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INTRODUCTION

These lectures treat certain topics relating K-theory and cobordism.
Since new connections are in the process of being discovered by various

workers, we make no attempt to be definitive but simply cover a few of

our favorite topics. If there is any unified theme it is that we treat

yvarious generalizations of the Todd genus.

In Chapter I we treat the Thom isomorphism in K-theory. The
families U, SU, Sp of unitary, special unitary, sympl/ectic groups
generate spectra MU, MSU, MSp of Thom spaces. In the fashion of

G. W. Whitehead [26], each spectrum generates a generalized cohomology
theory and a generalized homology theory. The cohomology theories are
denoted byﬂ;(.), ﬂ; («), (),; (+) and are called cobordism theories;
the homology theories gre denotzd by ﬂz(-), _()_iU(-), ﬂip(.) and are
called bordism theories. The coefficient groups are, taking one case
as an example, given by.() 3 =ﬂ3 (point), _Og ='0"E (point) and are
related byﬁg =-()[_In. Moreover () o is Jjust the bordism group of all
bordism classes [MP} of closed weakly almost complex manifolds M,
similarly forll EU andj).ip. On the other hand there are the
Grothendieck-Atiyah-Hirzebruch periodic cohomology theories

K*(-),KO*(-) of K-theory. The main point of Chapter I, then, is to

define natural transformations
,‘c:ﬂS;(.) — K0™(.)
*
foo 1O ) D K

of cohomology theories. Such transformations have been folk theorems

since the work of Atiyah-Hirzebruch [6], Dold [13], and others. It



should be noted that on the coefficient groups,
a—2n N K-—2n t) _

is identified up to sign with the Todd genus Td :ﬂU - Z. -

In Chapter II we show among other things that tig cobordism |
theories detfarmine the K-theories. For example, /bc generates a
ring homomorphism.Q; —> 7 and makes Z into aﬂ;-—module. It is

shown that
3* 3*
K (XA O (X,A)@Q* z
U U

as Zz—graded modules. Similarly symplectic cobordism determines
KO*(-). The isomorphisms are generated by /‘vc,/u, respectively.
Various topics are treated along the way, in particular cobordism
characteristic classes.

There is the sphere spectrum /, whose homology groups are the
framed bordism groupsﬂ ir(o). The coefficient group
Q fr (point) = Ofr are just the stable stems 7T (S ), k large.
Thenspectrum /is 1’elmbedded in a natural way in MU, and one can thus

form MU/A,. In Chapter III we study the group
U,fr _ T - 2k
Q> o/ Sy =T e /5%,

k large. The elements ofﬂg’fr are interpreted as bordism classes
I_Mnj of compact (U, fr)-manifolds Mn, where roughly a (U, fr)-manifold
is a differentiable manifold M with a given complex structure on its
stable tangent bundle T and a given compatible framing of T restricted

to the boundary D M. These bordism classes have Chern numbers and

hence a Todd genus




U, fr
Td :(2 2’ —> Q, Q the rationals.
n

It is proved that given a compact (U, fr)-manifold M2n, there is a

closed weakly almost complex manifold having the same Chern numbers

en
as M if and only if Td [Mgnj 1s an integer; this makes use of re-

cent theorems of Stong [23] and Hattori [15]. There is a diagram

0o -0V L Uit _nfr
2n 2n 2n~1

b

which gives rise to a homomorphism
fr

: -— .

EU () 2n-1 vz

This turns out to coincide with a well-known homomorphism of Adams,

fr

¢t 2n-~1 — /z.

e

We are thus able to give a cobordism interpretation of the results of
Adams {13] on e,. It should be pointed out that Chapter III is in
large part independent of Chapter II.

It is to be noted that we have omitted spin cobordism completely;
this is because of our ignorance. However the recent work of Anderson-
Brown-peterson is a notable example of the application of K-theory to

cobordism.
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CHAPTER I. THE THOM ISOMORPHISM IN K-THEORY.

Given a U(n)-bundle ¥ over a finite CW complex X there is con-
structed an element 7(;) € E(M(%’)) where M( ¥) is the Thom space
of § ; we call T (Z) the Thom class of & . Similarly given an
SU(4k)-bundle there is constructed a Thom class t(E) slﬁb(M(Ei)),
and given an SU(4k + 2)-bundle there is constructed a class

s(%) alkép(M(g)). These Thom classes give rise to isomorphisms

K(X) = K(M(&))
KO(X) =
K0(X) = KSp(M(E))

in the three cases. Formulas for the Chern character ch 7J(€) are
obtained.

No claims for originality are made in this chapter; the methods
have been well-known since the work of Atiyah-Hirzebruch [6], Dold [13],
and others [7]. However since the results are needed explicitly in the
later chapters we include an exposition. A deviation from the standard
treatment is made in that exterior algebra is used in all cases, thus
avoiding the use of Clifford algebras.

The chapter terminates with the setting up of homomorphisms
f);h(.) — KO*(.) and.fl;(.) —> K*(.) of cohomology theories, where
[1* (=) (1*(.) denote the cohomology theories based on the spectra

MSU?UMU. ¢
1. Extgrior algebra
We fix in this section a complex inner product space V

of dimension n, and we also fix a unit vector s~ € /\nV. If n = 4k + 2,

we make the exterior algebra AV into a quaternionic vector space. If




n = 4k then a real vector subspace RV of AV is selected so that AV
is identified with the complexification of RV. The special unitary
group SU(n) operates in a quaternionic linear fashion on AV in the
first case, in a real linear fashion on RV in the second case.

Fix, then, the complex inner product space V of dimension n.

To fit with quaternionic notation, the complex numbers are taken to
act on the ryight and the inner product < ,> is taken conjugate linear
in the first variable and complex linear in the second.

There is the graded exterior algebra AV = Z: Ny yith A%V = ¢
and /\lv = V. The inner product on V can be extended to an inner pro-
duct on AV by

i) if j # k then Ajv is orthogonal to /\kV,
il) if X = WA e A and Y =y, Aeeen ¥y where

U.,Vg € V, then

{XY> = det | {u,v, >

If SRR is an orthonormal basis for V then the €ry N see A erk
with ry < vey & T form an orthonormal basis for /\lﬁl. There is also

a canonical anti-isomorphism o: AV —> AV with

k(k-1)/2_

&(le...Avk)zva...Avl:(—1) A see NV, o

1 k
It is clear that « is unitary.

DEFINITION. By an SU-structure for V we shall mean a unit vector

o 24 /\“v; suppose an SU-structure has been fixed for V. Define a real

linear map T: /\kv —> /\n—k'v as follows: fix X ¢ /\]‘v and let Y vary
- -k

over A" kV so that <o—,X/\ Y > is a linear map /\n Vv —> C; define

T X to be the unique element of /\n—kv such that

<’C’X,Y> = <C‘,XA Y>, all Y ¢ /\n—kV.




It is then seen that the above equation holds for all Y & /\V.

The map T is conjugate linear. For

L¥Xa),t> = a Lo, X A YD = LTX)a,Y>

and T(Xa) = (TX)a.

Fix an orthonormal basis e,y of V such that the given SU-
structuré iso™= e A - Aep. By a monomial of AV we mean an
element X = - erl A s A erk where vy L +++< 1. It is seen that

if X and Y are monomials, then

1ify

H

X

X,Y > = -1 1f ¥ = X

0 otherwise.

~/ ~
Moreover given a monomial X there is a unique monomial X with X o X =

(1.1) If X is a monomial then T'X is the unique monomial X with

X A/i)= o,

This is readily seen from the definition of T .

(1.2) We have T2X = (-1)¥ ¥y for x & AV,

rroof. It is sufficient to prove (1.2) for monomials. For X a
monomial, TX is the unique monomial with XA TX = 9. Then

k{(n-k) k(n-k)y

TXAX = (-1) oand TX = (-1)

Define an operator /(: /\kV —> /\n_kv EY./“ = TA. Then A is

conjugate linear.

n{n-1)/2

(1.3) We have /&2x = (-1) X for X ¢ AV.

rroof. It is seen from (1l.2) that /kEX = (—l)rX where

H
N

k(k - 1)/2 + (n - k)(n - k - 1)/2 + k(n - k)

"

k(n - 1)/2 + (n - k)(n - 1)/2 = n(n - 1)/2.

The remark follows.




We now identify U(n) with the group of linear maps g ¢ V —> V
with <gu,gv) = <u,v> for all u, v ¢ V. Then U(n) acts on AV by
g(v:L Aoeo A vk) = gVy Aeeen A Identify the special unitary group
SU(n) with the set of all g & U(n) for which glo-) =6".

(1.4) If g e SU(n), then g7 = Tg and «g = g 4 .

proof. From <TX,Y> = {(o,X A ¥ > ve get

lg vX,eY> = Lo ,gkagr> = <weX,ef >,

hence g T = Tg. It follows immediately that g« = &g.

(1.5) THEOREM. Consider the complex inner product space V of

dimension n, with given SU-structure o ¢ /\nv. If n = 4k + 2 then AV

becomes a right guaternionic vector space by defining Y.j = /L(Y) for

Y ¢ AV. Moreover SU(n) acts on AV in a guaternionic linear fashion.

If n = 4k, let R(V) be all X ¢ AV with #X = X and R (V) all X with
/LX = -X3; then

AV = RV + R_(V)

is a splitting into real vector subspaces and multiplication by i takes

RV into R_(V) and R_(V) into RV. Moreover SU(n) acts on RV in a real

linear fashion.

Proof. Consider the case n = 4k + 2. It follows from (l.2) that
/Lz = -1, Also/ois conjugate linear so that

Xij = f(Xi) = -(<X)1 = -Xii.

It follows that there is defined an action of the quaternions H on AV,

and AV is a quaternionic vector space. Consider g & SU(n). Then

gXI) = gpX) = pa(X) = (80




using (1.4), so that SU(n) acts in a gquaternionic linear fashion. If

n = 4k, we have /(2 = 1. Hence AV =RV@ R_(V). If X ¢ RV, then

a¥L) = -( X1 = X1

and Xi € R_(V). The theorem is then proved.
od 2k+1 ev 2k od
Let A vV=2A""v, A°v=2A"YV; similarly define RV
and R%'V. If n = 2 mod 4 then SU(n) acts on the quaternionic vector
od ev
spaces A" Vand A V. If n=0 mod 4 then SU(n) acts on the resl

vector spaces ROdV and RevV.

2. Tensor products of exterior algebras.
Let V and W be complex inner product spaces of dimension
m,n respectively, with given SU-structures o“l end o~ . Using the
identification A(V + W) = AV® AW of graded algebris, then V + W
receives the SU-structureo = Cfi ® o . According to sectionm 1, if
m = 2 mod 4 we consider AV as & Zz—graged quaternionic vector space
while if m = 0 mod 4 we obtain a Zg—graded rezl vector space RV. A

main purpose of this section is to prove the following.

(2.1) THEOREM. There exist natural isomorphisms

4k, n = 41

il

R(V + W) %R(V)@R R(W), m
AV + W) ZRV) @y AW), m
AV + W) =AW) ®R R(W), m
R(V + W) = A(V) @ AW, m

4k, n = 41 + £

11

4k + 2, n = 4f

47 + 2.

4k + 2, n

In cases 1 and 4, the vector spaces and the isomorphisms are taken to
be real linear, while in cases 2 and 3 they are taken to be guaternionic
linear.

For each v # 0 in V we also obtain isomorphisms




4k + 2

it

A%y~ A%,
v

9 : ‘U= r®"Y, m = 4k.
v

The proof of (2.1) is based on the following lemma.
r s
(2.2) LEMMA. IfXe AVandY e A W then

HEBY) = (1) X)@ g (¥)

where /a, #l’ /q2 denote the maps of section 1 for
AV + W) =AV AW, AV, AW respectively.

Proof. Fix an orthonormal basis el,'-—,em for V and

€n+l? "2 8min for W such that

€. /N eve A € = o Areve pe = o
m m

1 1°%me1 +n 2°
1

the unique monomial ¥ with Y A ﬁf = o o Then

By (1.1), © _X is the unique monomial Y with XA X = o7y and TzY is

XaX@ (¥ ¥) =0

s(m~r)

(-1) X® ¥) A ERY) = o

and TX® Y) = (-1)5®T) T,X@ T,Y. Since
K (X@Y) = (-1)T° «x® &Y, then
T(X@ ¥) = (-1)"° z’lo<x® ’Zzoqy

and the result follows. ©Note that if m is even then/e = /L(l @/((2.

We consider now the proof of (2.1) for m = 4k and n = 471.

There is a natural homomorphism
T AV @R/(w - AV ®CAw

whose kernel is generated by all Xi@ Y - X® Yi. On the real tensor

|
|




product there is the involution /(l@/(z, and among its fixed vectors
there is RV & RW. Consider then
R

RV@RRW——> AV ®C AW = AV + W)

which by (£.1) has image in R(V + W). It is seen that if y & Kernel ¥,
then

(1@ 1)y = -(1 ® 1)y.

If also y & R(V) (§ R(W) then the left hand side belongsto

R
R_(V) @R R(W) and the right hand side to R(V) @R R_(W) by (1.5).
Hence y = 0, and RV 69 RW maps monomorphically into R(V + W). Since

the two are seen to have the same dimension, then
RV @R RW R R(V + W).

It is also seen that the actions of SU(m) x SU(n) on the two sides
are identified.
If m = 4k and n = 4 + 2 then one sets up similarly an isomorphism

RV AW = A(V + W) of quaternionic vector spaces, where q € H acts
R
on the left hand side by 1® g.

Consider finally the case m = 4k + 2, n = 4f + 2. Define a left
action of H on AW by q-Y‘= Y-q, so that we obtain a real vector space
AV @ AW. Here we write an element q as « + /3;] where «, /575 C
and defgne q = d\—7? j; this is an anti-automorphism of H. There is

a natural epimorphism
¥' 2 AV @C AW — AV @H AW.

If Xe AV and Y e AW, then ¥' maps A(X @C Y) and x@c Y into the

same value. For we have




Jo 1) = X O, oY =X @)= -(x§ @, 59).
XJ @H iY) = X @H Y. It is thus seen that

Kernel ' DR_(V + W).

A check of dimensions reveals that we have Kernel X' = R_(V + W),

since ' is an epimorphism. Hence

F' ot R(V + W) 3 AV @H AW,

and (2.1) 1s proved.
Return now to a single complex inner product space V of finite

dimension. Given v & V there is Fv : AV —> AV defined by

FV(X) = v A X. There is also its adjoint (Fv)* : AV —=> AV defined by
{XFD> = JRFXY >, all X,Y e AV.

Define 9y ° AV — AV by P, = Fv + (Fv)*.

(2.3) Let V and W be complex inner product spaces, let v & v,
w € W and consider v + w ¢ V + W. Using the identification '

AV +W) = AV® AW, we have

_ 1k k
ng(X@ Y) = <§>VX®Y + (1) X ® ywy, Xe ATV,

Proof. The element v + w corresponds to v 1 + 1® w ¢ AV® AW.

