(m— 1)g, and ¢,=mg, are not equi-
valent. We prove this by the following

I1.1.8 Propoesition. The quadratic form ¢, sends a majority of
elements of V to 1 €Z,, while @, sends a majority of elements to 0eZ,.

H1.1.9 Corollary. If g is a non-singular quadratic form, then ¢(q)=1
if and only if q sends a majority of elements to 1€Z,.

Proof of (111.1.8). We proceed by induction, the case of m=1 being
trivial.

Let p(¢)=number of elements xeV such that ¢(x)=1 and let
n(g) = number of x € V'such that ¢(x) = 0. Hence p(p) + n(p) = 22" = num-
ber of elements in V (including 0).

I1.1.10 Lemma. p(¢ +qo)=3p(@) +n(@), n(e+4qo)=3n(p)+ ple).

Proof. Any element in V+ U is of the form (x,u), xe V,ue U and
(@ + go) (x44Y= @(x) + go(u). Three of the four elements in U have g, =0
and only one has g, =1, so for each element xe€ V such that ¢p(x)=1
we have three elements (x, u) such that g,(u) = 0 and thus (¢ +4¢,)(x,u)=1.
Similarly foreach y € ¥ such that ¢(y) = O there is oneelement{y, v)e ¥+ U
with g4(v)=1 so (¢ +go)(y, v) = 1. Hence p(p + go) = 3p(¢) + nlp), and
the other formula follows similarly.

HL.1:11 Corollary, Set r(p)=p(p) = n(p). Then r(gp+ qo)=2r(p); so
that if r(e)> 0 then r(p + qo) > 0, and if r(p) <O then (@ + ¢5) < 9.

The proof is immediate. .

It follows that since r(q,)=2, r(go) = — 2, that r(g, + (m—1)g,) >0,
r(mg,) <0, which proves (I11.1.8). Since r is obviously an invariant, it
follows that g, + (m — 1)q, is ot equivalent to mg,. Thus we have proved:

H1.1.12 Theorem.(Arf). Two non-singular quadratic forms on a Z,
vector space V of finite dimension are equivalent if and only if they have
the same Arf invariant.

Analogous to (111.1.2) we have:
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I11.1.13 Proposition. Let g bea non-singular quadratic formq: V—1L,.
Then the Arf invariant c(q)=0 if and only if there is a subspace UCYV,
such that

(i) rankz, U = rankz,V,

(i) g(x)=0,all xe U.

Proof. Let x,ye U, U with properties (i), (ii). Then

(x, y)=q(x+y)—q(x)—q(y) = 0\

since x,y,x + ye U. Hence U is an isotropic subspace, (i.e. (x,y)=0,x,y€ U)
and thus a base 4, ..., a, for U may be extended to a symplectic basis
for U ay, by, ..., 0 by (since () is non-singular). It follows that

cl@)= Y, ala)qb)=0.

i=1

Conversely if c(g)=0, by (IIL.1.12) g is equivalent to mg,, so that
U =space spanned by a,,...,a, (where a;, b; are a base for the 2-
dimensional space of g,) has properties (i) and (ii). O

For a bilinear form (,) on a vector space V, we let R =radical of
V={xe V such that (x,y)=0all ye V'}.

If q: V—1Z, is a quadratic form with (, ) as associated bilinear form,
then we have defined c(g) only if R =radical of V is zero. Butif g|R=0,
then it is easy to see that g defines ¢’ on V/R and the radical of V/R is
zero. In that case we may define ¢(g) = c(q)). However if g|R %0, then it
is easy to see that the Arf invariant does not make sense and in fact the
equivalence class of the form is determined by rank ¥ and rank R. Note
that in this case r(@)=0.

Thus we have proved:

II1.1.14 Theorem. Let q:V—Z, be a quadratic form over Z,,
R = radical of the associated bilinear form. Then the Arf invariant c(q)
is defined if and only if q|R=0. In general if q|R=0, q is determined
up to isomorphism by rank V, rank R and clq), while if q|R %0, then q
is determined by rank V and rank R.

§ 2. The Invariant I(f)

Let (X, Y), (4,B) be oriented Poincare pairs of dimension m, let
f:(X, Y)—(4, Bybe amap of degree 1,i.¢, £, [X1=[41,[X]1€eH,(X, Y),
[A] e H,,(A, B) the orientation classes. Then as in Chapter L, § 2 we have
groups KX, Y), K%X), K(Y) defined with any coefficient group such

L e

- .
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that the diagram below is commutative with exact rows and columns:

