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Introduction

A topological n-manifold is a Hausdorff space which is locally n-Euclidean (like
R™).

No progress was made in their study (unlike that in PL and differentiable
manifolds) until 1968 when Kirby, Siebenmann and Wall solved most questions
for high dimensional manifolds (at least as much as for the PL and differentiable
cases).

Question: can compact n-manifolds be triangulated? Yes, if n < 3 (Moise
1950’s). This is unknown in general.

However, there exist manifolds (of dimension > 5) which don’t have PL
structures. (They might still have triangulations in which links of simplices
aren’t PL spheres.) There is machinery for deciding whether manifolds of di-
mension > 5 have a PL structure.

Not much is known about 4-manifolds in the topological, differentiable, and
PL cases.

Question 2: the generalized Schénflies theorem. Let B™ = {z € R**!: ||z <
§" = {z € R""!: ||z|| = 1}. Given an embedding f : B” — S™ (i.e. a 1-1 con-
tinuous map), is S™ \ f(B™) = B™? No—the Alexander horned sphere.

Let AB™ = {z € R"™: [|z]| < A}. Question 2': is S™ \ f(AB") = B" (where
0<A<1)? Yes.

In 1960, Morton Brown, Mazur, and Morse proved the following: if g : S?~1x
[~1,1] — S™is an embedding, then S™\g(S™~!x{0}) has 2 components, D1, D,
such that Dy & Dy = B", which implies 2" as a corollary. (The proof is easier
than that of PL topology).

Question 3: the annulus conjecture. Let f: B™ — Int B” be an embedding.
Is B\ f(3B") = B*\ 1B" (=2 §"~! x I)? In 1968, Kirby, Siebenmann, and
Wall proved this for n > 5. This was already known for n < 3. The n = 4 case
is still unknown.

Outline of course:

e Basic facts about topological manifolds

e Morton Brown’s theorem — the first “recent” result



e Kirby’s trick: Homeo(M) is a topological group (with the compact-open
topology). This is locally contractible: any homeomorphism 4 near 1 can
be joined by a path in Homeo(M) to 1

e Product structure theorem: if M™ is a topological manifold and M x RF
has a PL structure, then M™ has a PL structure (n > 5).

e sketch of proof of the annulus conjecture (complete except for deep PL
theorems).

1 Basic Properties of Topological Manifolds
Let R? = {(z1,...,2,) € R": z,, > 0}. Identify R"~! with
{(x1,...,2,) €R": z,, = 0} = ORY}.

Definition 1.1. A (topological) n-manifold (with boundary) is a Hausdorff
space M such that each point of M has a neighborhood homeomorphic to R} .
The interior of M, Int M, is the set of points in M which have neighborhoods
homeomorphic to R™. The boundary of M, OM = M \ Int M.

Int M is an open set in M, OM is closed in M.

M is an open manifold if it is non-compact and OM = ().

M is a closed manifold if it is compact and OM = ().

Example. Any open subset of an n-manifold is an n-manifold.
Let M be a connected manifold with OM = (). If x,y € M then there is a
homeomorphism h : M — M with h(z) = y.

Theorem 1.2 (Invariance of domain). Let U,V C R"™ be subsets such that
UXV. Then if U is open in R™, then so is V.

Corollary 1.3. If M is an N-manifold, then OM is an (n—1)-manifold without
boundary.

Proof. Suppose x € M and f: R} — M be a homeomorphism onto a neigh-
borhood N of  in M. Then

r€0M = xc f(R"1) (1)

If v ¢ f(R"!), then z € f(R? \R" ') 2 R", soz € Int M and = & OM.

If x € OM, then = € Int M, i.e. there is a neighborhood U of z homeo-
morphic to R” C f(R%). So there is a neighborhood V' of z which is open
in M such that V' C U, homeomorphic to an open set in R™. Therefore
f~HV) Cc R} C R™. By theorem 1.2, f~'(V) is open in R".

Suppose = ¢ f(R"™1). Then f~1(z) € R*!, but then f~}(V) can’t be
a neighborhood of f~1(x), so f~*(V) is not open. This is a contradiction,
therefore z € f(R"™!) = x € OM.

Now suppose y € OM. Let g: R}Y — M be a homeomorphism onto a
neighborhood P of y in M. P contains an open neighborhood W of y in M.



Now WNOM = W Ng(R"1) by (1). Therefore W Ng(R"~!) is a neighborhood
of y in @M homeomorphic to an open set N, so y has a neighborhood in 9M
homeomorphic to R*~ !, as required. O

Corollary 1.4. If M™ N™ are manifolds then M x N is an (m + n)-manifold
with (M x N) = (OM x N)U (M x ON), i.e. Int(M x N) = Int M x Int N.

Proof. If x € M x N, then x has a neighborhood homeomorphic to R* x R’} =
R, so M x N is an (m + n)-manifold.

Clearly Int M x Int N C Int(M x N).

If 2 € (OM x N)U (M x ON), then x has a neighborhood homeomorphic to
R x R™, R™ x R, or R* x R”} — all homeomorphic to RZF”J“" by a homeomor-
phism carrying = to R™*"~1. By (1), x € (M x N). Hence the result. O

Example. Examples of manifolds:
e R™ is an m-manifold without boundary, open.

e S™ is a closed m-manifold. (Stereographic projection gives neighbor-
hoods.)

e B™ is a compact manifold with boundary S™~1.
e R is an m-manifold with boundary R™1,

e Products of these,

e CP™, orthogonal groups O(n) are manifolds.

These are all differentiable manifolds. There exist topological manifolds
which do not possess a differentiable structure.

Lemma 1.5. If X C S™ is homeomorphic to B*, then H.(S™\ X) =0 for all
r ¢ Z.

Proof. By induction on k. The lemma is true if k = 0: S™\ {pt.} = R".

Assume true if k¥ = [, we prove it for k = [ + 1. Choose a homeomorphism
f:B'xI=B"! — X, suppose a € H.(S"\ X). Take t € I. By induction
hypothesis, H, (S™\ f(B!x{t})) = 0. Therefore a is represented by the boundary
of some singular chain ¢ lying in S™\ f(B' x {t}). There is a neighborhood N;
of f(B! x {t}) in S™ such that c lies in S™ \ N;.

Therefore there is an open interval J; C I containing ¢ such that c lies in
S™\ f(B! x J;). Since the unit interval is compact, we can cover by finitely
many of the J;’s. Therefore there is a dissection 0 = tg < t; < -+ < tp = 1
such that [t,_1,t,] C some J;.

Let ¢pq 0 Hy(S™\ X) — Ho(S™\ f(B' X [tp, t,])) where p < ¢ and the map
is induced by inclusion. Now ¢p,_1 ,(a) = 0 for all p.

Suppose inductively that ¢g;(a) = 0 starts with ¢ = 1. By the main in-
ductive hypothesis, Hy(S™\ f(B' x {t;})) = 0 for s = r,r + 1. The sets
S"\ f(B' x [tp,t,]) are open. We have the lattice



S\ F(B' % [0,1;]) ——— S"\ f(B' x {t:})

| !

S"N\ f(B' x [0, ti41]) —= 8"\ f(B' x [ti,ti11])
and the corresponding Mayer-Vietoris sequence:

0 — Ho(S"\ f(B' x [0,t11]))
— Ho (8™ \ f(B' x [0,4:])) @ H(S™\ f(B' x [tis ti1]) — 0,
with the maps induced by inclusion.

Since ¢g () = 0 and ¢; ;+1(e) = 0, we have ¢g;+1(er) = 0. Therefore,
¢ox(a) =0, 1e. a=0and H.(S"\ X) =0 as required. O

Lemma 1.6. If X C S" is homeomorphic to S*, then

Z ifr=n—k—1,

0 otherwise.

H.(S"\ X) = H,(S" "+ 1) = {

Proof. By induction on k. The result is true if k& = 0, for S* \ pair of points =
Sn=1. (?7?7) Now assume the result holds for k = — 1 and try to prove it for
kE=1I.

Choose a homeomorphism f : S' — X. Let Dy, Dy be northern and southern
hemispheres of S! so that D; U Dy = S! and Dy N Dy 2 S'=1. The sets S™\ X,
S™\ f(D;), and S™\ f(D1 N D3) are open. We have the lattice

S"\ f(D1) ——= 5"\ f(D1N Dy)

T T

STANX ———= 5"\ [(D2)

and the Mayer-Vietoris sequence
0 — Hy1(S™\ f(D10 Dy)) — Ho(S™\ X) — 0

since Hyy1(S™\ f(D1)) = Hyy1(S™\ f(D3)) = 0 by the previous lemma. The
result follows from the inductive hypothesis. O

Corollary 1.7. If f : "=t — S™ is 1-1 and continuous, then S™\ f(S™~ ') has
just two components.

Proof. By 1.6, PNIO(S” \ f(S77h)) = I;'O(SO) & 7. Therefore, S™ \ f(S"!) has
two components. O

Corollary 1.8. If f: B™ — S™ is 1-1 and continuous, then f(Int B™) is open
in S™.



Proof. By lemma 1.5, Ho(S™ \ f(B™)) = 0, so S™ \ f(B") is connected. Now
S™\ f(S™Y) = f(Int B®) U S™ \ f(B"), and f(Int B") and S™ \ f(B") are
connected, while S™\ f(S""1) is not (by corollary 1.7). Thus f(Int B™) and
Sm\ f(B™) are the components of S™\ f(S"~1), and are closed in S™\ f(S™~1).

f(Int B™) is open in S™\ f(S™~1), therefore open in S™. O

Proof of theorem 1.2. We have U,V C R", a homeomorphism f: U — V, U
open in R™. Choose x € U. Then there exists a closed n-ball B™ C U with
center x and a map ¢ : R” — S™ which is a homeomorphism onto g(R") (e.g.
the inverse of stereographic projection). We have that ¢gf : U — S™ is 1-1 and
continuous, so by 1.7, g f(Int B™) is open in S™ and f(B™) is open in R™.