Hence
FooX®Y) = v A 0@y + (-1)%%  (wa Y)
=F(N@Y+ -DXOF (1),
Fopy = F,®1 ¥ /90 1R F)

where /9: AVE® AW —> AV® AW maps X@® Y into (—l)kX(D Y. It may




be verified that

(FV+W

N
|

= F) @1+ A® e £
)DL+ o @)Y

it

since ﬁ* = /6) The remark follows.
(2.4) For each v e V we have (¢ )% = ||v[|? 1.
Proof. As an exercise the reader may check this in case
dim V = 1. If dim V > 1 split V as the direct sum of orthogonal sub-

space V. + V2 where dim V, > 0, dim V, > 0 and suppose (2.4) holds

1 1 2

for Vl and V2. For v e Vl and w € V2 we have

e 2 _1yk+1 _13)k
va)m®m (9Jx®y+(1) ?3®9WW)+(U‘ﬂX®@f

4+

XQ@ (g )% = (vl + [ Wl 1FH) @)

(Ulv + w|*)x® 1.

The remark follows.
Recall that U(n) acts naturally on V.

(2.5) For any ve V and g ¢ U(n) we have ggvog =g° P .

Proof. Since FV(X) = v A X we have

g(F (X)) = gv A gX = ng(gX)

or g o FV = ngo g. ©Since g is unitary then g* = g

*
o

¥* - #* -
(F)¥e g¥ = g8 o (F )%, 8« (F)" = (F )" e.

v gv

Hence g, = 9 gvg.
Suppose now that V has an SU-structure given by o € /\nV; there

is the induced operator M : AV — AV.
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(2.6) For each v e V we have ¢ H=/4¢ .
v v
Proof. We show first that on /\kv we have %’Fv = (—l)k(Fv)* v,
Let X ¢ ASV. Then

F (X),f > = (opvaXay>
CDF G xarm> = (DF xR W) >

D LFH* TXY >

¥*
Hence TF = (—-l)k(F) T. Then
v v

(_l)k+k(k+l)/2(F k(k—l)/z(Fv)*,Z

(F) T,

* 7T -
(TA)F ST T D

1
that is, 4 F_ = (Fv)*/-c and F_ = A (Fv)* /. Then

(FPf = T Y B = aw X |

since/t R < (_l)n(n—l)/2I. It follows that @ A =/(fv'

We summarize the situation thus far, combining previous propositions.

(2.7) THEOREM. Let V be a complex inner product space of

dimension n with given SU-structure o ¢ /\“v. If n = 4k + 2 then AV

is a guaternionic vector space which is Zz—graded and for each v # 0

in V we have an isomorphism ¢ : /\OdV ~ /\evv which is gquaternionic
v

linear. If n = 4k then RV is a real vector space which is Zg—graded

and for each v # 0 in V we have & resl linear isomorphism

¢ 4t r°%y = r"v. In each case @ commutes with the action of sU(n).
~ v

If V and W are complex inner product spaces, then

A%V + W)

ev
AN (V+W

Aevv @ /\OdW + /\odv @ Aevw
/\evv @ /\evw + /\OdV @ /\odw.

it

Fixing v e V, w ¢ W, and letting €= ¢ Q =§>v, ?2‘-“9‘”, we

viw' ‘1
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then have by (2.2):

(2.8) The map @: A°H(V + W) —> ASV(V +W) is given by the

matrix

109, 9,01
9,9 1 -1 09, -

3. Application to bundles.

In this section the constructions of the preceding
sections are applied to U(n)-bundles and SU(n)-bundles. For example,
given an SU(2k)-bundle § there are associated two real vector space
pundles R%3( ') and R®Y( g') over D( &), where D( E) is the bundle
space of the bundle associated with ¥ with fiber the unit ball D8k.

There is also a linear isomorphism
od ev
©: R (E")|2D(E)= R (g")] JD(%)

of the restrictions to the unit sphere bundle JD( €). Using Atiyah's
difference‘ construction, one obtains an element t(£) e KO(D(g ), 2Db(g))
where t(E) = d( A €V( &), /\Od( £'), @). In passing we review the
definitions of K-theory and difference classes.

Let £ be an SU(n)-bundle over a finite CW complex X; we take ¥ to
be a right principal SU(n)-bundle and denote the bundle space by E(¥).
Fix a complex inner product space V of dimension n with given SU-structure
G E /\nV. Thenn SU(n) acts on the left on AV and there is the complex

vector space bundle A(¥E) —> X, where
Alg) = E(5)X A V/SU(n)

1
and where SU(n) acts on the right on E(E) X AV by (e,Y)g = (eg,g Y).

The orbit of (e,Y) under this action is denoted by ((e,Y)). An operater




/kis defined on A( &) by /{((e,Y)) = ((e,/(Y)); /(is well-defined
since on V it commutes with the action of SU(n). Replacing AV by

d
A © v, /levV' respectively in the above, we obtain bundles

od ev
A (8) — Xad A () — X.

Ifn=2mod 4 then/a defines a quaternionic bundle structure on
A(E), so-that in this case we consider A(E) — X a quaternionic
vector space bundle. Clearly /l(g) splits as the Whitney sum
A (E)@ A%d(E).
If n = 0 mod 4, we get a resl vector space bundle R(¥) — X,

where R(E) = {x T X € A(g),/(x = xj. Alternatively,
R(g) = B(§)X RV/SU(n).

Moreover R( &) splits as ROd( g')@Rev( g'). It alsc follows from
section 1 that as complex bundles A(E) is isomorphic to the com-
plexification of R( E); we write this as A(¥) = R(§) @R C.

We transpose the results of section 2 into bundle notation.
Let E be an SU(m)-bundle over space X, and )2 an SU(n)-bundle over Y.

There is the SU(m) X SU(n)-bundle

gx?: E(Z) XE()Z) —> X x Y.

By extending the structural group, we also consider & X 7 an
SU(m + n)-bundle. We now have from (2.1):

(3.1) There are isomorphisms of vector space bundles

R(Sx7) = R(E) @_R(xy), m = 4k, n =4l
/\(EX)Z)=R(;)O Ay)s = m =4k, n= 4L + 2
A(§x>z)=/l(§)® R(y), m m =4k + 2, n =4[
AR
= m=4k + 2, n = 41 + 2.

R(§1z)

Ag) © /\(»z),
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In the above, given vectorv space bundles p —> X and Y —> Y we
mean by p é Y — X x Y the vector space bundle whose fiber above
(X,y) 1is p"l(x) ® v'l(y). Also in cases 1 and 4, the two bundles are
equivalent as real vector space bundles while in cases £ and 3 they

are equivalent as quaternionic vector space bundles.

We next give the significance of the maps cy of section 2. Let
. v
¥ be an SU(n)-bundle over the finite CW complex X. Let

DlE) = E(%) x D/su(n)

2

where D" < V is the unit disk {v : ||v|| N 15. Also let

2n-1

db(g) = E(8) X 8 /8U(n).

4 point of D(E) is an orbit ((e,v)) where ||v]|]| $1 ang
(eg,g’lv)) = ((e,v)). Regard X = E( £)/SU(n) as embedded in D(&) as
the set of ((e,0)).

There is the SU(n)-bundle ' = f*( ¥ ) over D( ), induced from
EZ by the natural map f : D( &) — X. We then have the complex
bundle A(E') — D(¥); it may be seen that points of A(¥') can
be taken to be the orbits ((e,v,Y)) of points of E( ¥) x D2n x AV,

where
((e,v,Y)) = ((eg"l,gv,gY)). \
Define @ : ACgE') — A(g') by

?((G,V’Y)) = ((e,v, ?VY)).

Note that 9 is well-defined since
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1

((eg” ,8Y, @y (8Y)))
((eg™",8v,8 §_(¥))) by (2.5)
9&(8:‘7,1!))-

L]

PLleg ,8v,8Y))

H

(3.2) If ¥ is an SU(n)-bundle over X, n = 4k + 2, then we have

quaternionic vector space bundles /\Od( g') and Aev( '), and a map

@ : /\Odkg') —> Aev( g') which above D(¥) - X is a quaternionic

bundle equivalence. Similarly if n = 4k we get a map

f: ROd( gr) — Rev(;') which above D(&) - X is a real bundle

equivalence.

2m 2n
We can also restate (3.1). TFor we can identify D x D with
pPIHEN - ihus D(E €y ) with D(Z) X D(») and (5 xx)' with

g X )Z'- Then (3.1) becomes
’ A
RE! x )= R(;‘)@R(z'), ete.

Also the map Q: ROd(g' X )?') —> Rev( et X )Z') can be written in
matrix notation exactly as in (Z£.8).

We now digress to define the groups K(X,A), KO0(X,4), KSp(X,4),
using a definition that builds in Atiyah's difference construction
[7,22]. Fix a pair (X,A) of finite CW complexes; also fix one of
the classes of complex, real or quaternionic bundles. Consider
triples (‘é’o, El, 3?) where E’o and ;l are vector space bundles over
X and ? is a vector space isomorphism ¢: '§l|A% §o|A. Define
(;0, Zl, ¢ ) to be isomorphic to ()Zo, 71,9), written
(go, §l, ?) > (;Zo, 7(1,9), if there exist bundle equivalences

;l;:j )Zl and ;o ",:f?o such that commutativity holds in

¢
EllA > E’OIA

\’ ¥

e
71|A — 70“\.
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Define (1;0, ¥, 9) ~( 70, 71,9) if there exist vector space

bundles p, ¥ over X such that

(5,005,@0,9@ 1)~ (7, B ¥, 7,8 V0@ L),

This is checked to be an equivalence relation. Denote by d(;cf El, @)
the equivalence class containing (g , gd) 9) and by K(X,4), Ko(X,4),

. o
KSp(X,A) the set of equivalence classes.

A unique operation is defined on the set of equlvalence classes by

d(go: §l’ ?) + d( 70: 71’9) = d(‘;o @ ?0’ ;l@ 71:? @® ©);

a zero element is given by d( ¥ , £ ,1) where € is any bundle over X.
It is clear that addition is abelian.
It is not difficult to show the existence of negatives, so that
the set of equivalence classes becomes an abelian group. For fix
( §o, El, 9); given a positive integer n denote by nX the trivial bundle

of dimension n over X. For n large there is an exact sequence of bundles

- F — —> 0.
v (o] nX po

It may be verified that for n large there exists a linear monomorphism

T, >0, extending the composition ?ilAi-f; §;|A —> n,. There is

then an exact sequence
o~>§’l—»—>n—,>pl-f>u.

Define 9 : pllA —> pOIA so that commutativity holds in
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O —>%|A —>n —pla >0
1 A 1

— —>n, — .
0 ?'OIA n, po|A —> 0

Then

a( -50, 3_1; 9) + d(po’pl’g) = d(n,n,1) = Q.

We must compare the above definitions with the usual definitions
of K(X), KO(X), KSp(X) in case A is empty [6]. In that case the
difference classes can merely be written as d( go, El). If we assign
to d(’s’o, E'l) the class ?o - ;l it is seen that we get an isomorphism
of the above group with the classical K-groups.

If X is a finite CW complex with base point X then the map
ixo% —> X induces K(X) - K(ixo%); it is customary to denote the
kernel by E(X). There is a homomorphism K(X,x,) — /I;ZJ(X) sending
d(;o, ‘§l, ¢) into ;0 - §'l. We assume the fact that this is an iso-
morphism. If (X,A) is a finite CW pair we also assume a natural

isomorphism
~ ~
K(X,A) — K(X/A,xo) ~ K(X/A);

similarly for KO and KSp.

We return now to the main business of this section.

DEFINITION. Let ¥ be an SU(n)-bundle over a finite CW conmplex X.
Define the Thom space M( §) to be D(E¥)/ JD(§). If n = 4k + 2, con-
sider the triple (/\ev( £'), /\Od( g'), ¥) of (3.2),where the bundles

are quaternionic bundles over D(&) and ¢ is a bundle equivalence over

?D(E). Define
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(%) = (AL £, A% 51), @) < KSP(D( E), 2D(¥))

or s( %) € KSp(M(&)). Similarly if n = 4k we get

~
t(F) = AR (£'),8°%(5"), ¢) ¢ KO(D(F), ID(Z)) = KOM(5)).

Finally given a U(n)-bundle % over X, one defines

| . 3
Zig) =an¥(g),n%% "), @) £ K(D(£), 2D £)) = KM(T))
¢

where A( ') and § are considered as complex linear.

Since AV is the complexification of RV for a vector space V of
dimension 4k with given SU-structure, we obtain the following.

(3.3) Let Tbe an SU(4k)-bundle. The complexification homo-
morphism KO(M( €)) —> K(M( 5)) maps & t(¥) into L(¥).

We now outline very briefly the products in X-theory; for more

details, see Atiyah [7] or Solovay [22]. One obtains homomorphisms

K(X,A) ® K(Y,B) —> K(X x ¥, A xY YUX x B)
Ko(+) @ KO(-) — KO(-)

Ko(-) ® Ksp(-) —> KSp(-)

KSp(.) ® KSp(.) —> KO(.).

Take the first case, and fix d( ¥ , ;l’ 59‘) e K(X,A) and
o
d(7o, )Zl’ f") e K(Y,B). It can be shown that ¢@and & can be extended

to linear homomorphisms ?: ?l —> §'0 and @ : IZJ_ —> )ZO. Consider
d(p>P;» ¥) & K(X XY, A XY <X XB)

where

n A

@ 70+§—l® Zl

pl=?o® ¥l+ gl@ 70,p0=€

0

and where y: Py —> P, is given by the matrix




-1 ®?” .

In a fashion similar to that of Solovay [22), one sees that

d(PO,Plsf) = d(go: gl’ 97') X d(7o’ )?l’ CSD")

is identified with the usual product of K-theory

K(X,A) @I K(¥,B) — K(X XY, AxYuUX < B),
KX/4) @ K(1/B) — K((X/A) A (I/B)).

Let ¥ denote a U(m)-bundle over a space X and 7 a U{(n)-bundle

over Y. Then we identify M(= X 7) with M( &) A M( )(). The product
Ko =) @K 7)) — KWs) 4 miy)) = Kuacs < 7))

maps a ® b into an element denoted by a X b.
(3.4) THEOREM. InK(M(% % 7)) we have Z(x xy ) = L(z)x (7).
This follows from the remarks after (3.2). If & is an SU(m)-bundle
and 7 an SU(n)-bundle, we have similarly

t(?“"?):tkg) Xt(’z):m=4k’ n = 4}
S(’s’x»()=t(§)><8()z),m=4k,n=41+2
t("§><>2)=s(g)%s(>(),m=4k+2,n=41+2.

4. Thom classes of line bundles.
Suppose that Z is an SU(2)-bundle over a finite complex
X; according to section 3 we receive an element s( %) e KSp(M( £)).
A purpose of this section is to compute s(® ). Similarly if ¥ is a
U(l)-bundle over X, we compute J( &) ¢ K(M(¥)).