9 0 0 0
4 1
~~~<—K“‘(Y)< KQ(X)‘ >* Kq(X, Y)< Kq—l(y)<_...
”'(_H:FY)‘— H"A(X)ﬁj‘ HYX,Y)e——He (Y)e—+--
Y I* *
+++e~ HI(B) —— HY(A) —L— HY(4, B) —— H*"'(B)—--
0 0 0 0

Here the notation f: X — A4, f:(X, Y)—(4, B) is used to distinguish the
induced cohomology maps. By (1.2.5), the vertical sequences split,
a*: H*(X, Y)— H*(4, B) such that a*f* =identity, for example, and
K*(X, Y)=kera* by definition.

Suppose m = dim(X, ¥)= 4k, and consider the pairing

K*X,Y; Q®K* (X, Y; Q—Q

defined by (x, y)=(xuy)[X]. This is symmetric since the dimension is
even. Define ’

IIL2.1. I{ f) = signature of (,) on K**(X, Y; @).

2kWe note th'flt (,)is‘the rational form of the integral form defined on
f( (X, Y)/torsion by the same formula. If (] Y)*: H*(B; Q) H*(Y; Q)
is an isomorphism, then

CUNXI=((F*DUX], *: KX, Y; Q—K**X; Q)

isan i'somf)rphism, and thus from (1.2.9) it follows that (, ) is non-singular,
Slmﬂgriy if (f|Y)* : H*(B)— H*(Y) is an isomorphism, then the integral
form is non-singular. In particular this is of course the case'if Y=B=4¢.
We note also that positive degree would have sufficed to define I(f).

.III.2.’2 Propos;tlon Let f:(X,Y)—(A, B) be a map of degree ! of
?’omcqre pairs of dimension m=2q+ 1, let F be.a field, and consider
i*: K4 X; F)— K%Y ;F) induced by inclusion i: Y—X. Then

rank,(image i*)? =4rank,KY; F).
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Proof. By (1.2.7) we have a diagram which commutes up to sign:

—s KX ; F)—£ KYY;F)—— K" (X,Y;F)—

X1~ ¥in Xin

— K,y (X, Y3 F)—2— K (Y; F) —— K, (X; F)—>

In this diagram the rows are exact and the vert_ical maps isomorphisms.
Hence (imagei*)? = (keri,),. By (1.2.8), since F is a field,

KY(Y; F)=Hom(K(Y; F), F)
K%(X ; F)=Hom(K(X;; F), F)

and i*=Hom(i,, 1). Hence rankg(imagei*)?=rank;(imagei,), and
rankg(imagei,), + rankg(keri,), = rank K (Y; F)=rank K%Y F). Hence
ranky(imagei*)! =4irank, K{Y;F). O

1.2.3 Lemma. With the hypotheses of (111.2.2), (imagei*)* C K¥(Y; F)
annihilates itself under the pairing ().

Proof.
@*x, *y) = ((*x)o )Y ] = ([*xuy)[Y]=(xuy)E,[Y)=0

since i, [Y]=1,0[X]1=0in H,,(X). O

HI1.2.4 Theerem. Let f:(X,Y)—(A,B) be a map of degree 1 of
Poincaré pairs of dimension m=4k+ 1. Then I(f]1Y)=0.

Proof. By (1112.2) (image i*)2* C K**(Y; @) is a subspace of
rank = 3rank K2(Y; Q) and by (11L.2.3) it annihilates itself under the
pairing. Hence by (IIL.1.2), sgn(,)=0 on K?*(Y; @), i.e:. I (fl Y)=0. D

Now using the notion of sum..of Poincaré pairs introduced -in
Chapter 1, § 3, we may study the behavior of I on sums.

Let (X, Y)and (A, B) be Poincaré pairs of dimension m, and suppose
each is the sum of pairs, ie, X=X, 0X;;X,=X,;nX,, Y= YnXi,
i=1,2, A=A,V 4,, etc,, where (X, Y,) and (4,, B,) are Poincaré pairs
withorientations0,[ X 1, o[ A]respectively(see(1.3.2)). Letf (X, Y)—(4,B)
bea map of degree 1 suchthat f(X,)CA4;,i=1,2(cf (L3.3)) Let f; = f| X,,
i=0,1,2.

H1.2.5 Theorem. Suppose f:(X, Y)—(A4, B) as above is the sum of
two maps f;:(X;, X, Y)—(4;, 4oUB,), i=1,2, and suppose that the
map on the intersection f§:H*(Ay, By; ®)— H¥(X,, Yo; Q) is an iso-
morphism. Then

If)=I1(f)+I(f3).
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Proof. Consider the exact sequence induced from the map of Mayer-
Viettoris sequences (or the map of triples f: (X, X,, Y)~(4, Ay, B)
defined by f:

= K17Y(X,, Yo)——qu(Xl,XOUYl)+Kq(X2,X0UYz)
_,)Kq(X, Y)—)KQ(XO, YO)_’ .

Since fg* is an isomorphism with coefficients Q@ it follows that
K*(X o, Yy; Q) =0, and

IOL26. KX, Y;@Q) = KUX;,X,UY;;Q) + KUX,, XoUY,; Q).

Now the map HY(X,, X,u Y,)+ H(X,, X yu Y;)— HYX, Y) is the sum
of two maps HY(X, X,UY)<=HX, X,,u )<L HIX, Y) (where
s@*i,s()=10r2). But jf (x;)uj%(x,) € image H*4(X, (X, U Y)u(X,uY))
using the relative cup product between HYX, X,0Y)and HY(X, X,u Y).
Since X, VX, =X, H¥X,(X,u NUX,0Y)=0; so j¥(x)ujt(x,)=0
and it follows that (I111.2.6) is an orthogonal decomposition. However
the bilinear form restricted to each fatoris the usual form on KiX;, XoUY),
so the bilinear form on K9(X,Y; Q) is the sum, and hence
I(N=1(f)+1(f). O

If (X, Y) is a Poincaré pair of dimension m =4k we may consider
the symmetric pairing

H™MX,Y; Q®H* X, Y; Q—Q
given by (x, y)=(xuy)[X].

O1.27 Lemma. K**(X,Y;Q) and f *(H**(A, B; Q) are orthogonal
under the pairing. '

Proof. (x,y)=(xuyp)[X] =((*x)Uy)[X] where j: X —(X, Y). But
FK*MX, Y)CK?*(X),and by(1.2.9), K?¥(X)is orthogonal to f* H?*(4, B),
so the lemma follows. [

Thus we may define I(X, Y) = signature of (,) on HX,Y; Q).

IMI.2.8 Theorem. I(f)=I(X,Y)— I(4, B).

Proof. By (IIL27), H**(X, Y; Q)=K?MX, Y; Q)+ f*H* (4, B; Q)
as an orthogonal direct sum, so that the inner product is the sum of
those on the factors. But the inner product on f*H?¥(4, B; Q) is the
same as that on H>4(4, B; @)so that it follows that I(X, Y)=I(f)+ (4, B)
and the result follows. []

II1.2.9 Theorem. Let f:(X, Y)—(A,B) be a map of degree 1 of
Poincarépairs of dimensionm = 4k. Suppose(f| Y)*: H*(B; Q)— H*(Y; Q
is an isomorphism, and that f is cobordant relY to J (X', Y)—(4,B)
such that f'*: H*(4; Q)— H*(X'; Q) is an isomorphism. Then I( =0
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Proof. Let U be the cobordism relY between X and X' so that
dU=XuX, XnX'=Y, (U,8U) a Poincaré pair of dimension m+ 1,
orientations compatible, and F:(U, Y)—(4, B) such that F|X={f,
F|X' = f'. We may consider F as a map of degree 1,

G: (U, XuX)(AxI,AxO0UuBxIUAX1).

By (I11.2.4), I(G| X uX")=0, and by (II1.2.5) (G| X v X" =I(f)—I(f").
Now I(f'}=0 since f'* is an isomorphism, and hence I(f)=0.

§ 3. Normal Maps, Wu Classes, and the Definition of o for m=41

Let (X, Y) be a Z,-Poincaré pair of dimension m. Define a linear map
L:H" X, Y;Z,)—~Z,

by li(x)=(S¢!x)[X] where [X]e H, (X, Y;Z,) is the orientation class.
By Poincaré duality, H{(X ;Z,)Q@ H™ (X, Y; Z,)LbZ,, (x, )= (xuy)[X]
is a non-singular pairing, so that H(X,Z,) is isomorphic, using this
pairing to Hom(H™ (X, Y;Z,),Z,) and hence l;(x)=(x, v, for some
v,e H'(X;Z,), any xe H* (X, Y, Z,).

I11.3.1 Definition. V=1+v, +v,+ - isthe Wiclass of X, v,e H(X;Z,).

111.3.2 Proposition. Let (X, Y), (4, B) be Z,-Poincaré pairs of - di-
mension m, f:(X, Y)—(A, B) a map of degree 1 (mod2), so f,[X]=[A4]
Then v{(X) =1, + [*(v(4)), where v,(X) e H(X;Z,), vi(4) e H(4;Z,) are
the i-th Wu classes and 7; € K'(X) = (kernelo*Y, o* : H(X; Z,)— H'(A;Z,)
the natural splitting map for f*.

Proof. Let xe H" '(4,B;Z,). Then f*Sq'x)=Sq'(f*x), so

(f*%, 2)) = Sq(f*(0) [X1 = (£*(Sq' ) [X] = (5¢'0) (£,[XD)
=(Sq'x) [4] = (x, v,(4)).

Since (x,y)=(f*x, f*y), we have (f*x,v(X))=(f*x, f*v(4)), any
xe H""Y(4,B;Z,), so v{(X)— f*v,(A)e annihilator f*H(A4, B;Z,)
= (kera*) = K{(X;Z,) by (1.29). [0

HI1.3.3 Proposition. With notation as in (I11.3.2), suppose that m=2q.
Then the pairing (,) on K¥X, Y;Z,) is symplectic {(x,x)=0 all x) if
and only if f*v,(A)=v,(X). )
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Proof. (x,x)= x*[X]=(Sq*x)[X] =(xUv(X)[X] for xe HY{X, Y;Z,),
and since K%X,Y:Z,) and (imagef*) are orthogonal by (1.2.9),
(x, f*v,(4))=0 for xe K%X; Y; Z,). Hence for xe K%(X; Y Z,), (x, x)
=(x, 7,) by (IIL.3.2). Then (x, x)=0 if and only if Uy=v,(X)—f *0,(4)
=0. [

IE.3.4 Corollary. Let (X, Y), (A, B) be oriented Poincaré duality pairs
of dimension m=4l, and let f:(X, Y)—(A, B) be a map of degree 1. If
S*02(A)=0,/(X), then the pairing (x,y)=(xUy)[X], (x,yeK*(X,Y)/Tor-
sion, [X] e H,(X, Y) the orientation class) is even.

Proof. By (1IL3.3), f*v,,(A)=v,,(X) implies that the pairing
()2 (%, ¥, =(xUY[X], x, ye K*(X, Y; Z,) is symplectic. If

n:H¥X,Y)->H*X,Y;Z),)
is induced by reduction mod?2, then -

(mx,ny), =mxun ) [X]=(n(xwy)[X]=(x,y)mod 2, for x,yeK*(X,Y).

Since (, ), is symplectic, (7x, nx), = 0,50 (x, x) iseven for x € K2X(X, Y). [J

NL.3.5 Corollary. Let (X, Y),(A, B) be oriented Poincaré pairs of
dimension m=41, f:(X,Y)—(A,B) a map of degree { such that
(f1Y), : H(Y)—~H(B) is an isomorphism. If f*(v,,(A))=v,(X), then
I(f) is divisible by 8.
~ Proof. By (I11.3.4), (,) is even on K*'(X, Y)/Torsion, and (f|Y), an
isomorphism implies (, ) is non-singular (see I11, § 2). Hence by (I11.1.4),
signatgre of (,) is divisible by 8. Then

K*(X,Y; Q) =(K?(X, Y)/Torsion)®Q,

so signature {,)=I(f). [

Now we investigate the Wu class ¥ and show that normal maps
preserve the Wu class,

Let (X, Y) be a pair, and let & be a fibre space over X with fibre F
such that H,(F;Z,)= H(S*"'; Z,). We recall from (I, § 4) (see also 11. § 2)
if we set T(§) = X U cE(¢) using the projection of £ as the attaching map,
then there is a Thom class U € H*(T(&);Z,) such that

VU : HYX;Z,)—H"™ MT(E);Z,)
VU HUX, Y;Z,)—HU"MT(), TE|Y); Z,)
NU:H(T), T¢| Y); L)~ H, (X, Y; Z,)
NU:H(T();Z,)—H,_(X;Z,)

are isomorphisms. Let h:%,(4, B)— H,(A, B; Z,) be the Hurewicz homo-
morphism mod 2.
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I11.3.6 Proposition. Let (X, Y) be a Z,-Poincaré pair of dimension m,
& a fibre space over X with fibre F a Z, homology (k—1)-sphere,
ae M (TE), TEVY)) such that (h(@)NU=[X)eH,(X,Y;Z,), the
fundamental class of (X, Y). Then V(X)L U = Sq~YU).

Proof. V=V(X)e H*(X;Z,) is characterized by the equation
(x, V)=(Sqx)[X], any xe H*(X, Y;Z,). If y is a cohomology operation
which raises degree, since h{x) is spherical, (yz)(h(®)=0, any
ze H¥(T(&), T(¢|Y); Z,). Now Sq ™' =1+x(Sq")+ -+, so

(8q7'2) (h(0) = (2) (h{e) -
Hence
(89%) [X] =(Sqx) (h(@)nU)=(Sqxu U) (h(x)) =

(Sq~*(8qxu U)) (h(w) = (xuSq ™' U) (@)= (xu V) [X]=(x, V)

where Sq 1 U = V'u U. But V is characterized by this equationso V'=V
andSq 'U=VuU. O

We recall that the Thom class U e HXT(¢);Z,) is characterized by
the fact that j*(U) generates HY(ZF;Z,)=1Z,, where j: ZF —T({) is the
inclusion of the Thom complex over a point into the whole Thom
complex. ’

I11.3.7 Proposition, Let b:(—¢ be a map of fibre spaces over
f:X— X', where &, & have fibre F, H (F;Z,)=H,(S*';Z,). Then b
induces a map of Thom complexes T(b): T(§)— T(£), and T(b)*(U)=U,
U’ = Thom class in HY(T(¢');Z,), U the Thom class in HY(T(E);Z,).

Proof. Let E, E' be the total spaces of £, & respectively, so that the
following diagram commutes:

F — E z X

Pk

F——E =>X'.

Hence f, b induce
T(b): X | cE—X' U cE
and the diagram " ’
SF —L T
1 Tb)
IF—L 5 TE)

commutes. Hence j*T(b)*(U')=j*(U") so that j*T(b)*(U’) generates
H*¥(ZF;Z,) and hence T(h)*(U)=U. O

§ 3. Normal Maps, Wu Classes, and the Definition of ¢ for m =41 63

I1.3.8 Corollary. Let (X, Y), (A, B) be Z ,-Poincaré pairs of dimension
m, &' a fibre space over A with fibre F a (k — 1) dimensional Z,-homology
sphere. Let f : (X, Y)—(A, B) be amap of degree 1 mod 2, and let £ = f*(&).
Suppose there is an element o € T, (T (&), T(¢|Y)) suchthat h(e)n U =[X],
the fundamental class in H (X, Y;Z,), U e H*(T(£); Z,) the Thom class,
h the Hurewicz homomorphism. Then f*(V(A)=V(X), in particular
f*v,(A)=1,(X), all q.

Proof. By (II1.3.7), if b:¢&—¢ is the natural map, T(h)*U' =U.
Setting V(X)=V, V(4)=V', we have, using (IIL3.6), Ty*(V'LuU")
= f*V'UTB*U = f*(V)uU=T{h)*Sq ' U)=Sq ! Th*U'=Sq U
=VuU. Hence f*V'=V. O

N1.3.9 Theorem. Let (X, Y), (A, B) be oriented Poincaré pairs of
dimension m=4l, let f:(X, Y)—(A4, B) be a map of degree 1 such that
(f1Y), is an isomorphism, and let & be a fibre space over A with fibre
F a Z,-homology (k—1)-sphere. Set &= f*& and suppose there is
0 E My 4 1 (T(E), T(E|Y)) such that h(x) N U = orientation class of (X, Y) mod2,
(where U e H*(T(£); Z,) is the Thom class, h = Hurewicz homomorphism).
Then 1(f) is divisible by 8.

" Proof. By (IIL3.8), f*v,,(4) =1v,,(X), so by (IIL3.5), I(f) is divisible
by 8 [ :

- -Let (f, b) be a normal map, f: (M, éM)—{(4, B) a map of degree 1,
M™ a-smooth oriented m-manifold with boundary, (4, B) an oriented
Poincaré pair of dimension m, m =41, and b : v— is a linear bundle map
covering f,v the normal bundle of (M, dM)C(D™¥, §™**~1),  a k-plane
bungle over A.

111.3.10 Coroilary. If (f, b) is a normal map with (f|0M), an isomor-
phism, then I{f).is divisible by 8.

Proof. The pair (f, b) satisfies the conditions of (I1.3.9) where &¢'=n
is a linear bundle over (4, B). [

111.3.11 Definition. Let (f, b) be a normal map f: (M, dIM)—(4, B),
etc. with (f|0M), an isomorphism, m = dimension M =4l Define

o(f,b)=%I1(f)eZ

Then (I1.1.1), the Invariant Theorem, follows for m = 41 from (I1IL.2.9).
The Addition Property (I1.1.4) follows from (I11.2.5), the Cobordism
Property (I11.1.5) follows from (111.2.4). For the Index Property (11.1.6)
we note that by (II1.2.8),8¢(f,b)=I(f)=IndexM — Index 4, and by
the Hirzebruch Index Theorém [30],

IndexM = (Lt(P1 (793 R Pl(TM))) (M]) = (LI(PI v~ 1)’ . _1))) [M]
=(Lp,(n™"), ..., piln 1)) [A4]
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where [A] is the orientation class in Hy(4, B). This proves the Index
Property (I1.1.6) (recalling that A =X, = & k=11to retrieve the original
notation).

§ 4. The Invariant c(f, b)

Let (X, Y) and (4, B) be oriented Poincaré pairs of dimension m =24,
and let f : (X, Y)—(4, B) be a map of degree 1. Let & be the Spivak normal
fibre space of (X, Y) and 7 that of (4, B), and let 2 € 7, +,(T(), T(E|Y)),
Ben,..(T@), T(n|B)) be the elements defined in (1.4.4) such that.
h(@)n U, =[X], H(F)n U, =[A], where U;e H KT(), U,e H*(T(n)) are
the respective Thom classes, h the Hurewicz homomorphism. Let b:&-—n
be a map of fibre spaces over f. We shall call the pair (f, b) a normal
map of Poincaré pairs, (compare 11, §1).

Normal cobordism and normal cobordism rel Bis defined analogously
(cf IL,§ 1) '

By (14.15), T(®) is (m+k+s)-dual to T()/T( Y)=2%X/Y),
(¢ = trivial bundle over X) and T(n)is (m+ k + s)-dual to Z°(A4/B). Hence
for a normal map (f,b), T(b): T(&)— T(x) is (m+k +s)-dual (k very
large) to a map g Z°(4/B)— Z°(X/Y).

In fact we will only use mod?2 properties of these things in defining
¢(f,b). Thus it is possible to weaken the hypotheses, for example to
(X, Y) and (4, B) Z,-Poincaré pairs, with appropriate fibre spaces with
Z, homology spheres as fibre in place of the Spivak normal fibre space etc.

The map g may be related to certain maps constructed in Chapter 1.
Recall that in Chapter], §2 we defined o*: H*(X/Y)— H*(A/B) by
[A]no*(x)= f,([X]nx), for xe H¥X/Y), [X],[A] the orientation
classes of (X, Y), (4, B) respectively. Let Z*: HY(K)—H"* +5(2*K) be the
suspension isomorphism for any space K.

I11.4.1 Theorem, g*Z* =2*a*.

Proof. By (1.4.14) the condition that T'(b) and g are (m + k + s) dual is
equivalent to the commutativity (up to homotopy) of the folowing
diagram: \

gnrks L — T A Z5(X/Y)

vll TE)A1
T(n) A Z5(4/B) —2224— T(n) A Z5(X/Y).

Here y and y' are defined as in the proof of (L4.15). In particular
7, 0)0nUNU=4,[X], and y,()nU,nU'=4,[A4], where 1€H, 445 (S™HEHS)
is the generator, Ue H(Z*X,), U'eH(2°A,) are Thom classes,

.. . s ]

s WWWWW(WWVwW/WM«,A,-,w«mw»ﬂmwwzmm«mgwmwwmmw»»"
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(considering 2*(X/Y)as T(e)/T(e| Y)etc.)sothat Z*x = x U U, x € H¥(X 1Y),
etc.and 4: (X, Y)—X x (X, Y)and 4":(4, B)— A x (A, B) are the diagonal
maps (see diagram (*) in the proof of (1.4.15)).

It follows that

Ye(1)/g*(x0 U)=T(b), (1, 1)/ (x0 V).

But (y,(/(xVU)N U= (7, 0)nUnU)/x=4,[X])/x=[X]nx. But
U, = T(b)*U, so that ‘

(TELDxOUNNU, = £ (0. 0)/x0 V)N Uy = f([(X]nx).
Now in a similar way, if g*(xu U)=yu U/, it follows that
(/g o D) U, = (/o UNNT,
=7, NU,nU'ly=4,[A)y=[4]ny.
Hence [A]N(Z* " lg*Z*x)=f ([X]1Nnx), so Z* lg*Z*x=0a*x, so

*.g*Z*=Z*a*. 0

11.4.2 Corollary. If (f,b) is a normal map of Poincaré pairs,
f:(X,Y)—(A,B), then 2°f:2%(X/Y)—2%(A/B) is a domination for
sufficiently large s, i.e. Z°f has a homotopy right inverse.

Proof. Consider (Z°f)g : Z°(A/B)—2°(A/B). Then
Z*-i((zsf)g)*z* o Z*—lg*(zsf)*z* = Z*—lg*z*f*
= THTITHgRf* =oa*fr=1
by (IIL4.1) and (1.2.5). Hence h=(2°f)g induces isomorphism on

H *(.Z‘(A/B)) and hence on H,(2°(A/B)). It follows that h is a homotopy
equivalence and therefore (gh ') is a homotopy right inverse for (£°f). [J

I11.4.3 Corollary. For normal maps the splitting map o*: H*(X/Y)
— H*(A/B) commutes with stable cohomology operations. In particular
o*Sq* = Sq'a*.

Proqf. o = g*3* 50 a* =Z*"1g*T* and since g* and Z* com-
mute with stable cohomology operations, so does a*. []

This gives us another proof of the fact that (x, x)=0forx e K%(X, Y;Z,)
(see IIL § 3). For K4(X, Y)=(kera*)?, and

(x, x) = x’[X] = (Sq"x) [ X] = (Sq*x)(x, [4])
= (*Sqx)[4] = (Sq?a*x)[4]=0.

Now:we shall use the map g and (II1.4.1) to construct a quadratic
form on K%X, Y;Z,). The construction follows that in [7].

Recall that (see [55]) the Eilenberg-Mac Lane space K(Z,,q) is a

space sych that n(K(Z,, q))=0 for i+q and n(K(Z,,9)=Z,. It is a
simple consequence of obstruction theory that this condition defines
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the homotopy type of K(Z,, q) uniquely in the category of CW complexes
and that homotopy classes of maps of a CW-complex L into K(Z,, q)
are in one-to-onme correspondence with elements xe HYL;Z,), ie.
e:[L,K@,,q)]—HYL;Z,;)isal—1 correspondence where e( f)= f*(1),
1 is the generator of H(K(Z,, q); Z,)=Z,.

Let xe HYX/Y;Z,), xe(kernela*) so that g*(Z*x)=0, and let
¢:X/Y—K(Z,,q) be a map such that ¢*(1)=x. Take h=(Z9p)g

5(A/B)—2— Z*(X/Y)—22 Z°K(Z5, q) -

Now we recall the definition of functional cohomology operation,
due to Steenrod [61]. Let w: H*(X; G)—H"**(X ; G) be a stable coho-
mology operation, (e.g. Sq*) and let f: K—L be a map of spaces. Let
x € H*(L; G) such that

@) f*(x)=0 and
(il) w(x)=0.
Then the functional operation w,(x) is defined as an element of
H*""*YK; G
oH1(K; G)+ [*H"F(L; G)

defined using the exact sequence of f:

— B Y(K; G)—2—s H"(f ; ) —L— H"(L; G) L5 H'(K; G)—

@ @ @ @

H™1(L; G) L5 H™ 1 (K; G) =5 HM ([ 6) - HYH(IL; G) -5 HHEKS 6).

Since f*x =0, by exactness x=j*y, ye H*(f; G). Now
Foy=wji*y=0x=0,
so by exactness, wy=20z,ze H"**"'(K;G'). Then z represents o, ().
Now &1 * = 0,50 at the last step z is only well defined mod f* H nrE=L(LGY).
Also, j*6=0, so y is only well defined mod6H"*(K;G), so that wy is
only well defined mod wd H" *(K; G) = 6w H" ' (K; G), (since wis a stable
cohomology operation). Hence z is only well defined

modf*H"**~Y(L; G)+oH"'(K;G).
Returning to our situation, we have
S%(A4/B)—2 Z(X/Y)-2% Z°K (X5, q)s h=(Z°0)g, o*1=xe HYX/Y;Z;) ,

where h*(Z°1)=0. Then the operation Sq?**(1)=0 in H*(K(Z,, 9); Z,)
since dim:=gq and Sg*(c)=0 if dimc <k. Hence we may define the