Now f(z) € f(Int B™) C f(U) =V, so V is a neighborhood of f(z). Since
V = f(U), V is open in R™. O

2 The Generalized Schonflies Theorem

Definition 2.1. If M, N are manifolds, an embedding of M in N is a map
f: M — N which is a homeomorphism onto f(M). (If M is compact then
any 1-1 continuous map f: M — N is an embedding, but this is not true in
general.)

Theorem 2.2 (Morton Brown’s Schonflies Theorem). If f: S"~! x [-1,1] —
S™ is an embedding, then each component of S™\ f(X" ! x {0}) has closure
homeomorphic to B™.

Definition 2.3. Let M be a manifold and X C Int M. X is cellular if it is
closed and, for any open set U containing X there is a set Y C U such that
Y= B"and X CIntY.

Example. Any collapsible polyhedron in R is cellular.
If f: B"™ — S™ is any embedding, then S™\ f(B") is cellular.

Lemma 2.4. If M is a manifold and X C M is cellular, then M/X is homeo-
morphic to M by a homeomorphism fixzed on OM .

Proof. Since X is cellular, there is a Yy C Int M such that Yy = B™ and
X C IntYy. Yy has a metric d. Let U, = {y €Yy d(X,y) < %} Define Y,
inductively: assume Y,_; C M is constructed with X C IntY,_;. X is cellular
implies that there is a ¥;. C (IntY,_1) N U, such that ¥;. = B™ and X C IntY,,
where Int Y, is the interior or Y, in M. We have

YoOoIntYy DY DIntY; D+ DX =Y.
r=0
We construct homeomorphisms h,. : M — M such that

i. ho =1,



ii. hr|M\Yr,1 = hr—l‘M\Yr,p and
iii. h,(Y,) has diameter < 2 with respect to the metric d.

Suppose h,_1 is defined. Choose a homeomorphism f : h,._1(Y,—1) — B™.
Now, Y, C IntY,_1, so f(hy—1(Y,)) C Int B™ and there is a A < 1 and ¢ > 0
such that f(h,_1(Y;)) C AB™ and f71(eB™) has diameter < 1. There is a
homeomorphlsm g : B" — B"™ such that g|gp» = 1 and g(AB") C eB™. Define
hy: M — M by

() = 4 ) if e M\Y, 1,
TN flgf e (x) ifz e Y.

To verify (3), note that

h( )Cf gfhr 1('r1)
c ftg(AB™)
C f~(eB")

has diameter < %

Define h(z) = lim, o hy(x) for each z € M. If x € M\ X, then x € M\ Y,
for some r, and h,(x) = hyp1(x) = -+ = h(z) by (2), so h(x) exists. Since
he(Yr) D hey1(Yy) D ..., with diameter h,(Y,) — 0, ﬂ 1 he (Yr) = {y} for
somey € M. If x € X, h(x) € h(Y;), so d(h,(z), )< by( ) so hy(z) =y
as r — oo and h(x) = y.

h is continuous at € M \ X because h = h, in a neighborhood of z for
some r. h is continuous at x € X because Y, is a nelghborhood of z and h(Y;) C
; neighborhood of Y. Thus h induces a continuous map h:M /X — M with
h|aM =1

Since h coincides with some h,. outside X, h|yn x — M \{y} is a homeomor-
phism. h(X) =y, so h is bijective. Further, B\M\X is open: If U is a neighbor-
hood of X is M, then U DY, for some r, 0 y € hyy1(Yrq1) C Int b, (Y;) C h(U)
and h(U) is a neighborhood of y, so h is open.

Therefore h is a homeomorphism. O

Lemma 2.5. If X C Int B™ is closed and B"/X is homeomorphic to some
subset of S™, then X is cellular.

Proof. Let f : B" — S™ induce an embedding f : B"/X — S™. Suppose f(z) =
y. Then f(B™) = f(B”/X) # S™. (Apply theorem 1.2 to neighborhoods of
points of 9B™). Let U be any neighborhood of X in B™; f(U) is a neighborhood
of y in S™. f(B™) is a proper closed subset of S™.

There is a homeomorphism h : S™ — S™ such that h|y = 1 for some neigh-
borhood V of y and h(f(B™)) C f(U): there is a Y C S™ such that Y = B
and f(B™) C IntY. Let Z be a small convex ball with y € Int Z. The radial
map gives the homeomorphism.



Define g : B® — B™ by

o(o) = {f- hf@) ifed X,

T ifx e X.

Here, hf(x) # y implies that f='hf(x) is well defined. ¢ is continuous since
h =1 in a neighborhood of y. Also, g is 1-1. Now g(B") = B™ and g(B") C
fhf(B™) C f71f(U) = U, and g = 1 on a neighborhood of X. Therefore,
Int g(B™) D X and X is cellular. O

Proof of Theorem 2.2. f: S" ! x[-1,1] — S™ is an embedding, S™\ f(X" ! x
{0}) has two components, Dy and D_. Say f(S"! x {-1}) C D_. Let
X =D\ f(X" 1 x(0,1)) and X_ = D_\ f(X" ! x (-1,0)).

Then X, and X_ are both closed, and X, UX_ = S™\ f(X"~ ! x (-1,1)).
Note that (S™/X.)/X_ = (8! x [-1,1]/5" x {-1})/S"~1 x {1} = S™.
Therefore there is a map g : S™ — S™ such that g(X;) = y4, g(X_) =y
and g|gn\ (x,ux_) is @ homeomorphism onto S™ \ {y+,y—} where y,,y_ are the
poles of S™.

X1 UX_ is a proper closed subset of S™, so there exists Y C S™ with Y = B"
and X; UX_ C IntY. Since g(Y) is a proper closed subset of S™, there is a
homeomorphism A : S™ — S™ such that h = 1 on a neighborhood of y_ and
h(g(Y)) € S" \{y4+,y-}.

Define ¢ : Y — S™ by

o) = {glhg(w) ifog X,

T ifze X_.

Since h = 1 on a neighborhood of y_, ¢ is injective on Y \ X} and ¢(X;) =
g 'h(y4). Therefore ¢ induces an embedding ¢ : Y/ X, — 8™, Y =?222222222277777,
By lemma 2.5, X is cellular.

D, is a manifold with X, ¢ D, =Int D,. By lemma 2.4, D, =~ D, /X, =
Sl x [0,1]/8™ ! x {1} = B™. Similarly for D_.

O

Corollary 2.6. If f,g: S" ! x [~1,1] — S™ are embeddings, then there is a
homeomorphism h : S™ — S™ such that

hf|S"*1><{0} = g|Sn*1><{O} :

Proof. If ¢ : 0B™ — OB™ is a homeomorphism, then ¢ extends to a home-
omorphism ¢ : B® — B™ in an obvious way along radii: ¢(rz) = r¢(z) for
0 < r < 1,z € 9B™ Therefore, if Y1,Y5 are homeomorphic to balls and
¢: 0Y7 — 0Ys is a homeomorphism, then ¢ extends to a homeomorphism
¢: Y1 —Ya.

Let D,,D_ be the components of S™\ f(S"~! x {0}) and Ey,E_ be
the components of S™ \ g(S"~! x {0}). Define h|pgn-1x0}) to be gf~*, so
h:0D, — OE.. Since Dy = E, = B", h can be extended to a homeomor-
phism h: D, — E..



Extend h|,5— — OE_ (already defined) to a homeomorphism h|5— — E_.
We obtain a homeomorphism h : S™ — S™ with hf[gn-1x(01 = glgn-1xq0}. O

Definition 2.7. A collar of OM in M is an embedding f : M x [ — M such
that f(z,0) = for x € OM.

Ezercise. f(OM x I) is a neighborhood of M in M.

Remark. From now on, we only consider metrizable manifolds, i.e. ones which
are second countable.

Ezercise. Compact manifolds are metrizable.

Theorem 2.8 (Morton Brown). If M is metrizable, then OM has a collar in
M.

If U is an open set in OM, say that U is collared if U has a collar in the
manifold Int M U U.

Let V C U be a smaller open set and A: U — I = [0,1] be a continuous
map such that A(z) = 0 iff © ¢ V. Define a spindle neighborhood of V in U x I
to be

SV, A) ={(z,t) eU xIT:t < Xax)}.
S(V, A) is open, therefore a neighborhood of V' x {0}.

Lemma 2.9. Let f: S(V,A) = U x I be an embedding with f|y oy = 1. Then
there is a homeomorphism h : U x I — U x I such that:

i. hf =1 on S(V,u) for some p such that p < X\, and
i. hlusr fsv,ny) s the identity.

Proof. Spindle neighborhoods form a base of neighborhoods of V' x {0} in U x I.
Suppose V' x {0} C W, W open. Let d be a metric on U and define a metric d
on U x I by
d((z,t), (2", ")) = d(z,z") + [t = t'].

Let v(z) = min{d(z,U x I\ W),d(z,U \ V)}. Then (x,t) € S(V,v) implies
that ¢ < v(x), and so (z,t) € W. Therefore S(V,v) C W.