So let T be an SU(2)-bundle over X. Since SU(2) = Sp(l), then
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an Sp(l)-bundle. Form the join E(¥)-° Sp(l), and denote its

< <
1ts by (1 - t)e + th where U - t -1, e e E(E), h e Sp(l). Then

srincipal action of Sp(l) 1s given by

((1 - t)e + th)g = (1 - t)eg + t'hg.

(4.1) The Thom space M( £) is canonically isomorphic to

£ ) - 5p(1)/sp(1). .
' 4
proof. Recall that D(E) = E(¥) x D /Sp(l), where D is the unit

in the space H of quaternlions. Points of D(¥ ) are denoted by

v)). Define f' : E(E) X p* — B(®) - Sp(l) by
£1(e,v) = (1 - Ivhe+ vl (/]v]),

note that f' is well-defined and equivariant with respect to Sp(l)-
Passing to orbit spaces, we have a map
(D(£), 2D(E)) —> (B(F)° Sp(1)/Sp(1),x) where x, is the orbit

taining all 1-h where h & Sp(1). We thus get a map
£) — E(=)e- Sp(l)/sp(l), which we also denote by f. It is

cked that f is one-to-one and onto, thus a homeomorphism since all

baces are compact Hausdorff.

(4.2) THEOREM. Let zbe 2 SU(R)-bundle over a finite CW complex,

ind identify M(z) with E(5)° Sp(1)/Sp(l). There is the principal
(1)-bundle E( E) ° sp(l) — M( 5 ); denote the associated guaternionic

e bundle over M(z) by 7. Ihen s(¥) =1 -5 in Ksp(M( £))-
Proof. Fix a 2-dimensional complex imner product space V with
iven SU-structure. Then /\OdV and /\evv can both be identified with
he quaternions H. Moreover su(2) = Sp(l) acts on /\OdV =V =H by
£t multiplication by elements of Sp(l) and sy(2) acts trivially on

) od
€YY = H. Hence by (2.5), ¢ A —> A*Y has
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Quy¥) = ¢ g~ +w) for g & Sp(1).

Now Aev( g') is the trivial quaternionic line bundle over D(E);
let 1 denote the trivial quaternionic line bundle over E(¥ )e° Sp(l)/Sp(l).
There is the bundle map F :/\ev( ¥') —> 1 defined by F(x,w)‘= (£(x),w)
for x ¢ D(¥) and w ¢ H, where f is defined in the proof of (4.1).

We next obtain a bundle map G : AOd(g') - . There 1is
4
G' : (E(E) xD) x H—> (E(¥)-8p(1)) xH

given by G'(y,w) = (f'y,w) where f' is defined in the proof of (4.1)..
G!' is equivariant with respect to Sp(l)-actions since f' 1is eguivariant.

There is induced

G: (E(%) X D4 x H)/Sp(l) — (E(=)-Sp(l)) x B/Sp(l)

orc: %5 — 7.

We define finally an isomorphism © : 7|{xo§ —> ll{xog, where
x, is the natural base point of E e Sp(1)/Sp(l). The bundle space of
/Z | X, consists of all orbits ((h,w)) for h & Sp(l) and w e H, where
(th,w)) = ((hg,g-lw)). Identify the bundle space of l|{x0§ with the
quaternions H. Define © : K |{xo§ —> l|{xo§ by e((h,w)) = ?h,l(w),
where ?h‘l is the map of section 2; this is well-defined by (£.5).

We see that commutativity holds in

1°% g1 2 p(E) S )(I{xog
b9 ke

ATzl ap0s) = ix )
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For 0G((e,v,w)) = Q((v'l,w)) =g v(w) and
F?((e’vow)) = F((e:v:?v("’))) = ?V(W):

for ||v]| = 1.
It now follows from general properties of the difference class

that

f : KSp(E° sp(1)/sp(1),x,) —> KSp(D(¥), 2D(¥))
has

£ a1, 7,0) = a( A%(sn, A%En), 9,

or ldentifying the spaces, 1 —)z = s8(E) in rIFSp(M( €)). The theorem
follows.
. 4n-1
Consider now the sphere S as all n-tuples (7\1,"°,7Nh) of

quaternions with 2|A % = 1. Let Sp(1) act on s py

(7\1’..”7\n)g = (’7\lg,"‘,f7\ng);

4n-1
quaternionic projective space HP(n - 1) i1s defined to be S /sp(1).
Thus there is the natural Sp(l)-bundle E.n—l over HP(n - 1); we also
denote by E’n 1 the associated quaternionic line bundle over HP(n - 1).

We may regard

4n-1
S = Sp(l)° *++ °8p(l),HP(n - 1) = Sp(1l)= --+ ° Sp(1l)/sSp(l).
We thus have the following corollary.
(4.3) COROLLARY. The Sp(l)-bundle & N over HP(n - 1) has Thom
- n N -

space Hp(n), and s( % 0 l) =1 - §n.;g Eép(HP(n)).

Naturally, entirely similar results hold for complex line bundles.
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In particular,

(4.4) The Hopf U(l)-bundle 57n 1 over CP(n - 1) has Thom space
CP(n), and T(‘(>n—l) =1 - }pn in K(CP(n)).

If we apply (4.4) to the trivial complex line bundle j7 over a
point, then J( r’ ) € K(S ) is 1 - J‘l where jpl is the Hopf bundle over
s® = Pl(C). In particular Q(;f’ ) is a generator of K(S )=

DEFINITION. Consider the category ;Pof finite CW complexes with
base point, and of base point preserving maps. Denote by g?the category

of Z-graded abelian groups and degree preserving homomorphisms. A

cohomology theory on G’is a contravariant functor Ff ——9‘4?, assigning

to each X a group/E(X) = Ejﬁi(x) and to each f : X —> Y homomorphisms
£% : ni(y) — B(X), such that

1) if f,g ¢+ X —> Y are homotopic as base point preserving maps
then % = g,

2) given a finite CW pair (X,A), and letting i : A < X be inclusion
and " ¢ X —> X/A the natural map, then

Wava) T B

50 w)
is exact,

1
3) letting SX denote the suspension S A X, there exist isomorphisms

h (X) = h (SX) such that if £ : X —> Y then commutativity holds in
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The cohomology theory is multiplicative if there are homomorphisms

Mooy — 2t Exay
sending a® b into a x b, such that

4) if a e'ﬁi(X), b e EQ(Y), c e EF(Y'), then (a x b) x ¢ = a x (b xc¢)
in niYITE(X 4 Y A 1Y),

5) if T : Xa2 Y —> Y A X is induced by the map (x,y) —> (¥,X)
of X x Y, and if a & hi(X), b e "ﬁj(y), then a x b = (-—l)ijT*(bx a),

6) there exists an element L aﬂﬁl(sl) such that ﬁi(X) jE;’£i+l(SX)
is given by a —> Lt ¥ g,

7) givenmaps f : X —> X' and g : Y —> ¥Y' and a e'ﬁi(X'),

b e BI(¥'), then (f A g)*(a X b) = f¥*a x gtb.

It can be seen that in a multiplicative cohomoclogy theory, the
coefficient group i*(So) is a graded assoclative, anti-commutative ring
with unit. The cohomology theory is periodic of pericd n if
) = (%) for all X and i.

It follows from Bott periodicity [9] that corresponding to each
generator of'iksg), we get & periodic cohomology theory i?(-) of period 2.

For define

~a

~2n ~ n+l —~
K (X) = K(X), K {(X) = K(5X).

. . . 2n 2n+l
There is to be defined an isomorphism K (X) —> K (8X) or
K(X) — K(SEX). Given a generator T ¢ E(Sg), periodicity gives such
an isomorphism a —> T x a Otherwise put, Ll ¢ ﬁl(Sl) = K(Sz) is defined
. ~ L _
to be T. Hereafter we fix T £ K(S*) to be J( fo) =1 - fl.
(4.5) Let € denote the SU(4)-bundle over a point. Then

M(ET) = 88 and t( %) ¢ EB(SB) is a generator.
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8 ~
Proof. According to (3.3), complexification 'I\(f)(s ) — K(SB) maps
t(T) into J(Z). It is sufficient to prove that g( £) 1is a generator.

Regard T as %o X Eo % ?o X 30 where ;o is the U(l)-bundle over

a point. Then

$® = m(¥)

M) A M(Z)) A M(F ) 2 H(E)-

From (3.4), we have

TE) =T E) X NE) x FU5) x J(F)

~ ~/
in K(SB). Since 37(;0) is a generator of K(Sz), it follows from
periodicity that J(g) is a generator of IE)(SB).

o~
There is also the periodic cohomology theory KO¥*(-). Namely define

~— - ~
%0 1 x) = kost A 1)

for i = 0,1,***,7. The element i e ’I'{Bl(sl) = %(SB) is here chosen
to be the generator t(¥) of (4.5).

According to the proof of (4.5), if ¥1is the U(n)-bundle over a
point, thenJ( &) is a generator of (K(Sgn). Also if ¥ is an
SU(n)-bundle over a point then

1) if n = 4k then t(¥) is a generator of %0 (™),

2) if n = 4k + 2 then s(Z) is a generator of Kop(soEt,,

We assume the following theorem of Dold [13].

(4.6) Suppose that h* is a multiplicative cohomoliogy theory.

Let g be an 0(n)-bundle over a finite CW complex X. Let

t € K (D{ ), ?D(E)) be such that inclusion

i (Dz, 91):) < (D(E), 2D(E)), where D is the cell over x ¢ X,
has hn(D:, QDJI:) a free h*(pt)-module with generator i¥*(t). [Then there
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is an isomorphism
k ~ K+
B (X)X h (D(E), ID(F))

mapping a into 77%*a-t where 77/: D(¥) —> X.

The reader may supply a proof of (4.6) along the lines of the
proof of (7.4).

As é corollary suppose that € is as U{n)-bundle over X, and
let J(E) € K(D(E), ?D(Z)). Then i*f( &) is a generator of
EXD;, é?Di) ='E(82n), and is a generator of the free K*(pt)-module

K*\Sgn). Hence we get an isomorphism
K(X) XK(D(E), 2D(F)) =K®u(E)).

By a similar argument, if ¥ is an SU(4k)-bundle over X, we get an

isomorphism
KO(X) < KO(M(E)),
and if ¥ is an SU(4k + 2)-bundle over X, we getl

Lo d
KO(X) = KSp(M(§)).
5. Cobordism and homomorphisms into K-theory.
P s e g o N asetaeenl L e e et
In this section we outline the existence of the cobordism
theories, and show the existence of natural transformations
# *
U SuU
A spectrum M is a sequence

Ml,Mg,ooo’Mgn’a-.

of CW complexes with base point, together with base point preserving

maps Sl A Mn —> Mn+l‘ Given a finite CW complex X with base point,
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5Mnj the homotopy classes of base point preserving
S~Xr#~9 M- Given £ : X — M there is the composition
a X Sf 5 gl P Mo which we also denote by

1
Sf : 5 A X —> Mn+ Define

lt

TN . e R k
H*(X3;M) = Dir Lim [S®™ A X,Mn+kj.

n
It is easily checked that H (-3;M) is a cohomology theory.

Note that it is sufficient to have only Mz""’Mzn"‘° and maps
s¥ A nm

n —> M For one then defines

2 2n+2°

H(X3m) = Dir Lim [8¥%7™ A XM, |,

The spectrum M is convergent if each Mn is (n - 1)-connected. We

then have

k

’ﬁn(X;M) ~ [8" A X, k large.

Mn+kJ’

There is a spectrum MSU defined as follows. Let >zn denote a
universal SU(n)-bundle over a CW complex BSU(n), and let
MSU(n) = M( 7 n). Since 1 + ?rlis an SU(n + 1)-bundle, there is a
unique homotopy class of bundle maps 1 + 7 n _—> )2n+1’ also
M(L + % ) —> H(y ), hence s® A MSU(n) —> MSU(n + 1). It is
also seen that MSU(n) is (&2n - l)-connected. We thus obtain a con-

vergent spectrum MSU, and a cohomology theory

i

O" @) =T m)

SU
. Pk .
= [s® ™ | x,MsUk) [, k large

The unique class of bundle maps 7 K X ? 1 —_— )zkﬁl yields a unique
homotopy class of maps MSU(k) A MSU(X) —> MSU(k + X), and a product

¥
in the cohomology theory_(lSU(.).
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‘ ~ ¥#
y be seen that () (+) is a multiplicative cohomology theory.
SU
give details here; it may be helpful for the reader to see
one part, we define the element
1 1
e (L7 (sh) = (¥, Msu(x)]
sU
§r~a multiplicative theory. Denote by 7 the SU(k)-bundle over
2k
hat M = § . Bundle maps —> induce a
so t () ps 7

homotpy class of maps
2k _

S = M(?) -— M(?k) = MSU(k).

. Ql 1

lement represent { g SU(S ).

im;larly there are multiplicative cohomology theories

o ~
' ﬂ;p(-), 7% (+) given by

* -
f)U(X) = lsgk .\ X,MU(k)], k large
<% _
Os (x) = [s*€ P A x,MSp(k)], k large
P
7Tn(X) = [Sk A X,Sn+k], k large.

Note that in the above constructions we may use for )zk a princi-
{k)-bundle over a finite CW complex, the bundle being N-universal
arge.

he natural inclusions

1 C Sp(k) C SU(2k) C U(2k)

4k
s —> MSp(k) —> MSU(2k) —> MU(2k)
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and multiplicative transformations
~x(e) —> % () — 0¥ () — OF*(.
Fre) — D) — D) 54

of cohomology theories.
There is the element t4k = t( 7 4k) e KO(MSU(4k)), also
~
Sak+e = s()z ax+o) € KSp(MSU(4k + 2)) as defined in section 3. It

follows from section 3 that the map
g>: MSU(m) A MSU{(n) —> MSU(m + n)
has
lt )=t x t m= 4k, n = 4f
® Chaay) T gk ™ tap » 0=

= t =4k + 2, n + .
€ (Sgpvayse? = Saxe ™ Capr © » n+ 4l ete

Also the natural map @ : S* A MSU(4k) —> MSU(4k + 2) has

1 ~
8 (s ) = s xt where s € KSp(S4) is s(?) with )z the SU(2)-bundle

4k+2 4k
over a point. Similarly @' : S2 A MSU(4k) —> MSU(4k + 4) has

l ~
. 8
en (t =t xt for appropriate t & KO(S”).
( )(4k+4) Ak ~npp p (%) .
We now define s : )  (X) —> KOP(X). Let e ﬂ’s‘UgX) be repre-
8k- SU
sented by £ : S %A X —> mSU(4k). Let /‘4(0() be the image of t4k

in the composition

l

~ £ _
0 (MSU(4k) ) ——> KO(sBE™ 4 x) mKoPBK

(X) = KO™(X).

We leave it to the reader to verify the following.

(5.1) THEOREM. The transformation /(: Q*U(') —> KOo*(-) is a
s

multiplicative transformation of cohomology theories.

We can also define /a _O_ 4 (X) —> KSp(}’) Let

£ : PEA X —> MSU(4k + 2) represent an element/ of f).4 . De-

SU
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fine/u S(/Q) to be the image of S ka2 under the composition

R ! 8k o
KSp(MSU(4k + 2)) ——> KSp(S™ A X) = Ksp(X).