functional operation Sqf**(Z°(1)) e H*4%(2*(4/B); Z,)

modh*(H21*5(Z° K@, q); Z,)) + Sq#ttHI* s~ (Z5(A/B);Z,) .
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II1.4.4 Lemma. The indeterminacy image h* + imageSq?*!=0.(Com-
pare [7, (1.1)].) ’

Proof. Since H***~1(2*(A4/B); Z,) = 2°H*"'(A/B; Z,), and since Sq?**
is identically zero on H? '(A/B;Z,) for dimensional reasons, it follows
that imageSq?*! =0 in H24*5(2°(4/B); Z,). By a theorem of Serre [52],
H?*YK(Z,, 9);Z,) is obtained by acting with the Steenrod algebra <, on

1€ H(K(Z,, q);Z,). 1t follows that H29*%(2°K(Z,, q); Z,) is obtained
from 2Z*(1) by action of &,. Then h*(Z*(1)) = 0 implies

h*(aZ*(1))=ah*2*(1)=0

for ae o/,, and hence h* H*1*5(2°*K(Z,, q); Z,)=0. [

1I1.4.5 Definition. y:KYX,Y;Z,)—Z, by w(x)=(Sqf** (ZW))Z[4])
where h etc., is as above.

111.4.6 Proposition. v is a quadratic form on KYX,Y;Z,) and its
associatedbilinear formis(, ),where(x,y)=(xuy)[X], forx,ye KYX, Y;Z,).

Proof. We outline the proof briefly referring to [7,(1.4)] for the
details. Set M = X/Y.

Let x,, x, € HY(M;Z,) such that a*x, = a*x, =0. Let o;: M—K(Z,, q)
be such that ¢¥(1)=x;, i=1,2, and let ¢ be the composite

M—24 ,MxM-2X2, Ky K—* LK,

K=K(@Z,, q), A(m)=(m,m), me M, u is the multiplication map in K.
Then *(1) = x; + x,.

Then 2°¢ : 2°*M— 2°K is the composite of the suspended maps. For
any X and Y, we have natural homotopy equivalences

: ZXVvIYVIEXAY)-ZE(XXY)

where g=Z2i+2j+h(l), i: X—XxY by ix)=(x,%), j: Y-XxY,
Jj(¥)={(*, y), » denoting base point, and h(1) is the Hopf construction on
the identity 1: X x Y— X x ¥, (see [55] and [59]). Here + denotes the
sum of maps in the group of homotopy classes of

[ZXVZYVZXAY),Z(X xY)].

It then follows from naturality that *A/B-1» XM X% 35K is the sum
of three maps &, + &, +y where £, = 2@, -1, and

y=Z" h() o 2y A @) e B Ao,
where 4 is the composite
MOLMXM—-MAM, finf,:MAM—KAK,
h(y) is the Hopf construction on y: K x K—K.
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It is an easy exercise to show that
Sl L gy (E°1) = Sq8 1 (2°1) + Sq8 (Z°1) + Sq2 1 (Z*).

Setting { = Z*"1h(y) : 2K A K— Z°K, we have {*(Z*1) = 0,50 Sq§* 1(Z°(1))
is defined, and since the indeterminancy of Sqf*! is zero in
H?**S(K AK:Z,) (since H(Z’KAK;Z,) is zero for i<2g+s) it
follows that

SELTL(Z@) =n* o (Z°A)* = (Z°y A 92)* SqE T (Z°(2)) .

Now ((Z°¢, A @) - (ZPA)* = (Z°((01 A @2) Z))* and ((¢; A @3)° AY*(1 A1)
=x,Ux; € H*4(X/Y;Z,) (recalling we have set M = X/Y). Now
Sgi (EW)=Z(A1)e H* " (ZKAK;Z,), as is easily shown by an
argument analogous to. [59, (5.3)]. It follows now that

Py +X5) =p(x) +wlx,) +(x;ux) [X]. O

Now if (f|Y)*:H*(B;Z,)— H*(Y;Z,) is an isomorphism, it follows
from (1.2.9) that (, ) is non-singular on KX, Y;Z,) (= K%X;Z,)). Then,
by IIL § 1, the Arf invariant c(y) is defined.

111.4.7 Definition. Let (f, b) be a normal map of Poincaré complexes
f:(X, Y)—(4;B), and suppose that (f|Y)*: H*B;Z,)—»H*(Y;Z,) is
an isomorphism. Then define the Kervaire invariant c¢(f, b) = c(y), the
Arf invariant of Z.¢ .

Now we will proceed to develop the properties of c(f, b).

Let (f,b) be a normal map, f:(X, Y)—(A, B) etc., and suppose in
addition that Y and B are sums of Poincaré pairs along the boundaries
and f sends summands into summands. In particular, we suppose
Y=Y, uY,, Yo=Y,nY,, B=B,UB,, By=B,;NB,, f(Y)CB;, and that
(B;, By), (Y, Yy) are Poincaré pairs compatibly oriented with (X, Y) and
(4, B) (see 1. §3). If £,n are the Spivak normal fibre spaces of (X, Y)
and (A4, B) then &|Y,,n|B; are the corresponding Spivak normal fibre
spaces, so that if f;= f]Y;, b,=b|(£| Y,) then (f;, b;) are all normal maps,
i=0,1,2

We note that if {5 : H¥*(B,;Z,)— H*(Y,; Z,) is an isomorphism then
it follows from (1.2.6) and (1.2.7) that f§ : H*(By; Z,)— H*(Y,; Z,) is an
isomorphism.

111.4.8 Theorem. Let (f,b) be a normal map as above, so that f|Y
isthe sumof f, and f, on Y, and Y, etc. Suppose ¥ :H*(B,;Z,)—H*(Y,;Z,)
is an isomorphism. Then c(f,,b;)=0.

This theorem has the following corollaries:

11.4.9 Corollary. If (f, b) is a normal map and is normally cobordant
relY to (f',b), f™*:H*(A, B;Z,)— H¥(X',Y;Z,) an isomorphism, then
c(f,b)=0.
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111.4.10 Corollary If (f,b) is a normal map, f: (X Y)—(A, B), then
c(f1Y,b|¢I V)=

It is clear how to derive the two corollaries, in the first using the
normal cobordism as a normal map, and in the second taking Y,=0.
We will utilize some lemmas.

111.4.11 Proposition. Let (f, b) be a normal map, f:(X, Y)—(A, B),
and let g: X*(A/B)—2*(X/Y) and g' : >°*' B— Z**1Y be the duals of T(b)
and T(b|(¢|Y)). Then the diagram below commutes up to homotopy:

Z3(A/B)—*— 2°(X/Y)
Zsd' 2sd
Zs+1 B g y TS+ Y

whered: X/Y—Z gz d: A/B— X B are the natural maps, ( considering X/Y
as XucY, and smashing X to a poznt ).

Proof. We have a commutative diagram
T¢| V)T, T(n| B)

J J’

T(E)—— Ty)

where j, j' are inclusions. Then the dual diagram commutes:

2*(4/B)—*— Z*(X/Y)

-
a’ a
ZsHB, L sty

It remains to show that a is homotopic to 2°d and o’ is homotopic to
2°d, i.e. that 2°d and j are dual in S-theory, and similarly for Z°d’ and j.
Then (I11.4.11) follows from:

I4.12 Lemma. Let (X, Y) be a Poincaré pair, £ its Spivak normal
fibre space. Then the inclusion j: T(£|Y)— T() is (m + k) dual to d, where
d is the natural map d : X/Y-——>21_’F

Proof. By (1.4.14) the statement is equivalent to the commutativity
up to homotopy of the diagram

smr £ T A (X/Y)

e iand

TEIY)AZ(Y,) o TE) A Z(YL).
We recall the definition of ¢ and ¢’ (1.4.15).
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Consider the map b: {—¢& x &%, where ¢ is the trivial fibre space of
dimension k, covering the diagonal 4: (X, Y)— X x(X,Y). We have a
commutative diagram

Snrkl 2 TEY)—2— TEIY)A(Y.)
TEY)—2— T A(Y,)

1Ai

Dtk —t s T(§) —=— T A (X 1)

where T(OAX . =T(Ex&%) over X x X, TE)A(Y,)=T(Ex| X xY),
TEIY)A(Y,)=T(Exe®| X xY), a, o are the collapsing maps, and
w, o', w" are induced by b and its restrictions.

Then 7' =w'a’ : S"** 1 T(¢| Y)A(Y,) is the duality map for Y,
and T(¢|Y) while the map of pairs

y=(wa, @ o) : (D™, 8" HS(TE) A (X 4), TE) A (Y2)
represents the duality map for T(£) and X/Y when the subspaces are
pinched to a point. Now w”a’=(j A 1)w'a’, so we have
0 =0 A DY} 02T T A (X 4), T A (YD) Tpse—y (TE) A(YS)) .

As @: DS HETL L T(E) AX L)/ TE) A (YL)=T(E) A(X/Y) is induced
by 7, then Zd{y}= 47* {0} from the general properties of homotopy
groups, where d: T(&) A (X ;)/T(E) A(Y,)— Z(T(€) A(Y,)). Rearranging
the suspension parameters to make the homotopy equivalence
h: Z(T(E) A(Y,))— T() A Z(Y,) then shows that hd =1 A d and hence

(A Ad), (o} =h,d, {0} =, Zo{y} = h Z( A1) (Y} = (A1) {0},
since X2y’ = ¢'. Hence the diagram commutes. []

The proof of (I11.4.8) is based on the following lemma.

11.4.13 Lemma. Let (f, b) be a normal map, f: (X, Y)—(4,B), Y of
dim2gq, and let x e K4 X ;Z,). Then p(i*x)= 0, wherei: Y— X is inclusion.

~ Proof. If ¢': X—K(Z, q),¢™*(1)=x, then p(i*x) is defined using the
composite ‘

h:Z°B; R fan= > Z°X, 29 K@, q).
Now 2*7'd’: Z°71(A/B)— Z*B,is of degree 1, so that
w(i*x)=(Sqi " (Z* W) (251 d, [A]) = (Sqi™ (Z°(1)) [4]
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where h' = h(Z°"'d’). Then we have a commutative diagram from
(I1L4.11)

Zs71(4/B)—L— Z*"1(X/Y)

=o1g ze-14d

3B, L 2y X 20 TK(Z, q)
so that b’ = (Z°¢@') (Z°)g'(Z°1d) = (Z° ) (Z°1) (Z*~ ' d)g. But
&)z ) =271 (ZDd)
and (Zi)d is homotopic to a constant as is clear from the representation

XucY—4 s ceXucY—E s cXucY/XuceY
14 e
2Y X

(i.e. it is the composition of two consecutive terms in the sequence
Y X X/Y2Yo2X—--

which defines exact sequences for all cohomology theories after Puppe,
Eckmann-Hilton). Hence A’ is null-homotopic, Sqi*' =0, and hence
p(@*x)=0. O

Proof of Theorem (1114.8). From (1.2.7) we have an exact sequence

(with Z, coefficients)

—KY(X)— 5 KY(Y)—2— K9+ (X, Y)—

——>Kq+1(X’ Y)__a_-)Kq(Y)—-—B_)Kq(X)—_—)

Also *=Hom(i,, Z,), so ranki*K%X)=4rankK%Y). Now since
K4Y,)=0, it follows that K%(Y;)=K(Y), and that yp, =y, where y,
is defined by (1, by), ¥ by (f, b). Then by (111.1.13) and (I11.4.13) c(y) =0,
so c(yy)=c(f;,b)=0. O

Let (f,b), f: (X, Y)—{(A, B) be a normal map of Poincaré pairs, and
suppose (X, Y) and (A4, B) are sums of Poincaré pairs X =X,uX,,
A=A, UA,, Xo=X,nX,, Ag=A4,nA,, Y,=X,nY, B,=A,NB,
fX)CA, (X, Xou ), (4;, AgUB,) i= 1,2, are Poincaré pairs oriented
compatibly with (X, Y) and (A4, B) (see 1.3.2). Set

fi=f1X (X XL Y)— (41, 4gUB),  i=1,2
fo=f1Xo! (Xo, Yo)———(40, By),

and b; the appropriate restriction of b.
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Now suppose that (f|Y)*: H¥(B; Z,)—~H*(Y; Z,) and
o H¥(Ag; L)~ H¥(X ;L)

are isomorphisms. It follows easily from arguments with the Mayer-
Vietoris sequence that (f;|X,uY)* i=1,2 are isomorphisms so that
c(f, b), c(f1, by) and c(f, b,) are all defined.

[11.4.14 Theorem. c(f,b)=c(fy»b1)+ c(f2, by).

Proof. Let v, w, and y, be the quadratic forms defined on K%(X.Y),
K%X,,X,vYy)and K%X,, X,uY;) respectively. An argument with the
Mayer-Vietoris sequence (which is really the exact sequence of the triple
of pairs (X, Yo) C(X, N C(X, YUX,), where the last pair is replaced by
the excisive pair (X, Xou Y)u(X;, XouY,)) gives an isomorphism
0, +02: K4X 1, XU Y+ KU(X,, XoU Yp)— KX, Y) where g, is defined
by the diagram

KX, Xou Y,) —=—K%X,X,UY)

a1

KiX,Y)

where the isomorphism comes from an excision, and the vertical arrow
is induced by inclusion (similar for @,).
It remains to show:

111.4.15 y(g;x) = ;(x) for x e KUX;, XoU Y)):
Then y is isomorphic to the direct sum y; + ,, so that

c(p) = c(p,) + c(p,)

and the theorem will follow.
Consider the diagram:

Z5(A/B) ——L—— 2¥(X/Y)
o B
>5(4/A, uB)—L— (X /X,0Y)
a B
25(A, /Ao By) —2— 25X /X oL ;) 2> Z°K(Z, q)

where o', §’ are homeomorphisms, «, § are the natural collapsing maps
0, =(B'B)*, 0*(1)=x e K%X,, X,uY;). The diagram can be shown to
be commutative (compare (I11.4.11)) and o'a is of degree 1. If b, = Z°p)gi,
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then y, (x) =(Sq%  (2°()) (Z°[4,]). Now Z°[4,]=(«'a), Z°[ 4], so that
if hj=ho'a, then Sqi '(Z*(1))(Z°[4,])=(Sq&"'(Z*(2)))(Z°*[4]). Now
hy, =(Z°¢) (B P)g, and since B and B’ are s-fold suspensions, it follows
that (2°) (B'B)=2"¢', ¢": X/Y > K(Z;,q), ¢"*(1)=g,(x). Hence

w(e:x)=(Sqi (Z*()) Z°[ 41,

and y;(x)=y(e;x). O

Now suppose (4, B) is a Poincaré complex of dimension m, and ¢ is
a linear bundle over 4, g:(M,0M)— (A4, B) is a map of degree 1 and
b:v—¢ is a linear bundle map, v is the normal bundle v of (M, M) in
(Dm*k Sm*k=1). je. (f,b) is a normal map in the sense of Chapter II.
Then by (1.4.19), the enriched Spivak uniqueness theorem, there is a
fibre homotopy equivalence (unique up to homotopy) b':E—#n such
that T("), (T(b), (o)) = B, where

0 € T4 (T(), TOV|OM)), B € i (T(n), (] B))

are the natural collapsing maps. Then (f, b'b), b’'b : v— 7 is a normal map
in the sense of this chapter, and we define

| o(f,b)=c(f, bb)eZ,
ifm=4k+2andif(f|éM)*: H¥B;Z,)— H*(0M;Z,)isanisomorphism.
I11.4.16 Propeosition. The value of a(f, b) is independent of the choice

of Benr,i(T(n), T(n1B)), and thus depends only on the normal map (f, b).

Proof. Let Ben,..(T(n), T(n|B)) i=1,2 be two elements such that
h(B)n U, =[A]. Then by (1.4.19), there is a fibre homotopy equivalence
e:n—n such that T(e),(f;)=p,. If b;:{—n are fibre homotopy
equivalences such that

Th) @=Fi, i=12 @=T0), (@€ (T, TEIB)),

then b, is fibre homotopic to eb;, by (1.4.19), so T(b,)~ T{e) T{h,).
It follows that g, ~ g,t, where g; is S-dual to T(b,),t is S-dual to T(e),
so t:2°A/B->2°A/B is a homotopy equivalence. Hence, for the two
maps h;: 2°A/B—>X°K(Z,, q), h; = (2°¢)g;, ¢ : M[OM—K(Z,, q), hy ~ 1h;.
Hence ht
Saf (2 (Z°[4])

=S () (Z°[A]) = S¢i;  (Z0) (6, Z°[ 4] = Sqf; 1 (2°) (Z°[4]),

and the quadratic form v is independent of the choice of . []
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§ 5. Product Formulas

In this paragraph we prove the product formula (I11.1.7) for ¢ due to
Sullivan. This generalizes the classical formula for the Index.

Let (fl,bl)’ (f2: bz) be normal maps, ﬁ:(Xi’ YI)—) (Ai’Bi)’ (Xis Y,), (AiaBi)
Poincaré pairs, i=1,2. Suppose (fi|Y),:H, (Y)—H,(B;) are iso-
morphisms. What is the relation between o(f}),o(f,) and a(f; x f,)?
We note that (f; x f,,b, xb,) is a normal map but the boundary of
X, xX,is dX; xX,)=X,xY,UuY; xX,, s0 f; x f,]18(X, x X,) does
not induce homology isomorphism except in special circumstances, (see
111.5.6 below).

Note that (x; ® x5, y; ® y2) = (x, X2) (1, y2) for

Xy, y1 € H¥(X 4, ), X5, y,€ H¥(X,, 1))

Hence the bilinear form on H*{(X,, Y;)x(X,, Y,); F) is the tensor
product of the individual forms.

IM1.5.1 Lemma. For the tensor product of bilinear forms on V,®@V,, V;
vector spaces over R, sgn(V, @ V,) = sgn(V;)sgn(V,).

Proof. We may assume that we have chosen bases 4y,...,q, for
Vi and b,, ..., b, for V, so that (a;,a)=(b;, b)) =0 for i}, ie. they are
in diagonal form. Then a;®b; is a basis for ¥; ® V, which puts it in
diagonal form. Now if p; = number of g, such that (a;, a;) > 0, n, = number
a; such that (a;,a;) <0, (similarly p,,n,), then the number of 4,®b;
such that (¢;®b;, a;® b)) >0 is p, p, + n; ny, since if (a;, a;) (b;, b;) > 0, both
(a;, a;) and (b, bj) are simultaneously + 1 or — 1. Hence while

sgn(V))=p;—n;, i=12,
we also have

sgn(V,®V;)=pip, +nny, —pyng —nypy=(p, —ny) (p,— 1,)
=sgn(l/1)sgn(V2). O

111.5.2 Lemma. Let dim X; =4m, dim X , = 4n. The restriction of (,)
on ZHY(X,,Y)®H/(X,,Y,) for i+2m, j+2n, i+j=2(m+n), has
signature 0.

Proof. If ae H(X,,Y,), deH(X,,Y,), i>2m, j>2m, then
aa'e H*¥(X,, ¥;)=0, so (a,a)=0 and (a®b, a’ ®b’)=0, (similarly for
b, b e H¥(X,, Y,)). Now ZH'(X,, Y)) ® H(X,, Y,) i+ 2m,i+j=2m+2n
= Y HQH/'+ Y H'® H’ Hence the first and the second are self-

i>2m j>2n
annihilating subslpaces. It follows that the signature is zero, (compare
with (ITL1.2)). O
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HL5.3 Proposition. If dimX, =4m, dim X, = 4n, then

I(X, x X;)=I(X,)I(X,).
Proof.

HZ(m+")((X1a Y)x(X,, Y,))
= Z H'(X,, Y)®H!(X,, Y,)+ H*"(X,, Y)® H*"(X,, Y,)

i%2m
as an orthogonal direct sum. By (II1.5.2) the signature of the form on
the first summand is zero and by (II1.5.1) the signature on the second
is the product of the signatures. [

I1.5.4 Theorem. Let f;:(X;, Y)—(A;, B), i=1,2 be maps of degree 1
with dim X; =4m, dim X , =4n. Then

I(f; Xf2)=I(f1)I(A2)+I(AI)I(f2)+I(f1)I(f2).
. 11\%)8 that this formula together with the relation o(f)=8I(f) yields
¢ Proof. By (I11.2.8),
I(fix f2)=1(X, x X3)— I(4; x A;)=1(X,) I(X ;) — I(4;) 1(4,),
by (IIL5.3). Now I(X;)=I(4,) + I(f), so
I(fy % f3)=(1(4) + 1(f)) U (A5) + I(f2)) - I(4;) I(4,)
=HA) I(f2) +1([) A+ I([) I(f,). O

HL5.5 Remark. If dim X, x X, =4k and dim X, % 0(4) i = 1 or 2, then
I(f; X f2)=0 and (111.5.4) still holds.

Proof. 1f dimX; is odd i=1 or 2, (IIL5.2) gives the result. If
dimX; =2m=2(4) then (,) on H™(X,, Y,) is skew symmetric so that
(x,x)=0 for xe H™(X;, Y;;R). Hence there is a symplectic basis for
H™X, Y15 R), {a;, b;} with (a;,a)=(b,, b)=0, (a;, bj)=4,;. Let A=sub-
space spanned by the as, B=subspace spanned by the bs. Then
A®H"(X,,Y,) is a self-annihilating subspace of half the dimension of
H™(X,, Y;)® H"(X,, ), hence the signature on H™(X,, Y;)@ H"(X 3> Y5)
is zero so the result follows from (I11.5.2) as in (IIL5.4). []

There remains one case to consider, i.e. what is o( fi % f,) when the
dimension of X; x X, is 4k +2 and ¢ is defined. Namely to define ¢ in
this case it is necessary that f; x f,]8(X, x X,) should induce homology
isomorphism with Z, coefficients.

I1.5.6 Lemma. Suppose f;:(X,, Y)—(4,, B)) are maps of degree 1,
and suppose (f;|Y), : H,(Y;, G)— H (B;; G) are isomorphisms G=1 or a
field, i=1,2. Then f, x f,|0(X, x X,) induces an isomorphism

H,(0(X, x X,); G)_*H*(a(A1 x A,); G)
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if and only if for each i=1,2, either (i) Y;=0=B; or (ii)
fis1  Hy(X; 415 G)—H (4415 G)
is an isomorphism, (i+1=1if i=2). ‘
Proof. Recall that 9(X; x X,)=X, x Y,0Y; x X,, with
Y, xY,=X,xY,nY;xX,,
(similarly for (4, x 4,)). Since (f;| V), : H,(Y;; G)— H (B;; G) are iso-
morphisms i =1, 2, it follows that
(fix f2l Y1 x V)t Hy(Yy X Y5 G)—’H*(Bx x B,; G)

is an isomorphism, from the Kiinneth formula. Consider.the map of
Mayer-Vietoris sequences induced by f;xf, on 4(X,xX,) into
9(A; x Az), and since f; x f, induces isomorphism on the intersection
Y, x Y, into B; x B, it follows that

ker(f1 X fH10(X; x X)), = ker(f; X ] Yy x X)), +ker(f; X f5]X; x Yy),

If Y;+0 then 1®kerfuCker(f;x f,1Y; xX,), and if Y,4+0 then
(kerf)), ®1 Cker(f; x f2]1X; x X,),. Hence if (f; x f5]10(X, x X)), is an
isomorphism, and if Y; # @ then kerf; . ,.=0and

fivrs: H*(Xi+l; G)_’H*(Aiﬂ; G)

is an isomorphism, since maps of degree 1 are onto in homology.

On the other hand if either Y, =@ or f,. is an isomorphism, then
either ¥, x X, is empty or (f; X f5|Y; x X,), is an isomorphism (simi-
larly for X, x Y;). Hence (f; x f,19(X; x X)), is an isomorphism. []

HIL.5.7 Theorem. Let (f;, b)) be normal maps, f;:(X;, Y)—(A4;, By)
i=1, 2,-and suppose

(f1 X f210(Xy x X))y : Hy(0(X 1 x X 3); Z5)— H (0(4; x 45);Zy)
is an-isomorphism. Then

c(f1 X f2, by x by) = x(Ay) ¢(f3, by) + ¢(f1, b1) x(45)

where y denotes the Euler characteristic.

This implies (I1.1.7) (ii).

Note that if either dimension is odd c(f; x f,, b, X b,) is auto-
matically zero. Also (II1.5.7) and (I11.5.5) together completely determine
o(f; X f,) when it is defined.

The proof proceeds by a sequence of lemmas and takes up the
remainder of this section.
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Let g;:2%(A4;/B;)—2%X;/Y) be the S-duals of T(b;): T(£,)— T(y,),
i=1, 2, as at the beginning of § 4, and let

g: 2 Ay x A,/0(A; x Ag)— ZH(X, x X,/0(X, x X))

be the S-dual of T(b, x by): T(&, % &,)— T(n, x n,), where &, n, are the
Spivak normal fibre spaces of X, A; respectively so that & x &,,1, x 7,
are the Spivak normal fibre spaces of X; x X,, 4, x A,. Recall that
0(A;xA))=A;xB,UB;x A, {similarly for (X, xX,)) so that

Ay x A3/0(A; x Az)=(A;/By) A(A,/By)

and X x X,/d(X,; x X,)=(X/Y})A(X;/Y,). If we let s be sufficiently
large and ¢t =25 we get:

H1.5.8 Lemma. g is homotopic to g; A g,.

Proof. T(&; x &) =T(&)AT(&2), Ty xn)=Tm)AT() and