There exists p such that S(V,2u) C S(V,$A) N f(S(V,4A)). There is an
embedding g : U x I — U x I defined by

(1) — (2,1) if t > 2u(x),
’ (z,pu(z) + 3t)  otherwise.

g has image U x I'\ S(V, ) and glyxnsv,2p) = 1.
Define h: U x I — U x I by

f (=) if z € f(S(V,p)),
hz)=qgfg ' fH(x) ifxe f(S(V,N))\ F(S(V,n),
T otherwise.

Continuity of h is simply verified. In fact, h is a homeomorphism such that
hf=1on S(V,u) and h =1 off f(S(V,)\)). O



Lemma 2.10. IfU,V C OM are collared, then U UV is collared.

Proof. Let f: UXxI — M, g:V xI — M be collars. Choose A: UUV — I so
that S(UNV,\) C f~1g(V x I). Apply lemma 2.9 to the embedding

g SUNVA) =V xI.

There is an S(UNV, u) € S(UNV,A) and a homeomorphism h: V xT — V x I
such that hg™' flswnv,,) = 1. Then gh™! and f agree on S(U NV, p).
Define an open set Uy C U x I by

Up={xeUxI:dz (U\V)x{0}) <d(z,(V\U)x{0})}.
Define Vi C V' x I similarly. Let Uy be
Up={y e M:d(y,U\V) <d(y,V\U)}

and define V5 similarly. Then U3y N Vi = 0 and Uy N Vo = 0.
Put Uz = UyNf~Y(Uy), V3 = Vinhg~'(Vz). Then Us, V3 are open, UsNV3 =
0, f(U)Ngh 2 (V3) =0, (U\V)x {0} C Us, and (V\U) x {0} C V3, so
W =Us US(UNV,u)UVs is a neighborhood of (UUV) x {0} in (UUV) x 1.
Define ¢ : W — M by

b(x) = f(z) ifx e UsUSUNV,p),
= gh™Y(z) ifxeS(UNV,u)UVs.

Then ¢ is well defined, continuous, and 1-1.

Thereisav : UUV — I such that S(UUV,v) C W. Define ¢ : (UUV)xI —

M by (z,t) — ¢(x, tl';)). This is continuous and 1-1, and hence an embedding
by invariance of domain. O

Proof of theorem 2.8. Collared sets cover M because if z € OM, then there
is a homeomorphism f: R"™ x R, — M onto a neighborhood of x in M. We
proved in corollary 1.3 that f(R™ x {0}) contains a neighborhood U of = in OM.
Then U has a collar given by g : U x I — M sending (y,t) — f(p1.f " 1(y),t).

If OM is compact, then OM is collared by lemma 2.10. Before proceeding
to the general case, we prove:

Lemma 2.11. Let Uy, € A be a disjoint family of open collared sets. Then
Uaca Ua is collared.

Proof. Let V,, = {y € M:d(y,Uy) < d(y7U5¢a Ug)}. This is an open neigh-

borhood of U, in M, and « # [ implies that V,, N V3 = 0.

Let fo : Uy x I — M be a collar of U,,. Let W, = f,1(V,), a neighborhood
of U, x {0} in U, x I. There are maps v, : U, — I such that S(U,,v,) C W,.
Define g, : Uy, X I — M by
trg(x
gola.8) = fale, el

Define g = U ga : (U, Ua) X I — M. This is a collar of (J,c 4 Us in M. O

) € V.



We have proved that if X = OM then
i. X is covered by collared sets,
ii. a finite union of collared sets is collared,
iii. a disjoint union of collared sets is collared, and
iv. open subsets of collared sets are collared.
Then (i)—(iv) together with X metric imply that X is collared.

Lemma 2.12. Any countable union of collared sets is collared.

Proof. Tt is enough to consider countable nested unions U = Uzozl U, with
U cU;C....

Put V,, = {z € U,: d(z,X \U,) > 27 "}. Then U = |J,—, V,, since z € Uy
means there is an n > k such that B(x,2™™) C Uy. Therefore d(z, X \ Uy) >
27" sod(x, X \Up) > 27" and x € V.

We have that V,, C V,,41. Let A = Vopyq \ Vor_1 and By = Vogrgo \ Vor.
Then A = [Jpo; Ay is a disjoint union of collared sets, hence collared. Similarly
for B =J;- Bx. Now U = AU B U V; is collared. O

A family of subsets of X is discrete if each x € X has a neighbourhood
which intersects at most one member of the family. Call a family of subsets
of X o-discrete if it is a countable union of locally finite discrete subfamilies
(Kelley, p. 127).

Lemma 2.13. Ewvery open cover of a metric space X has a o-discrete refine-
ment.

Proof (c¢f Kelley, p. 129). Let U be an open cover of a metric space X. If U € Y
let U, = {x € U:d(z,X\U)>2""}. Then d(Up, X \ Upy1) =2~ D,

Well order U by the relation <. Let Uy = U, \ Uy oy Va1 If U # V then
U< VorU >YV. The first implies that V¥ C X \ U,41, the second that
U* C X\ Vpy1, and in either case d(U;, V*) > 2~ (n+1),

Let U be an open 2~("*+2) neighborhood of U}, similarly for V. If U # V,
then U/, NV, = 0.

It is enough to prove that U, , Uy, = X. If # € X let U be the first (with
respect to <) member of U containing x. Then z € U, for some n and so

x € U C U},. Now {U],} is a o-discrete refinement of U. O
O (theorem 2.8)

References:
Morton Brown: “A proof of the generalized Schonflies conjecture” Bull. Amer.
Math. Soc. 66 (1960) 74-76

Morton Brown: “Locally flat embeddings of topological manifolds” Annals
of Math. 75 (1962) 331-341

A shortened version of the second reference is included in the book “Topology
of 3-manifolds.
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Definition 2.14. Let M™, N™ be manifolds without boundary. An embedding
f:M™ — N™is locally flat if for all z € M, there is a neighborhood U of z
and an embedding F : U x R®™™ — N" such that F(y,0) = f(y) for y € U.

Remark. There needn’t be an embedding G: M x R*™™ — N such that
G(y,0) = f(y) for all y. For example, S — Mobius strip along the center
line. This is locally flat but there is no embedding S' x R — M agreeing with
the previous one on S x {0}.

Example. If f : S"~1 — S islocally flat then each component of S™\ f(X"1)
has closure homeomorphic to B".

If OM is compact and f,g: OM x I — M are two collars, then there is a
homeomorphism h : M — M such that hf agrees with g on M x [0, %] and
h =1 outside f(OM x I)Ug(OM x I), so “the collaring of OM in M is unique.”
This is not true if M is noncompact, e.g. Milnor’s rising sun.

Ezercise. Suggest a generalization that does work.

Given two manifolds M™ N™ let £(M, N) be the set of embeddings of M
in N with the compact-open topology.

A continuous map f : X — Y is proper if C C'Y compact implies f~1(C) C
X is compact.

Let £,(M, N) be the set of embeddings which are proper maps. We will be
interested in £,(R™\Int B™,R™), which consists of embeddings f : R”\Int B" —
R™ onto neighborhoods of oo (by propriety).

Let R be the one point compactification of R®. f:R™\ Int B" — R"
extends to a continuous map f : R7 \ Int B™ — R" with f(oo) = oo iff f is
proper. o R

(In general, f: X — Y extends to a continuous map f: X — Y with
f(oo) = oo iff f is proper.)

Theorem 2.15. There is a neighborhood U of 1 in £(6B™ \ Int B",R"™) and a
continuous map 0 : U — E,(R™ \ Int B™,R™) such that 0(f)|gn-1 = f|gn-1.

Proof. Take U = {f € £(6B™ \ Int B™,R™): d(z, f(z)) < 1,2 € 6B™ \ Int B"}.
If f € U, then f(2B™\Int B") C Int 3B™\ {0} and f(6B™\ Int5B™) C f(7B™\
Int4B™).

Define inductively f : (4k 4+ 6)B™ \ Int B™ — R"™ such that

i fO = f7
ii. frt1larss)Brine B = frlak+s5) B\t B7

iii. fp((4r +6)B™ \ Int(4r 4+ 5)B™) C Int(4r + 7)B™ \ (4r + 4)B™ for r < F,
and

iv. fr depends continuously on f.
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Suppose fj is constructed. If ¢,d € (a,b) (a,b,c,d € R), let p(a,b,c,d) : R" —
R™ be the radial homeomorphism fixed outside 6 B" \ aB™ taking ¢cB™ onto dB".
Let pr(a,b,c,d) = p(4k + a,4k + b, 4k + ¢, 4k + d).

Define gy, : (4k+6)B™\Int B" — R" by g = p(3,11,4,8) fepr(1,52,5%,2).
Define a homeomorphism hj : R™ — R” by

() fkpk(1,5%,2,5%)f,;1 if z is in the image of fy,
xT) =
¥ x otherwise.

Let oy : (4k 4+ 10)B™ — (4k + 6)B"™ be a radial homeomorphism fixed on (4k +
5)B", sending (4k + 6)B™ — (4k + 51)B" and (4k + 9)B™ — (4k +52)B".

Define fr1 = hrgrok : (4k+10)B™\Int B™ — R™. Check (ii): let z € (4k+
5)B" so ox(z) =, pe(1,5%,5%,2)(x) € (4k+2)B", y = frpe(1,5%,53,2)(x) €
(4k+3)B™ (inductive hypothesis), gi(z) = pr(3,11,4, 8)(y) = y etc. XXXXXXXXXX

Similarly we can verify (iii). To prove (iv), that f; depends continuously on
f, it is enough to show that hy depends continuously on fi. Let f; be near fg,
and let

o f]gpkfkfl on Imehere Pk :Pk(175%>275%)7
k 1 otherwise.