(5.2) For each finite CW complex X with base point, commutativity

in

Kot x) = Ko(s* A )

O &) " A ’ZM

sU \ Eo)

where ¢ ()= - 5) ©y 7 with | the Hopf Sp(1)-bundle over st.

Proof. There 1is the diagram

4

gt o (&85t ax) SIAL S o A (msu(ak))
i o'
8k B

g% x X —> MSU(4k + 2)

s xt

4 3
where f and g represent an element of Q0 (X). Then(95(54k+2) = 4k

SU
yields the information necessary to prove the remark.
In an entirely similar fashion there is a multiplicative trans-

~ * * ~n
formation/«c : f)U(-) —> K (.) sending the element a e f)U(X) repre-

sented by f : sPE M 4 X —> MU(k) into the image of J (¥) in
| S - - ~
Tow) L XEFE 40 ="y =KW,

~

There is a natural transformation () ( )y —> ():(-), and commutativity

is seen to hold in

~ % ~ 3
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6. The homomorphism 4 .
AN c
After discussing the cohomology of MU(n) and the

classical Thom isomorphism theorem, we go on to associate with
*3 * ¥*
each element of H (BU) a homombrphism.[)U(X) —> H (X). 1In

terms of these homomorphisms we can characterize the composite

0t Ae k¥ (x) B g¥(x;2)
U

where ch is Chern character. 1In particular, for X a point, the

composite
* A o
_(ZU(pt) <> K (pt) = 2

is characterized in terms of the classical Todd genus [16] and
thus /?c is determined on the coefficient groups.
Let E( £) be the bundle space of a right principal U(n)-bundle

T over a space X. The associated sphere bundle 1s given by
E(¥) < (U(n)/U(n - 1))/0U(n) —> X.
There is an identification
E(Z) X (U(n)/U(n - 1))/U(n) = E(E)/U(n - 1)

which identifies the orbit ((e,gU(n - 1))) on the left with the
orbit ((eg)) on the right, where e ¢ E(E) and g ¢ U(n). The
sphere bundle S(¥) —> X associated with T is thus identified

with the natural map
E(¥)/U(n - 1) —> X.

If T is taken to be a universal bundle for U(n) so that

X = BU(n), then Eis also universal with respect to the subgroup
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U(n - 1) of U(n), hence E(¥)/U(n - 1) = BU(n - 1). That is,

the natural map
p : BU(n - 1) — BU(n)

induced by U(n - 1) € U(n) (see Borel [8]) may be taken to be
the sphere bundle over BU(n). Considering the pair (D(%¥),S(¥)),

we get theu exact cohomology sequence

s+s —> HS(D(F),8(F)) — HYD(¥)) —> HYS(%))—>:-, or
cor — UYL EBu(n)) 2> BB - 1)) —>ee-.

Using the fact that p is an epimorphism with p(ci) = ¢y, 1 <m,
and p(cn) = (0, we get the following.
(6.1) The inclusion i : BU(n) < MU(n) induces

1% . H*(MU(n)) —> H*(BU(n)) which maps H*(MU(n)) isomorphically

onto the ideal of H¥(BU(n)) generated by c .
Ten #*
fi R = C_ .
Define v, E H**(MU(n)) by 1 (vn) n
Next let § be an arbitrary U(n)-bundle over a CW complex X.
There is a unique homotopy class of bundle maps f : (%) —> EU(n)’
inducing a unique homotopy class of maps f M(E) —> MU(n).

Define
v(E) ¢ Hzn(M(‘;))

by v(g) = F(v ).

It is easily seen that if g : E(z) —> E({) is a bundle
map of U(n)-bundles, inducing g: M(3) — M(7), then
gX(v(7)) = v(%).

It may also be seen that if S,i are U(m), U(n)-bundles

over X,Y respectively, then in
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BT x ) = B OCE) 4 MY )

we have v( & xf) =Vv(E) X v(7).

Finally let § be the U(l)-bundle over a point, so that
M(E) = Sz. Also we may consider M(Z) C MU(l) = CP( ) as the
standard embedding CP(1) < CP( ). Since from (6.1) it follows
that v is a generator of H2(CP( oa)), we see that v(§) is a
generatbr of H2(82). Using the multiplicative property of the
preceding paragraph we see also that if £ 1s the U(n)-—b;.mdle over
a point then v( £) is a generator of H2n(82n).

We can now deduce the original theorem of Thom as a corollary

of Dold'!'s Theorem (4.6).

(6.2) THOM. Let S be a U(n)-bundle over a finite CW complex

X. There is the isomorphism

g: B (X) X EC0D(E),8(F))

*
mapping a into T (a).v(¥) where 7j: D(¥) — X.

We also denote yby 9§§ and consider it as an isomorphism

B (x) ~ BS**R(M(§)). Note that if £ : E(¥) —> E(%) is a
U(n)-bundle map, inducing T M(T) —> M( >Z) and a map

T : X —> Y of base spaces, then commutativity holds in

B (y) T #5(0)

e NS

—3t
BP0 p) L g0y z)).

Also suppose that 5 and )( are U(m),U(n)-bundles respectively.

There is
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T g xyt B XD > E AT )
R

B (M0 5) AM(p)),

and if a € H (X),b & H (¥), then §g « y (2 xB) = Pcla) X g, (b) .
There are also Thom isomorphisms ¢ for an arbitrary co-
efficient ring.
At this stage we assume the ring homomorphism
c¢h : K°(X) —> H®V(X;Q), Q the rationals, for a finite CW
complex X. Namely if ¥ is a U(n)-bundle over X, from
zn exp ti, express as a formal power seriles in the
elext;ttary symmetric functions, and replace by the rational
Chern classes cl(‘g),"',cn( ¥ ) respectively. The resulting
element of Hev(X;Q) is ch € . By suspension we also get
ch Kl(X) —_> HOdd(X;Q). For the properties of ch, see [£].

(6.3) LEMMA. Let g be a U(n)-bundle over a finite CW

complex X. Let J(E) ¢ ’E(M( €)) be as in section 3. Then
y'l(ch 07( E)) e Hev(X;Q) is the formal power series obtained

from

(1 - exp ti)~-°(l -~ exp tn)

tlo . 'tn

by replacing the elementary symmetric functions by the Chern

classes cl(g),"',cn(g).
Proof. Assign to each § the element
-1
r(Z) =9 (ch J(Z)) e B*(X;Q). Note that if £ : 5§ —> 7 1s
a bundle map covering f : X —> Y, then .i‘*(r(Y)) =r(¥). Also

for bundles ¥ and 7, we have
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JExp) = TF)xT(p)en (FExp)) =ch J(5)xen Ty,
frvy (T sy =5 on JE)xpy en Jp),

so that if & and )Z are bundles over the same space X, then

r(s @ 7) = r(g)-r(y) in E (X509).
Also let u( &) denote the element of H*(X;Q) obtained from

(1 - exp ty)eee(l - exp t)

tyeeety

by replacing the elementary symmetric functions by
cl(g‘),.--,cn( ). It can be seen that 'f*(u(7) = u(¥) and
u(s® ’( ) = u( %) u( 7). A standard splitting argument shows
that r(¥) = u( ) for all ¥ if it is true for universal line
bundles.

Consider then the Hopf complex line bundle fn over Cr(n).
We have M = CP(n + 1) and =1 - b 4.3). Hence
(f ) =crin+1)ana T(F) fnﬂ y (4.3)

an
ch 7 ( fn) =1 - exp t where t = cl(fnﬂ),.we must know the Thom
class v( )On) e HS(CP(n + 1)). It follows from (6.1) that
# _
i:CP(n)cCP(n+ 1) has 1 v(fn) = cl(fn), so that

v()on) = t. Hence

-1
¢ cn 7(}011) = (1 - exp t)/t.

Thus r(¥) = u( §) for the universal line bundles, and it then
follows for all ¥ .

DEFINITION. Consider a partition o = (il,"',ir) of positive
integers, and let s = 211 teeot Sir. For each « ¢ Qn(X,A),

U
where (X,A) is a finite CW pair, we define a cohomology class

c u(o() € Hs+n(X,A). Namely,let K be represented by
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£ . gD A (X/A) — MU(k), k 2 1y for all j

Let Cw(o() € HS+n(X,A) denote the image of the product c , = cj

l.'c
ll i

of Chern classes in
BS(BU(K)) —> BS*2E(uu(k)) £X> mS*BE(s%ED A (x/a))

— -

/[S2k n
s+n ~stn

H (X,A) = H (X’A),

2k-n,~1
that is, ¢ »(X) = (S rl) £* P (°w)' It may be verified that

¢, () is independent of the choice of k.
Similarly given a formal power series S = Znic =N where ny is

n
rational and deg w —> oaas i —> wa, and given «e ()_U(X,A),-we get

i
S(€) e B¥¥(X,A) defined by S(L£) = Xn.cc, ().
1wy

(6.4) THEOREM. For (¥,A) a2 finite CW pair, the composition

h
QO ¥ (%,4) ﬂ—°—> K° (X, A) Rl H*(x,A;Q)
U

takes of into S(«K) where S is the formal power series in the Chern

classes obtained by replacing the elementary symmetric functions in

(1 - exp tl)"'(l - exp tn)

tl.“tn |

by cl,"-,cn and letting n — =,
Proof. It is sufficient to consider a map f : X/A —> MU(k) re-

‘ kK
presenting an element Ke .()-[21 (X,A). Then

M AL = £ g F) & KX/A)

by section 5, and




36

f* ch J(g’k)
t*¢ ¢ - chn J@k)
£ @ (s) = 8(«).

ch /Ic(a()

We now consider
-2n o
A : () *Ppt) — K%(pt) = Z.
¢ U
Note that

ﬂf“(pt) = 0;2"(8% = [sPO+EE My (k)].

2n is a closed differentiable submanifold of

Suppose now that M
32n+2k’ with normal bundle 7 Suppose also that >7 has a given reduction
of structural group to U(k). The cell bundle N associated with N may
be identified with the tubular neighborhood of Mgn. A bundle map
f

~

f

n— Ek into the universal U(k)-bundle induces a map

e

M()Z) —> MU(k) where M()z) = N/ dN. The composition

2n+2k

s — u(y) L ww,

where the first map shrinks 52n+2k - Int N to a point, represents an

- 2n+2k
element < of() 2n(pt) = [8 ,MU(k)]. There is the diagram
U

~% .on+2k
gRn+Rk oBnvRky o pRHBK(N oy) - (MU (k))

¢ ~To

—
T
BN —  BPRBUK)).

We then see from (6.4) that

Vad ﬂgzn(pt) —> K (pt) = 2

maps o into the number < S( )Z), o

» where o n is the orientation

on > o
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class of M2n

in (6.2).
-2n U
NowﬂU (pt) can be identified with the group.) on of closed

, and 5(7) is for'7 the element of H*(Mzn;Q) constructed

weakly complex 2n-dimensional manifolds (see [12]). 1In the above
construction one simply puts a suitable complex structure on the
stable tangent bundle of M2n.

(6.5) COROLLARY. The composition

- A
A% ~ 060t =5 ot = 2
en U

maps a cobordism class [M2n] of closed weakly complex manifolds into

the integer (-1)P Td [MFP], where Td [M?®] is the Todd genus of M°"

as in Hirzebruch.
2n
Proof. Consider a stable tangent bundle € for M , where

M2n<: 82n+2k as above. Since ¥ + 7 is trivial, then

J(E+7)=J(5) J(y) =1, hence J(7) =1/ J(g). That is,

the image of [M2n] in the integers is <.S(7), o~ > =4L8'(E)y, = >,
2n en

S'(¥) is generated by

tll'otm

Pt s e t -
( 1’ ’ m) (L - exp tl)---(l - exp tm)’

m large. We may as well suppose m even. The Todd genus Td [Mzn] of
Hirzebruch is the similar number using

tlo-otm

Q(tl,“",tm) =

(1 - exp (-8)) " (1 - exp (-£))

Note that P(tl,"',tm) = Q(-tl,-'-,—tm). The corollary follows readily.
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CHAPTER II. COBORDISM CHARACTERISTIC CLASSES.

*

Let h (+) be 2 given multiplicative cohomology theory. The main
purpose of section 7 is to give the general sufficient conditions so
that we may be able to assign to every Sp(m)-bundle £ over a finite

CW complex X, an element

p(Z) =1+ p)(F) +°+ p ()

in h*(x) where pk(g:) £ h4k(X). Roughly speaking, it is sufficient
that we be able to assign suitable classes pl( ¥) for Sp(l)-bundles
E . 1In order to make such classes, we prove a general theorem of
Dold [13].

In section 8, the above generality is applied to the symplectic
cobordism theory QF (-) to assign p (%) e:(l:k(x) to every
Sp(m)-bundle & . S?gce pl( @ 7) = pl(g) + ";1(?)’ we get

—~ 4
. "ﬁ .
py = Ksp(x) —> (g (%)
For a finite connected CW complex this turns out to embed ﬁép(x)
4
additively in ) (X). Proceeding slightly differently, we define a

Sp
homomorphism

[0
: KO(X,A) — X,A
pO (X,4) QSP( »A)

which embeds KO(X,A) additively as a direct summand ofﬂgp(x,A). There
is a similar embedding of KO(X,A) in the special unitary groups

(o]
Q- (X,4).

SuU

Quite similarly, there is a homomorphism

o
e, ¢ K(a) — Q(X,8)
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embedding K(¥,A) additively as a direct summand.
*
These are applied in section 10 to determine K (X,A) from

();(X,A) and KO*(X,A) from f); (X,A). Specifically we have for
-2n
U

ring homomorphism 11*3—~9 Z, essentlally the classical Todd genus.

each n the homomorphism A . : 0 —> Kﬁzn = Z giving rise to a

U *
This allows Z to be considered as a left f) -module. We show that
* *
K (X,8)~ O xn®
U
Similarly

KO (X,4) 2 (L; Xa® |, KO(pt).
p

Sp
As another application we consider in section 11 the Anderson-

Brown-Peterson results concerning the image of.f)§r<*~9 ()iU, showing
that they can be formally reduced to questions concerning KO-theory
solved by J. F. Adams.

7. A theorem of Dold.

In this section we state and prove a theorem of Dold [13]
which generalizes to an arbitrary multiplicative cohomology theory
the Leray-Hirsch theorem on fiberings. As a consequence we obtain
uniqueness and existence theorems for characteristic classes of
quaternionic and complex bundles.

Fix once and for all a multiplicative cohomology theoryfﬁ(') as
in section 4, defined on the category of finite CW complexes with
base point. As is well-known, there is generated a multiplicative
cohomology theory h(-) on the category of finite CW pairs. For a
finite CW pair (X,A), one lets h(X,A) =KR(X/A). The external product

of section 4 gives rise to an external product




40

n(X,A) & h(Y,B) — n{(x X ¥),A XY <X xB)

sending a® b into a x b. Maps f : (X,A) — (¥,B) give rise to
homomorphisms £* : h(Y,B) —> h(X,A). We have that h (point) is
E(So); hence we call the hi (pt) the coefficient groups. In terms

out in the fashion of Puppe that for each finite CW pair (X,A) there

is an exact sequence

n+l

cer —> W(X,8) — BP(X) — n"(A) — b (X,A) —>cc.