T(by x by)=T(b;) A T(b,). The result then follows from the fact that
S-duality preserves A products, (which follows easily from (1.4.14). [

I11.5.9 Lemma. With a field of coefficients,
K*(fix f2) = K¥(f)@ H*(X,, Vo) + H*(X{, )@ K*(f3),

K. (fi ><f2)=K*(f1)®H*(X2)+H*(X1)®K*(f2).

Proof. This follows from (I11.5.8), the fact that K* is the kernel of
g*2', (see II14.1) and the Kiinneth formula, using the fact that if
p: V=V, p:WoW,V, V', W, W’ vector spaces over F, p, ¢ linear
maps, then ker(y ® @) = (keryp)@ W + V @ (ker ).

The proof for K, is similar and even easier. [

The main point in the proof of (II1.5.7) is the following which is a
consequence of the Cartan formula.

I1.5.10 Proposition. Let xe K'(f,;Z,), ye H(X ,,Y,; 1), i+j=n+m,
where dim X, =2n, dim X, =2m, j <m. Then

_ px@y) =) (1)
so in particular p(x®y)=0 if i>n, ie. j<m Similarly p(x®y)
=(x,x) p(y) if xEH'(XI’ Y;Z,), ye K (fZ’ZZ)9 izsn
Proof. Recall that (see 111.4.5),

Px®y) = (S ™ (2 (14 m)) Z'[A; X 4,],
where h=(Z'p)g, ¢: X, x Xz/a(Xl X X)) K(Zy,n+m), 0*(1ysm)=XRY.
Since X; x X,/0(X, x X,)=(X,/Y})A(X,/Y;), ¢ factors through
P1 AP0 X /Y, oK@y, i), ¢, : X,/Y,—KEZ,, j), 0F (1) = x, o30)=1y,
o=n(p, A @) wheren: K(Zy,)) AK(Z;,j) > K@z, m+1), 1*(tpm)=1: A 1;

and
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By (II1.5.8), g=g, Ag,, so that h=(Z'n)o(h A h,) where h;=(Z°¢,)g;,
t =2s. We may consider h; A hy=(hy; A1)o(1 Ah,). Now

(hy AD* (A1) =hE0)A ;=0

and it follows that Sqf" %" (2*(1; A1) is defined. From the naturality
of functional operations it follows that

TLS.11 Sq ™ 1 (2 (14 m)) = (1 A B)* S M3 1 (27(5; A 1), where the
indeterminacy on both sides is zero.

H1.5.12 Lemma. Let f:S—T be a base point preserving map,
C(f)=T\JcS. Then. C(f A)=(T AZ) | ) c(SAZ)=C(f)AZ, where
S At
1:Z—Z is the identity.
Proof. Using the cone with the cone on the base point collapsed to
the base point, we have ¢S =IAS, so that C(f)=T|J (I AS). Then

I
CNHANZ=(TAZYV(IASAZ) where the identifications are by
(1 AsAz)~(f(s)Az), which is exactly by f Al. [

From (111.5.12) it follows that the mapping cone of h Al
ChyAl)=C(h)AZK(Z,,j) If x'eH™ ' "'(C(h,);Z,) such that
5x’ = Zs A € HS+'(ZSK(12, l);ZZ), then

3 A1) =30 A1) e HHH(EK@,, ) AKE,, )5 T,)
so that Sqf !, (£'(1;A 1) = z, where
(A D*(2)=Sq* " (x' A Z°1) e H' T H(C () A Z°K(Z,5, j); 2,)
k=m+n=i+j,

ze H'Y IR (Z5(A, /B) A Z°K(Zy, j); Z,), 1:C(hy)—>Z°A,/B;. By the
Cartan formula, Sg**1(x A Z¥1) = Y. Sq°x’ A SqfZ%1,. If
a+B=k+1

z,€ H¥* ' Y420 A /By Ty)
is such that I*z, =8q*x/, then

z= Yz ASqly
atf=m+n+i

has the right property. Then from (II1.5.11) we get that
HL5.13 p(x@y)=SG* ™ (Z(1,s ) Z'[4; X 4,]
=(LAh)*(Zz, A 2°8q%1)) 2'[4; x 4,]
=2z, AW Z°Sq"1))(Z°[4;]1 A Z°[4,])
=2z,(Z°[A,])-(W5Z°Sql1) 2°[4,] .
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Now if dimh32°SqP1;<2m+s=dim2°[A4,], or f<2m—j, then
(h52°Sq”1)) (2°[A4,])=0, and on the other hand
0 if B>j
By = »
Sa {:,2. if B=j.
Since j <m, it follows that for f=2m—j, BzmZj= f and so the only
non-zero term in (I11.5.13) occurs when f=m=}, so that p(x®y)=0.if
j<m. If j=m=p, then a=n+1 so that z,=Sq;*'(Z*:,) and from
(I1L.5.13),
M54 p(x®y)=(Sa;, " (Z°1,) 2°[4;]) - (B 2°(1)*)(Z°[42])
=p(x) - (BZ°0)?) (2°[4,]) -
Since h, = (2°¢,)g, so
W2 (17) = g3 Z° @3 2°(7) = g5 T 03 (17) = g5 2°° .
Then (I11.5.14) becomes
P(x®y)=v(x) (g5 2°(%) (Z°[4.])
=p(x) (Z° ()9 Z5[4,))
=1p(x) ((Zs(yz)) (2% [Az]))
=p(x) P’ [XD=v)-(,))
using (111.4.1), and the fact a,.[4,]=[X,]. This completes the proof of

(I1L5.10. O
By (1.2.5) and (1.2.9), we have an orthogonal splitting

H*(X;, V)= K*(f)+ f*H*(4,,B),
so that
IL5.15 K*(f; x f2)=K*(f)@K*(f2)+ K*(f1)® fFH*(X,, Y))

+ fifH* (X, Q@ K*(f)-
and this is an orthogonal splitting.

Now recall that if xe K™(f;),(x,x)=0 (since (x,x)=2yp(x)=0 by
(I1L4.6), or (x, x)= (x, v,(X))=(x, f*v,(4,))=0 by (I1L3.8)). Hence if
x®ye K*(f1)® K*(f>), then p(x® y) =0, by (II11.5.10). Such x®y form
a basis for K*(f1)® K*(f,) so that the Arfinvariant of p| K*(f,)® K*(f3)
is zero and we have

516 c(p) = c(v|K*(f)®im/F) + clwlimf* @ K*(f,).
Note that we have an orthogonal direct sum:
(K*f)@ImfF)™"=K"(f)® fH"(4;, B,)
+ Y K(f)® fFH (A, B,)

i*n
i+j=n+m



Nowy| Y  Kf)®H!(A4;,B;)=0 by (IIL5.10) and by Poincaré
i+ ;=> :+m X X
duality this is a subspace of half the rank of Z K(f\Y® H’(A,, B,), so
i*n
that the Arfinvariant of y on this space is zero. Similar reasoning applies
to im f* ® K*(f,) and we get: )

I11.5.17
c(p)=clp| K"(f1)® f3 H"(4;, B,)) + c(w| fi* H"(4,, B)) @ K™(f2)-

Let V; be a one dimensional vector space over Z, with bilinear form
(¢, c)=1 where c is the basis element of V,. Let V,, be a two dimensional
vector space over Z, with basis {a, b}, and bilinear form (a, a)= (b, b) =0,
(a,b)=(b,a)=1.

N1.5.18 Lemma. Let (,): V®V—Z, be a non-singular symmetric
bilinear form over Z,. Then V=¢eV,+kV,, where e=0,1 or 2, 2k +¢
=dimV.

Proof. Consider the mapg : V—Z,, ¢(x)=(x, x). This is linear since

(P(x+y)=(x+y’x+y)=(x7 x)+(y, X)+(X,J’)+(y,}’)
= (%, )+ (y, ¥) + 2(x, y) = 9(x) + @(y).

If ¢ =0, the (, ) is sympletic and non-singular, so that there is a symplectic
basis which gives an isomorphism V = kV,,.

Suppose ¢ +0. Since (,) is non-singular there is a2 unique element
v e V such that ¢(x)=(x, v) for all xe V. Let W =ker¢ C V, T = subspace
generated by v C V. We consider two cases:

Case 1. p(v)=(v,v)=1, ie. v¢ W. Then V=W+T, W and T are
orthogonal, (,) is non-singular and symplectic on W so W =kV,, and
T=V;,.Hence V¥, +kV,.

Case2. p(v)=(v,0)=0, i.e. ve W. Let ue V such that p(u)=(u, v)=1,
so that if S is generated by u, V=W +§. Let

R = (apnihilator of u)n W = {y e V such that (y, u)=(y,v) =0} :

Then W=R+.T' so that V=R+ T+ S and R is orthogonal to T+S.
Now (, ) is symplectic and non-singular on R, so Rx~kV,. In T+ S, we
have (u, u)= @(u) = (u, v)= 1, (v, v) = @(v) = 0. Then
+v,u+v)=ww+@)=ww)=1,uu+v)=uu)+ uv)=0
so that with the basis {u,u+ v}, T+ S=2V,. O
I11.5.19 Remark. Note that &V, +k Voze,V, +k,7,,05¢,Z2, if

and only if &, =¢, and k, = k,, so that the decomposition of (111.5.18)
is uniquely determined.

Let U,V be Z, vector spaces, q: U—Z, a quadratic form with
{,>: U® U—Z, as associated bilinear form, (,): V® V—1Z, a bilinear
form. On U®V we may define a quadratic form v:U®V—Z, by
defining it on basis elements by p(x® y) = q(x) - (y, y), (compare I11.5.10)),
so that y has {, ) - (,) as associated bilinear form.

Let U,, U, be two dimensional vector spaces over Z, with quadratic
forms g, q, respectively, with c(go)=0, c(q;)=1, (see IIL1.5), and let
Vs, V; be as above.

M1.5.20 Lemma. U@V, = U, U@ V,=2U,, i=0, 1, as spaces with
quadratic forms.

Proof. Calculate on bases of the various spaces, and use (I1L.1.6). D
Proof of (11.5.7). By definition

c(fy X fa, by xby)=c(y on K*(f; % f2)) ]
=c(p| K"(f)® f§ H™(A,, By))+ c(y| fi*H"(4,, B)® K™(f2))

by (I11.5.17). By (IIL5.10), y on these two spaces is the tensor product
of the quadratic form on the K* factor and the bilinear form on the
im f* factor. Let ¢; = c(f;, b;) so that

KMf)ze U+t Uy, K"(f))=c, U+ 15U
Since c(f; x f5, by x by) is defined by hypothesis, so that

(fi X f210(X; x X3)),
is an isomorphism with Z, coefficients, it follows from (I11.5.6) that for
each i, either a) Y,= B, =0 or b) K*(f;,1)=0. In case b), the appropriate
term, (say if i=1, im f* ® K*(f,)) is zero, so we may assume that for
each non-zero term a) holds, i.e. B; =0 and hence the bilinear forms on
H"(A,, B;)= H"(A,), H"(A,, B;) = H™(A,) are non-singular.
Let H"(A,)=¢, V; + k, V. Then by (111.5.20), we have that

K'(f)® fFH™A) = (c, U, +t, Up) @&,V + k, Vo)
=8, Uy + (85 + 260k, + 28 k) U,
A similar argument shows that

SEHY A @ K™(f2) = ca8 Uy + (828, + 205Ky +28,k1) U



so'we get
cw | K"(f)® fFH™(Ay))=c ¢,
cp| fFHMAD®K™(f>))=c8,, and c(p)=c s, + €28, -

Now by Poincaré duality rank H" ¥(A,)=rank H"*7(4,) so that mod 2
1(A4,) =rankH"(4,) = ¢, and similarly yx(4,)=¢e, mod2 which com-
pletes the proof of (II1.5.7). O

Since rank K,(f;)=0mod2 and H,(X))= K,(f;)+aH,(4,) it
follows that y(X;) = x(4,) =¢, mod2 and similarly x(X,)= x(4,)=e¢,
-mod?2.

IV. Surgery and the Fundamental Theorem

In this chapter we develop the techniques of surgery for constructing
normal cobordisms and use them to prove the Fundamental Theorem.

The ideas of surgery have their origins in the theory of 2-manifolds,
in the process of “cutting off handles”, and in general, in the theory of
Marston Morse of non-degenerate critical points of differentiable
functions. A good modern exposition of the Morse Theory and the
applications due to Smale of it to study of differentiable manifolds has
been given in the two books of Milnor, [41] and [42].

§ 1. Elementary Surgery and the Group SO(n)

We now describe the surgery process on a given smooth manifold M™.

Suppose ¢:SP x DI*1 > M™ p+q+1=m, is a differentiable em-
bedding, into the interior of M if dM 0. Let M,= M — interior
©(SPx D7*1). Then M, =M U ¢(S? x §9). We define M'= M, uD?*' x §9,
with @(x, y)identified to (x, y)€ 87 x §2C DP*! x §%. Then M’ is a mani-
fold, 0M’ = 0M, and we refer to M’ as being the result of doing a surgery
using @, on M. Further, we may define a cobordism W "' between M
and M’ asfollows: W, = M x [0, 1Ju(D?*! x D***!)with the identification
(x,y)eSPx DTt CaDP*! x DY) is identified with (p(x,y), 1)CM x 1.
Clearly 0W,=Mu(0M x I)uM’ and we call it the trace of the surgery.
Unfortunately W, is not a smooth manifold with boundary as it stands,
but has “corners,” i.e. points such as in ¢(S? x §9,8M x 0 and oM x 1,
where the coordinate neighborhoods naturally look like one quadrant
of the plane times R™" !, instead of a Euclidean half space. However,
there is a canonical way to make it a smooth manifold with boundary,
a process called “straightening the angles” which is described for example
in [18, Chapter I].

If Wm*!is a manifold with W =Mu(@M x )uM' and W' has
W' =M u(@M’' x DuM”, then we may define the sum of the two
cobordisms by taking W=WOUW’' and identifying M'c W with
M’ C @W”. Then it is clear that 8W =M uU(@M x DUM".



IV.1.1 Theorem. Let W be a cobordism with W = M U(0M x )uM'.
Then there is a sequence of surgeries based on embeddings @,, i=1, ...k
each surgery being on the manifold which results from the previous surgery,
and such that W is the sum of W, , ..., W,

P’
The proof is an immediate consequence of the Morse Lemma, and
we refer to [42] for a proof,

IV.1.2 Proposition. If M’ is the result of a surgery on M based on
an embedding ¢ : S* x D**'— M, then M is the result of a surgery on M’
based on an embedding w:5* x DP*1 > M’ and the traces of the two
surgeries are the same.

Proof. Let W, be the trace of ¢ so that W,=M x I | ) DP*!x De+1,
@

If we set M, =M — interior ¢(S? x D?*1), then we may equally well view
W, as My x IU(SP x D*** x HuDP*! x DU+, and SP x D1*1 x [uDP*!
x D**! may be reparametrized to be DP*!x D?*!, Thus we may view
W, as My x IuDP*! x D4*1, united along S? x ¢ x I. Now from the
obviously symmetrical nature of this description, the proposition
follows. [

1V.1.3 Proposition. Let ¢ :S? x D**'— M™ be a smooth embedding

in the interior of M, p+q+1=m, and let W, be the trace of the surgery

based on @. Then W, has M | ) D**' as a deformation retract, where
F

P=0|5 x0. .
Proof. W,=(M x I)| J(D"*! x D?**), image ¢ CM x 1, so we may
P .
deform M-xI to M x1 leaving M x 1| )(D?*! x D**1) fixed. Then

L4
D?*1x D**' may be deformed onto (D”*! x 0)uU(S? x D?*1), leaving
the subspace fixed. This then yields the deformation retraction of W, to
MDDt O ,
F

IV.1.4 Propesition. (a) Let f:(M,0M)—(A,B) be a map, M an
oriented  smooth m-manifold, (A, B) a pair of spaces, ‘and let
®: 8P x D** s interior M be a smooth embedding, p+q+1=m. Then f
extends to F:(W,,0M x I)—~(Ax I, BxI) to get a cobordism of f if
and only if fo § is homotopic to the constant map S*— A.

(b) Suppose in addition that n* is a linear k-plane bundle over A,
b:v*—y* is a linear bundle map covering f, v=normal bundle of
(M, 0M) C(D™*¥, S™**=1), k> > m. Then b extends to b: w—n covering F,
where = normal bundle of W,CD"**x I if and only if b|(v|@(S?)
extends to w|(D?*! x 0), covering F|D?*1 x 0. ne-

Proof. Since M | ) D**! is a deformation retract:of W, it follows
% ,
that f extends to W, if and only if f extends to M | ) D**!. But the latter

@

is true if and only if f- & is null-homotopic, which proves.(a).
For (b), it follows from the bundle covering homotopy property that
since M ( ) DP*! is a deformation retract of W,,, b extends to w if and only

@
if b extends to w|(D?P*1 x 0). [

If (£, b) is a normal map (see Chapter II), ¢ : 87 x D?* 1 Interior M™,
m=p+q+1, f:(M,3M)—(A4, B), and if the trace of ¢ can be made
a normal cobordism by extending f and b over W, we will say that the
surgery based on ¢ is a normal surgery on (f, b).

From (IV.1.1) we may deduce easily that any normal cobordism
rel B is the composite of normal surgeries.

We are here principally interested in normal surgery as a method of
constructing normal cobordisms, rather than vice versa.

Let ¢:SPx D?*!—InteriorM™ be an embedding m=p+q+1,
W, the trace, and M’ the result of the corresponding surgery. Now we
will discuss the effect of surgery on the homotopy of M, namely the
relation between the homotopy groups of M and M’, below the “middle
dimension.”

IV.1.5 Theorem. If p< " 5 1 then m,(M")=n,(M) for i<p, and
7, (M) = 7, (M)/{®, 7,(S7)}, where {X} denotes the Z[n,(M)] submodule
of n,(M) generated by X.

Proof. By (IV.1.3), W, is of the same homotopy type as M | ) DP*1.

[4
Hence n(W,)=nr(M) for i<p, and n,(W,)=n,(M)/{P,n,(S")}. By
(IV.1.2) and (IV.1.3), we have also that W, =W, =M’ U Dt where
%
p: 8%x DP* 1 M’ gives the surgery which makes M’ back inte M. Hence

n(W,)=mn(M) for i<q, and =n(W,)=n,(M){p,n,(59}. Since
m—1
2

The analysis for p near L;— is much harder, and will be dealt with in

later sections in the 1-connected case. '

Let (f,b) be such that f:(M,0M)—(A4,B), b:vF—y*, k>>m, n a
linear bundle over 4, v=normal bundle of (M, dM)C(D™**, §m*k~1),
and let @:SP— InteriorM, be a smooth embedding, Suppose that f
extends to F: M— A4 where M =M | ) D***. We consider the problem

p< , then > p, so m(M")=n,(W,,) for i < p and the result follows. [

a— ) @
of “thickening M to a normal cobordism” i.e. of extending @ to a smooth



embedding ¢ :S?x D**!—InteriorM”, m=p+q+1 such that
P=¢|8?x0, and so that F:(W,,0M xI)—(AxI,BxI) can be
covered by a bundle map b: w—n extendmg b, where o is the normal
bundle of W, in D" ** x I, F is the extension of F, unique up to homotopy.

IV.1.6 Theorem. There is an obstruction O €n,(Vy ,.,) such that
0 =0 if and only if § extends to ¢ such that F: W,— A can be covered
by b:w—n extending b as above.

Here V} ., is the space of orthonormal k-frames in R**7*1,
Proof. Tf we consider M C D™*¥ since k is very large, we may extend
the embedding to M | ) DP*'cD™** x I, with D*** coming in ortho-

7]
gonally to D™** x 0, and D?*! smoothly embedded. The normal bundle
y of DP*! in D™**¥ x I is trivial, i.e. DP*! x RT*¥*! = total space of y.

Now F defines a homotopy of f@ to a point, which is covered by
a bundle homotopy b on v|@(S?), ending with a map of v|@(S?) into a
single fibre of 7, i.e. a trivialization of v| $(S?), which is well defined up to
homotopy. This trivialization of v| (S?), which is a subbundle of y| $(S?)
which is also trivial, therefore defines a map o of S? into the k-frames in
R¥*¥+1 0: SP—V, .+, and thus defines an element O e n(V; ,.,). Now
if @ extends to ¢ and b extends to b as above, then the normal bundle
w of W, restricted to D!, w|D?*! is a subbundle of y extending
v| @(SP), and b defines an extension of « to o : DP*'—V, .. Hence
0=0in 7 (Vi 441)

Conversely if 0 =0, then a extends to o’ :D**'—V; .4, and o
defines a trivial subbundle ' of dimension k in y, extending v|@(SP).
The subbundle " orthogonal to ' in y is trivial (being a bundle over
DP*1) and the total space of w” is D?*! x R1*1C DP*1 x RI***1 = total
space of y. Since w”|@(S?)= the normal bundle of $(S?) in M, this em-
bedding defines ¢ : S? x R*"' CM, and o defines the extension of b to
b : w—n, where by construction w|D" e, O

Now we shall study V; ,., in order to analyze the obstruction 0,
(see [607).

Recall that the group SO(k+ g+ 1) acts transitively on the set of
orthonormal k-frames in R**7*! and SO(q + 1) is the subgroup leaving
a given frame fixed. Hence V, ,,, =SSOk +q+1)/SO(g+1) and V, .,
is topologized to make this a homeomorphism, (see [60] or [32]). Further,
we recall (see [60] or [32]) that SO(n)->SO(n + 1)-B " is a fibre bundle
map, where p is the map which evaluates an orthogonal transformation
at the first unit vector, ie. p(T)=T(10,...,0), TeSOMn+ 1),
(1,0,...,0)eS"C R**1,

IV.1.7 Lemma. i, :7,(SO(n)—n(SO(n+ 1)) is an isomorphism for
i<n—1,onto forign—1

Proof. n{S")=0 for i<n, so the result follows from the exact
homotopy sequence:

—*mﬂ(S”)——*ﬂ;(SO(n)) m(SO(n + 1) -F& m(S")— -

1V.1.8 Lemma. The map p:SO(n+ 1)—S" is the projection of the
principal SO(n) bundle associated with the oriented tangent bundle of S".

Proof. Let f =(fi,..., f,) be a tangent frame to S* at v, =(1,0,...,0)eS".
Define a map ¢: SO(n+ 1)— F = bundle of frames of S", e(T)= frame
T(f,), ..., T(f,) at T(vy) e S™ Then e is onto, and it is obviously 1-1.
Hence ¢ is a homeomorphism and the lemma follows. [ '

IV.1.9 Lemma. The composite n,(S") 5> w,_ (SO(n)) 2>, ((S"™1)
is the boundary in the exact sequence of the tangent S"~* bundle to S™ and
is =0 if n is odd, multiplication by 2 if n is even.

Proof. The tangent S"~! bundle is obtained from the bundle of
frames by taking the quotient by SO(n— 1) CSO(n) = the group of the
bundle. Hence, we have the commutative diagram

S0(n)—E— SO(n)/SO(n—1)=8""!

i

SO(n+ 1)—— SO(n+ 1)/SO(n— 1)

| b

se Identity Sn
It follows that in the exact sequence for the right hand bundle
=p,0:m(S)—m_(S"Y).

Now by the Euler-Poincaré Theorem the tangent sphere bundle has
a cross-section (there is a non-singular tangent vector field) if and enly
if the Euler characteristic y(M) = 0. More precisely, the only obstruction
to a cross-section to the tangent sphere bundle of a manifold M™ is
¥(M)g, where g € H"(M ; Z) is the class dual to the orientation class of M,
(see [32]). Now in case M = S", the obstruction to a cross-section can
also be identified with the “characteristic map” (see [60, (234)])