If C is a compact set in R™, we must prove that sup,co d(hiz, hj,z) can be
made less than e by requiring d(fry, fy) = d for all y € Ay, € > 0.

Let Ay = (4k + 6)B™ \ Int B” = domain of f;. Given € > 0 there is an
n > 0 such that y,y" € A and d(y,y’) < n imply d(fepr(y), frpr(y')) < 5.
Since 0y, is injective, there is a § > 0 such that y,y" € A and d(y,y’) > n imply
d(fry, fry') > 6. We suppose 0 < §. Suppose d(fry, fry) < g for all y € A.

Let x € C. We split into cases:

i. z € Im fyNlm fy, say x = fryr = fryp- Then d(fuyr, feyi) = d(fLys, fryg) <
% < 4. Therefore d(y,y’) <0, so

d(hix, hyx) = d(frprye, fiPeYr)
< d(fepryr, fepryr) + d(fepryr, froryk)

<e+5
2 2
<€

ii. If z € Im f \ Im f},, say « = fr(y), then d(z, fly) < g, so there is
a z € 0A such that d(f,z, fly) < XXXXX and d(z, fjz) < g. But
d(fr.z, frz) < g, so d(z, frz) < d, so d(y, z) < n. Therefore

d(hgz, hix) = d(fepry, o)
< d(fuprys frprz) + d(frz, @)
<<456
2
< €.

Here we used the fact that fypxz = z since z € 0A.
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iii. If z € Im f;, \ Im f, the proof is similar.
iv. If x & Im f; UIm f, there is nothing to prove.

We have proved that fi — hj is continuous. f +— fr41 is continuous if f — fj
is, so the induction is complete.

Define §: U — &,(R™ \ Int B®,R™) by 0(f)(xz) = fx(z) for k large and
x € (4k 4+ 5)B™. Then 0(f) is proper (interleaving property (iii)). Also 6(f) is
an embedding, so 0(f) € £,(R™ \ Int B",R™). 0(f) depends continuously on f
because fj agrees with f on (4k +5)B™ and f;, depends continuously on f. O

Corollary 2.16. If 0 < A < 1, there is a neighborhood V of 1 € E(B™ \
Int AB™,R™) and a continuous map ¢: V — E(B™,R™) such that for all f,

O(f)lsn-1 = flgn-1.

Proof. Let X be _the one point compactification of X. g: X — Y is proper iff
g extends to g : X — Y with g(o0) = 0.

Example. The map g — ¢ is not continuous, even if X =Y = R",

We first prove that f — f is continuous (XXXXX seems to contradict
the above). Suppose f € &(R™ \ Int B",R"), C C R is compact, U C Rn
is open, and f(C’) =U. If o ¢ C, C is a compact set in R™ \ Int B™ so
{g € &(R™\ Int B",R™): g(C) C U NR"} is a neighborhood of f, mapping into
a given neighborhood of f

If oo € C, then oo = f(oo) € U open in R" and there is a k such that R" \
kB™ C U. Since f is proper, there is an [ such that f~1(2kB") C IB™. Let N =
{g € &/(R"\ Int B",R"): g(C NIB™) C UNR", g(IS"~*) C R"\ kB"}. This
is open in &£, and contains f.

Now we have to show that g(C') C U for all g € N.

§(C) = g(CNIB™) UG(R™ \ Int IB™)
C U U one of the complementary domains of g(1S™™!).

In fact UUoutside domain C I@?’\kB" C U. Hence the map g — g is continuous.

£(6B"\ Int B",R") > U — &,(R" \ Int B", R")

T

£,(R" \ Int B, R").
There exists a homeomorphism A : R — R» with

s ifa £ 0,00,
h(z) =< co if z =0, and

0 if x = o0,
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carrying 68" \ Int B" onto B™ \ Int § B" taking R® \ Int B™ — B™. Hence the
result. (XXXXXX: really?) O

3 Properties of Tori

Definition 3.1. Let Z" be the integer lattice in R™. Then T" = R"/Z" is the
n-dimensional torus. Clearly T" = S1 x ... x S', n copies of S'.

Let e : R® — T™ be the projection map. If a € Z", let 7, : R” — R" send
xr—a-+x.

Proposition 3.2. ¢: R" — T" is a universal covering of T". If X is a 1-
connected space_and f: X — T™ is any map the there is an f: X — R such
that f =ef. (f is a lift of f.) If f1, fo are lifts of f then f1 = 1,f2 for some
a€Z".

If X is simply connected and f: X x T" — X xT™ is a map, then there
exists an f: X x R" — X x R™ such that ef = fe.

Lemma 3.3. If f is a homeomorphism, so is f, if f is homotopic to the identity,
then f commutes with the covering translations.

Proof. Let f be the homeomorphism and g its inverse. We have

efg = feg
= fge
=e,

SO fﬁ = 7, for some a. Similarly 517: Tp. Therefore fis a homeomorphism.
Suppose F': X xT"™ x I — X xT" has Iy = f and Fy = 1. By 3.2 there is
an F: X xR" x I — X x R" with e’ = Fe. We have

eT_aFTa = GﬁTa
= Fer,
= Fe
=eF.

Therefore there is a b € Z™ so that T,QFTG = Tbﬁ. We have eﬁ1 = Fie = e,
so F1 = 7. for some c. But 7_,7.74 = TpTe, therefore b = 0 and 7, = 1. Thus

T,aﬁTa = F. Since Fo=fFy= Tdf for some d. Therefore fcommutes with
Td- O

Definition 3.4. Let M, N be manifolds. An immersion f: M — N is a map
such that each point € M has a neighborhood U, with f|y, an embedding. If
U, can be chosen so that f|y, is locally flat, then f is a locally flat immersion.

Theorem 3.5. There is an immersion of T™ \ point in R™.
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Proof. T™\ pt is an open parallelizable manifold. Therefore, by Hirsch’s theory
of immersions there is a C* immersion 7" \ pt — R™.

Alternately, regard T as the product of n circles, T = T! = circle. Let J
be a closed interval in 7. T™ \ J” = T™ \ pt. Assume inductively that there
is an immersion f, : T™ \ J® — R™ such that f, x 1: (T™\ J") x [-1,1] —
R"™ x R = R"*! extends to an immersion g,, : 7™ x [—1,1] — R"*L.

The induction starts with n = 1. Let ¢o: T\ J — [—1,1]. Choose an
embedding ¢ : R xT'— R x R such that if (z,¢) € [-1,1] x T\ J then ¢(z,t) =
(z,60(t)). Extend ¢y ' : [~1,1] — T\ J to an embedding 1 : R — T.

Suppose fn, gn constructed. We have T+ \ JHl = (T \ J*) x TUT™ x
(T'\ J). Define f}, , : T\ ot — R* ! by

frl7,+1 = (Ign-1 X A)[(fn X 17) U (1 X ¥)gn(17n x 1/171)]'

On (T™\J")x(T\J), gn = frx1s0 (1x@)g(1xp™") = (Ix))(frx1)(Ixp™") =
fnx 1. Let J' = T\gf)(f%,i), so J C IntJ'.

We shall construct an immersion g, ,; : 77! x [—1,1] — R"*2 which agrees
with f/y x I on T"F1\ (J')"! x [-1,%]. This will be enough, since 7"+ \
(Jl)n+1 o~ Tn+1 \Jn—&-l.

Define 6; : C — C (= R?) by

z if [2] < 1,
0:(2) = 262(“2‘7%)7”% if £ <[z] <3, and
ze'?" if [2] > 3.

Let J” =T\1(—32,2) and X : T" — [0, 1] be continuous such that A|(j»yn =
1 and >\|Tn\(J/)n =0.

Define g;L+1|(T"\J")><T><[—1,1} - RnJrlXRby g;—kl(x?tvu) - (lxe)\(z))((rb;v,—i-l(xat)vu)
and define g;, |70« 1\ 7)x[-1,1) = R" xR by g5, (2, t,u) = (fi,11 x D) (2, (¢ x
1)0x(z) (¥~ (t),u)). Then g, |7n+1\(yryn+1 agrees with f), ;X 1. Define g}, , 1|+
to be the restriction of

On(1 X @)on(gn X Dopy1(1x7): T" x T x [1,1] — R"T2

where o; swaps the jth and (j + 1)th factors in the (n + 1)-fold product and
7:[=1,1] — [-1,1] changes sign.
This proof has no end XXXXXXXXXXXXXXX O

4 Local Contractibility

Definition 4.1. A space X is locally contractible if for each point z € X
and each neighborhood U of z, there is a neighborhood V' of # and homotopy
H:V x I — U such that Hy=1 and H;(V) = z.

Let X7 be the set of paths in X ending at x. It is enough to find a neigh-
borhood V and map ¢ : V — X! such that ¢(y) is a path from y to = and ¢(z)
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is the constant path at x. (Given an open neighborhood U of x, U! is the open
set in X! so that there is a neighborhood of = in X such that ¢(V’) C UL.)

If M is a manifold, let H(M) be the space of homeomorphisms of M together
with the compact-open topology.

Definition 4.2. An isotopy of M is a path in H(M). Equivalently, an isotopy
is a homeomorphism H : M x I — M x I such that po H = py. We say that H
is an isotopy from Hy to Hy, and Hy, Hy are isotopic.

Theorem 4.3 (Cernavsky, Kirby). H(R") is locally contractible.

Proof. H(R™) is a group, so it is enough to show that it is locally contractible
at 1.