Hence h(.) satisfies the Eilenberg-Steenrod axioms except for the

dimensional axiom. There is also a cup product
h(X,4) @ h(X,B) — h(X,AS B)

sending a ® b into a°b.
(7.1) Let X be a finite CW complex and let X denote its n-skeleton.

Define a filtration

Fh(X) DFh(X) D +++ DFh(X) D -+

r-
of h(X) by F'h(X) = Kernel [1" : h(X) —> h(X 1)]. Then if a & F'h(X)
and b ¢ F°h(X) we have a-b € F “h(X).
Proof. Consider X x X as a CW complex using the product of cells.

Then

r+s-1 - r-1 1

(X x X) Xt x x UX x X5
as is easily seen. By exactness we see that a = j*(a'), b = k*(b') where

* o onx, X Y) — E),E* : axx5) — ().

The element
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at x b' e h(X x X,X 1< x Ux x x571)

*
then has X (a' x b') = a x b where

-1 1

L:XxXc(XxLX T xx0Xxxx>™).

It follows readily from exactness that

h(X x X) — h((x x x)"*571

maps a X b into zero.
Consider the diagonal map f : X —> X x X mapping x into (x,x).
There is a cellular map g ¢ X —> X x X homotopic to f, and having

r+s-1 r+s-1
f(x ) X xx) %, In

h(X x X) — h((Xx x 077

J/ g* \(/ g!*
*
h(X) ——s  nEEsl

we see that m*g¥(a x b) = m®¥(ab) = 0, hence ab ¢ FF+8n(X).

(7.2) COROLLARY. Let X be a finite connected CW complex of

dimension n, and let x, € X. Suppose 81558 .1 € h(X) are in the

*
kernel of 1 : h(X) — h(x ). Ihen a;a,*‘*-a = 0.

n+l
Proof. 1In the notation of (7.1) we have a; € Flh(X), hence
+1
dyeccd,,q E ) 3 h(X) = 0. Thus a;*rca 1= 0.

The external product
h(X,A) & h(Y) — h(X x Y,A <Y)

is of particular interest for Y a point. 1In that case h(Y) is the co-

efficient group h(pt), which we denote simply by h. We also identify

(X X Y,A x¥Y) with (X,A) thus obtaining
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h(X,A) ® h — h(X,4).

Hence h(X,A) is a right h-module; we denote the image of a@ w by
a w, where a € h(X,A) and « & h. Similarly we can define « a so
that h(X,L) is also a left h-module. Associativity of the product
implies that in

n(X,2) ® h(¥,B) — h(X x Y,A x Y wX X B)

we have (a @) x b = a x ((«wb) for a ¢ h(X,A), we h, b ¢ h(Y,B).

We thus obtain & homomorphism
h(X,4) @ N n(Y,B) — h(X X Y,A xY <X X B)

sending a® b into a x b. The following theorem can be proved just
as was & similar theorem in our previous work [10].

(7.3) THEOREM. Let h(-) be a multiplicative cohomology theory.

Also let X and Y be finite CW complexes such that h(Y) is a free

h-module. Then the homomorphism h(X) Q@h h(Y) — h(X x Y) is an

isomorphism.

We can now prove the theorem of Dola [12].

(7.4) DOLD. Suppose that 77 : E —> X is a locally trivial

fibering with fiber F, where X and F are finite CW complexes. Suppose

that cl,'--,c e h(E) are such that for each x, e X the h-module

n

1
n(7 "~ (x )) is a free h-module with basis i*(cl),---,i*(cn) where
o

1
i :7m" (x,) <E. Ihen h(E) is a2 free h(X)-module with basis

C.,***,C . That is, every <K e h(E) has a unigue representation as

1’ n

L= T*(al).cl Fooot 'ﬂ'*(an).cn

for a_, -+-a € h(X).
- 1 n
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Proof. We first prove the theorem in case7/ is trivial, that
4s 77: X x F —> x is a projection. It is sufficient to prove this
case when X 1is connected. Fix x, e X. There isi : F — X x F

where 1(y) = (X,,¥). Denote by ¥ : h(X) @h h(F) = n(X x F) the
{somorphism of (7.3), and denote by /?: h(X) C)h H(F) —> h(F) the

p:hX) @ h(F) —-::) nx xF) = nr).

e inclusion jJ : ixO}CX induces j* ¢ h(X) — h(x,) = h, and

F) as a left h-module. 3

¢ i*
Put otherwise, the maps X — {xo§ induce h(X) e;— h and a
r

plitting h(X) = h @ h(X). If a = a; ® ap in this splitting then

4 =10y, + 2x, @y

ik € rﬁ(X). Let Y denote the column vector whose entries are

rix and A the matrix (xij). Then

D= (I + A)Y.

it it is seen from (7.2) that A" = 0 for n sufficiently large. Hence
3

Y=\I-A+A2—A +°*°)D,

10 dl, ---,dn generate h(X) @ n h(F) as an h-module.
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Suppose that B = (bl,-~~,bn) is a row vector in h(X) with
BD = 0. Then B(I + A) = U, hence multiplying by I - A + Ago-‘
we get B = 0. Hence dl,ooo,dn is a basis and the theorem holds in
case the fibring is trivial.

Consider next the general case. Let X' be a subcomplex of X

1
and let E' = T~ (X'). Let M be a free h-module with basis

Cl,eee c'; efine
1’ ’“n D

T: h(X') @h M —> h(E')

o~ ¥ ¥* _—
by T(a ®c'i) = T a+k c; where 7i: E' —> X' and k : E' < E.

According to the first case, if W : E' —> X' is trivial then T'is an

isomorphism. We shall show inductively that T is an isomorphism for
every subcomplex of X.
Let X' and X'' be subcomplexes of X. There is the exact Mayer-

Vietoris triangle
h(X' w X'1) —> h(X') + h(X'')
h(X'ﬂX"'/).
Since M is free, we also have the exact triangle
h(X' wX'') @ M —> h(X') ©p M+ h(X'") @hm
v

n(xt N Xrr) @h M.

There is then a commutative diagram
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s

axtox) @ —>h(X') @, M+ h(x't) O o
Q’l /f + T
, 5]
h(E!' Y E'') — h(E') + h(E'"')

N J

h(E' O E'')
X Te,
h(X' Y X') @h M.

r the five lemma, if 2%, 2% and ’t4 are isomorphism so is ‘vl. Hence

is an isomorphism and if E'! —> X'! is trivial (so that

QA E'Y — Xt X' is also trivial), then ’ti is an isomorphism.

e theorem then follows readily.

We use Dold's theorem as a basic device in constructing

:haracteristic classes. The following two theorems give the

generalities.
(7.5) THEUREM. Let h(-) be a multiplicative cohomology theory

on the category of finite CW pairs. Suppose for each n > U there 1s

4
given an element P, € h (Hr(n)) such that

*
(a) h (HP(n)) is a free h-module with basis 1, pn,(pn)z,'“,{pn)n,

- . : 3 * —-—
(b) inclusion i : Hr(n) CHp(n + 1) has i pp,q = Pp+

hen there exists a unigue function assigning to each Sp(m)-bundle ¥

ver a finite CW complex X (m arbitrary) an element

p(E) =1+ pj(F) +7 "+ pp(¥)

-

here gk(gj € hék(x), such that

=

(1) a bundle map f : § — 7 covering a map f : X —> Y



46

base spaces has ?*p()/) =p(&),
() if ®, 7 are Sp(m), Sp(n)-pundles over X respectively, then
p(e +7) =p(3)0(7),
(3) Af E¥ is the Hopf Sp(l)-bundle over HP(n) (see section 4),
n
th =1+ .
tnen P(gn) .Pn

rroof. We shall first prove uniqueness. It is clear from (1)

and (3) that p(¥) is uniquely determined for Sp(l)-bundles. Suppose
that § is an Sp(m)-bundle over X, and th:at uniqueness ‘holds for
Sp(n)-bundles, n < m. There is the associated sphere bundle

S(¥) —> X; moreover Sp(l), the unit sphere of quaternions, acts
freely on the right of S(¥). Let HP(ZE) = S(&)/Sp(l), and denote
by )Z the Sp(l)-bundle S(E) —> HP(¥E). Let p e h4(HP(‘§')) be defined
oy p=p (7). B

There is the natural map /7 : HP(¥) — X, a locally trivial
fibering with fiber HP(m - 1). An inclusion gén-1 <s(g), where
S4m"l is a fiber of S(¥), induces an inclusion i : HP(m - 1) C HP(E).
It is then seen that h*(HP(m - 1)) is a free h-module with basis 1,
i*p,-",i*pm"l. We may then apply (7.4); in particular
T h*(X) —> h*(HP(E)) is a monomorphism. The bundle TT‘ £ over
HP( &) is easily seen to split as 7‘[!; = g ! +7 where E' is an
Sp(m - 1)-bundle. Hence p(77 lg) = 77’*p( ¥) is uniquely determined.
Since 7T is a monomorphism, p( §) is uniquely determined.

We outline without full details the well-known process of showing
existence [11]. First of all it follows easily that line bundles have
well-defined classes pl( €). Assuming for the moment that existence
holds, we would have W*p(g) = (1 + p)p(E') as above and
p(E') = ’"IT*p( E)(1 + p)’l. Since E!' is an Sp(m - 1)-bundle we

would then have py( ') = 0, hence
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(-1)Pp® + (1)L T (2) P 4 ¥R (F) = 0.

In view of (7.4) we can use the above equation to define p( ¥).
Namely define pl(g),-u,pm(g) to be the unique elements of h(X)
with Zli (-1)1 ’rr*(pi( £)).p® 1 = 0. It is not difficult to check
(1) andlzg); we outline the proof of (2).

To show that p( §@7) = p(E)-p(’Z), note first that
HP(E)C HP(E® 7),8P(7) < HP( z® 7 ), that HP( &) is a defor-
HP( E® ) - Bp(}) and HP()@ is a defor-
HP(Z @ 7 ) - BP(E). Also HP(g ® 7) = UYV;
in this outline we treat U and V as subcomplexes whose union is
HP( &),

In h*(HP( T® %)), consider 2

mation retract of U

mation retract of V

m . .
(-1)" 77*(91( z))-p" .
1=0

Upon restriction to U this gives zero. Also consider
n

Z (—1)3 ﬂj(Pi( )())'pn"j, which upon restriction to V gives zero.
i=0

Since HP( £ @ )Z) = JuV, one sees that

n

m .
(£ D e (3N (X
1

(1) ﬂ*(pj(7))pn‘3) =0
=0 Jj=0

in h*(HP(§ ® ?)). Also
m+n K

2 (-1

#* m+n-x _
10 7r(pk(§ +?)) P = 0.

By Dold's Theorem one sees that

P (5@ ?) = Z:i+j=k pi(E)'ij()
and p( & @ n) = p(;)-p(q)-

Naturally there is an analogue of (7.5) for unitary bundles.

(7.6) THEOREM. Let h(-) be a multiplicative cohomology theory

on the category of finite CW pairs. Suppose for each n > 0 there are
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given elements In £ hz(CP(n)) such that

(a) h*(CP(n)) is a free h-module with basis )31,( )’n)z,...,( a;)n,
- . . * _
(b) inclusion i : CP(n) <CP(n + 1) has i D’n+l = ?;.

Then there exists a unigque function assigning to each U(m)-bundle &

over a finite CW complex X (m arbitrary) an element

FUE) =1+ F () +eooe B 08)

where ¢ (E) e h*%(X), such that
k

(1) a bundle map f : & —~9.7 covering a map f + X —> Y of base

spaces has T F(7) = ¢( %),

(2) if ¢, 7 are U(m),U(n)-bundles over X respectively then

(3@ %) =c(B)e(y),
(3) if S?n is the Hopf U(l)-bundle over CP(n), then
c(j7n) =1+
Naturally the proof is just as above, based on the fibering
T : CP(E) —> X with fiber CP(m - 1).
8, Characteristic classes in cobordism.
o e g et A ————— Pt S ———r

In this section we set up central tools for tnis chapter.

Recall that in section 5 we have considered the cohomology theories
3* N # *
g — N7 — .
Og ) ) — 2

of symplectic, special unitary, unitary cobordism. Given an
Sp(m)-bundle § over a finite CW complex, we will define characteristic
classes pkﬁig) £ (24k(x); it will sometimes be convenient to use

0 ¥ () — {)* (-)pto consider p (¥) € fl:g(x). Also given a

Sp Su
U(m)-bundle €, we will define characteristic classes

¢, (3) e AT,
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We first make some remarks about the above cobordism theories.
*
The best understood of these is QU(.). For example the coefficient
ring ﬂ* has ()[’]2" :_().g , the cobordism group of closed weakly
U n *
complex manifolds of dimension 2n. Hence I)U is a polynomial ring
over the integers with one generator in each dimension -&n
*
(Milnor [19], Novikov [21]). In many cases Q (X) can be computed
- % U
[12]. Turning to QSU

*
group OS has been determined [12]; few computations have been made

(*), the additive structure of the coefficient

* *
for O (X). The structure of 0n (-) has been hardly touched. The
Su Sp
coefficient groups Q; have not been computed; however there is the

following partial information (Liulevicious [18]):

n[n)OO-—l -2 3 -4 -Hb -6

n
Qsp' 0 Z 2y Zg 0 Z Zg Zy .

We now turn to the problem of using (7.5) to give cobordism
characteristic classes. We have first to understand MSp(l). Let
?n denote the Hopf Sp(l)-bundle over HP(n). According to (4.3),
the Thom space M( ;n) is identified with HP(n + 1). Letting

n — o, we obtain a universal Sp(l)-bundle ¥ over HP( =), and
MSp(l) = M(¥ ) =T HP(X).

For each n, the inclusion i : HP(n) € HP(X) represents an element

of [HP(n),MSp(l)]. By suspension we obtain an element
4k x4
p, € [ST A HP(n),MSp(k + 1)] = _OSP(HP(n)).
We also need a Thom homomorphism

Mo Q’S’p(.) — HY(.;2).
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HAs in section 6 we can make the identification
MSp(n) X BSp(n)/BSp(n - 1),

hence we may identify'ﬁ*(MSp(n)) with the ideal in H*(BSp(n))
generated by the ordinary Chern class Copn € ﬂ4n(BSp(n)). Let

Ln € H4n(MSp(n)) be the element corresponding to c¢ Given

2n°’

e (8™ A (x/8),M5p(n)) =ﬂ’S‘p(x,A)

represented by a map f, then define /?Z(ck) € Hk(X,A) to be the image

of ln under the composition
f*
4N Msp(n)) —> w404k A (x,4)

c!rs4n-k

~k k
H (X/A) = H (X,4).
We thus obtain a natural transformation /QZ of cohomology theories.
It is easily seen that

4
fog Qsp(Hk(n)) — H*(Hr(n))

maps pn into a generator of H4(Hy(n)).
* 3 #*
(8.1) The () -module () (Hr(n)) is a free () . -module with
- ""8p T/ " Sp — - s —— T/
basis 1, pn’”":(pn)n-
Proof. The proof is by induction on n, the proposition being

obvious for n = 0. Suppose it is true for n, and consider

T 4n+4
0 —> HP(n) = He(n + 1) — s 0% 5 .