0:7m,(S)—n,_,(S"" ). Hence 0 =0 if n is odd, multiplication by 2 if n
iseven. [

IV.1.10 Theorem. p, : 7, (SO(n+ 1))—n,(S") is onto if and only if
n=13o0r7.

Proof. 1f p, is onto, then there is a map o : S"—SO(n + 1) such that
pa ~ 1, and hence the principal bundle of r5. has a section and is therefore
trivial, i.e. $" is parallelizable. But it is known (see [36], [5]) that §"
is parallelizable if and only f n=1,3 or 7. J
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IV.1.11 Corollary. kernel i, :m,_(SOn)—=,_(SOm+1), is Z
ifniseven,Z,if nisodd and n+1,3,7,and 0 if n=1,3 or 7.

Proof. kernel i, =0mn,(S") = n,(S")/p,m,(SO(n+1)). If nis odd, by
(Iv.19), p, 7, (SO(m+ 1))>27,(S"), and by (IV.1.10) is not the whole
group, if n#1, 3 or 7, hence 7,(S")/p,n,(SOn+1)=Z, if n is odd,
nxl,30r7.1fn=1,30r7,p, is onto, so kernel i, =0.

If n is even, by (IV.1.9) p,0 is a monomorphism, so

91 (8> 7, (SOMm))
is a monomorphism, so kernel i, =Z. [J

IV.1.12 Theorem. =V, ,)=0 for i<m, n,(V, )=1Z, if m is odd,
Z if m is even, k2 2. Further j, :n{V, )— (Vi1 ) is an isomorphism
for igsm, k=2, and j,:7m,(Vi m) = TpW(S™) > 7,(Vy. ) is onto, and an
isomorphism if m is even, where j is inclusion.

Proof. Take k=2 so that V, ,=SO0(m+2)/SO(m) and we have a
natural fibration over S"*!=SO0(m+2)/SO(m+1) with fibre
S™"=S80(m+ 1)/SO(m). Also we have a commutative diagram of fibre
bundles:

SO(m+ 1) —E2— 8"
i
SoOm+2)—— ¥, ,
p
sm +1 Identity Sm +1 .
It follows that we have a commutative diagram
Tt 1 (8™ ) Lo 7, (S™FY)
0 S
TW(SO(m + 1)) —2— 7, (S™).

By (IV.1.9) p,0=0 if m is even, p, &= multiplication by 2 if m is odd.
Hence ' = p,, 0, and from the exact homotopy sequence of the fibre bundle

75:'+1(Sm+ 1) = m,(S™) ey ni(VZ,m) _— ni(Sm+ 1) =0

for i<m, we obtain j, is onto for i<m, and my(V,,)=0 for i<m,
(V2 m)=Z # m is even, and =, (V, ,)=7Z, if m is odd.

Consider the natural inclusion V; ,— V., given by including
SO(m+k)—SO(m+k+ 1), so that the SO(m) subgroup is preserved.
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Then we get the commutative diagram:

SO(m) 1 SO(m)

SO(m -+ k)—s SO(m+k + 1)

I |

J
Vk, m Vk +1,m
and a corresponding map of exact sequences

n{SO(m))— mn(SOm+k) — m(Vi,) — m;_1(SO(m))

7(SO(m)) — n(SO(m+ k+ 1)) — m (Vi1 1 ) — 7~ (SO(m)) .

By (IV.1.7), i, is an isomorphism for i<m+k—1, and since k2 2, it
follows that j, is an isomorphism for i<m. [J

The following theorem describes what can be accomplished by surgery
below the middle dimension. It is closely related to theorems of
Mazur [40] and .Brown [15]. The ‘proof given here is essentially a
translation into the category of differentiable manifolds of an analogous
theorem in the category of CW complexes due to Moore [16, Exposé 22
Appendix]. ‘

IV.1.13 Theorem. Let (M™,0M™) be a smooth compact m-manifold
with boundary, m 2 4, v* the normal bundle for (M, 0M)C(D™**, Sm*k~1),
k>>m. Let A be a finite complex, BC A, n* a k-plane bundle over A4, let
f (M, dM)—(A, B) and let b:v—n be a linear bundle map covering f.
Then there is a cobordism W of M, with dW=MuU@M x HuM’,
OM'=0M x 1, an extension F of f, F:(W,éM x I)—(A4, B) with
F|OM x t=f|0M for each tel, and an extension b of b, b:w—1,
o = normal bundle of W in D™** x I such that f'=F|M' :M'—A is

- ed
[7]-00””6(1 .

(We shall call the cobordism of the above type a normal cobordism,
in a slight abuse of language.)

(We recall that [a] = greatest integer < q, for a real number a.)

Proof. Let us assume by induction that f:M— A is n-connected,
m

n+1= [ > | and show how to‘obtain W, F etc. as above, with f": M'— 4

{(n + 1)-connected.
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If n +1 =0, we must only show how to make n, map onto. Since Aisa
finite complex, 4 has only a finite number of components, A= A4, U---UA,.
Let a;¢€ A;, and take M'=MuUSTuU---UST, where ST is an m-sphere.
Let W=MxIuD?*1u---uD"*! and let F: W—A be defined by
F\M x t = f for each t € I, F(D}?") = a;. Since the normal bundle of D™ is
trivial, and the extension condition on the bundle map is easy to fulfill
on the D7, it follows easily that b extends to b over W. Clearly f'=F|M’
is onto 7,(A4), which proves the first step of our induction.

Now assume n=1, f : M— A is O-connected. Let M, and M, be two
components of M such that f(M,) and f(M,) are in the same component
of A. Take two points x; € interior M;, i=1, 2, and define §:5°—M by
?(1)=x,, p(—1) = x,. Since P(S°) C a single component of 4, it follows
that f: M— A extends to f: M { J D'— A. Then since m 24, it follows

@
from (IV.1.6) and (IV.1.12), that @ extends to ¢ :S° x D"— M defining
a normal cobordism of f to f’ and reducing the number of compo-
nents of M. Using this argument repeatedly, we arrive at a 1 — 1 corre-
spondence of components.

Now we consider the fundamental groups. Take presentations,
i.e. systems of generators and relations, n,(4d)={a,,...,q,;7,....7;},
n(M)={x;,..., X3 V1> ..., yi} so that r, is a word in a4, ...,a, (y;is a
word in x4, ..., X,) each i, and 7,(A4) is the quotient of the free group on
di, ..., a; by the smallest normal subgroup containing r,, ..., r,, (similarly
for n,(M)). Now take s disjoint embeddings of S° in an m-cell D™ C int M,
¢ :| ) §°— M and assume f(D™) =+, the base point of 4. We assume the

s

base point of M is in D™ Consider M=M () () D'. Then
[

7 (M)=mn,(M)+ F where F is a freec group on s generators g,, ..., d,,

where each g, is the homotopy class of a loop in D™u | ] D! consisting

of a path in D", one of the D'’s, and another path in D™ Hence
Ty (M) ={X1, .0s Xis @15 -3 53 Viserns Vi)
Define f:M— A4 extending f by letting the image of the i-th D!

traverse a loop representing the generator a;. Then foim (M)—> 7y (4)

is onto, and -furthermore we may represent f* on the free groups by a
function a(x;)=x;, x; a word in a,, ..., a,, and «(g;) = a;. Then as above
we may extend ¢’ to ¢ : | ) S° x D"~ M to define a normal cobordism

of f, and with W,~M, and F: W,— A4 homotopic to f : M— A. (Here

- W, is the trace of the simultaneous surgeries.) By (IV.1.2), n,(M") = =, (W,)
where OW,=Mu(OM x )UM’, and hence f,: TCI(M )—7n,(4) is onto,
7, (M) has the same presentation as n, (M), and f}, is also represented by
the function o on the free groups. In particular f'is 1-connected.
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Let us consider the exact sequence of the map f : M— A4 in homotopy,
s Ty 1 ()= B (M) > 1 (A) > 7, ()=

Recall that the elements of the groups =, , , () are defined by commutative
diagrams
s——-=5M

R g

Dn+1 —-E—-> A
where k is inclusion of the boundary and all maps and homotopies are
base point preserving (see [28]). Thus # defines a map f: M U Dl 4
extending f.

IV.1.14 Lemma. Let f:M—A be n-connected, n>0, and let
(ﬂ a)en,.,(f) be the element represented by the above diagram (x). If
MUD"“——»A is defined by B as above, then n(f)=mn(f)=0 for

ign, and s 1(f) = 7,4 1(f)/K, where K is a normal subgroup containing
the n,(M) module generated by the element (8, o) in 7, . (f).

Proof. Consider the commutative diagram
—my 1 (f) — (M) L m(A)—
Ji is 1

—’n1+1(f)'_’“1 (M \KJ Dn+1) —FL*TEI(A)—’-

Here i: M—M U D"*! is inclusion, and j, is induced by (1, i) on the

diagram (#). Ciearly i, is an’ isomorphism for <n and onto for I=n,
so it follows easily that n(f)=n(f)=0for I<n.
Clearly any map of S”into M | J D"*! is homotopic to a map into M,

so that any pair (§, o)
s" a M U Dn+ 1

pri B :L

is homotopic to another (8, ix

s° M iﬁMUD'H‘l
[ 4
jf 7
)k Py [ S
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Hence j, : 7, ,(f)—mn,+1(f) is onto. Clearly (B, «) is in the kernel j,
and hence everything obtained from (S, ) by the action of n,(M) is also
in kernel j,, which proves the lemma. [

Now we recall that from our previous work we may assume f: M— A4
is l-connected and that furthermore the fundamental groups have
presentations 7, (M)={x;,..., %4 G15.--»9s> V1>---sV1i}» ¥; words in
X1, X, and my(A)={ay,...,a5; 1, ...,1}, with f, 7 (M)—>m,(4)
presented by the functlon ox ) x{a), a word in ay, ...,a,, j=1,....k,
a(.gl) a;, i= 1

IV.1.15 Lemma. kernel f, is the smallest normal subgroup containing
the words x; *(x;@) j=1,....,kand r,@), i=1, ..., t, where x}(g) and r,(g)
are the words in a,, ..., a, with the a;'s replaced by g;’s.

Proof. Adding the relations x; !(x}(g)) makes g,, ..., g, into a set of
generators. Adding the relations r;(g) makes the group into m (A),
with « defining the isomorphism. The map « annihilates  x; '(x}(g))
and r(g) so that these clements generate kernel f, as a normal
subgroup. [

Now for each element x“‘(x,(')) and r(g) choose an element

, T; € T,(f) such that 0X; = x; 1(x“,(‘)) o7, =r,{g), and choose representa-
tlves X;, 7; such that they are dls_]omt embeddmgs of §! into M, which
is poss1ble since m=4. Let M =Mu| D% with the D?s attached by
these embeddings. It follows from (IV.1.14) that f,:n (M)—n,(4)
is an isomorphism. Using again (IV.1.6) and (IV.1.12), it follows that there
is a normal cobordism W, and map F:W—4 such that MCW is a
deformation retract and F|M = f, so that F,:mn(W)—mn(4) is an iso-
morphism: ‘By (IV.1.2) and (IV.1.3) it follows that if M’ is the result of
the surgery, then f,:7;(M')—mn;(A) is an isomorphism, and hence
7,(A)—m,(f) is onto and therefore m,(f) is abelian.

Now we proceed to the induction step. Suppose f:M—4 is
n-connected, n>0, and if n = 1 suppose #;(M)— =, (4)is an isomorphism,
so that 7,(f) is abelian.

1V.1.16 Lemma. =, ,(f) is a finitely generated module over n,(M).

Proof. If f is replaced by an inclusion f,: M— A’, where M and 4’
-are still finite complexes, then =,(f)~n;(A4’, M). Since 7,(4’, M)=0 for
i< n, all the cells of dimension <nin 4’ can be deformed into M to get
anew A” such that r: (4', M)— (4", M), r,, 1 n,(4A’, M) = 7,(A”, M), and A"

is a finite complex with all cells of dimension <nin M, 4" =Mu { ) DI*!
i=1

v cells of higher dimension. Let M, A" be the universal coverings of

M, A". Then n,({l” M)= (A", M) and since A” and M are 1-connected

n(A", M)= H(A", M) as =,(M) modules, by the Relative Hurewicz
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Theorem. But clearly the preimages of the (n + 1) cells of A" are.the (#4-1)
cells of A”, so that modulo the action of =, (M) there are only a finite
number of them. Hence H,, (4", M) is finitely generated over m, (M)
and the lemma follows. ]

Now we may represent each of this finite number of elements int
7,+1(f) by a map

Sn ai iM

|

prtl B | A.
fnt+l1= [—';—] then n< l;— and it follows from Whitney’s embedding

theorem (“general position”) that we may choose (B;, «;) so that the o, are
disjoint embeddings. Setting M =Mu U Dr*t Dr+t attached by o,

f:M— A defined by the B/s, we may apply (IV.1.6) and (IV.1.12) to
thicken M into a normal cobordism W of M, and using (IV.1.14), 7,(f)=0
for I<n+ 1. T M’ is the other end of W (the result of the surgeries), from
(IV.1.2) and (IV.1.3) it follows that m,(f")=m,(f)=0 for i<n+ 1. This
completes the proof of (IV.1.13). O

Note that we have always used the low dimensionality of the groups
involved to ensure that the obstruction @ was zero (IV.1.12)-and to get
representatives of elements of m, . , (/) which were embeddings. These are
two difficulties which must be treated in order to get strenger theorems
in higher dimensions.
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Let (4, B) be an oriented Poincaré pair of dimension m, let M be an
oriented comipact ‘smooth m-manifold with boundary 0M, and let
f : (M, 3M)—{(A, B) be a map of degree 1. Let #* be a linear k plane
bundle over A, k >>m, and let v* be the normal bundle of

(M, dM) C (D™, smHk—1y,

Suppose b:v—n is a linear bundle map lying over f. Recall that in
Chapter 11 we called (f,b) a normal map, and we defined a normal
cobordism of (f, b) rel B as a (m + 1)-manifold W with

W=Mu(@Mx HuM',

together with an extension of f, F:(W,0M x I)—(A, B) such that
F|0M x t = f|0M for each t €I, and an extension b of b to the normal
bundie @ of W in D™+ x I.
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Suppose now that A4 is a 1-connected CW complex, m= 5, and that
(f1oM), : H (0M)— H,(B) is an isomorphism.

IV.2.1 Theorem. There is a normal cobordism rel B of (f,b) to (f’, b")
such that f':M'—A is [—';-} +1 connected if and only if e(f,b)=0.

In particular if m is odd this is true.

The proof of this theorem will take up the rest of Chapter IV. First
we note the corollary:

IV.2.2 Corollary (Fundamental Theorem). The map f’ above is a .

homotopy equivalence. Hence (f,b) is normally cobordant relB to a
homotopy equivalence if and only if o(f,b)=0. In particular it is true
if mis odd.

Proof of Corollary. Look at the map of exact sequences
— H{(0M')— H(M)— H(M',0M") — H,_, (0M")

('1oM), Si i Ulomy,
— H(B) — H{(4) — H{(4,B) — H,_,(B).
By hypothesis, (f|0M), H (0M)—H,(B) is an isomorphism, and
OM'=0M, f'|oM' = f|0M, so (f'|0M’), is an isomorphism in each

ﬂ} + 1-connected, f; : H(M')—H,(A)

dimension i. Since f': M'— A'is [ 3

is an isomorphism for i £ _’21 Hence by the Five Lemma,

Ji  H(M', 0M")—H(A, B)
is anisomorphism for i < —';— Since f’is a map of degree 1, it follows from
Poincaré duality that f'*:H/(4)—H/(M’) is an isomorphism for
jzm— % = % (see (12.6)). Now f'*: Hi(A)— HI(M') is given, by the
Universal Coefficient Theorem, by f'*=Hom(f, Z) + Ext( fri-1-1),
where f,;: H(M")— H,(A). Since S+ is an isomorphism for i< %

it follows that f'*: H/(4)— H/(M") is an isomorphism for js _’22, and

hence f'*: H/(A)— H/(M')is an isomorphism for all j. Hence H*(f")=0,
so by the Universal Coefficient Theorem H(f)=0, and since M’ and 4
are 1-connected, by the Relative Hurewicz Theorem and the Theorem of
Whitehead, f': M'— A is a homotopy equivalence.
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The remainder of § 2 will be devoted to-the preliminaries of the proof
of (IV.2.1).

By (IV.1.13), we may assume that f:M—A is [% -connected,
ie n{(f)=0 for i g[—z— . Set l=[7 . Since A, M are l-connected, it

follows from the Relative Hurewicz Theorem that w, . (f)= H, :(f)-
Then we have a commutative diagram:

—— 1 (f) —— m(M) —te n(A) ——0

A

— H(f)—— H(M) 5, H(A) —0

where h is the Hurewicz homomorphism, and we use f, to denote the
map of homotopy groups induced by f. We recall that f, is onto and
splits by (1.2.5). It follows that (kernel f,)), = h(kernel f..),.

We recall Whitney’s embedding theorem (see [42] for a proof): Let
c:V®— M™ be a continuous map of smooth manifolds, m 2 2n, m—n>2,
M 1-connected, V connected. Then c is homotopic to a smooth embedding.

Since I < { m, it follows from Whitney’s embedding theorem that any
element x e 7, {(f) may be represented by (B, §), where @ is a smooth
embedding of §' in Interior M, and B:D'*'— A, Bi= f. Let
M=M|)D'**, f:M— A extending f, defined by B. :

@
Now we have two problems to consider: ,.,
(1) If m= 2, then the obstruction 0@ to thickening M, f to a normal
cobordism lies in a non-zero group w,(V, ;) (see (IV.1.6) and (IV.1.12)).
(2) Though (IV.1.14) tells us how to compute 7, ,(f), the relation

between this and =, (f") is no longer obvious if [= {_r;_], where f' is

the map on the result of the surgery (c.f. (IV.1.2)).

The remainderof § 2 will be devoted to some preliminary results on
question (2). ,

For the remainder of this paragraph we assume (f, b) is a normal map
satisfying the hypotheses.-of (IV.2.1) and f : M— A4 is g-connected where

2

IV.2.3 Lemma. f is(q+ 1) connected if and only if f, : H(M)— H,A)
is an isomorphism, i.e. if K (M)=0.

Fn;} =¢, sothat m=2q or 2q+ 1.
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Proof. By the Relative Hurewicz Theorem 7. ,(f)=H,.,(f), and
by (1.2.5), f,: H,,(M)— H, ,(4) is onto so that

q+1(f)=(kerf*)q'= Kq(M) D

Thus we shall study the effect of surgery on homology. To. simplify
our arguments we will use the following lemma, which reduces the
problem to the case of closed manifolds.

Let (fi, b1). (f2, by) be two disjoint copies of the normal map (f, b),
so that f;:(M;,dM,)—(A,, B) is f ‘renamed, etc., i=1,2. Then by
(I13.2), A;=A4,0A4, with B, identified to B, is a Poincaré complex
(the “double” of 4) My =M, UM, along M, =M, is a smooth closed
oriented manifold, and f; = f, U f,, by = b, Ub, defines a normal map
(f3,b3), fa:M3— Aj;. Further it is easy to see from the Mayer-Vietoris
sequences (since (f | 0M), is an isomorphism) that

IV.24 H(f;)=0fori<I+1and
Hy i1 (f) = K(M3) = K (M) + K (M) .

Now suppose ¢ :5?x D" ?—intM, is a smooth embedding such
that f; - @ ~ * and such that ¢ defines a normal surgery on M, and by
inclusion on M; (with respect to (f;, b;) and (f3, by)). If a prime denotes
the result of surgery then we have

IV.2.5 M; = M; UM, and K ,(M3) = K ,(M}) + K, (M,).

This follows easily from the fact that we have not changed the factor
M, in the decomposition of M;.
Hence we get:

1V.2.6 Proposition. The effect of a normal surgery on K M) is the
same as the effect of the induced surgery on K (M), and hence to compute
its effect we may assume M =B =§.

This will simplify the algebra in our discussion.

Let ¢:8x D" ?—intM be a smooth embedding which defines a
normal surgery on M (with respect to (£ b)). Set My =M —int @(S? x D™ 9),
and let M'=MyuDi*! x S 97! with @(5% x S"~97) identified with
57x Sm"4"1=g(D?*! x Sm~471), Then M’ is the result of the surgery
on M. Since ¢ defines a normal surgery, H(M')= H,(4) + K (M"), and
we wish to calculate the change of K (M) to K, (M’) Whlch is the same as
the change of H,(M) to H,(M').

Now we recall some useful facts relating Poincaré duality in manifolds
and submanifolds.

IV.2.7 Proposition. Let U be a compact m-manifold with boundary,
f:UCintW, W a compact m-manifold with boundary,

g:(W,0W)C(W, W —intU),
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oriented compatibly. Then the diagram below is commutative :

HYW, W) «—L— HYW, W —int U)—=— H4(U, 8U)

(4] nl @, IWhn Ul nl
H, W)——— H, (W) ——&—H, (1)
so if xe H(U/oU), f,([UInx)=[W]1ng*(x), whereg: W /oW —U/oU,
(interpreting the cap products appropriately).
Proof. If f:(U,0U)—(W, W —intU), then f [Ul=g,[W], since
we have oriented U and W compatibly. Then the commutativity follows
from the naturality of cap product (see Chapter I, §1). O

IV.2.8 Corollary. Let E = normal tube of f:N"CW™, N closed
oriented and let §: W /6W — E/OE = T(v), v = normal bundle of N"C W™,