Choose an embedding i: 4B™ — T™ and choose an immersion f: 7™ \
i(0) — R™. T\ i(Int B™) is compact, so there is a § > 0 such that for
all z € T \ i(Int B"), f|n,(2) is injective. We may suppose d < d(i(3B™ \
Int 2B"),4(45"~1 U S™71)). Since f is open €, = d(f(x),R"\ Ns(f(z))) > 0
and € = inf{e,;: z € T" \ i(Int B™)} > 0.

If x € T" \ i(Int B") and v € R™ are such that d(f(x),v) < € then there
exists a unique u € Ns(z) such that f(u) =

Let h € H(R™). Suppose h is so close to 1 that d(h(f(x)), f(z)) < € for all
z € T™\i(Int B™). For x € T™\i(Int 2B™), let h'(x) be the unique point in Ny (z)
such that fh'(z) = hf(z), h'(x) € T™\i(Int B™). Since f is an open immersion,
h’ is an open immersion. If h'(z) = h/(y), then x,y € Ns(h'(z)) mean that
f(z) # f(y) which implies that h'(z) # h'(y), a contradiction. Therefore A’ is
an embedding depending continuously on h € H(R").

Consider i~'h’i : 3B™ \ Int2B™ — Int4B". By corollary 2.16 there is a
neighborhood W of 1 in £(3B™\Int 2B™, Int 4B™) and continuous map ¢ : W —
E(3B™,Int 4B™) such that ¢(g)|zgn-1 = g|ggn-1. Define b : T" — T™ by

gy — A (@) if ¢ i(3B"),
h(e) {i¢(i_1h’i)i_1(x) if z € i(3B™).

Then h” is a homeomorphism, depending continuously on 4 € V where V =
{h € H(R™): ' is defined and i~*h'i € W}. If V is sufficiently small, then h €
V implies that h” is homotopic to 1.

Let e: R™ — T™ be the (universal) covering map. By 3.3 there exists a
homeomorphism h:R" — R™ such that eh = h'e. If V is sufficiently small,

there is a unique choice of h such that d(h(0),0) < . Then h depends con-

tinuously on h. By 3.3, h commutes with covering translations. Let I = [0, 1]:
every point of R can be moved into I" by covering translations.

If A=sup,cnd(h(z),z) < oo, we have d(h(x),z) < A for all z € R™, that
is, h is a bounded homeomorphism of R™.

Suppose without loss of generality that e(0) ¢ i(4B™). Choose once and for
all 7 > 0 such that f|cpn) is injective and r < 1 and e(rB™) Ni(4B™) = 0.
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Define a homeomorphism p : Int B® — R"™ fixed on rB" by

() T if x € rB™,
xTr) =
P I;‘illx ifx €rB™.

Then p‘lﬁp is a homeomorphism from Int B™ — Int B™ fixed on rB"™. Suppose

|z| < 1is close to 1. Then d(z, p~'hp(z)) < %

extends to a homeomorphism of B™, fixed on 0B™.
Define an isotopy R; of B™ by

x if |z| > ¢,
R = ~
(@) {tplhp(ﬂg) if |z] < t.

—0as |z| — 1. So p~thp

Extend fe: rB™ — R™ to a homeomorphism o : Int B® — R" (e.g. by
Schonflies theorem). Choose s, 0 < s < r. If V' is small enough, h € V implies
that h(sB"™) C Int tB".

Define an isotopy S; of R™ by S;(x) = cRyo~*(x). This depends contin-
uously on h. Sy = 1, and Si|fe(spn) = hlfe(spn). Without loss of generality,
0 € Int fe(sB™). S;'h is 1 on a neighborhood of 0.

Define F; : R® — R” by

—1o—1 .
File) = {t S—1h(tz) if 70,
x if t =0.
Define Hy = SiF;, i.e. Hy(x) = Si(Fi(x)). This is an isotopy from 1 to h. H;

depends continuously on h € V', and h = 1 implies that H; = 1. So H(R") is
locally contractible. O

What about H(M) for (say) M compact? (Use a handle decomposition.)
Let &€(k-handle) be the space of embeddings of B¥ x B™ — B* x R" leaving
(0B*) x B™ fixed.

Theorem 4.4. There is a neighborhood V' of 1 in E(k-handle) and a homotopy
H:V x I — &(k-handle) such that

i. Hy(1) =1 for all t,
ii. Ho(h) =h for allh €V,
iii. Hy(h)| i1 pn = 1, and
(

2. Ht h)|aBk><Bn = h|8B’“><B" fOT all t,h

Proof. Let i : 4B™ — T" be a fixed embedding, f: 7" \ {0} — Int B" a fixed
immersion. Choose 0 < r < 1 such that f|.,pn) is injective and e(rB™) N
i(4B™) = (). Modify f so that f(e(IntrB")) D> $B™.
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XXX: this junk is all messed up: Let h € £(k-handle) be close to 1. Define
a preliminary isotopy G from h to g € £(k-handle) such that XXXXXXX:

T,y) = (z,9) if |x|21*%,
Gl {«1— D =3) e y) ha(ey) iflel<1-3

where h(z,y) = XXXX. Go = h, G; = g is an embedding fixed on B" \ $B¥ x
%B”. G depends continuously on h and

Gtlrxopn = hlprxopn-

As in 4.3 construct an embedding ¢’ : B¥ x (T™ \ i(Int 2B™)) — B* x (T™\
i(Int B™)) such that (1 x f)g’ = ¢g(1 x f) and g’\mx(w\i) =1

Put g’|mxw = 1. This extends the ¢’ defined above. Use 2.16 to

2
extend g’\%BkXi(an)\Im(%kai(QBn)) to an embedding g” : %B’“ x 1(3B™) —
B* x i(4B™) such that g = ¢’ on 9(3B" x i(3B™)).

Let g: B¥ x R* — B* x R" be such that (1 x e)g = ¢”(1 x e) and
Glogrxpn = 1. g is bounded, i.e. d(z,g(z)) < A for x € B*¥ x R". Extend
g to a homeomorphism of R* x R™ by g (RE\ B¥) xR = 1.

Define p : Int(2B* x 2B") — R* x R", a homeomorphism fixing B* x B",
by

(w.y) = 4 @Y if (z,y) € B* x B",
PV (2 = max {Jal, [y]}) " (z,y) otherwise.
Then p~1gp : Int(2B* x 2B™) — Int(2B* x 2B") extends to a homeomorphism
of 2B* x 2B" fixed on A(2B* x 2B™). In fact, p—'gp fixes (2B*\ Int B*) x 2B™.

Thus p~'gp defines a homeomorphism of B¥ x 2B™ fixed on 9(B* x2B"). Define
an isotopy R; of B* x 2B™ by

Ry(z,y) = (@,y) if max {|z[, 3|yl} > ¢,
’ tp~lgp(t~1(x,y)) otherwise.

Let 0 : B¥ x 2B™ — B* x Int B" be an embedding with o|gky,5n = fe.
Now define an isotopy S; of B* x B™ by

Rio~ ! ifz e€lmo,
Sy(a) = ocRio if 'mo
T otherwise.

Then Sy = 1 and S; fixes d(B* x B™).

Suppose V is so small that & € V implies that g is defined and g($B™) C
fe(IntrB™). Then Si|gr,1pn =g

Define H, : B*¥ x B® — B* x R" by

Go(x ifog<t<i,
Hy(z) = § ) 2
955,_1(xz) otherwise.

This does what is required. O
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Lemma 4.5. If C C R™ is compact and € > 0, then C lies in the interior

of a handlebody with handles of diameter < €. FExplicitly, there exist finitely
many embeddings h; : BF x B"~% — R" i = 1,2...,1, such that if W; =
Uigj hi(B* x $B"7ki) then

7. hi(Bkl X Bniki) NW;_1 = hl(aBkl X Bniki),
1. Wy is a meighborhood of C', and
iii. h;(B* x B""ki) has diameter < e and h;(B* x B"~%) C N_.

Proof. Cover C' by a lattice of cubes of side %e. Since C' is compact, C only

needs a finite number of these cubes. Let v1,...,7; be all the faces of all the
cubes meeting C.

Let k; = dim~y; and order +; so that kg < k1 < --- < k;. Define a metric on
R™ by d(21,- -, Zn), (1, - ) = MaXscin |7 — il Let

H; = Neg-i=3(7i) \ | Nea—s-4 (1)

J<i

and %Hl = H; N Ne—i-a(;).
Then H;My; = v; (radial projection) = B* and clearly H; = (H;My;)x B" %,
There exist homeomorphisms h; : B¥ x B"~* — H; carrying B*: x 1B" ki
onto 3 H; and (9B*) x B"™% onto H;NJ;_; 3 H;. Then hy, hy, ..., h; do what
is required. O

Addendum 4.6. If D C C is compact, then we can select h;,,...h;  so that
(i) is still satisfied, and (i) and (iii) are satisfied by h;,, ..., h;  with respect

to D instead of C. That is, |Jh;, (B¥ir x $B""*ir) is a neighborhood of D,
h;, (B*r x B"%ir) has diameter less than € and is contained in N.(0).

Proof. Select h; iff ; is a face of a cube which meets D. O

Theorem 4.7 (Kirby-Edwards). Let C, D be compact in R™ and U,V be neigh-
borhoods of C, D. Let € be the space of embeddings of U in R™ which restrict to 1
on V. There is a neighborhood N of 1 in & and a homotopy H : N x I — H(R™)
such that

i. Hi(1)=1 for allt,
Hy(g) =1 forallge N,
iii. Hi(9)lc = gle, and

. Hi(9)|lpummuoy =1 for allt,g.