There is the exact sequence
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cor —> ﬂ;p(s‘ln”) _->ﬂ pUEF(n + 1)) A ﬁ pUEP(0)) —>---.

By the induction hypotheses, i* is an epimorphism, hence we get a

commutative diagram

0 —> ﬁ* (34’“4) =, ﬂ* p(EP(a + 1)) ELEN A H(HP(@)) —> 0

U, i Wz

3t
0 — T4 T w*(mp(a + 1)) 2 i Erm)) —> o.

Using the notation of (7.1), we have p el € F4_Q Sp (HP(n + 1)),
hence 1*(Pn+l)n+l = 0 by (7.1). Hence there exists ¥ e.(). 4g+4 4n+4)
with T*Y = N )n+l. Then /‘2(9) is a generator of géntd(gintd),
It may be seen by induction on k that Q (b ) is a free ﬂ p-module

with generator any element w1th/(z( ))) a generator (see [10, p. 15]).

o~

Hence Og (s 4n+4) has basis \) It follows easily from the above
diagram that _Q p(HP(n + 1)) is a free module with basis

n+l
1, Pn+1"°‘:(Pn+1)

(8.2) COROLLARY. There exists a unique function assigning to

each Sp(m)-bundle ¥ over a finite CW complex an element

P(5) =1+ p(F) +--+p (F)

where p, ( ) e O_4K(X), such that (1), (2), (3) of (7.5) hold where
€ Q4 (HP(n)) is defined as above.

We could equally well define that pk( T) as elements of Q .
In fact Sp(l) = SU(2) so we could also consider p, e () SU(HP(n)).

Clearly (8.1) holds for_();U, so that (7.5) holds in that case. The
natural map Q;p(-) — Q;U(-) maps the one py(Z) into the other.

In later sections we will consider p( &) as in ﬂ;p(X) or .O-ZU(X),
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trying to make it clear in each case.

Naturally we may also use (7.6). We have MU(l) = CP(<). Thus
i : CP(n) < CP(%) yields an element 'Vh € fli(CP(n)). Then (7.6)
applies to prove the following:

(8.3) COROLLARY. There exists a unique function which assigns

to each U(m)-bundle s over a finite CW complex X an element

§(%) =1+ (5) + "+ (F)

where ¢, ('5) sﬂﬁk(X), such that (1), (2) and (3) of (7.6) hold,

where ¥ is defined in the above paragraph.
n

9. Characteristic classes in K-theory.
There was defined in section 5 a homomorphism

/“:.():h(.) —> KO*(.); we also denote the composition
¥* #* M *
O . "'9 -(-2 . ‘_"’> -

by /“: (lzp(-) —> KO*(.). Given an Sp(m)-bundle € over a finite
CW complex X, we study /k(pk( T)) ¢ K04k(x). In order to do this, we
define characteristic classes'ﬁk(gj [ K04k(X) and show that
/Q (pk(ig)) ='§k(2:). A similar study is made of the classes
Ll t£) of a U(m)-bundle. First we need some generalities about
K-theory.
There is a natural ring homomorphism KO*(X)-w> K*(X) which is

given on bundles by complexification. There is also
* *
ch : K (X) — H (X;Q)

mapping sz(X) into Hev(X;Q) and K2k+l(X) into HOd(X;Q). The natural

ring homomorphism given by the composite
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ko*(x) — x) B 5*(x;0)

is denoted by
ph : K0T (X) — H (X3Q).

It follows by induction on k that KO*(Sk) is a free KO*—module with
: a basis consisting of one element ¥ of Kok(sk), namely any element
with ph J the image of a generator under Hk(Sk;Z) - Hk(Sk;Q).
We also need a little information concerning KSp(X) = KSpo(X).

There is the product
KSp(X) * KSp(X) —> Ko(X)

mapping ( ¥ , 7) into the tensor product ¥ @H ’z as in section 3.

By neglecting symplectic structure we can regard ¥ and 7 as unitary

bundles and thus form ¥ GDC 7 . The complexification homomorphism

KO(X) —> K(X) maps © @H 7 inte ¥ ®C % . Ihis follows from the

fact that if V and W are quaternionic vector spaces then
v B, W @ cmv @, w.
For instance define a map from the left hand side to the right hand
side by
—> j + .
v QW) Ga— (vi Qv+ B wa

This may be checked to be well-defined and an epimorphism. A check
of dimensions then reveals it to be an isomorphism.

Recall also an isomorphism of Bott [9 ],

$: Bpx) > Ko(X).
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Namely, K04(X) = E6(84 A X) and given n e Eép(x) we let
@ (7) = (1 - 3’1) ®H >(where ;1 is the Hopf Sp(l)-bundle over
S4. it follows from the above paragraph that ph EE(AY) = ¢ch 7 .

(9.1) The K0*-module KO (HP(n)) is a free KO -module with

basis 1, Ps+++,p? where p is the image of 1 - ¥ ( ¥ _ the Hopf
n “n=—
Sp(1)-bundle over HP(n)) under

$: Kop(ar(n)) —> Ko (HP(n))

Proof. We may use the proof of (8.1), making suitable replace-
ments including the replacement of /(Z by ph. In order to use that

proof, we need ph F = ch(®2 - ?}Q. There is the natural diagram

S4n+5

£
CP(2n+l) ——> HP(n)

fl

from which it follows that CP(Zn + 1) CP(E&Q. Using the properties

! _
of CP(¥ ), it can be seen that f Zp = fgml * P one in K(Ce(en + 1)),

hence

f ehz = ch’ +ch T
n J92n+l )02n+1
2 cosh t

it

where t is a generator of H2(CP(2n + 1)). Hence
ph p = u + terms of higher order

where u is a generator of H4(HP(n)), and ph ﬁn = un, a generator of

H4n(Hy(n)). The proof now goes exactly as (8.1).
(9.2) COROLLARY. There exists a unique function assigning to

each Sp(m)-bundle ¥ over a finite CW complex X an element
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BUE) =1+ B (F) +oo+ pp(F)

where Y;k( ) € K04k(X), such that (1) and (2) of (7.5) hold and such

that P(Ep) =1+ 5.
. ¥ *
As promised, we now consider /-(: (*) — KO (-), the com-

Sp
position

()Zpa-) — QZUK') A, Ko ()

(9.3) THEOREM. Let % denote an Sp(m)-bundle over a finite CW

4k 4
complex X, and let pk( €) ¢ ()sp(x) and 'f)'k( £) ¢ KO k(X) be the classes
123 Q = Iy
—~ *
Proof. We have that /(p(?)) and p( ¥) are elements of KO (X)
satisfying (1) and (2) of (7.5); this follows since 4 is natural, and
also multiplicative. Hence to prove the theorem, it suffices to prove

that
4 4
»/«. Qsp(np(n)) —> K0*(HP(n))

maps the Pn of (8.1) into the element B”of (9.1). Let p'n denote the
4 4
R 4
image of p, in OSP(HP(n)) — QSU(HP(n)). Then p'n £ ﬁ SU(HP(n))
and it suffices in view of (5.2) to show that

o~ 4 ~

Aoy Q gy(BP(n)) —> KSp(HP(n))

maps p'n into 1 - §n. We may consider BSU(2) = HP(N) for N large and
that the universal SU(2)-bundle 715 fN. Then s( ?) e KSp(MsSU(2)) is
given by MSU(2) = HP(N + 1), 5(7) =1- % according to (4.2).

N+1
Now p'n is represented by i : HP(n) CHP(N + 1), hence

fglery) = 1ts()) =1 - 3,
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The theorem then follows.

It is convenient to extract from the proof of the preceding
theorem an interesting fact. First note that if %5, 7 are Sp(m),
Sp(n)-bundles over X respectively then p (% @Z ) = py(E) + pl(7).

Hence there exists a unique homomorphism
4
: K — 0
P, @ K8Sp(X) sp*)

taking a bundle ¥ into pl( ¥).

(9.4) THEOREM. The homomorphisms

As

Tp(x) L ﬁzp (x) == KSp(X)

H

have A Py (77) a
complex.

Proof. The proof will be made for § - k where ¥ is an Sp(k)-bundle

- 7 for all )Z e KSp(X), where X is a connected finite

over X. For the bundle §n over HP(n), that /(Spl(in) =1 - ;n is
just the computation of the proof of (9.3). Hence

/ spl(;n -1) =1 - '?n. We proceed by induction on k. Now let
Z be a Splk)-bundle. There is 7M: HP( ) —> X as in the proof of
(7.5) and according to (9.1) and (7.5),

! 4 4
T : KO (X) —> KO (HP(¥))
is a monomorphism, as is then
! ~ ~
T : KSp(X) —> KSp(HP( &)).

Following the proof of uniqueness of (7.5), we see that

/‘splk z -k) = -(¥% - k) by induction on k. Hence

/spl(z) = - Zfor all 7

We now define a somewhat more functorial form of pq» in particular
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with no connectedness hypothesis. Consider the diagram

_ Po . o X
,If,O(X) ------- > Sp( )
’l st ’31, st
ko%(s? A X) Q% (s* A X

and define p, @ KO(X) — Ilgp(x), for X a finite complex with base

point, by

R R
pu) = sh 7 5 8 T stop.
passing to pairs (X,A), we get

p : KO(X,A)—> Q)° (X,4).
[o] Sp

(9.5) COROLLARY. The homomorphisms

KO(X,4) —2> 0° (X,A) TaN KO (X, A)
Sp

have/« po( )Z) = - )Zfor every )Ze KO(X,A), for any finite pair (X,4).

pProof. Consider the diagram

~ P ~
Ko (%) (,______;_..::»ﬂ: ()
p

=
N
g ~ Vgt

KoA(s2 A X) e Q: (5 » X)
' p

I '
A\ "
ksp(s? A X) .
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1 T 21
We have A p_ = (84) al pl¢ s*. 1t follows from (5.2) and

1
1 - = - T -
(9.4) that A plé id, henceﬁpo id.
(9.6) COROLLARY. For every finite CW pair (X,4), KO(X,A) is

o
embedded as a direct summand of QS (X,A) and also of_()_gU(X,A).
p

It must be emphasized that no doubt Py is not multiplicative.
o)
Hence we have only embedded KO(X,A) additively in OSP(X,A).
We may now redo the above for unitary bundles. There is a

homomorphism
2
e s K(X) — 07 (x)
)

~ ~
a periodicity isomorphism @' : K(X) — KZ(X). For a finite

connected CW complex the composition
“ Sy 82 Le,
K (X) Q= (x) e 5 k¥ (x) «—K(X)
U
is the negative of the identity. For any X with base point, define

<, k(D) — 5;()()

as the composition

KEX) ~--- - "9

K(sSax) %)

ﬁ
5 Q
‘:\K(S/\X) / \

Q
There is ¢ i K(X,4) — (1 (X,4) and in

K(X,A) Lo, -O-;(X,A) !—9—9 K(X,A)

we have /4090 = - id. Thus K(X,A) is embedded additively in
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PO ———

D (X,A) as a direct summand.

10. A copordism interpretation for K" (X).
N

In this section we improve upon the results of

section 9 by showing how to construct the Z,-graded ring K*(X,A)
knowing only the graded algebra Q (X A) over the module Qz

n fact, K (X,4) = or (X,A)@O_* Z where Z is a 0 -ring in a
natural way. In a simtlllar fashio[rjx, ﬂ* (X,A) determli{nes KO (X,A).
There is the homomorphism 4 () 2“ — K°0 = 73 thus for
L _() we consider /t c(w) as an 1nteger. Since Q =0
\‘(see Mllnor [19]), we thus have a ring homomorphism

/ﬂc : ().: —> 7. Hence we can regard Z as a left _()*—module by
defining « +a for «e¢ OZ and a ¢ Z to be the integerU/cc(w)'a.
For (X,A) a finite pair define

A8 = O, A)®()*

where /\*(X,A) is regarded as Zg—graded by

o - ev 1 = ()od .
A8 =0 (AB 5 Zs A(X4) QU (X,4)® o* Z

Oy

Alternatively it is easily seen that

[wn}

A (%, h) = ﬁ*(x,A)/R(X,A)

where R(X,A) is the least subgroup of.Q (X,A) generated by all

c+W =~ C-* /( (w) for c e OF (XA) andweﬂ:

It is seen that /\ (+) has many properties of a Zz-grade‘d co-

homology theory, in particular all except exactness. It will

eventually turn out that /\ (+) is also exact.

There is the natural epimorphism /5 .O (X,A) S /l (X,4)
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defined by /8(0) = C Q@l. There is seen to be a unique homomorphism

N * #*
/<:() XANQ , 2 —> K (X4
U QU
/| =
of Zg-graded groups with./((c(}rn = n/cc(c); existence follows from .

the fact that /kc is multiplicative. Commutativity holds in

- QZ(X,A) > N (X,4)
/c\\ /«
K¥(x,4) .

3*
Here A (X,A) and K*(X,A) are both considered Z,-graded. There 1is

Al
c

o ¢ KF (X, — A (X,4),

* c * :
the composition K (X,A) =2 IIU(X,A) lf; A¥(X,A). Moreover the

composition
A A
* cO 3% /« ¥*
K (X,A) —> A (X,4) —> K (%,4)
N 7n id
as /Zco = - id.

(10.1) THEOREM. For every finite CW pair (X,A) we have

A
i AF(X,A) T KN(X,A) as z,-graded rings; hence

O x0@ | 22K X,4).
U Q*

U
Proof. We consider first the case in which H*(X,A;Z) is & free

abelian group having only even dimensional elements. In this case it

follows from a standard spectral sequence argument [10, p. 48] that

* ~ *
.QU(X,A) = H (X,A)® OU

*
as 0] -modules. More precisely there exists a homogeneous basis
4]




61

{a( for O (X,A) as an ﬂ -module such that /< (o{ ) is a basis
for H (X,4), where /(Z OH(X,A) —> H%(X,4). It follows from (6.4)
that ch /(c(d\j) has lead term - /(Z(o(j). It then follows from
Atiyah-Hirzebruch [6] that the 4 («,) generate K¥(X,A) as a free
K*—module, where K*(X,A) is taken as Zz—graded.
* *
We need to compute the kernel of/(c :_QU(X,A) —> K (X,4).

An element is in this kernel if and only if the coefficients from

*
)7 used in expressing this element in terms of the o(j all lie in

U *
the kernel of /c :QU —> Z. Hence Kernel /‘c c Kernel /5’, hence

A
/t is an isomorphism in

Q*(x,A) —L > *x,8)

/‘c\ a//;'

K (X,4) .