Let U e H™ ™(T(v)) be the Thom class. Then

[Wlng*U=f,[N].
Proof. Since [E]nU =[N1], by (IV.2.7),
LLIEInU)= £ IN]1=[W]n(@*U)). O

Recall now the definition of the intersection pairing in homology:
HM)®H,_,M,M)—ZL
defined by x - y =(x/, y') = (x' U y') [M] where x' € H" “4M, M),y e H{M)
suchthat [M]nx' = x € H(M),[M]ny =ye H,_(M, 0M). Thisinduces
an interséction product
“HM)®H,_ (M)—L
by
S xy=xj, () j: M—(M, 0M).
The properties of the pairing ( , ) on cohomology induce analogous
properties for the intersection pairing, suchas
(@) With coefficients in a field F, H(M; F)®H,,_,(M,0M; F)—F
is a non-singular pairing. (This also holds over Z, modulo torsion:)
(b) If xe H(M), yeH,_ (M), x-y=(-1y""29y.x.
IV.2.9 Proposition. Let xe H,(M), yeH,,_ (M, M), x'e H""Y(M,oM),
y e H{(M) such that [M]nx'=x, [Mlny=y. Then x-y=x'(y),
(i.e. evaluation of the cohomolegy class x' on the homology class y).
Proof. x-y=(x'uy)[M]=x'([M]ny)=x'(y), using (I.1.1). O
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Now let ¢:S87x D" 9—intM be a smooth embedding. Set
E=8§"xD"", My=M—@intE, M'=Myu(D?"! x §"~971) the result
of the surgery based on ¢.

Following [34] we will consider the exact sequences of the pairs
(M, M) and (M, M,).

As usual we have the excision ¢ :(E, dE)— (M, M,) which induces
isomorphisms on the relative homology and cohomology groups.
Thinking of E as the normal tube of SYCM, let Ue H" Y(E, 0E)=17
be the Thom class, a generator. If y=[E]n U, then y= i.[87,i:8ICE,
and p-x=U(x), x € H,_,(E, dE), by (IV.29), induces an isomorphism
H,_,(E,0E)—1 by property (a) above. Let j: M—(M, M,) be the
inclusion.

IV.2.10 Proposition. 1 - (j, () = (¢, (1)) - y.
Proof. p-(j,00) = U(j, () = (*U) () = (¢, () - y, using (IV.2.9) and

(IV.2.8), and identifying j, : H (M)— H, (M, M,) with the collapsing
map j, : H (M)— H (M/My)=H,_(E/0E). [J

IV.2.11 Corollary. The following sequence is exact :
- 0— Hm—q(MO)_’ Hm-—q(M) 257 4 Hm—q—l(MO) - Hm—q—l(M)_—’ 0

where x =@ (1), pe H(S?x D" is the image of [S?] the orientation
class of §4.

Proof. The sequence is that of (M, M,), replacing H,_,(M,M,)
by Z using the diagram ‘

H,_JE,0E)—=— H,_,(M, M,)
w
Z
and using (IV.2.10) to identify x-. [J
Thus there is also an exact sequence
0— H,\ (M) Hy, (M) 2> Z %5 H(My) - H (M) — 0

where y=1v, (), u'=k,[S"9"'] generates H,-, [(D*!x §m~9~1),
p: D71 x §™797 1 M’ is the natural embedding,

K':Smmaml, pati gmoa-t

is inclusion.
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Let 4 be the generator of Z above corresponding to
AeH  (STx D, 81x SN=Z,

such that U(A) = 1, (similarly for 1').
1V.2.12 Lemma. i, d'(A)= 9@, (W) =x, and i, dA) =y, W)=y.
Proof. Let m= g+ r+ 1. We have the commutative diagram

—H,, (S*x Dr*1, 8¢ x §)—2Ls H (5% x §7) - H,(S*x D" 1) —

%{ ¢’0*l %1
- Hr+ I(Ma MO) __'—_a—'—’ Hr(MO) —L—" Hr(M) .
Clearly if AeH ,,(S89xD"!, §9%x8) such that U(A)=1, then
0,4=1®[S]) e H{S? x.§"), We also have the commutative diagram
H, (57 x S —2— H (D! x §")
Pox Yy

H,(My) ———— H, (M)
and i, ,(1®[8"]) = u'. Hence

ie d) =1, 00, (D) =1, @oy 0:(1)
= W*iZ*(i ®{S']) = w*(ﬂ’) =Y.

A similar argument proves the other assertion. [

IV.2.13 Theorem.Let ¢:8*xD'*'—M be an embedding, M™
closed, m=q+r+1, g=r+1. Suppose P (ST))=0¢,(1)=Xx generates
an infinite cyclic direct summand of H,(M). Then rank H,(M') < rank H/(M)
and torsion H,(M') = torsion H,(M), i.e. the free part of H,(M) is reduced,
and the torsion part of Hy(M) is not increased. Further H(M")= H(M)
fori<ag.

IV.2.14 Corollary. Let (f,;b) be a normal map, f : (M, OM)—(A, B),
(f10M),, an isomorphism, and let ¢ : $Tx D" —intM be an embedding
which defines .a normal cobordism of (f,b), g<r+1. Suppose @ ()= x
generates an infinite cyclic direct summand of K (M). Then

rank KlI(M ") <rank K (M)

and torsion K (M) = torsion K (M), while K (M")= K;(M), for i<gq.
Proof. This follows immediately from (IV.2.13) and (IV.2.6)." -[]
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With a field of coefficients F we have analogous results:

IV.2.15 Theorem. Let ¢, M be as in (IV.2.13) and suppose ¢, (p)=x+0
in Hy(M; F). Then ranky H(M'; F) <ranky H(M; F), and

H(M';F)=H(M;F) for i<q.

1V.2.16 Corollary. With hypotheses of (1V.2.14), suppose only that
@,W)=x=+0 in K ,(M;F). Then rankp K (M’; F) <rankp K (M;F) and
K;M'; F)= K,(M; F) fori<q.

The proof of the corollary is similar.
Proof of (IV.2.13). Consider the exact sequence of (IV.2.11):
0—H, (M) H, . (M)2>Z 4> H,(My)— H,(M)—0.

Since x generates an infinite cyclic direct summand, it follows from
property(a) of the intersection pairing that thereis anelement y e H, , ,(M)
such that x - y =1 (since M =9). Hence x: is onto and we get

Iv.2.17
Iy! H,(MQ) ~ H (M)
0—H,, (Mp)->H,, (M)—>Z—0.

Consider the sequence of (IV.2.11) for (M’, M,)) and the commutative

diagram from (IV.2.12):
1V.2.18

0— Hy. 1 (Mo) — Hy 11 (M) 25 Z 5 H (M) > H,(M')— 0
Hy(M)

where i,d(2)=x. Since x generates an infinite cyclic direct summand,
it follows that i d' splits, so that d' splits, and
IV.2.19
H,(My)=Z + H,(M')

Iy i Hy i (Mo) = Hy (M)

From (IV.2.19), it follows that rank H,(M’)=rank H(M,)—1, and
sinceqg=rorr + 1,from (IV.2.17) it follows that rank H,(M) 2 rank H,(M,),
so that rank H,(M') < rank H (M), (the difference being 1 if g=r, 2 if
g=r+1).
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From (IV.2.17) it follows that torsion H, (M) is isomorphic to
torsion H,(M), and from (IV.2.19) it follows that

torsion H,(M,) = torsion H (M) .

Hence torsion H,(M')= torsion H,(M). [

The proof of (IV.2.15) is almost identical, using (IV.2.17), (IV.2.18),
(IV.2.19) with coefficients in F, and using property (a) of intersection
with coefficients in F. We omit the details.

This is as far as one can proceed in the proof of the Fundamental
Theorem without considering different dimensions separately, according
to parity, or modulo 4. This we shall do in the next sections.
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First we note an easy consequence of (IV.2.14).

IV.3.1 Theorem. Let (f,b) be a normal map, f:(M,dM)—(A4, B),
A 1-connected, (f |0M), : H (0 M)— H,(B) an isomorphism,m=2q+125.
There is a normal cobordism rel B of (f, b) to (f', V), such that f':M'— A
is g-connected and K (M') = torsion K (M). '

Proof. By (IV.1.13), we may first find a normal cobordism relB to
(fi, by), such that f, : M, —A is g-connected. We note that the surgeries
involved in (1V.1.13) are ‘on spheres of dimension <g, so that it follows
from (IV.1.2) and (IV.1.3) that K (M,)=K (M)+F, where F is free
abelian, and arises from killing torsion classes in K, _,. So let us assume
f:M—A is already g-connected. :

Let x€ K (M) be a generator of an infinite cyclic direct summand.
Since f is g-connected it follows from the Relative Hurewicz Theorem
that 7 . (/)= H,.,(f) and H,, (f)= K (M) by (1.2.5). Since g < 3m,
it follows from Whitney’s embedding theorem that we may represent
X' €ng1(f) by (B, )

$t—2= M

I

petl__ B A

such that a is a smooth embedding. Then f defines a map f:M—A4
where M =M | ] D**! and by (IV.1.12) since ¢ < m — g, the obstruction ¢

to thickening M to a normal cobordism is 0 (see (IV.1.6)). If x' € e 1(f)
is such that o represents x € K (M) then by (IV.2.14), K ,(M’) has rank
one less than K (M) with the same torsion subgroup. Proceeding in
this way till the rank is zero, the theorem is proved. ]
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Now let us put together the two sequences of (IV.2.11), to get the
following lemma from [34]:

IV.3.2 Lemma. We have a diagram

H,., (M)
,

Z

,

— H, (M) =57 % H (Mp) —* H,(M)—0

H(M)

q

|
0

where i d(A)=x=09, (), i,dA)=y=vy, (), u a generator of
H (5% x D™, y' of Hy(D**! x §9), etc. Hence
H/M)/i, dL = H(M)/i, d'L. \
Proof. This follows immediately from (IV.2.11), (IV.2.12) and the
fact-that
H M), dL= Hq(Mo)/d’Z +dZ=HM"/i d@Z). [

If x =i, d'(A) has finite order s, then x- is the zero map, so in (IV.3.2)
IV.3.3 .
0—Z % Hy(Mo)—*> H(M)— 0
is exact. Also sd'(1") e keri, =imd, so we have
V.34
sd'(X)+td(2)=0 in H/(M,), some teZ.

IV.3.5 Lemma. Suppose x is of finite order s in H,(M). Then y is
of infinite order if t =0, and order y=t if t +0.

Proof. Since d(4) is of infinite order by (IV.3.3), (IV.3.4) implies that
d'(A) is also of infinite order if ¢t 40, (since s+ 0). Clearly

ty=ti, dA)=i,(—sd'(1)=0,
since i, d' =0, and using (IV.3.4). Hence (order y)|r.
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If ty=0, then t'i, d(A)=iy(t'd(1))=0 so t'd(})eketi,=imd, and
t'd(l)= —s' d'(X) some s’ €Z, or s'd'(A)+t'd(A) =0 in H,(M,). Applying
iy, we get s'i, d'(A')=5"x=0, s0 s'=Is. Subtracting I times (1V.3.4) from
s d'(A)+t d(A)=0 we get (' —It) d(A)=0. But d(2) is of infinite order,
sot' —It=0or t' = It. Hence t{t', and t = order y.

Suppose t =0 so that sd'(1)=0. Then keri, C torsion H(M,), so i,
is 1—1 on dZ, and hence y =i d(4) is of infinite order in H,(M"). O

Consider the commutative diagram

IV.3.6
H,(5%x §9_——2——H,, (D" x §%, §9x §9=Z

P Pox

p
Z=H,, (5% x D", 8 x §9) ———4—— H (M)
where d and d' are from the sequences of (IV.2.11). Recall that
' JeH,, (8% D1, 5" 5% suchthat di=1Q@[S7],
AeH (D' x 8% 8" x 8% suchthat 0A=[S]®1.

Suppose M is closed, so that OM,=57x §% and @¢:S5? x S7—M,
is the inclusion “of the boundary. Then we have ‘the exact sequence
diagram of Poincaré duality (1.2.2):

— HIY(M,) —— s HY(S? x §9—2— HI* 1 (My, $7 x §9)—
[Moln {Sax89] ni [Moln
— Hy, 1 (Mp, $% % 59 —2— H, (87 x §9) for H(Mo)—
Thus
Iv.3.7

[$? x'S%}n{image ¢§) =kernel ¢y, .
By (IV.3.6), d'(2) = @o4 0'(A) = @0,([S]® 1), and

d(A) = @oy (1) = 00, (1 ®[S7]),
so that

Pox(s([SI®1)+ (1 ®[5])=0.

IV.3.8 Lemma. Let q be even. Then @, (s([S1®1)+ t{(1®[S1]) =0
implies either s=00rt=0. -

Proof. Let Ue H4S8% such that U[S?]=1. Then

[SIx STIN(U@D=1®[S?] and [$*xSIn(1@U)=[5]®1
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in Hy(8? x 8. Hence
[$?x ST (1@ U)+ HU @ 1) =s([ST]® 1)+ t(1®[ST]),

and by (IV.3.7) it follows that s(1®U)+ t{U®1)=¢f(z), for some
z € HY(M,). But ¥ : H2%(M,)— H?%(S% x §9) is zero, as ¢, is the inclusion
of the (connected) boundary of M,. Hence

(1 U)+ U 1) = 0¥(z2) =0

But (s(1®U)+t(U®1))*=2st(U® V) if g=dimU is even. Hence it is
zero if and only if either s=0o0rt=0. O

Proof of Theorem (IV.2.1) for m=2q+1, q even:

By (IV.3.1), we may assume f:M—A is g-connected and K (M)
is a torsion group. Let x € K, (M) generate a cyclic summand of order s.
Let ¢ :8%x D**1— M be an embedding with ¢, (u) = x, and defining a
normal cobordism of (f, b). Assume M is closed, using (IV.2.6). Consider
diagram (IV.3.2). By (IV.2.12) i, d'(1)=x, a generator of a summand
Z,C H(M). By (IV.3.4) and (IV.3.8), sd’(1) =0, so d'(1’) generates a cyclic
direct summand Z; C H,(M,).

From (IV.3.3) it follows that torsion H,(M,) is isomorphic to a sub-
group of torsion H,(M), and since H,(M’)= H,(M,)/d'(Z), it follows that
torsion H,(M') is isomorphic to a subgroup of torsion H (M) with.at least
one cyclic summand Z, missing, so the same is true for K (M"). (It follows
also that rank H,(M’) = rank H (M) + 1.) By (IV.3.1) we may find a normal
cobordism of (f’,b) to (f”, b") with K (M")= torsion K (M) < K (M).
Iterating the above steps, since K (M) 1s finitely generated, eventually
this process must terminate, and we get an (f}, b,) with K, (M;)=0 and
fi (g+ 1)-connected. [

From now on then, we will assume ¢ is odd.

Let ¢:87x D?*' M be an embedding which defines a normal
cobordism, i.e. so that (f, b) extend over the trace W, of the surgery
based on ¢. Let w : $%—S0(q + 1), let SO(q + 1) act on the right on D**?,
and define a new embedding ¢, : S? x DT*1— M by ¢,(x, t) = ¢(x, tw(x)),
xe8, teD?™! Then ¢, defines a surgery, and the result
M, =M,uD?"! x 8%, using the diffeomorphism ’:85%x §%— 5% x §%,
@' (x, ¥)=(x, yo(x)), to identify the boundaries.

IV.3.9 Lemma. The trace of the surgery based on ¢, also defines a
normal cobordism if and only if the homotopy class {w} of @ goes to zero
in T (SO(g+k+1)), ie. i {w} =0 where i:5S0(q+1)—SO@g+k+1)
. is inclusion.

Proof. The map @,,,: S% x D**1 x R*—>M x R¥,

Pio(X, 1, V) =(@(x, tx(x)), ) = (@ (%, 1), 7)
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defines a new framing of the normal bundle to $%in Dk ieof iS4y
where v=normal bundle of M C D™*¥, v/ =normal bundle of §*c M.
Then ¢,, defines a normal cobordism if and only if this framing extends
to a framing of the normal bundle of D**! in D™*¥x I, so that the first
part of the frame defines an embedding D** ' x D** ! in D™** x I extending
@y:S1x D" c M cD™**, and the second part of the frame extends the
trivialization of v|p(S? x D?*!) defined by b:v—7, to a trivialization of the
normal bundle of D?*! x D?*1, and hence that of M x IuUD?*! x DI+,

Now S9=aDe*1, pa*t1 ¢ p™*¥ x I such that the normal bundle of §7
in D™**x 0 is the restriction to 57 of y = the normal bundle of
pitlc D™tk x I Now y has a framing defined on §? by the map
$: 8% x DI+ x RE—EQ), ¢(x,t,7)=(0(x, 1), r), since ¢ defined a normal
cobordism. The difference of these two framings is a map of §? into
SO(g + k+ 1) which is obviously iw.

Hence the frame ¢, ,, extends over D*** if and only if iew is homotopic
to zeroin SO{g +k+ 1).- 0 ) )

By (IV.1.7), n,(SO(g+1)—n,(SOg+7+ 1)) is an isomorphism for
r>1, so that keri,, i, : 7,(SO(g + 1)) > 7 (SO(g+k + 1)) is the same for
all k=1. For k=1, the exact homotopy sequence of the fibre space
SO(g+ 1) S0(g+2)—S*" gives that (keriy), = 0o 7, L(871Y),
By Mg+ 1 (87T — 7, (SO(g + 1)) the boundary in the exact sequence.
Hence from (IV.3.9) if ¢ :S?x D**'—M defines a normal cobordism,
then we may change ¢ by w:5?"—50(g+1) if {w}e€ Bomy.1(S7T ") and
¢, will still define a normal cobordism.

Now we will compare the effect of surgeries based on ¢ and @,,. Let
g1 =[81®1, g5 =1®[S] e H(5* x §9).

1V.3.10. Lemma. Let G be generator of 7, 1 (S 1), and let {w} =mdy(@),
¢’ =9, Then

Po4l91) = Po4(g1) +2mPo4(92)
Pox(92) = Qox(93) -
Proof. Recall that lemma (IV.1.9) says that the composition
( Tg (§741) —22 m,(SO(g + 1)) 2 7,(57)
is multiplication by 2 if ¢ is odd. Now ¢}, is represented by the compo-
sition
S1x §1 2 8 x §1—225 M, ,

where o' : S x S9— 8% $7 is given by o'(x, y)=(x, ye(x)). If y = base
point y,€S% then by definition, yow(x)=pw(x), prSO(g+1)—5§ is

the projection of the bundle. Hence on §% X yg, ¢o(X, Vo) = @olx, po(x))
s0 @ =041 x pw)4 on STx ye, 4:8%—81x §* given by Afxy=(x,X).
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Now A,g)=g; +g,, where now ge 7,(S% is the generator, 9;=().9,
i(x)= .(x, Yok i2(X)=(yo, x), so that h(g;)=g., h the Hurewicz homo-
meorphism. Then

Po4(d1) = @o4(l x pw), 4,(g)
= @o4(1 X pw), (g1 +g2) = Poy(g; + 2mg,)
=(p0*(g1)+2m¢0*(92)'

On y, x 8% w(yo)=identity of SO(g+1), so @j|y, x S1= @olyo X 89,
80 @0 4(92) = 004 (g2). The result in homology follows by applying h. []

Returning to diagram (IV.3.2) where d(4) = ¢, (1@ [S7]) = ho,,(g,)
and d'(1') = he, ,(g,), if we take the analogous diagram using ¢, instead
of @, we find d_(A) =h@,0,(9,) = d(A) and

do(A) = hpoo04(g1) = d'(X) +2md(}),
or d(A)=d,(4), d'(X) = d,(A') — 2md,,(2). Hence (IV.3.4) becomes

IV.3.11
s(dy(X) — 2mdy(A)) + td,(A) =0

or
sd(A)+(t —2ms)d (1)=0.

1V.3.12 Proposition. Let p be prime and let-x ¢ K, (M) be an element
of finite order such that (x), +0in K, (M;Z,), where( ), denotes reduction
modp. Let ¢:87x D**'—intM be an embedding which represents x,
i.e. 9, (u)= x, and which defines a normal surgery of (f, b). Then one may
choose :8%—S0(g+1) so that ¢,:8'x D** ' —intM also defines a
normal surgery of (f,b), order (torsionK (M,)) < order(torsion K (M),
and rank, K, (M.;Z,)< rank, K (M;Z).

Proof. By (IV.3.2), H(M)/(x)= H,(M')/(y), where (x) indicates the
. subgroup generated by x, etc. By (IV.3.5), order x = s, and order y=tif
t+0, order y=co if t=0; where (IV.34) gives sd'(A)+td(2)=0. By
(IV.39), we may change ¢ so that (IV.3.4) becomes (Iv.3.11)
sd,(X) + (@t —2ms)d,(A)=0, so that H (M)/(x) = H(M)/(y,) and
ordery, =t —2ms if t — 2ms + 0 and order y, = oo if t — 2ms = 0. Choose
m so that —s < (t—2ms)< s, so that ordery,, < orderx or ordery, = co.
Hence order torsion H,(M,) < order torsion H,(M). Hence

order torsion K, (M) < order torsion K,(M).

But if (x), 0, then by (IV.2.16) rank, K, (M,,;Z,)<rank, K,M;Z).01
Now we complete the proof of (IV.2.1) for m = 2g+1, qpodd.
Let (f,b) be a normal map, and by (IV3.1) we may make f
g-connected, and K, (M) a torsion group. Let p be the largest prime
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dividing order K (M), and let x € K (M) be an element such that (x),+0
in K (M ;Z,). By Whitney’s embedding theorem we may find an embedded
SeCintM?9*! representing x, and by (IV.1.6) and (IV.1.12) we may
extend this embedding to an embedding ¢ : $? x D" —int M such that
¢ defines a normal surgery on (f, b). By (IV.3.12) ¢ may be chosen so
that order(torsion K (M) £ order(torsion K (M)) and
rank, K, (M';Z,)<rank, K,(M;Z,).
Proceeding in this fashion step by step we will find after a finite number
of such surgeries, a normal cobordism of (f, b) to (f;, b,) such that f, is
g-connected,  order (torsion K, (M,)) < order (torsion K,(M)), and
rank, K,(M;;Z,)=0. By (128), K,(M,;;Z,)=K(M,)®Z, since
K(M,)=0for i < g, and it follows that K (M, ) is a torsion group of order
prime to p, and order K (M,) < order K, (M). Since K (M) has p-torsion,
it follows that order K (M) < order K (M). Hence we have reduced the
order of the kernel, and so by a finite sequence of these steps we may make
the kernel 0, thus obtaining a normal cobordism of (f, b) with (f,b),
where [ is g-connected, and K,(M)=0. Hence f is (g+ 1)-connected,
and (IV.2.1)is proved form=2g+ 1,qo0dd. ]
This completes the proof of (IV.2.1) for m odd.

§ 4. Proof of the Fundamental Theorem for m even
If m=2q, (f,b) a normal map f : (M, 0M)—(4, B),
(f10M), : H (0M)— H(B)

an isomorphism, and f is'g-connected, then K;(M)=0 for i<gq and by
Poincaré duality K™ (M, M)z K™ {(M)=0 for i<q (see (1.2.6)).
By the Universal Coefficient property (1.2.8), it follows that K,(M)=0
fori>g,and K (M)isfree. Let x € K (M) be represented by an embedding
o:§%—intM, so that (B, ) e . (f), ,

S‘I _,_..L_)M

|

Dq+1‘—'L-‘)A
and define M=M | D?*!, f:M—A extending f, defined by B. By

(IV.1.6) there is an obstruction 0 e n,(V, ) =Z if q is even, Z, if q is odd,
such that @ =0 if and only if f : M— A can be thickened to a normal