Proof. Let e = min {d(C,R"\ U),d(D,R™\ V)}. Cover CUD by a handlebody
in U UV with handles of diameter < €. Let hq,...,h; be the handles, with W;
as in 4.5. Select h;,,...,h;,, to form a sub-handlebody covering D, contained
in V. Let X =J, h;, (BFir x BnFir),
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Suppose inductively that we have constructed a neighborhood N;_; of 1in £
and a homotopy H~1 : N;_; x I — H(R™) such that (i) and (ii) are satisfied,
H{ ™ (9lw,_, = g, H' V(1) = 1, H{ ™V (g) = 1, and B (9)|xuemo) = 1.

If hz(Bk’ X Bn_ki) C X, put Nl = Ni—l and Hz = H,‘_l. (ThlS is consistent
because if h;(B* x B"7ki) N h;(B* x B"7ki) £ () for j < i then h;(B% x
B ki) C X.)

Now suppose h;(B* x b"~*) ¢ X. Choose N; so small that

i B T , h
g H Y (9)hi(BF x 2B M) C hi(BM x Tnt B ).

Let f = hy g "H ™V (g)h; : BR x 3Bmk — Bk x Int B"%. Then [ fixes
(0B*) x %B"’ki. Theorem 4.4 gives a continuously varying isotopy H{(y) such
that

i. H{(1) =
[

)=
9prixy ipn—rk = 1, and
)

i(
ii. Hy(g
iii. Hy(

(g |8 Bkix3pn—ki) = L.
Define

D () (2) = (Ht(i—l)(g)) hif =Y (H.(9)) h;l(z) if & € hy(B* x %B”*ki),
e {Ht(ll)(g)(m) otherwise.

Then W; = W;_1 U h(B* x B" k) hy(BF x 3B"=k)n X C hy(9(BF x
3Bn=ki)) completes the induction.
H = H', N = N! do what is required. O

Theorem 4.8. If M is a compact manifold then H(M) is locally contractible.

Proof. First suppose M is closed, OM = (). Cover M by finitely many embed-
dings f; : R" — M, i=1,...,1. In fact, assume M = |J F;(B").

Let h : M — M be a homeomorphism near 1. Define inductively an isotopy
H® (h) of M such that

i. H' @ (h) depends continuously on h,

i. 7Y (1)

iii. H"(h) =1, and
)

iv. H\" (h) agrees with h on U< fi((L+279)B").
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Suppose H{'" ) is defined. Let C = (14+27)B", U = (1 +2~-(=D)B" and
let D = f7(U;<; £(C) N4B™, V = 71 (U £;(U)).

Suppose h is so near 1 that h_lHt(ifl)(h)fi(U) C fi(R™). Apply Theorem 4.7
to g = fflh_lHl(i*l)(h)fi: U — R". If h is sufficiently near 1, we get a

continuously varying isotopy H'(h) of R™ such that
i. H{(1) =1 for all ¢,
ii. Hj(h)=1 for all h,
iii. Hi(h)|c = h|c, and
iv. H{(h)|pu@m\vy =1 for all ¢, h.
Define H® = H®(h) by

7O (@) = {Ht‘i‘”fi (H() S ) i € fi(R),

k Ht(ifl) (x) otherwise.

Then H®) satisfies (i)-(iii) and completes the induction.

Now suppose OM # @. Let v: OM x I — M be a collar of OM in M.
H(OM) is locally contractible. If h € H(M) is near 1 then we have an isotopy
Hy(h) of OM with Ho(h) = 1, Hy(1) = hloar.

Define an isotopy H of M by

Ht(v(cc, ’LL)) = V(Ht(l—u) (LL'), ’LL)

for x € OM,u € I, and o
Hi(y) =y

if y € y(OM x I). Then H, is an isotopy of M from 1 to H; where H, agrees
with h on OM.

There exists an isotopy Gy : M — M from H; to G; where G, agrees with
h on y(OM x [0, 3]). Now the argument goes as for closed manifolds. O

Ezercise. If M is compact, then H(Int M) is locally contractible.

Theorem 4.9 (Isotopy extension). Let M, N be n-manifolds with M com-
pact, ON = 0, and M C N. Suppose we are given a path H : [ — E(M,N),
Ho: M — N. If U is a neighborhood of OM in M, then there is an isotopy
H:I— H(N) such that Hy =1 and Hi|ypv = H|an\v-

Proof. First use the method of 4.8 to generalize 4.7 to deal with compact
C,D C N (i.e. replace R™ by N.) Let f € £(M,n). Then f(M) C N is a

neighborhood of f(M \ U) (assume that U is open), and there exists an open
neighborhood V} of 1 in £(f(M),N) and a homotopy F) : V; x I — H(N)

such that Fl(f) (@l = glanv for g € V.
Let Wy = {gf: g € V¢}. Then Wy is an open neighborhood of f in £(M, N).
Now {Wy}cem Ny is an open cover of E(M,N). There is a dissection 0 =
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to < t; < --- <ty =1 of Isuch that H([t;_1,t;]) is contained in some W7,
fi € 5(M7 ]i)
Define Ht for ti—l g t < ti by

_ A _ -1
H, =F)(Ho [ (Fffl)(Htifl o ffl)) H,

1—1"

Then Hy = Hy on M\ U. O

Addendum 4.10. H, can be chosen to be the identity outside some compact
set. (This is because 4.7 also produces isotopies of compact support.)

Corollary 4.11. Let f : B™ < Int 2B"™ be isotopic to 1. Then 2B™\ f(Int %B") =
2B" \ Int £ B".

Proof. Let H; be an isotopy from 1 to f. By 4.10 there is an isotopy H, of
Int 2B™, fixed outside AB™ for some A\ < 2, such that H; = f on %B”.

Therefore Hy defines a homeomorphism 2B™ \ Int iB"™ — 2B"\ f(Int £B").
O

5 Triangulation Theorems

Definition 5.1. An r-simplex in R™ is the convex hull of 7 + 1 linearly inde-
pendent points.

Let K C R™ be compact. An embedding f : K — R™ is PL if K is a finite
union of simplexes, each mapped linearly by f.

If M is an n-manifold, a PL structure on M is a family F of embeddings
f: A™ — M such that

i. every point of M has a neighborhood of XXXXXXXXXX from f(A"),
feF,

ii. if f,g € F, then g7 1f: f~1g(A") — R" is PL, and
ili. F is maximal with respect to (i) and (ii).

If M, N have PL structures F,G, an embedding h: M — N is PLif f € F
implies hf € G.

Example. The composite of 2 PL embeddings is PL, i.e. PL & is an equivalence
relation.

A PL structure F on M defines a PL structure F on OM.

A compact n-manifold has PL structure iff it has a triangulation with the
link of each vertex PL homeomorphic to 0A™.

We need 3 deep theorems from PL topology.

Proposition 5.2. i. Suppose M is a closed PL manifold which is homotopy
equivalent to S™. If n > 5, then M is PL homeomorphic to S™ = OA™T1,
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1. Call a non-compact manifold W simply-connected at oo if for every com-
pact set C C W, there is a compact set D C W such that any two loops
in W\ D are homotopic in W\ C. (Example: R™ is simply connected at
oo iff n >3.)

Suppose W™ is an open PL manifold which is simply connected at infinity.
If n > 6 then W is PL homeomorphic to Int V where V is some compact
PL manifold. XXXXXXXXXXXX

1. Let M be a closed PL manifold which is homotopy equivalent to T™. Then
some finite covering of M is PL homeomorphic to T™ = (0A%)". (Proof
in Wall’s book.)

Theorem 5.3 (Annulus Conjecture). If h: B™ — Int B™ is an embedding and
n > 6, then B" \ h(Int 3 B™) = B™ \ Int 3 B".

Proof. Let a € T™ and let f : T™ \ {a} — Int B” be a PL immersion such that
f(T™\ {a}) C $B™. Let h: B® — Int B" be a topological homeomorphism:
we shall find a PL Structure 7’ on T™ \ {a} such that hf is PL with respect
to F'. Let Fo = {¢p: A" = T™\ {a}: (hf)¢ is a PL embedding}. Since hf is
an open immersion, {¢p(Int A™): ¢ € F} covers T™ \ {a}. Extend F; to a PL
structure F' on T™\ {a}. Let XXXXXXX. Forn > 3, (T"\{a})' = (T™\{a}) so
(T™\{a})’ is simply connected at co. Since n > 6, by 5.2 (ii) there is a compact
PL manifold w and PL homeomorphism g : (7" \ {a})’ — Int W. There exists
a PL collar v: OW x I — W. Let € > 0 and A be a neighborhood of a in T™
homeomorphic to B™ and so small that

g7 (OW x I) D A\ {a} D g~ 'y(0W x {e}).

The first and last sets are homotopy equivalent, so it follows that W = S™~1.
By 5.2 (i) since n > 6, 9W is PL homeomorphic to S™~!.

By Schoénflies theorem, {a}Ug=1y(dW x (0, €]) = B™. Extend F' |l rm\ ({a}ug—15(0W x (0,6)))
to a PL structure F” on XXX. (¥’ induces PL structure on d({a}Ug~1y(0W x
(0,€])); extend this “conewise” to a PL structure on {a} U g~ 1y (W x (0,¢)).)