*

As a second case, consider an K¢ A (X,4) with/:'(o() = 0 in
K¥(X,A) such that there exists a map f : (X,A) —> ({,B) with H (¥,B)
free abelian with even dimensional generators and with o = f*(/) for

some/ge A®(¥,B); we then show « = 0. For consider

AL o ARK,A)

i, ATy,

L
K*(¥,B) ——> K'(X,4).

Since /( is an isomorphism and /q' c' = - 1d then c'o is onto, and

= °'o(/§') for some ('. Then o = 4 e /3'),/«((;() e A= 0.
We see finally that the second case is, roughly speaking, the

general case. oo+ ¥ 4ot

Let ¥ ¢ QSV(X,A), say ¥ =

2k 2k+2

 where 7 e () 2k+21(X,A). There exists /" e ) ™° with
ok+21 U -2 U

2k+2n
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/(c( 2) =1, say by (6.5). Then

= . . X
/g( Y) = (Fge * Tone ﬁz vt VW oioy (F )0

in AO(X,A). That is, there exists X! € ﬂﬁk(x,A) with
ﬁ( r) = /5( 7'). Now p' is represented by 2 map .

£ : 820 A(X/A) — MU(k + n)

for n sufficiently large. Then the suspension

Szn(T‘) 3 ﬁ2k+2n(82n A~ {(S/A)) is in the image of

£ (A*0u( + n) — QNS A @A),
U U

nence s~ ﬂ(?") is in the image of

£ . AWMUk + n)) —> AT A /).

If/Ac: K*(X/A) —_ K*(X/A) maps /5( ) into zero, then so does
Ao AR 4 /m) — ST A/b)

Zn . on
map S ﬂ( ») into zero, hence by case two we have S /3( ¥) =0 and
*
L) =o0in AL, That is

/1: 2%, 8) —> K°(X,4)

is an isomorphism. Similarly/?: Al(X,A) — Kl(X,A) is an isomorphism
and the theorem follows.
We now point out the changes which must be made in order to relate

#*
_Osp(.) and KO*(.). In section 5 we have defined a ring homomorphism

+* *
E QSPKX,A) —> KO (X,A),
y’

* 3#* 3%
the composition ()S ) — Q ) ~> ko (-). Specializing to the
p S
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"poefficient group, we get a ring homomorphism
* # *
/(.:.O. —> KO0 = KO (pt)
Sp

* *
In particular we can consider KO as a left () -module, letting

Sp
e (£ = /«( (4)) ° K
*
for ue_()_s and K & KO .
4 p
We thus obtain a homomorphism
A1
_()ZP(X,A)@ . KO¥ —— K0*(X,4) @ K0¥ = KO¥(X,A).
K0
Sp

(10.2) THEOREM. For every finite CW pair (X,A) we have

3*
O.SP(X,A) ® _, K0¥(pt) = KO*(X,4).

Sp
Proof. With a crucial change, the proof is quite similar to the

roof of (10.1l). The minor changes we leave to the reader, and go
irectly to the critical point. Note that the proof of (10.1l) pro-
eeded in three stages. While the first stage held there is con-
iderable generality for pairs (X,A) with H*(X,A) free abelian and
nly having even dimensional elements, it was only necessary in the
atter stages to apply it in one particular case only, namely to

; (n),-«a). There MU(n) could be taken to be the Thom space of a
—universal bundle over an N-classifying space BU(n) for n large.

e then needed only in part 1 that

=# — *

Q Mu(n)) =E (U(n)®@ Q 7,
U 3]

equivalently that

O;(BU(nn ~ g (BU(n))® L7¥
U
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by (5.3).

A similar fact is all that is used to generalize completely the
proof of (10.1) to (l0.2). It is convenient to choose a particular
model for BSp(n). Namely let M

n, N
subspaces of an N-dim. quaternionic space, N large, and take

denote all n-dim. quaternionic

BSp(n) = MnJ N

We then need that
ol = g* oW
5p(B5P(R)) = E (BSP) @ {lgp,

more precisely that there exists elements iaC g in Q* (BSp) such
that /( ﬂ (BSp(n))——-> H (BSp) has {/Qz(o(i)} a ba51s for the
free abelian group u* (BSp(n)). It then will follow, using the methods
of [10, p. 49], that _Qsp(BSp(n) ~ 5B @ Ok Sp*
The universal bundle over BSp(n) has Chern classes Cg,C4,"""5Cgp-
It is known that H*(BSp(n)) = H‘*(Mn N) has a basis consisting of poly-
»
nomials /3 in the Chern classes. We shall see that every ﬁ is in
i i
the image of
0r *
(BSp(n)) —> H (BSp(n)).
Sp
It is sufficient to show that every c2k is in this 1mage.

Consider the natural transformation
¥* *
. : ()7 («) — H ().
Z Sp

It may be verified that if E is a Sp(m)-bundle over X then/(z maps
+ 4K
pk(g) € ﬂ:lg()() into - cgx € H (X). In particular taking ¥ to be

universal bundle over BSp(n) we get that
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_();p (BSp(n)) —> H (BSp(n))

 is an epimorphism. The theorem then follows:
11. Mappings into spheres.

In preceding sections, we have indicated connections
etween KO (-) and I) ( ), also between K0" (-) and {) The
atter is the more frultful because fl ( ) is better understood than
f] (+); in this section we prove a theorem which illustrates this
poiiﬁ. The theorem arises from an attempt to understand a theorem
of D. Anderson-Brown-Peterson [4] from other points of view. As we
bunsider the question here, which homotopy classes of maps
¢, s80+k —5 o8N jpguce a non-trivial f7 : (1* (s81) — O* (g8ntk))
It follows from our formalism, and some informatlon onﬁfl. s that
p# 8n 8n+§U
£ is non-trivial if and only if f s+ KO(S™ ) — KO(S ) is non-
yrivial. Then one uses the results of Adams [3] concerning when f
{s non-trivial.

We need some information concering the coefficient ring_(lgu.

, #*
ecall that QO SBn) is a free I)* —module with a generator v ;3 also

SU 8n
%/t l)f* (San) —> K0*(s®8) is an epimorphism by (9. 5). Hence
{/u()) ) £ KUBn sB1y = ko° (S ) = 7 must be a generator, i.e.
/‘U)Sn) =Y 1. Consider
” ~ P ~ o
Ko (%) —2— QSU(san) jf; ko) = z,
» ﬁre‘/on = - id. If Kis a generator of KO(SBn), then
po(GQ) =% 1. However PoleL) = /6 B, where /3 € (1—8n
-8n 8n -8n Su

/.l;;) éoﬂ) /((ﬂ an’” /(())Bn). Considering

SU —— KO \pt) = 7 as having integer values, we get

,( _an) = t 1. We need now the following leuma.

-8n + . ;
11.1 LEMMA. Let [ (2 have ) = - 1. Then
\ ) = /?—Bn SuU /k(/g_an
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*
su’
proof. The proof is based on our previous paper [12). First we

/5 is not a divisor of zero in the ring ()
-8n

have to convert the statement to one in terms of bordism. According

to section 5,

ﬁ:U(-) £, xo* ()
Ve

ﬂ:(-) — K ()

commutes, hence P'—sn £ Qasn has /Qc(ﬂ '8n) =t 1. Using the
isomorphism ﬂgnz Q I—Ian’ the element [M8n] £ an corresponding to
/5'8n has Todd genus T[M8nj = ¥ 1 according to ('6.5).

It is then sufficient to switch to bordism. Denote by fli? the
bordism ring of closed SU-manifolds (denoted by F* in [12]). We

8n SU
must prove that if [M ] e QB has Todd genus T[MPR| = % 1, then
n

Bn_ | . . SU
[M ] is not a zero divisor in () . 1In order to prove this we re-
AS a SR

call some facts [,z]. There is a boundary operator
?: ﬂg —_ Qg taking [w2n] into [V2n_2] where VPR C yeP ig
n

n-2 2n-2

dual to the ordinary Chern class cl(V ). Moreover

Im[ () iU ———>ﬂg] DOIm[ ?: Qg —> QS_],

and Im O_iU/Im ? is a polynomial algebra over Z2 with generators in
each dimension 8k. Also all torsion of _OEU is of the form [wsm] [§l]
T [WSm] [§l][§l] where [wam] € QiU represents a non-zero element of
Im,()_iu/lma . Finally if [Man] enSU has odd Todd genus, then
[M8n] represents a non-zero element of Im (2 S’.U/Img [12, p. 70].

We can now prove our assertion. Suppose [MBn] has odd Todd genus
and that [wk] 13 QEU has [M8n][wk] = 0. Then [wk] is a torsion

U
element, for O EU —> [).E has only torsion in its kernel and Q_* is

.
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a polynomial algebra. Hence we may suppose [wk] = [V8m] ['§l] or

[Wk] = [v®9) [§l][§l]. Then [MBn][VBm] represents 0 in ImSL iU/Im 2.
Since this is a polynomial algebra, then {Vem] represents zero in

Im Q-_)S(_U/Im ? and [Wk] = 0. The lemma follows.

(11.2) THEOREM. Suppose that X is a finite CW complex with

= 3
O-SU(X) a free ﬂzu—module. Iff: X — 8" then

%+ OF (s87) — (O* (X) is non-trivial if and only if
.~ SUg __su
f : KO(5 ) —> KO(X) is non-trivial.

Proof. Consider the diagram

~ ™

O_Bn(SBH) N QBH(X)
sU | M el sU | M
Ko(s8h) —>  Ko(¥)

V¥ Po [P
O 0 .
sU SU

~

Suppose that £ : Q% (s n) —> () (X) is non-trivial. Now
()" (s81) is a free () -module with basis ¥ & ()~ (S°"). According

SU . ) SU . ) 8n ) Su
to the first of this section, P, /(( Bn) = F—-Bn' 8n where

F—Snaﬂéin has /«(ﬂ ) =X 1. Then
fp AV ) /3‘ .fw -

*
Since f (Q ) is a non-zero element of the free.()SU—module 11 (X),
it follows from (11.1) that F on' ())Bn ) # 0. Hence f' # 0 and the
theorem follows.

8n+k
Note that in particular the theorem holds for X = .S .

(11.3) COROLLARY. Suppose that X is a finite CW complex with

base point such that O;U(X) is a free OgU—module. In the diagram




€8

we have Image s <~ Image s.

Proof. It is sufficient to show that Kerrel g = Kernel s. If

80 then by (11.2)

e ﬁ?j(x) is represented by f : $81-J Ax — s
f*(9 gp) = 0 if and only if fl /%( 98 ) = 0. The corollary follows.
(11.4) ANDERSON—BROWN-—PETERSON.n The image WT_J(pt) —r%fl'j(pt)
is Zg if J = 8m + 1 or 8m + 2, 0 otherwise. *
Proof. Apply (11.3) to X = 8°. Then
Im [TT_j(pt) ~—$.flég(pt)] = IM [TT—j(pt) —> KO‘j(pt)]. According
to a result of Adams [3], the right hand side is as stated and the

assertion follows. 1In a later section we give a bordism proof of

the theorem of Adams.
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CHAPTER III. U-MANIFOLDS WITH FRAMED BOUNDARIES

In this chapter we shift from our very general point of view of
the previous chapters to some very concrete problems on the relation-
ship between U-bordism and K-theory. In section 12 we consider the
bordism group.(lU of closed U-manifolds of dimension n; the elements
of [)U are the bordism classes [Mn] of closed differentiable manifolds
with 2 given complex structure on the stable tangent bundle. In

. section 13 we begin to study the numbers
!
x[M] = {ch x°T7 (M), o (M) >

where x & K(M), T'I(M) is the Todd polynomial of M and <-(M) & H_(M)
1s the orientation class. In particular there are the integers
;E(A[M] where the s €& K(M) are certain K-theory characteristic classes

_of the stable tangent bundle. In section 14 we give the proof of
;combination of the N this theorem has also been proved by

In section 15 we shift to the compact U-manifolds M with

stably framed boundary; we call such a manifold a (U,fr)-manifold.
Such a manifold M has a complex structure on its stable tangent

bundle U together with a compatible framing of the restriction

?ﬂ ?M to the boundary. Such manifolds have Chern classes and Chern
numbers, hence also a Todd genus Td [M] which is now a rational

wmber. It is proved that if Mzn is a compact (U, fr)-manifold,

hen there exists a closed U-manifold with the same Chern numbers

if and only if Td [Mzn] is an integer.

In section 16 we consider bordism classes of compact (U,fr)-mani-

olds Mn; these may be identified with elements of the homotopy group
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ﬂﬁ;+2k(MU(k)/Sgk), k large. For n > O there is the short exact

sequence

0— OV — BT 5 T o,
2n n 2n~1

U, fr
The homomorphism Td : (}2; —> Q then gives rise to a homomorphism

fr
E: () —> /2,
2n-1
'which turns out to be equal to a well-known homomorphism

fr
e, ! ()2n—l —> Q/Z

of J. F. Adams [/ ]. Thus we obtain a complete description of the

image of .
U,fr
Td :02n —> Q
U, fr
and considerable knowledge concerning the bordism groups 0 and
() SU> T &n
2n

12. The U-bordism groups Qz.
Let M? denote a differentiable manifold and let T de-
note its tangent bundle. We shall call the Whitney sum T+ (2k - n)
of T and the trivial (2k - n)-bundle the stable tangent bundle of Mn,
where 2k - n 2 2. Note that ¥ + (8k - n) is a real 2k-bundle with

space
E(T + (% - n)) = E(¥) x RO 0,
A U—structureéﬁ on M? is a homotopy class of maps

J:E(T+ (k - n)) — E(T + (2k - n))

each of which maps each fiber linearly onto itself and has
32 = - identity (see [12]).

S
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Given such an operator J on E(¢) X ng—n, there is induced

2

an operator J' on E(T) X RPE M x R® given by J' = J X J, where

Jo : R® — R® is given by Jo(s,t) = (-t,s). It may be seen from

this that the giving of a U-structure @is independent of the precise

value of k at least if 2k - n > 2 (see [12, p. 16]). Similarly if
E(T) adm%ts such a natural operator J, then M2 receives a natural
U-structure. Thus every almost complex manifold and hence every
complex analytic manifold also has a natural U-structure.

A U-manifold (Mn, i) is a pair consisting of a differentiable
manifold M® and a U-structure @ on M®. Often we take the U-structure
for granted and denote the U-manifold simply by Mn.

Fix a U-manifold M" and let J be a representative of the U-structure

§. Then J converts T + (2k - n) into a complex vector space bundle.

This complex vector space bundle has Chern classes, which are denoted

by
ck(Mn) e HRK(MD), k = 0,1,8,°"".

Moreover T+ (2k - n) receives a natural orientation as a complex
bundle. Now if we take two different representatives of @lit is not
hard to see that we obtain the same Chern classes ck(Mn) and the

same orientation for T + (2k - n). Since REE pas a preferred

- orientation, the tangent bundle T thus receives a natural orientation.

If MD is compact, denote by

o (M%) & H (M7, o)

the orientation cless.