cobordism. Let x'e K%M, 0M), such that [M]nx'= x e K (M).

Recall that in Chapter 1II we defined a bilinear pairing (- ) on
K%M, 0M) and a quadratic form y: K4M, 0M;Z,)—1Z,.
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IV.4.1 Theorem. The obstruction O above for thickening f:M—A
to a normal cobordism is given by

O=(x,x") if q is even,
O=vp((x);) if q is odd,
where (), denotes reduction mod?2.

Assuming (IV.4.1) for the moment we will complete the proof of
(IV.2.1), i.e. in the case m even.

If (f, b) is normally cobordant rel B to a homotopy equivalence then
it follows from (11.1.1) that o(f, b)=0.

Let us assume then that o(f, b)=0 and show how to construct a
normal cobordism of (£, b) to a-homotopy equivalence.

First suppose m=2q and q is even. Then o(f,b)= 3 I(f), so if
ol f, b)=0, then I(f) = signature of ( , ) on K%M, dM)=0. By (IV.1.13),
we may assume that K'(M)= K'(M, 8M)=0 for i< g, and free for i=q.
By (111.1.3), there is an x' € K%M, 0 M) such that (x', x") = 0, so by (IV.4.1),
[M]nx'=x e K, (M)can berepresented by ¢ : §¢ x D—intM, ¢, (1) = x,
u generator of H (S% x DY), and the surgery based on ¢ defines a normal
cobordism of (f, b). But we may choose x’ to be indivisible, i.e. a.generator
of a direct summand of K%M, dM). Hence, by (IV.2.14)

rank K (M’) < rank K (M),

f' still g-connected, where M’, f';(M', 0M")— (A, B) is the result of the
normal surgery based on ¢ (Actually (IV.3.2) shows that the rank goes
down by 2). Since (f, b) and (f',b’) are normally cobordant, I(f)=I(f)=0,
and we proceed in this fashion until K, has been reduced to zero and we
“get a (g + 1)-connected map.

If m=2q, q odd, the o(f,b)=c(f,b)= Arf invariant of y on
K¥M,0M;L,). If o(f,b)=0, from (II1.1.8) for example, we may deduce
the existence of ye K%M, 0M;Z,) with w(y)=0. If f is g-connected,
then K%M, OM;Z,)= KYM, OM)®Z,, and y=(x), for some
x' € KM, 0M), x’' indivisible. By (IV.4.1), x=[M]nx' is represented by
¢:8"x DA—intM, ¢ defining a normal cobordism, and by (IV.2.14),
rank K (M) < rank K (M), f" still g-connected. Also o(f",b")=0(f,b)=0
since (f',b’) and (f, b) are normally cobordant, so we may proceed as
above till we obtain a (g + 1)-connected map. This finishes the proof of
(IV.2.1) and the Fundamental Theorem. []

It remains then only to prove (IV.4.1), to which we devote the rest of
this chapter.

Let (f, b) be a normal map f : (M, dM)— (4, B), dim M =m =2gq, and
suppose f is g-connected. Let x € K, (M) be represented by an embedding
o:S7—int M, let {* be the normal bundle of «(S9) in M, and let
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M=M|) D', f:M—A an extension of f. Let Oen,(V;,) be the

obstruction to thickening M and f to a normal cobordism (see (Iv.1.6)),
and let 8 : n,(V, )— 7, 1(SO(g)) be the boundary in the homotopy exact
sequence of the fibre bundle p : SO(k+q) -V, , = SO(k + q)/SO(g) with
fibre SO(g).

IV.4.2 Proposition. 00 = characteristic map of { € m,_,(SO(q)).

Proof. Let x, € S% be a base point so that if h:S2—S0(q + k)/SO(g)
=V, 4 represents 0, h(xo) = p(f), where p: SO(q + k)—V, kg is projection
and ¢, € SO(q +k) is the base point, a (k + g)-frame in R**9, p(#)=the
first k elements of the (k + g) frame ¢, so that p(¥) is a k-frame. Divide
87 into two cells, ST=DL LD, x,e DI nDL=87"1=9D% =8D%. We
may assume that h(D?)= p(f), since D% is contractible. Let
h:DL—S0(q+k) such that h(x,)= #, and ph=h on D%. Then
ph(S?~1) = h(S*~') = p(#,), so that the first k elements of A(y) for y € S¢~*
are the base frame of ¥, ,. Hence there isamap y: 87~ ! - $0(q) such that
h(y) = Zliy(y)), where i : SO(q)—SO(g + k) is the representation of SO{q)
acting on the subspace of R?** orthogonal to the space spanned by
p( %) Then y represents 00 € 7, _, (SO(q)), by the definition of  (see [60]).

Now { is the orthogonal bundle to the trivial bundle spanned by h(x),
for x e §% Since h{D" )= p(Fo), thelast g vectors in ¢, give a trivialization
of { over D, and since ph = h, the last g vectors of h(x), x e D1, give:a
trivialization of { over D1. Since y(y) for ye $97! sends the last part of
Jointo the last part of iz(y), it follows that vy is the characteristic map of {
(see [60; (18.1)]). O

Now from results of IV., § 1 we may derive easily

IV.4.3 Proposition. The boundary 0: n,(V, )— n,_1(SO(g))is a mono-
morphism for g+ 1, 3 or 7.

Proof. Considering the inclusion of total spaces, SO(g+1) in
SO(g + k), and the projection SO{q + k}-— SO(qg + k)/SO{q—1), we get
the commutative diagram where p;, p, and p; are projections of fibre
bundles, i;, i, and'i; inclusions of the fibres:

50(g) ——— SO(g) —EF— 50(g)/SO(g—1)=57"1

[ F

SO(g+1)—L—80(g+ k) ————— Vir1 41

T

— J >
St= Vl,q - Vk,q Vk,q'
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Let 8;,i= 1, 2, 3 be the boundary operators associated with the bundle
projections p;. By (IV.1.9), if ¢ is even, then pl 0, : nq(S")—mq_l(S"“)
is multiplication by 2, hence is a monomorphism. But by commutativity
of the diagram, p, 0, = 0, j,,. Hence j, is a monomorphism, and since by
(IvV.1.12) m(V, ) =Z if q is even, it follows that &; = 0 is a monomorphism
if g is even.

If g+1,3 or 7, g odd, then by (IV.1.11) keri,=Z,, where
iy :my_1(SO(@)—m,—(SO(g +1)). Hence 8, is onto Z,Cx,_(SO(q))
and since j, : m,(S)— 7, (V, ) is onto by (IV.1.12), 8, = 8, j,, it follows
that 83(n,(V, ) DZ,. Since m (V, ) =Z, for g odd by (IV.1.12), it follows
that d, =0 is 2 monomorphism for g+ 1,3 0r 7. [

Thus for g+ 1, 3 or 7, the obstruction @ to doing normal surgery on
$7C M2 can be identified with the characteristic map of {, its normal
bundle in M, O ekeri, Cn,_,(SO(g)), and is therefore 0 if  is trivial.
Now keri, is generated by 9, (i), where i € 7,($9) is the class of the identity,
so that d,(i) is the characteristic map for the tangent bundle = of % It
follows that @ = A(0,(3)), some AeZ.

Now if g is even the Euler class y(¢)=2ge H%(S?, where g is the
generator such that g([S?]) = 1. This follows from the general formula
1(ta) = x(M)g, or may be deduced for M = 8%, g even, using the fact that
Ty 15 equivalent to the normal bundle of the diagonal M in M x M. For if
U e HYE, E,) is the Thom class, it follows from (IV.2.8) that

[8?x ST]Nn*U =[ST]®1 + 1 ®[S7]

the homology class of the diagonal, where 5 : §7 x §— E/E, is the natural
collapse. Hence n*U=g®1+ 1 ®yg, and

*(UH)=*U)P=g®1+1®g)}*=29®g.

if g is even. Since n* is an isomorphism on H2Y, it follows that U% =2gU,
so x(t)=2g, since by definition x(¢) U,=(U,)?, for a bundle ¢&.

Now .the Euler class is represented by the universal Euler class
x € HY{(BSO(q)), where BSO(g) is the classifying space for oriented g
plane bundles (see [60] or [32]). That is, if c: X— BSO(g) is the clas-
sifying map of a g-plane bundle £ over X, c*(y) = &, where y is the universal
g-plane bundle over BSO(g), then x(&)=c*(y). U c:8%> BSO(q)
represents 7gq, then c* () = 2g, as above, but if ¢’ : $7— BSO(g) represents
A(t54) in the homotopy group 7, _,(SO(g)), then Ac and ¢’ are homotopic,
ie. {Ac}={c’} in n,(BSO(g)). Hence c¢'* = Ac*, so we get:

IV.4.4 Lemma. If g is even and 0,0 = 10,(i), then x({)=24g, where {
is the normal bundle of aS? in M?3, representing an element in K (M),
O the obstruction to doing a normal surgery.on 8% [

X

.
§
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IV.45 Lemma. x(0)[S9=(x,x), where [M]nx'=x, a:8'—M?>?
is an embedding representing x € K (M), { the normal bundle of (8%, as
above.

Proof. y({)U=U? by the definition of y, where Ue H“(E(C)/ZEO(Q)
is the Thom class. Clearly (x(0)) [$7] = ((()U) [E] = U*[E] = (1* U) M],
where [E]e H, q(E(C)/Eo(C)) is the orientation class, so [E]=n,[M],
where n: M/0M— E/E, is the natural collapse.

By (IV.2.8), [M]n#*U = x, so that n*U =x'. Hence

HO ST =@*UP[M]=(xY[M]=(,x). O

By (IV.4.4) and (IV4.5), for q even, (X', xy=24 wherg 62(? =1161_(i).
By (IV.4.3) 8, is a monomorphism for g even, so we may identify @ with
(x', x'), which proves the first part of (IV.4.1), ie. for g even.

The result for g odd is more delicate since it is not dependent only on
the normal bundle { of S2in M??ifg=1,3 or 7, and even forg+1,30r7,
it is more difficult to detect the normal bundle {.

Let o;:S'—M?%, i=1,2 be embeddings representing x; & K, (M),
where as usual (f, b) is a normal map f:(M, dM)— (A4, B),

(f1 0M)* : H*(aM)"’H*(B)

an isomorphism. Suppose a,(S%) N, (S) =9, and let @, and 0, bg the
obstructions to doing normal surgery on a,(5%) and o,(S%) respect1v§ly.
Join a,(S9) and &,(S% be an arc in the complements, and by thickening
this arc to a tube T =D?x [1, 2] we take

(@21(89) — (D x D)U 3o TU(e,(5%) — (D x 2)) ,
where 9, T'=28D% x [1, 2], D? x i = T o, 8% This gives us an empedding
o S1—> M?4 representing X, + X,, which can be made differentiable by
“rounding the corners.”

IV.4.6 Lemma. 0 =0, + 0, in (V).

Proof. If we thicken the embedding of TCM b}f multiplying by [0,*39
we get an embedding of T x [0,¢] in M x and-if we ifave M CD"‘+ :
M x ICD™** x I, this gives us T x [0,e]C D™** x I, and if 0,87 =Df" °,
D#*ic Dt x | meeting D™* x 0 transversally in 0,(§%), so then we
may assume a neighborhood of (%) in DIt is just o, (SHx[0,¢e]. If
we take

patt =Dt —(D%x 1 x [0, e])u(0Dx[1,2] x [0, ])
UuDrx[1,2] x e)uDsy+*t — (D! x 2% [0, £]),

then this is a (g + 1) cell meeting D™** x 0 transversally in a(S5%, and we
may smooth this D?** and «(S7) together by “rounding corners.”
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The resulting D?** is the union of three cells, D**!'=A4,UBUA,,
where 4,=D?*! —intC, where C; is a (g+ 1)-cell, 0C;ndD;=F,, F; a
g-cell in éD;, Bn A, = 0C;nA;C B, and

dB—(0C,nA,)—(0C,nAy)=8""1x1.

(=)

Since the definition of the obstruction ¢ does not depend on the
choice of the framing of the normal bundle y of the disk D?*!, we may
assume that the framings over D?*!, DI*! and D%"! have been chosen
so that the framings over -D**! and D?*! coincide over 4;, i=1,2.
Further we may assumethat the framings of'v, the normalbundle of M in
D™** over aS9, o, 8% a, 8%, induced by b, have been chosen so that over
F, they are all the same, coming from a framing of v| T, (T is a cell), and
the framings ofy, y; and y, may be assumed to extend that of v over
TnaS% Tna;S%i=1,2. Thus the threemaps g, §;,i=1,2, :a8"—>V, ,,
etc. defining @, 0;, i=1,2, may be taken to be the base k-frame over
TrnaS% TrnoS%i=1,2, and Bla(S?) oS =;]0,(S)na(S%. Tt follows
that for the homotopy classes {f} = {f,} + {B.} inn (V; Jor O =0, + 0,.

U

IV.4.7 Lemma. If 0 =0, then w((x'),)=0, with notation as above.

_ Proof. Since 0 =0, we have a normal surgery based on o : $%— M29,
so that the trace is a normal coberdism W29*!, oW =M U(6M x HuM’,
and if i : dW—W is inclusion, i k,x =0, where k: M—0W. It follows
from (1.2.7), that x” = i* z, z € K W), where [0W]nx" =k, x,x" € KYOW)
and K% W) is defined by the map of F: W— A x I extending-f on M.

It follows from (I11.4.13) that v, ((i* 2),) = wol(x"),) =0, where yp, is
defined on K¥ oW ;Z,); for the map 0F:0W—Ax0UuBxIUAx1.
Now F is clearly the sum of (f,b) on M and (f', b") (the result-of the
surgery) on M’. By (IIL4.15) poln*(x)),) =w((x),), x € K%M, dM), so it
remains to show-that 5*(x", =(x"),, (y: 0W=>M/0M).

Consider Kk, x=k ([M]nx)=k,( JoW]nx)=[0W]nn*x,
using identities of the cap product (compare IV.2.8) so that since
[oW]lnx"=k,x, it follows that x"=#*x', and hence p((x),)=0. O

Now we prove that 0 =y((x),). If 0 =0, then p((x"),) =0 by (IV.4.7).
So it remains to show that if @ =1 then yp((x");)=1.

By taking the connected sum with the map $7 x $7— $24, or alter-
natively doing a normal surgery on a $77 ' C D?4C M?%, we may add to

§ 4. Proof of the Fundamental Theorem for m even 113

K, (M) the free module on two generators a,,d,, corresponding to
[S11®1 and 1®[S] in HY(S* X $%) and add to K%M, 0M) the elements
g1, g, such that [M (S S$H]ng;=a;, with (g;,9,)=1, (9:;,9)=0,
i=1,2, orthogonal to the original KM, M), and v(g,)=v(g;)=0.

Hence y(g; + g2) = ¥(gy) + v(g2) + (91, 9) =0+ 0+ 1=1 If
B : S%— M 4 (5% x 89 represents the diagonal class

a, +a, € K (M 3 (5% x 89,

it follows from (IV.4.7) that the obstruction ¢ to surgery on B, © = 1,
since if it were O then (g, + g,) would be 0. Then on the sum embedding
o+ B representing x+ (a; + a,) the obstruction 0"=0+ 0’ by (IV.4.1.6),
so that 0" = 1 + 1 =0. Hence p{(x), + (g + g,) =0 by (IV.4.7). But since

()2, (g1 +92)=0, |
() + @1+ 92) = P(x)) + 9(g: +9) =w(*)2) + 1=0,

so that p((x),)=1. O



V. Plumbing

In this chapter we will describe the process of “plumbing” introduced
by Milnor [47], which. constructs manifolds with prescribed quadratic
forms in the middle dimension. See Hirzebruch [31] for another dis-
cussion.

§ 1. Intersection

In this paragraph we review the intersection theory of submanifolds of a
manifold.

Let N?, N be smooth submanifolds of a smooth manifold M™,
m=p+q. (Smoothness may of course be replaced by much weaker
conditions in what follows.) A point x € Ny N, will be called a discrete
point if x has an-open neighborhood ¥ in M such that VAN; "N, =x.
If every point of N; N N, is discrete, then N, N N, is a discrete subset of M.

If xe.N; NN, is discrete and V is open in M such that VAN, NN, =x,
then (V— N;)u(V — N,)=(V —x). Hence we have a pairing given by
relative cup product

V.i.1
HYV,V—-N)QH!(V,V — Ny)=HF YV, V —x).

Now suppose M, N; and N, are oriented, so that for each point xe M
we are given a generator [M], € H,,(M, M — x), (for ye N, we are given
[N;],€ H)(N,, N, —y), for ze N, we are given [N,], € H/(N,, N, —z)),
in a compatible way for all the points x € M (y € Ny, z € N,), (see the proof
of (1.3.5)). Let E;, i= 1, 2 be a tubular neighborhood of N; in M, E? = the
complement of the zero cross-section. Then the inclusion

is an excision, so H*(M, M — N,)= H*(E,, E?). By the Thom isomorphism
theorem if E; are oriented there are elements U, € HYE,, EY),
U, € H’(E,, E9) such that r* U is a generator of H*(V, V — N)), for any
small neighborhood:such that V=4 x B, Baballin N;,, VAN,=0x B,
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r denotes inclusion and such that UU; and NU; induce. isomorphisms,
(see (1.4.3), (11.2.3), (I1.2.6)). Let us assume all orientations are chosen
compatible so that [M],"r*U; = N fqr xX€ Nl ' ‘

Then we may define the sign or orientation of a discrete point
xeN,nN, by

V.12
sgn(x) = (r* Uyur* Uy) [M].

(using (V.1.1)). _ . . o

We shall call x a (homologically) transversal point of 1I}tersect19n if
sgn(x)= =+ 1. This will obviously be the case for transversal intersections
in the usual geometrical sense.

Recall the definition of the intersection of homology classes (see IV§2).
Let M™be a compact oriented manifold with boundary,, am? let x e H,(M),
yeH(M,oM), p+g=m. Define x-y=(x, y’)-——-(x/ vy [M], v&:here
x' € H"~P(M, 8M), y € H" %(M), such that [M]r'\x = X, [M]_ny =,
The same definition also works for x,ye H*(M}f e X-y=%X-j,y

Suppose N?, N are compact oriented submanifolds of M™, a compact
oriented manifold with boundary, m=p+4q, and suppose N, is closed
and ON,C oM, and dMAN, =8, IMnN, = ON,. Let N;, N, and M
be oriented, and suppose N, intersects N, (homologically) transversally,
and let i;: N—>M be the inclusions j=1,2.

V.1.3 Theorem.

(1[N D) - (2 [N D= ), sen().

xeN1nN2

In other words the intersection of the homology classes counts the
aumber of intérsection points, with the sign.

Proof. Let U;e H" P(E,, E}), Uye H" U(E;, E9) be the Thom
classes of the normal bundles of N, and N, (notation as above). Let
k;(E, ED— (M, M~N;} be inclusions(excisions), j: (M, IM)—(M, M —Ny),
- M— (M, M —N,). Let ;€ H¥(M, M —N)) be such that k¥u,=U,, and

’ Iet X1 =j*u1, x2 = F‘ﬂz. Then

vad
[M]r\x]=ij.[N_, 5 j=1,2.
For by (IV.2.7), i;([N;D)=i{lE]N U)=[MIn ]* u, =[M]Nx,, (simi-
lar proof for j = 2). Hence, by definition (LN, J)- (i:[ N2 D)= (x;0 x2)[M].
But X1 UX,y = (j* ul)u(z* uz) = h*(u1 Uuz), Whel‘a

b (M, 8M)— (M, (M — Np))U(M — N).
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Hence (x; L x,) [M] = (h*(u; Uu,)) [M] = (1, Vu,) (h,[M]). Now
h (M} =q, Y [M],,

xeN{nN2
q: WV, Vo—x)— (M, M—(N;nN,)),
(x1ux;) [M] = Z (uvu,) (g, [M],).

xeNinN2

Since k¥ u; = U,, it follows that

(U V4,) (g4 [M1) = (r* Up)u (r* U,)) [M], = sgn(x),

and the result follows. [

Now let N7 be a closed submanifold in. interior of M?9, and let
{? ‘be its normal bundle. If we make N transversal to itself (using
for example Thom’s transversality theorem), then (V.1.3) implies that
i.[N]-i, IN}= 2 sgn(x), the summation running over points x common
to the two copies of N. However this self-intersection number is also
interpretable in terms of {:

V.1.5 Proposition. i,[N]-i,[N]=y(0)[N] (see (IV.4.5).

Proof. By (IV.2.8), [M1ng* U =i, [N] where §: M/0M— E/0E=T({),
E = total space of { is a tubular neighborhood of N. Hence

i,[N]-1,[N]=@* U)* [M]=(U?) g, [M})=(x() U) ([E])
=20 CEINU)=xO)[N]. O

§ 2. Plumbing Disk Bundles

Now we describe the process of “plumbing” disk bundles over manifolds.

Let {? be a g-plane bundle of a g-dimensional smooth manifold NE,
and let E; = the total space of the closed disk bundle associated to C
We shall suppose {;, N; and E; oriented compatibly, i= 1,2.

Let x;e N% i=1,2, and let D? be a ball neighborhood of x; in N,
Since D? is contractible, {, is a product over-DY, so that a neighborhood
of x;in E; is dlffeomorphxc to DIx DY, x x D¥ bemg the fibres‘of E,. Let
h,: D1——>D§, k,:Df—Di, (h_:Di— DY), (k : DY — D4) be orientation
preserving (orlentauon reversing) dlﬂ'eomorphlsms

We define the “plumbing” of E, with E, at x, and x, by taking E, UE,
and identifying D{ x D{ with D§ x D% by the map I, (x, y) = (k. y, h, x) or
by the mapI_(x, y)= (k ¥, h_x), I, : D, x D{ - D, x D,. We shall say we
plumb with sign +1 if we use I, , with sign — 1 if we use I_. (Note that we
could have used only one manifold, plumbing together 2 points on it,
ie~taking E, =E,.) We denote the result of the plumbing by E.[E,,
which can be made differentiable by straightening the angles. Since I,
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and I_ are both orientation preserving if g is even (reversing if g is odd),
E,E, can be oriented compatibly with N,, {;, Ny and {, if g is even
(with Ny, {;, —N,, {, if q is odd). Note that N;CE;C E; T3 E,; and that
N,nN,=x,=x,, which is a transversal intersection, “and that
sgn(x,)= +1if we used I, sgn(x,)= —1 if we used I_.

N,

/ N,

E,0E, E,