By 5.2 (iii), there is a finite covering of (T™)"” which is PL homeomorphic
to T™. Let ¢’ : T™ — (T™)” be a finite cover. Let ¢ : T™ — T™ be the corre-
sponding cover of T™. By the theory of covering spaces there exists a homeo-
morphism A : T™ — T™ (not PL) such that € = ¢’h (h is homotopic to 1). Now
let h: R" — R"™ be a homeomorphism such that eh = he. Then d(m,ﬁ(m)) is
bounded uniformly for x € R™.

Let p: Int B* — R"™ be a PL “radial” homeomorphism (avoiding the “stan-
dard mistake”). Now n = p_lﬁp: Int B™ — Int B™ extends to a homeomor-
phism of B™ fixing 0B™.

Let U be a nonempty open set in Int B™ such that eep(U) N A = @ and
o = feeply maps U injectively into $B". Let o’ = hfe"ep|,) — Int B".
Then o,0” are PL embeddings and ¢’ = ho. The PL annulus conjecture is
true (proof by regular neighborhood theory). There is an n-simplex A C U
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such that n(A) is contained in some n-simplex A” C n(U). Therefore by the
PL annulus theorem, 1 B" \ o(A) = the standard annulus = B" \ 3 B".

We have that B™ \ h(Int £B") = B" \ ho(Int A) by gluing the standard
annulus h(3B") \ ho(Int A) onto B" \ h(Int 1 B"). From there,

B"\ ho(Int A) = B\ ¢"n(Int A)
=~ g"(A")\ o’ n(Int A)
=~ A"\ n(Int A)
=~ B"\ n(Int A)
>~ B"\ Int A

1
=~ B"\Int 5 B".
O

The proof depends only on knowing that given embeddings f,g: B™ — T
there exists an h: T — T™ carrying f(3B") onto g(3B"). If we could do this
purely geometrically (i.e. without PL theory) for all dimensions, we would have
then proved the annulus conjecture in all dimensions.

New notation: W is any manifold, | is the subset (OW x I) U (W x {1}) of
W x I.

Theorem 5.4. Let M be a PL manifold and let h: I x B¥ x R® — M be a
homeomorphism which is PL on a neighborhood of |. If k +n > 6 then there is
an isotopy Hy : I x B* x R® — M such that

i. Hy=h,
4. Hy is PL on I x B¥ x B", and
ii. Hy = h on] and outside I x B*¥ x 2B™.

Proof. Let a € T™ and let f: T™\ {a} — R™ be a PL immersion. As in 5.3,
let F/ be a PL structure on I x B¥ x (T™\ {a}) such that h(1 x f): (I x B* x
(T"\ {a})) — M is PL. Then F’ agrees with F near |.

Let A be a ball neighborhood of a in T". First extend F’ over a neighborhood
of | in I x B¥ x T™ (using the standard structure). As in 5.3 extend F’ over
{0} x B¥ x T™, obtaining a structure F”. The following argument implies that
we can extend F" U F|;, gk (rn\ 4) Over a neighborhood of {0} x BF x T™ in
I x BF xT".

As in 5.3 extend this to a PL structure over I x B¥ x T™ agreeing with
the standard structure near | and with " on I x B* x (T™\ A). We can take
F" to be the standard structure near {1} x B* x T". Now F” is defined near
(I x B* x A); we extend over I x B* x A as in 5.3, obtaining a PL manifold
(I x B¥ x T™)". The inclusion (I x B* x (T™\ {a}))’ — (I x B¥ x T")"" is PL
except on I x B¥ x A, and the identity map I x B¥ x T" — (I x B*¥ x T")" is
PL near |.

Now we need another result from PL topology:
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Proposition 5.5. Let W, Vi, V5 be compact PL manifolds with OW = V3 UV,
and Vi N Vo = 0Vy = 0Va. Suppose the inclusions V; — W are homotopy equiv-
alent. If w1 (W) is free abelian and dim W > 6, then W is PL homeomorphic to
V1 x 1.

Apply this result with W = (I x BFxT™)", V; =] and Vo = ({0} x B¥ xT™)".
We obtain a PL homeomorphism (I x B¥ xT™)"” —]xI. Since |x I = I x Bk xT"
by a PL homeomorphism taking (z,0) to z, we can find a PL homeomorphism
g: I x B*xT" — (I x B¥ xT™)"” which is the identity near |.

Leth IkaxR"—>IkaxR”besuchthateh—g leand h =1 on
]. Then h is a bounded homeomorphism. Extend & over [0,00) x RF x R™ by
putting h=1 outside I x BF xR"™. Extend further over R x RF x R™ by putting
h(t,x,y) = (t, p2h(0,2,y), psh(0,z,y)) for t < 0. Note that d(z, h(z)) remains
bounded for € R x ]Rk x R™.

Suppose 0 <7 < 1, e(rB")N A =0, and fel|.pn is injective. We may also
suppose fe(rB™) D sB™ for some s > 0. There is a PL “radial” homeomorphism
p:(—1,2) x Int(2B* x B") — R x R* x R™ fixed near I x B¥ x rB™. Then
php~!
Let n = php~!.

Note that I x B¥ x B™x I is the join of(%, 0,0, %) to (|xIU(Ix B¥x B"xdlI).
Define a PL homeomorphism R of I x B¥ x B™ x i by R(3,0,0,3) = (3,0,0, 3),
R|qxnuxBexprxq1y) = 1, and Rl gry prx {0y = 1, extending conewise. Then
R defines a PL isotopy R; of I x B¥ x B", fixed near |, with Ry = 1 and Ry = 1.

Let 0: I x B¥ x B® — I x B¥ x R" be a PL embedding which agrees
with 1 x fe near I x B¥ x rB™. Then hon~! agrees with h(1 x f)gep near
n(I x B¥ x rB"), so it is PL there.

extends to a homeomorphism of [—1,2] x 2B* x B" fixing the boundary.

I x B x B" ——> x B¥ x Bn

T

I x BF x R" M

hon~!is PL near (I x B¥ x rB™). W = I x B¥ x B*\n(I x B¥ xrB") is a
PL manifold (since it is an open subset of a PL manifold). If n > 3, W is simply
connected at infinity, so if n > 3 the Browder-Levine-Livesay theorem (5.2B)
implies that W is homeomorphic to an open subset of a compact manifold.

If n < 2, the same result, using instead Siebenmann’s XXXXXXX. It fol-
lows that n(I x B*¥ x rB") has a neighborhood which is a compact PL man-
ifold such that 9N C I x BF x B®\ N is a homotopy equivalence. Now the
s-cobordism theorem (5.5) implies that I x B¥ x B"\ N is PL homeomorphic
to I x Bk x B\ I x BF x rB™.

It follows that there is a ¢’ : I x B¥ x B® — M, a PL embedding such that
o''n = ho near I x B¥ xrB™ (regard I x B¥ x B\ N as a collar of XXXXXX).
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Let R; be an isotopy from 7 to 1 rel |. Define S; : I x B¥ x R* — M by

" Ryn~ (o) th(x) if h(x) € Imo”,
Si(x) = )
h(z) otherwise.

Then Sy = h and

" —1 —1
SilixBrxspr = 0" Rin~ no

_n_—1
=00 |I><Bk><sB” - M

which is PL. S; = h on ] and also outside h~! (the image of o) which is
compact. Therefore S; = h on | and outside I x B* x RB™ for some R > 0. It
is trivial to replace S; by an isotopy H; satisfying (i)—(iii). O

Theorem 5.6. Let C, D be closed subsets of R™ and let U be an open neigh-
borhood of C. Let F be a PL structure on U x I C R™ x I which agrees with the
standard PL structure near (UN D) x I and near U x {0}. If n > 6, then there
1s an isotopy Hy of R™ x I such that

t. Hy = 1pnxr,
it. Hy : (U x I, standard) — (U x I, F) is PL near C x I, and
iti. Hy =1 near (DU (R"\U)) x I and near R™ x {0}.

Proof. If C, D are compact, this is deduced from 5.4 exactly as 4.7 was deduced
from 4.4. For the general case, let C; = C NiB", U; = U N (i + 1) Int B™,
D; = DN (i+1)B™. Suppose inductively that H®) satisfies (i)-(iii) with respect
to CiaDh and Uz
Let F; = (Hll))_l(}'): this is a PL structure on U x I which agrees with the
standard PL structure near (C; x I)U(D; U(R™\U;)) x I and near U x {0}. Now
apply the compact case to get an isotopy Hj satisfying (i)—(iii) with respect to
Cit1\Ci, U1 \ U3, C; U Dyyq, Fi. Then HI™Y = HIYHI satisfies (i)-(iii)
with respect to Ciy1,Uit1, Dit1,F. Since H{ =1 on (i — 1)B™, Ht(i“) = Ht(i)
on (1 —1)B™.
Now take H; = lim;_, oo Ht(l). This satisfies (i)—(iii) with respect to C, D, U, F.
O

Theorem 5.7 (Product Structure Theorem). Let M™ be a topological manifold,
C C M be a closed subset, and U be an open neighborhood of C. Let Fy be a PL
structure on U, and let G be a PL structure on M x R™ such that G agrees with
FoxR¥ on U xRE. Ifn > 6 then there is a PL structure F on M agreeing with
Fo on C and a PL homeomorphism (M x R¥ F x R¥) — (M x R* G) which is
isotopic to 1 by an isotopy fizing a neighborhood of C' x RF.

The proof is given below.

Definition 5.8. PL structures Fi, F2 on M are isotopic if there is a PL home-
omorphism b : (M, F;) — (M, F») which is isotopic to 1.
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Let PL(M) be the set of isotopy classes of PL structures on M.

Corollary 5.9. If dim M > 6, the natural map PL(M) — PL(M x RF) is a
bijection. In particular, if M x R* has a PL structure and dim M > 6, then M
has a PL structure.

Lemma 5.10. Any two PL structures on R"™ (n XXXXXXX) are isotopic.

Proof. Let F be a PL structure on R™. By 5.2 (ii) (R",F) is PL homeomor-
phic to Int W where W is a compact PL manifold with OW = S"~!. By 5.2
(i), OW is PL homeomorphic to S"~1. W is contractible, so by 5.2 (i), W is
PL homeomorphic to B". W Ug B™ = S™ so there exists a PL homeomor-
phism A : R"® — Int B" — Int W — (R™, F). We may assume h is orientation
preserving. We must prove that h is isotopic to 1.

Let R > r > 0 be chosen so that h(rB™) C Int h(RB™). By the annulus
theorem 5.3, there is a homeomorphism f : RB™ \ Int rB™ — RB" \ h(IntrB™)
with fsrpn) = 1. Since h is orientation preserving, and using the proof of 5.3,
we can choose f so that f = h on 9(rB™).

Extend f over R™ by

z if |z]| = R,
flay={¢ lel=
hx if ||z| < 7.
Since f = 1 outside RB™, f is isotopic to 1, so h is isotopic to f~'h. Since
f~'h=1inrB", f~'his isotopic to 1. Therefore h is isotopic to 1 as required.
O

Proof of Theorem 5.7. Clearly, it is sufficient to prove for the case k = 1. As-
sume first that M = R”, G = a PL structure on R® x R = R"t!. By 5.10,
there exists an isotopy H; such that H; : R"™t — (R"*! G) is PL and H; = 1
for t < %. H defines a homeomorphism H : R" x R x I — R"® x R x I (send-
ing (z,t) — (Hi(x),t)) Let H = H(standard PL structure). Then H agrees
with the standard structure near R™ x R x {0} and with G on R™ x R x {1}.
Apply theorem 5.6 to R” x R x I with C,U, D, F replaced by R™ x (—o0,0],
R™ x (—OO, %), @, H‘Ux[-

We obtain an isotopy F; on R™ x R x {1} such that Fy =1, F; = 1 outside
R"x (—00, £)x XXX X and F; : (R"x(—o00, 3)x{1},standard) —» XXX XXX
is PL near R™ x (—o00,0) x {1}.

Let ¢’ = F;'(G), a PL structure on R” x R. Then G’ agrees with G near
R™ x [1,00) and G’ agrees with the standard structure near R™ x (—oo, 0]. R™ x
{0} is a PL submanifold of G’, U x {1} is a PL submanifold of G’, therefore G’
induces a PL structure on U x I. G’ is equal to the standard structure near
U x {0}.

Apply Theorem 5.6 to C,U, 0, G’ |y to obtain an isotopy G of R™ x R such
that Gy : (U x I,standard) — (U x I,G’) is PL near C'xI. G; is 1 near R™ x {0}.

Let g : R™ — R be defined by (g(z),1) + G(XXXXXX). Let G" = (g x
1)GTY(G"). Near C x I, G" agrees with (g x 1)(standard structure) = F, x I.
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Define 7 = G"|gnyxg0}- F agrees with Fo near C. XXXXXX Remains
constant isotopy (rel C' x R) from F x R to G.

Choose a PL isotopy (of embeddings) j; : R — R such that j; = 1 when
t < 1andji(R) C (1,00). Let J: R" x R x I — R" x R x I be defined by
J(z,y,t) = (2,5:(y),t). Then the PL structure J~1(G" x I) agrees with G x {0}
on R™ x R x {0} and agrees with Fo x R x I near C' x R x I.

Apply theorem 5.6 (using the fact that G” is isotopic to the standard struc-
ture by lemma 5.10) to obtain an isotopy from G” to J=1(G"” x {1}), fixed near
C x R. We have J~1(G" x {1}) = J~}(G x {1}) (since G” = G on R" x (1, 0))
and similarly G is isotopic to J~1(G x {1}) (fixed near C x R). Therefore G,G"
are isotopic (relative to a neighborhood of C' x R). Similarly, G”, F x R™ are
isotopic fixing a neighborhood of C' x R. Therefore G, F x R are isotopic fixing
a neighborhood of C' x R.

For general M, with OM = (), we may assume WLOG that M is connected.
We know that M is metrizable implies that M is second countable. So M =
U2, fi(B™) where f; : R® — M are embeddings. Let C; = C'U f;(B")U---U
fi:(B™). Suppose inductively we have a PL structure F;_; on a neighborhood of
C;_1 in M, extending Fy and a PL structure G;_; on M x R extending F;_; xR
and isotopic to G by an isotopy fixed near C' x R.

Apply the result for M = R™ to F' = f; *(Fi_1) (near ¢’ = f;'(C;_;)) and
(fi x1)71(Gi—1) = G’. We obtain a PL structure F” on R" (= F’ near C') and
isotopy H; of R" x R with Hy = 1 for t < 1 and H;'(¢') = F” x R, and H,
fixes a neighborhood of C’.

H defines a homeomorphism on R" x R x I. Let H = H~1(G’ x I). 'H agrees
with G’ near R™ X R x {0}, with F” x R on R™ X R x {1}, and near C’ x R x I.
Apply theorem 5.6 to this: replace C, U, D, F by B"xR,Int 2B" xR, C' xR, H to
obtain a PL structure G” on R™ xR which agrees with 7" xR near (C’"UB™) xR
and which is isotopic to G’ rel (C' U (R™ \ Int 2B™)) x R).

Define F; = F;—_1U f;(F") and extend (f; x1)(G") to a structure G; on M xR
agreeing with G;_1 off f;(R™) x R. Then G, agrees with F; X R near C; x R
and G; is isotopic to G;_1 fixing a neighborhood of C;_1 X R, so F; = F;_1 near
Ci_1.

Since F; = F;—1 near C;_; there is a PL structure F on M agreeing
with F; near C;. G agrees with F x R near C x R, F agrees with Fjy near
XXXXXXXXXXX. Since G; is isotopic to G;—1 (fixing a neighborhood of C;_; x
R). Hence all isotopies can be pieced together to obtain an isotopy of F x R to
g, fixing a neighborhood of C' x R. This proves the product theorem when M
has no boundary.

If M has nonempty boundary OM , then apply the theorem for M unbounded
to OM, and then to Int M using a collaring argument. We seem to need dim M >
7 to ensure dim OM > 6. O

In fact the theorem can be proved for all unbounded 5-manifolds and all
6-manifolds.

As an application, if M is a topological manifold, we can embed M in RN
with a neighborhood E which fibers over M, i.e. there is amap ¢ : E — M which
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is locally the projection of product, with fiber R™ (structural group H(R") =
Top,,).

Let v = ¢. A necessary condition for M to have a PL structure is that v
come from a PL bundle over M. This is also sufficient if dim M > 6.

E(v) is an open subset of RY so that it inherits a PL structure. Suppose
there exists a PL bundle £ over E(v) which is equivalent as a topological bundle
to v. There exists a PL bundle 7 over E(v) such that £ & is trivial. The the
total space E(n) is homeomorphic to M x R* and has a PL structure. By the
product structure theorem, M has a PL structure.

There exists a classifying space BTop,, classifying such topological bundles
by [M,BTop,]. n is immaterial, so take BTop = (J,-, BTop,,. Similarly for
BPL,,,BPL. There is a natural map BPL,, — BTop which forgets the extra
structure.

Therefore when dim M > 6, M has a PL structure if the map v : M — BTop
factors (up to homotopy) as

7 i . ll/

A
BPL —— BTop

Therefore M has a PL structure iff the classifying map of the stable normal
bundle v of M lies in the image of [M, BPL] — [M, BTop].

To show that PL # Top: let k be an integer, and py : T™ — T™ be induced
by R® — R"; x — kx. Then pi is a k"-fold covering (a fiber bundle with
discrete fibers of k" XXXXXXXXXXXXX). There exists a homeomorphism
hy : T™ — T™ such that

Pkl \ka
h

T’n > T’I’L

for any given homeomorphism h : T — T™. There are k™ such homeomor-
phisms. Since all covering translations of pg : T™ — T™ are isotopic to 1, any
two choices for hj are isotopic.

Theorem 5.11. If h: T™ — T" is a homeomorphism homotopic to 1, then hy
18 topologically isotopic to 1 for sufficiently large k.

Proof. First isotope h until 2(0) = 0 (where 0 = e(0) € T™.) Choose hy so
that hy(0) = 0. Let hg : R" — R™ be a homeomorphism such that ehj, = hye

and E;(O) = 0. Since h ~ 1, hy = h is bounded. ;L\;(x) = Eﬁ(x) because

prehr = prhre = hpie, hNk(O) = 0, and these characterize ﬁ; We have

sup d(o. ) = (sup d(a. () ) 0

zER™ k zER™
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as k — 00. So supyern d(y, hi(y)) — 0 as k — oo. But H(T™) is locally
contractible by Theorem 4.8. Therefore if k is large enough, hy is isotopic to
1. O

But the behavior is different in the PL case:

Proposition 5.12. Letn > 5. There exists a PL homeomorphism h : T™ — T™
such that h ~ 1 and hy, is not PL isotopic to 1 for any odd k.

Exercise. Show that if h : T™ — T™ is PL and topologically isotopic to 1 but not
PL isotopic to 1 then T x I/(z,0) ~ (h(z),1) is topologically homeomorphic
to T+ but not PL homeomorphic to 771,
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