If we choose several different points in N, and N,, then we may
plumb E, and E, together at several different points simultanedusly with
a prescribed sign at each point. If we plumb at n,, points with sign'+1
for example, we get a manifold E, [1E, with N;CE;C E,[]E, and with
i;+[N{1-i,s[N;T=n,, (see (V.1.3)). If we take a third manifold N¢ and
a g-plane bundle {{ over N,, we may plumb E, with E, at |n, 3] poitits,
and with E; at |n, 4| points with sign =signn,;, by simply avoiding the
finite number of points of N, and N, involved with the plumbing of E;
and E,, and get a manifold E,[1E;[1E; with N;CE;C E,[1E,[1E;,
and i, [N;1+i,[N;]=ny;, where i<+ j. (Here we take n;;=mn,; if q is even,
n;;= —n;; if ¢ is odd.) We may continue this process to plumb together
m-different manifolds E;, ..., E,,, E; = total space of {fover N§i=1,...,m,
and with prescribed intersections between N; and N; for i+ . The self-
intersections of the ‘N;’s are determined by the Euler class:(()), by (V.1.5).

V.2.1 Theorem. Let M be an nx:n. matrix with integer entries,
symmetric, and with even entries on the diagonal. Then for k> 1, there is a
manifold W** with boundary such that:

(i) W is 2k — 1)-connected, W is (2k —2) connected, Hy (W) is
free abelian and,

(ii) the matrix of intersections H, (W)@ H, (W)L is given by M
_(or equivalently the matrix of the bilinear form ( , ) on HYW, oW)),

(iii) there is a normal map (f,b), f :(W, 0W)—(D**, §**~1), so that
in particular M is the intersection matrix also on K, (W).

PrQOf. L&t M = (mij), i,j= 1, PRY (A mij-': m]-i, mﬁ = 2}1, au i,j. Let
8¢, i=1, ...,n be g-spheres, g¢=2k, and take (7 over S¥to be ;74 ig: 4
times g, in the homotopy group n,(BSO,) or =, _,(SO{(g)). By (IV.44),
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1A Tsa) = 24,[87), so by (V.1.5) the intersection number of S7 with
itself in E; is 2A; =m;. ' .

Now plumb together the E/s, i=1,....m, plumbmg E; with E; at
|m, ;| points with sign = sign of m;;. Call the resulting manifold U. We shall
sayi U is the result of plumbing by the matrix M. Then S7CE;C U and
i,[S.]-i,[S;]=m,, by the construction. '

d Silncea:k ealch E; hjas S9 as a deformation retract, and E,nE;=u (disks),
it follows:

V.2.2 Lemma. If U is the result of plumbing by the matrix M, then U
has a deformation retract U S}, where S¢nS%=|m; points.

It follows easily that

V.2.3 Each component of U is the homotopy type of a wedge of
g-spheres and 1-spheres. . o

For taking the union of two g-spheres with (n + 1) points in common
is the homotopy type of §7 v §% v \/,S*. Then (V.2.3) follows by mc‘luct‘lo.n.

Now we have constructed U so that it is oriented, and hence 718 tr{v1a1
on the 1-skeleton of U. On each E;CU, Ty Ei = Tsa + A Tsas and since
Tge+ &' is trivial it follows that 1y +¢'|E; is trivial,. anq l.1ence. rUIS} is
trivial. It follows from (V.2.2) and (V.2.3) that 7y is trivial, since it 1s
trivial on each piece of the wedge. It follows that the no,rmal b\:ndle v
of (U,dU)C(D?¢**, 529%%"1) is trivial, k large. let b:v—RF be a

ing, R* = the trivial bundle over a point.

fraﬁﬁgtg’[U]eHu(U,aU) be the orientation class, 6[(2]]_&1 H,,-,00)
the orientation class of dU. Take a map f': oU—§%4"1 such 'that
f*g)euh=1, geH?*"1(s?%"") a generator, and_extend f 1o
f:(U, 8U)—(D?%, 524" ), which is possible since ?2‘1 is contractible.
Let & be the trivial bundle over D*4, E({) = D? x R* and de.fme biv— &
by b(v)=(f=nv, ¥'(v)), where n: E(v)— U is projection. This defines a
normal map (f, b) as in (V.2.1) (iii).

Now let us look at the effect of plumbing on the boundary of the
manifold. We see that for plumbing at one peint,

A(E,[(1E,) = (0, — DI x §*"Y)U(0E;, — D§ x 8.
Now 8E,— D? x §¢~! has the same homotopy type as OE;~ 8%}, and

since codimension S*”!'=g, n{0E,~D{x %" ) n(0E) is an iso-
morphism for j < g — 2. Also
(PE; — D x ST ) (OE, — D% X §9 1) =81"1 x §771
which is (g — 2) connected. ‘
If Ey is the total space of [# over S, then E, is (g — 2)-connected, and

it follows that 8(E, 1 E,1---[1E,) is the union of (¢ — 2)-connected parts
along a large number of (g — 2)-connected subspaces.
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V.2.4 Lemma. If g > 2, then for each component X of E\ 1 E,;1}---[JE,
we have

@) 1,(0X)=n,(X) is free

(b) H(6X)= H(X)=0 for 1 <i<q—1, where the isomorphisms-are
induced by inclusion.

Proof. X is the union of simply connected parts along simply con-
nected subspaces, and similarly for 0X if ¢>2 by our above remarks.
Hence n,(6X) and n,(X) are free by van Kampen’s theorem. The com-
ponents of the intersections for the union which gives 6X arein 1 -1
correspondence with the intersections in the union which gives X,
ie. S27!'x 8471 cD?*x D9, and hence =,(0X)=n,(X). This proves (a).
Part (b) follows by a similar argument using the Mayer-Vietoris
sequence, and the fact that every component involved is (g — 2) con-
nected. [J

V.2.5 Complement. If g=2, n,(0X) may not be free, but n,(X) is

free and 7n,(0X)— n,(X) is onto.
The proof is similar.

Now choose an §'C 90X which represents a free generator g of the
free group n,(0X) = =, (X). In this low dimension there is no obstruction

" to doing a normal surgery on S, (see (IV.1.6)and (IV.1.12)), so the trace

V of the surgery has the homotopy type of X UD?, and there exist
F:Vv—os?t B w—¢ extending (f]0X, b|dX), (w=normal bundle
of ¥V in D™**¥x I). Then X, =X UV along 6X has the homotopy type
of XuD? and hence n,(X;) = n,(X)/(g), (g) = smallest normal subgroup
containing g. Since g is a free generator of n,(X), n{(X,) is free on one
less generator, and since dimdX =2q—1> 3, it follows from (IV.1.2),
(IV.1.3) that the same is true for 0X, (where 8V =0XuUdX,) and
(0 X )= w,(X;). Also it follows easily from the homology sequence
of the pair (X, X) that H{(X)= H(X,) for i1, and similarly
H,(0X,)=H(0X)for 1 <i<2q—2, by a slightly different argument.

The maps (f, b) and (£,b) on X and V fit together to define a new
normal map (f;, b,), f;:(X;, 0X;)—(D?9, 52471,

Continuing in this way, doing surgeries on circles in the boundary
and adding the trace to the manifold, we eventually arrive at an X,
n(X)=n,(6X,)=0XCX,and H(X,) = H(X)fori= 1,H(0X,)= H(6 X)
for 1 <i<2g—2. Take the connected sum along the boundaries of these
X5 for all the components and call the result W, so that UC W.

Then W is connected, n (W)=0 and H,(W)xH,U), i>1 and
since H(U)=0 for 1 <i<gq it follows that W is (g — 1) connected, and
similarly, H(6W)= H(0U) for 1 <i<q—1 so that oW is (g—2) con-
nected, so (V.2.1)() is satisfied. We have constructed normal maps
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(f,» b,) for each component X, so that a normal map is defined on the
connected sum along the boundaries, which proves (iii).

Now in U C W we have the embedded spheres S C U?? with normal
bundle (¢, and by our construction M is the intersection matrix of the §7.
But i [S7] give a homology basis of H,(U), and hence for H (W), and the
intersection numbers are the same, depending only on a neighborhood
of the embedded manifolds S%."Hence M is also the intersection matrix
for W, which proves (V.2.1) (if).

V.2.6 Complement. When k=1 we may do the construction above
to obtain W* with the given properties, but n,(0W) will in general be
larger than =, (W).

For in dimension 3 it is hard to calculate the effect of surgery on =,.

V.2.7 Lemma. In the construction of (V.2.1), W is a homotopy sphere
if and only if the determinant of M = 1.

Proof. Consider the exact sequence of (W, 0W),
0— H,(6W)—— H,(W)—&— H (W, 8W)—>> H,_,(6W)—0.

(We have H,.. (W, W)= H*" ' (W) by Poincaré duality, H,(W)is zero for
s£q~1 since W is (g — 1)-connected, so H~!(W)=0 by the universal
coefficient formula, which produces the zero-on the left.) Now by Poincaré
duality the intersection pairing on H/(W)® H/(W,0W)—1Z is non-
singular, since H (W) and.H (W, 0W) are free, (see IV § 2, property (a)
of intersection). Hence on H (W)® H/(W)— Z, the intersection product
as a map «: H(W)—Hom(H,(W),Z) is a monomorphism if and only
if image i, = kerj, =0, and is onto if and only if 9 = 0. Since i, is 2 mono-
morphism and d is onto, it follows that o is @ monomorphism if and oaly
if H(©0W)=0 and a is onto if and only if H,_,(0W)=0. So « is an iso-
morphism if and only if H (6W)=H,_,(0W)=0 and 0W is a homotopy
sphere (since it is a closed (¢ — 2)-connected manifold). But « is an iso-
morphism-if and only if detM = +1. - [
Now consider the following 8 x.8 matrix (see'Hirzebruch [31])

2 1
121 &
121

1 21

Mo= 12101

1210
0120
100 2

with zeros in the blank area.

i
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V.2.8 Lemma. M, is symmetric, even on the diagonal, detM, =1 and
signature M = 8.

Proof. The first two statements are obvious. To prove detM,=1
and sgn M, = 8, we will perform elementary transformations on M, by
subtracting A(i-th row) from j-th row, then A(i-th column) from the j-th
column, A a rational number. This corresponds to pre- and post-multi-
plying M, by elementary matrices I+ A(e;) and I+ A(e;;), where
I =identity, e;; is the matrix with 1 in the ij position, zero elsewhere:
This process changes neither the determinant (since det(I + Ae;))=1)
nor the signature.

We start with the 6peration 1 the first subtracted from the second.
This makes the upper &t corner

o
_— N O
e

the remainder being unchanged. Then % times second from the third gives

o
O Nw O
- O
[o

2 times 3rd from 4th gives

o
O Nw O
ow#o
Rl D
.
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£ times 4th from Sth gives

2.0

0 2 0
0 %40
0 %0

0 £ 101

1210

0120

1 002

Now subtract  (8th) from 5th to get in the lower right corner

© o~k
O =N e
O N = O
NvNOoO oo

Now carry on as before, subtract 42 (5th) from 6th, then 7 (6th) from 7th,
with the final result, the diagonal matrix:

2

<~

Bl

2

Since D, is diagonal and all entries are positive, sgnD, =sgn M, =8.
One checks that the product of the entries is 1, so det D, = detMy,=1. O

Hence, putting together these results we get the Plumbing Theorem
in dimensions 4k, due to Milnor.

V.2.9 Theorem. Let k> 1. There is a normal map (f, b),
[ (W, 0W)—(D*, s4+~1)
such that (f|0W) is a homotopy equivalence and a(f,by=1.

Proof. Let (W**,dW) be the manifold with boundary constructed in
(V.2.1) using the matrix M,. Since detM, =1 by (V.2:8), it follows from
(V.2.7) that 0W is a homotopy sphere. By (V.2:1) (ii); (i) the intersection
product on K, (W) or ( , ) on K**(W,dW) has matrix M,, and by
(V.2.8), sgn M, = 8. Hence if ( f, b) is the normal map :

[ (W, 0W)—(D*, s**71)

of (V.2.1) (iii), it follows that a(f,b)=3I(f)=3}sgnM,=1. O

It is interesting to note that if we plumb by the matrix M, the result
W is already (2k — 1}-connected with 0W a homeotopy sphere. In fact
we have the following graphical analysis, observed by Hirzebruch:

If we plumb together n g-disk ‘bundies over spheres S% we represent
each sphere $7 by a vertex of a graph, and join the two vertices by an
edge for each point of intersection. Thus M, is represented for example

by the graph

(This is the Dynkin diagram of the exceptional Lie group E,.)

V.2.10 Remark. The plumbed manifold has a one skeleton of the
same homotopy type as the:graph. In particular it is 1-connected if
and onlyif the graph is-1-connected. :

If we place on each vertéx of the graph the self intersection number;
or more generally, the bundle over §% then the graph describes plumbing
of disk ‘bundles over spheres completely.

To describe the plumbing necessary in dimension 4k+ 2, we must pay
more attention to the bundle-map part of the normal map.

Let (f;, b) be normal maps f;: M??— S29 b,:v,—¢&, etc. Let
§%1= D21y P24, By the homotopy extension theorem we may change f;
by a homotopy, to get f/ such that f(x) e D?? for x e M, —int D39, for
some disk D?9CM?4, and f/|D?'=h, is a previously given diffeo-
morphism of degree 1, h;: D?9— D24, and we may cover the homotopy
by a bundle homotopy of b;, to a new map bj. If h: D, D, is the diffeo-
morphism ‘defined by h;*h, =h then h is covered by a bundle map
c:v,|Djy=>v,|D, in a natural way. Then we may change b} by a bundle
homotopy to b} so that b,c=>b} over D3 (since D?? is contractible).

Now take the normal map (f, b), f : $% x 82— §%¢ with bundle map b
coming from normal line bundles in $29*1, Obviously, (f, b) is normally
cobordant to an equivalence in two different ways: by

(D71 x ST—intD24*Y) or (§%x DUt —intD?9+Y).
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Let D39=D?x P? be a nelghborhood of a: point (x4, Xp) € S? % §9
with D% x 0 consisting of points (y, y), i.e. a product neighborhood of a
point on the diagenal, D? x 0 being a neighborhood of (x,, x¢) in the
diagonal 487C §? x 84, y x D? being the normal disks to 45 Consider
D2% as D? x D% where S2¢= D3?u D?%. Using the homotopy extension
and bundle covering homotopy theorems as above, we may change (f, b)
by a homotopy to (f;, b,) so that f;|D,:D?x D?—D?x D?= D31 is
the identity, b, |v| D, = identity, and f;(S? x §?— int D,) C D?9. We may
similarly change (f, b) by a homotopy to (f;, b,) so that

£,1Dy: D x Di—D% x DA = D4
is I, b, is the bundle map induced by I, on v| D34, and
f>(S9x S4—intD3%)Cc D21,

Let D?9C 8% x S7—int D37 be a disk disjoint from D,. Then the restric-
tions define normal maps

(f{,b): (87 x §2—int Dy, §2¢~ 1)— (D29, 8297 1),
Let E be a tubular neighborhood of 45%in $x $%, with D?=n"1(D9,
DicAS? n: E—AS* the projection. We may assume that
fis*x $*—E)cs¥ .

Now-if we identify in two copies E,, E, by.the diffeomorphism I, on
Dy CEy with Dy, C E,,ie. plumb E; and E, together, toget U = E, [ E,,
then the restrictions of (f;, b;) and (f;, b,) agree on E,~E,=D2% so
that the union defines a normal map

(g.c), g:(U, 0U)—(D?*%, §247Y).

Now we have:the Plumbing Theorem for dimensions 4k + 2; due-to
Kervaire {35].

V.2.11 Theorem. Fory odd, 8U?? is a homotopy sphere, and 6(g, c) = 1.

Proof. The normal bundie of the diagonal 4 $7C 7 x $¢is equivalent
to the tangent bundle 14, of S% If ¢ is odd, then x(t5,) =0, so the inter-

section matrix-of U is ( (1) 0) (skew symmetric since q is-odd). It follows

easily from van Kampen’s theorem that for ¢>1, U is l-connected,
since E;nE,=D3}? and E, and E, are l-connected if ¢> 1. A similar
argument shows dU is l-connected for ¢ > 1. If ¢=1, U is.a closed and
connected 1-manifold hence a circle. If g> 1, then dU is 1-connected
and the intersection matrix of U has determinant + 1, so 8U is a homotopy
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sphere by (V.2.7). (Note that for q even, the intersection matrix bsmmes ~
G 2) so it has determinant = 3.)

Now we would like to'compute the quadratic form y definediin 11 § 4
Since E;C U, there is a natural collapsing map #,: U/0U— E,/OE;, and
[U]nn:“(U,) j.[S7] by (IV.2.8) (where j; denotes inclusion). Since
Ji,[88),i=1, 2 areabasis for Hy(U), j,,[S1] - j»,[881=1,ji.[ST] - j;, [ST1=0,
i=1,2, it follows that x;=n*(U), i=1,2 is a symplectic basis for
Hq(U 0U;Z,), so a(g, ¢)=clg, ¢)=c(y)= W(x1) P(x2).

We need the following:

V.2.12 Lemma. Let V™ C W™ be the inclusion of a submanifold of the
same dimension, V and Wmanifolds with boundary and letn: W |oW—V [0V
be the natural collapsing man. Let v = normal bundle of W in D™**, 50 v|V
is the normal bundle of V in D™**. Then the inclusion T(v|{V)— T(v) is
Spanier-Whitehead S-dual to n: W/OW—V/aV.

Proof. Embed (W, 0W)C(D™**, 8"**~1) in such a way that
(V,0V)C(DF*k, ST

where D™*kc D™*¥ is a disk of 1 the radius. Then D"**—W is the
complement of Wy DZ " *in §™** where DUD,=8"**DnDy=S"**"1,
s0 DonW=28W and WuDZ** is homotopy equivalent to W/éW
Hence D"** — W is S-dual to W/oW. Similatly, D, —V is S-dual to
V/éV, and the inclusion D, — V into D—W is S«dual to the inclusion
WuD, into Wu(D=D;)uD,. But the latter inclusion is homotopy
equivalent to the collapsing map n: W/oW—V/aV.

Now the inclusion D, — V. C D — W and the inclusion E(v}V)C E(v)
coincide with the mciusmn D, ¢ D. Then j+D;/D, - E(v| V)—»D/D - E(v)
is the suspension of the inclusion D, — E(v]¥)C D — E(v), and j is also the
inclusion

- T V)= E@|V)/Eo(v| V)= T(v) = EW)/Eo(v).
Hence the inclusion T{(v|V)C T(v)is S-dual (in S"***1) to
n:WRW—V/@V. O

V.2.13 Lemma. Let V241C W24 be a submanifold with boundary, and
let (f,b) be a normal map, f :(W,0W)—(A, B) such that f(W—V)CB
so that (f1V,b\V), f|V:(V,0V)—(A,B) is also a normal map. Let
n:W/@W-—V [0V be the collapsing map, and let

w: KW, oW)—T,, v':KUV,0V)~L,

" be the quadratic forms of TIL§4. Then p(n*(x)) = y/'(x) for x € K%V, V).
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Proof. Recall from III § 4 that T(b): T(v)— T(&), (£ over A)is S-dual
to a map g:Z*(A/B)—Z*(W/0W), and that K%W, W)= ker(g*Z%)
(see III 4.1). Since j: T(v|V)— T(v) is S-dual to n: W/OW—V/oV by
(V.2.12), it follows that T(b)j : T(v| V)— T(£) is S-dual to

(Z*ng: Z¥A/By—> XV /0V).

It follows that n*(K%(V, 0V))C KW, 8W). Hence if xe K4V, 0V), y is
defined on n*(x). Let ¢: V/dV—K(Z,, g) be such that ¢*()=x. Then
V() =(Saf " (Z*(1))) (Z*[A]), (see 11T §4) where h=(Z* @) (Z*n)g. Also
since (Z* @) (Z*n) = Z*(pn), and (en)* (1) =n*(@*1)=n*x, it follows that
the same formula defines y(n*(x)), so pH*x)=y'(x). [

Now we return to the proof of (V.2.11), and we show that

pix)=vp(x)=1,

so that g(g, ¢)= 1.

From (V.2.13), we deduce that y(x,)=v'(U;), where U, e HYE,, JE,)
is the Thom class, ' is the quadratic form associated to the normal map
(9| E;, c| E;). By construction g|E; = f/| E;, where

(ST % S“—intD%", Sf"_l)—>(D2‘1, §2a-1)

and (f}, b;) is homotopic to (and hence normally cobordant to) (f”, ¥),
which is the restriction of (f, b), f : §% X 89— $24, described above. From
the construction of:(f, b) and the two different normal cobordisms. of
(/, b) to an equivalence, we may deduce that if y®1, 1@y e HYS? x §9),
then p"(y@1)=9"(1®y)=0, y” being the quadratic form associated
to(f, b). Hence p"(y®1 + 1 ® y) = 1. But if U = Thom class of the normal
bundle of the diagonal 458?C S x §% Ue HYE/OE), n: 5% x $*—E/JE,
then n*U =y®1+1®y. It is clear that v” defined by (£, b), [ : 82 x §9—$24
is the same as y” defined by (f’,b), the restriction of (f;b),

f:(89x 87— int D}4, §24-1)— (D24, §29-1),

sothatby(V.2.13),»”"(y® 1+ 1®y) = p'(U)=1. Hence pix)=v'(U)=1,
i=1,2, a(g, ) =w(xy) p(x,) =1, and (V.2.11)is proved. []

o
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