Every closed U-manifold 1\*[2n has Chern numbers. Namely given

positive integers il,i 1

2,---,ip with 1, +e.-+ ip = n there is the
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integer

.2n 2n 2n 2n
e ey ceccy M) = Loy (M )eeeey (M), 0- M) >,
172 P 1 P

the value of the cup product Cj =eeCy € Hzn(MZn) on the orientation
1

class o—¢ Hzn(Mzn). d

We shall be first of all concerned in this chapter with the pro-
blem of M&lnor [24] and Hirzebruch.

PROBLEM. Suppose that n is given and that for each partition
{il""’ip} of n we are given an integer ail,---,i . What are
necessary and sufficient conditions that there exists a closed
U-manifold M°® with

cil"'cilesz = ail,...,ip
for each il’.'.’ipg? u

It is convenient to have at hand the U-bordism groups_{)n. We
shall not give complete definitions (see [12]) but simply a quick
sketch. It is possible to associate with each U-structure (pon M
a "negative" complex structure - @ . Thus given a U-manifold (Mn, 4}
there is the U-manifold —-(Mn, &) = (Mn,—é). It is also possible
to associate with each U-structure 6 on M™ a U-structure @é on ’()Mn.
Define OQMn,§) = (M, 3 é-). So given a U-manifold M™ it is
possible to define -M? and 9M" and these are also U-manifolds. One
can then define a bordism relation on closed U-manifolds by
M?“‘Mg if there exists a compact U-manifold wn+l with 'awn+1 the

disjoint union Mil o (—Mg) as U-manifolds. This is an egquivalence

relation; denote the bordism class containing M? by [MnJ. The set

U
On of bordism classes [Mnj is an abelian group with addition being

disjoint union. Moreover the cartesian product of two U-manifolds 1is
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U U
also a U-manifold and“()*.= ii (l is a graded ring under cartesian
n n

product.

We assume the results of Milnor [19] on the structure of!}
ﬁamely'f)* is a polynomial algebra with a generator in each dimension

2k, k > 0. Moreover the Chern numbers C; +*°Cy [Mzn] of any closed

i
1 p

yJ~manifold Mg are functions only of the bordism class [M ] and also
determine the bordism class uniquely as il""’ip range over all
partitions of n.

It follows readily from the results of Milnor that every homo-

morphism ?: ﬂg —-> 7 is a linear combination
n

en
M) = iza e Cy Cy *°dC [M ]
@ 1pe0e1, 1%, 1

with each ai "'ip rational. The problem of Milnor and Hirzebruch can
be restated as follows:

PROBLEM: Determine all homomorphisms Clg —> Z.

We shall discuss a solution of Stong [25]nand Hattori [15] to
this problem in later sections, and go on to further applications.

We shall need a slightly more careful statement of a Milnor

result. Given positive integers il 2 12 2...2 ip, denote by
— 1, i i
St it 2. 4P
1 2 p

the least symmetric polynomial in variables tl,--',tn (n large) which
i, 1 i
lt 2°"t P
1 2 P
written as a polynomial in the elementary symmetric functions

contains the term t The symmetric polynomial can be

> s Ztltg, eyttt -t .

Replace these by ¢ o-,cn and thus obtain a polynomial

1°%2?°
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e o0 w = LK I ) i -—
s ‘*’(cl’ ,cn) where {il, ,ip%. Given a closed U-manifold
MT and « with 1) +eeet ip = n, there is the integer

en 2n en 2n
s oM 1= {syleg (M), eve e (M 7)), (M) >,
an integral linear combination of Chern numbers. This number is also

denoted by sj_l,...,i [M ]. According to Milnor, if 2n is not of the

form 2pk

- 2 for p a prime then there exists a closed U-manifold M
with sn[M %1 =1, 1fen-= zpk - 2 for p prime, there exists M D with

sn[Mzn] = p. Moreover, __D_Ii is the polynomial algebra

2[[°], (%], - oo, [FR, -0 0 1

We put this aside now for later use.

We now take from Chapter I and Chapter II some necessary K-theory
for the later sections. First we need the Atiyah classes ¥, (see [51);
their existence follows easily from (7.6).

(13.1) There exists a unique function associating with every

complex vector space bundle ¥ : E(§) — X, over & finite CW complex,

elements z’k('g') e K(X) for k = 0,1, with ro(g') = 1 and such that:

(a) if ¥, 7 are bundles over X,Y respectively and if

f: E(¥) — E(2) is 2 bundle map covering T :X— Y, then

!
£ wk(?)) = rk(s);

(b) )? are bundles over the same space X, then
+ . s
TKI )() Z+q=k rp(g‘) ba()?),
(¢) Aif ¥ is a line bundle over X then 'a’l(g) = § -1 and

¥ (%) =0 fork> 1.

Of course the Yk are up to sign just the K-theory Chern classes

of Chapter II. Just as for cohomology Chern classes, we can form elements

titi w—{' >i 221; Namely
S o €) & K(X) for every partition @ = §i, p)"

2
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instead of the sw(cl,---,cn) of a few paragraphs ago, take
-§-w(;) = s(?’l, fg,-o-, arn). As a special definition denote by
& = 0 the empty partition and let gw(g) = 1. As with ordinary
Chern classes, there is the formula
S NAE+y) = iw'+w" s (Be L Op)

if Mfl is a U-manifold we may consider the stable tangent bundle
?+ (2k - n) as a complex vector space bundle. The Atiyah classes
of this complex vector space bundle are denoted simply by
7,»k(Mn) e K(MP); similarly there are the classes Ew(Mn) e K(MP).
. The totel class r(Mn) is defined to be the formal polynomisal
r(Mn) = iw Tk(Mn)tk; more generally there is 7( <) for any Z.
As an c(;xample consider the U-manifold CP(n). Denote by ¥ the

__conjugate f of the Hopf bundle over Cr(n). Then

T+ 1

§(CP(n))

(n+1)&
L+ (5 -1)t)
L+ (s -0t e R E -DFefe-e

n+l

]

Given a U(n)-bundle ¥: E( ¥) —> X recall that in Chapter I we
have denoted by & ( €) & particular Thom class in K(M(¥)) = K(D(¥),5(%)).
'o make a better fit with standard usage, we shift to a slightly different

hom class

T(T) = F (¥) & K(M(E))

where 5’ denotes the complex conjugate of d . We will then use the

hom isomorphism

~

0 : K(X) —> K(D(Z),S(E))
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B et o
=

1 .
sending x € K(X) into p (x)*T(¥) where p : D(%) — X is a
bundle projection. More generally, given a finite CW pair (X,4)

there is the Thom isomorphism
0 : K(X,A) = K(D(¥),5(%) LD(F]A))

1
sending x into p (x)*T(¥). This is meaningful since

!
p (x) e K(D(¥),D(E)A)),T(E) e K(D(¥),5(¥%)),
and there is the cup product
K(¥,B) ® K(¥,C) — K(Y,BC).
Recall also that there is the ordinary Thom isomorphism
@: HE(X,8) = EFEN(D(£),D(T [4) v S(F)
on cohomology; similarly on homology there is
. =~
@: H _(L,A) = H o (DUF),D(F[4) VS(E)).
~ev
Denote by H (X,A;G¢) the commutative ring
Tev 2k
BV (X,83Q) = 2. H T (X,43Q).
(X, :Q) k>0 (X, )Q)
Denote byrﬁeV(X,A;Q)[LtJJ all formal power series
k

1+ a;t +-074 at+cc

ev ev
where a, € H (X,A3¢). Then H (X,43;G)L[t]] is an abelian group under
formal multiplication.
Given a U(n)-bundle %: E(¥) —> X there is

T(%) & K(D(5),5( %)) and




m

- ch T(E) & ue"(Dw),S(q);)Q)[[t]]
f‘l ch T(Z) ¢ HeV(x;Q) L[t]]

e BV (x;Q) [[t]] by

1

T, = ¢ chT(g).

%@ fine T
De e 5

It has been pointed out in Chapter I that

=T T 1.

T T. =
s+7 S U1
ev
Hence there exists a unique homomorphism K(X) — H (X;Q)L[t]]

assigning to each x & K(X) an element Tx and extending the function

5F— T§ on bundles.

In particular there is such a homomorphism
~ ~ev
K(X/8) —> B (X/8;Q) [[¢]].

~ev ev
Identifying ’f{J(X/A) with K(X,A) and He (X/A3Q) with'fl (X,4;Q) we thus

get a homomorphism

~ev
T : K(X,A) — H (X,43;Q)[[¢t]]
assigning to each x e K(X,A) an element T_.

In an entirely similar way given ¥ , there are the elements
e(3) = Xe ()t ¥(s) == A(F) £k

~ev

H (X;Q)[[t]]. Just as above these lead to homomorphisms

¢ : K(X,4) — BV(X,83Q)[[t]]

¥: K(X,A) — K(X;A)[[t].l

mapping x into
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c(x) = 1 + ci(x)t +2 o+ e () tE +o0e

§(x) 1+ ‘l(x)t +"'+.6k(X)tk $o0,

1 -~
The element (T,)” e HeV(X,4;Q)[[t]] will be called the Todd

polynomial of x. Letting Cp = ck(x), it is the famous polynomial

2
-1 1, . %1 * %o %% ...
(TX) =1 + -—2—t + —Tt + ——2-4—t +

of Hirzebruch [16].
Suppose now that M? is a U-manifold. The stable tangent bundle
T+ (2k - n) is then a complex vector space bundle, unique up to

equivalence. Denote by T' = T'(M) € K(Mn) the element represented

by this complex bundle. Then let

) = (T, T M%) = [Tz,

-1 n
Then T~ (MP) is the Todd polynomial of the U-manifold M .

It should be noted from (6. 4) that the precise value of T

is given as follows: namely in
-t -t
(1 -e l)-”\l - e n)

tlooatn

replace T t; by ¢ (¥),""", Et" 't by ¢, (F),"" .

13. Characteristic numbers from K-theory.

Assume that we are given a compact U-manifold M2n

and an element x & K(M, @M). Embed M as a smooth submanifold of the

BO+2K o 2 on 4 2, so that M A OT°PYEE = 2mM, so that this

2n+2k
intersection is in the interior of one face of I and so that M

2n+2k

cube I

is orthogonal to QI

at this intersection. Denote by 7 the

normal bundle to M in 12n+2k. Since M2n is a U-manifold, its stable
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tangent bundle T ! is a complex vector space bundle. We can then
2n+2k

is a complex vector

suppose that the normal bundle 7 toMin 1

space bundle with ' + 2ptrivial (see [12, p.16]). Then

1 1
frq = T%' = T7 (M). The disk bundle D(% ) mey be identified with
the tubular neighborhood of @M in 312n+2k. We then have the Thom

class

T( %) & K(D(7),S( 7)), and
p' () € K(D(),0( 7] 0)
where p : 03(7),IN_7| oM)) —> (M, 9M) is bundle projection. Using
the cup product

K(X,A)® K(X,B) — K(X,A wB)
we then get
e : K(M, aM)zK(D()z),s(;()uD(ql aM))

sending x into (plx)-T(7). There 1s the diagram

2n+2k

2n+2k
, o1 ) = 2

K(M, 2M) K(I

el?—‘ 1 Ta“

i
K(D( 5),8(7) < D( 7| 01) €5 K(IPMEE, GreneRly (1¥*2K - e p(y))).

en and the element

By definition, given the compact U-menifold M
x & K(M, dM), denote by x[M] the integer which is the image of x under
the composite homomorphism K(M, 2M) —> Z.

(13.1) Given a compact U-manifold M and x & K(M, dM), the integer

x[M] is given by
x[M] = Leh x T~ (M), o (M) > .

in particular it is independent of the choices made.
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Proof. We have

1
Cen '@ 0w, (T >

{eh 8(x), o= (D( %)) >

g~ enow), o>

£$  (enp'xeen T(q)), — (0>
{eh x* @ cn T(g)s 00>

x[M]

1

1}

n

den 17 (M), o (M) > .

The remark follows.

In particular if M2n is a closed U-manifold and x = 1, then

x[MP]

n

(T @), o P>

on A 2n
is the Todd index of M~", We denote it EX a4 M ].
As an example, consider the integers x[CP(n)] where x ranges

over the elements of K(CP(n)). Note that

-1 -t,\n+l
T (CP(m)) = (t/(L -e 7))
where t is the appropriate generator of H2(CP(n)). We assume the
fact (see Hirzebruch [16]) that the coefficient of t™ in the above is
one, and thus that Td [CP(n)] = 1.
< <
Let x = (1 - }’)k where }’is the Hopf bundle and 0 - k - n. Then
1

@ - e HEE/Q - et
tk(t/(l _ e-t))n—k+l‘

ch x-T—l(CP(n))

1
It follows that the coefficient of t" in c¢h x*T~ (CP(n)) is 1, thus

(1 - f)k[CP(n)] =1, 0 $ k $ n.




8l

(13.2) Let x & K(CP(n)). Then

n
x = ag + a(l - ;’) +eeet a (1 - J’)
for integers ao,al,...,an and
x[CP(n)] = a, + a) +°*°+ a,.

Consider the conjugate f of f Then f S =1eand

1/1- @ -p)
=1+(1-f)+(1-f)2+---
I

(13.3) The number (j;

f

l)k[CP(n)] is equal to (ﬁ).
Proof. We have only to expand (j; - l)k by the above formula
and use (13.2). We see that the result is the number of sequences

1 < < LN 1 .<. 3 3
il,"',lk with 1 - iJ - n and with il + + i, =n. Using induction,
we see that the remark is implied by the identity

n—l) + ( ) boeot (k -1

)
Suppose now that Mn is a closed U-manifold and that c e Hz(Mn).
Since XK(Z,2) = CP( ™), there is amap f : M — CP(N), N large, with
f*(t) = ¢c. Since CP(™) = BU(1l), we see that there exists a complex
line bundle 7 on M with ¢ (q) ¢c. Making f transverse regular on
 CP(N - 1), denote by N 2 the inverse image f~ (CP(N -1)). By
[12, p. 16], we can make Nn-2 into a U-manifold whose stable tangent
bundle ! has T' + i° 7 = i* Tr), where i : NF < MP.

We call N° ° a U-submanifold dual to ¢ & H (M ).

(13.4) Suppose that M® is a closed U-manifold and that

- Hz(Mn). Denote by 7.2 complex line bundle on X with cl( 7)
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and by R m® a U-submanifold dual to c. If x & K(M*) and

i Nn—2 < M® then

]

(') = x - 7).

1 * x 1
Proof. Since 7 (M) + 1 7 i~ 2 (M), we have

T'l(N)/Ti* - i*T—l(M)
4

=1(N) = i*(T7 LT (M)
Hence

Ceh 1txeT™ (W), o (M) >
{1*(eh x.T 7 ;T_l(l"l), o~ (N) >
@hxﬂ7 ST (M),ig o (N)>
{ch x-T 1), ca e ()
Leh x-cTy M), o (M) >
den x(1 - e"c)T‘lkM),\;~(M)>
x(1 - ; ) [MP].

(ilx) [N-2]

i

14. ?EE theorem 9£ Stong and Hattori.

o e e

We have mentioned in section 12 the standard invariants

Sy i [M2n] of a closed U-manifold M2n, defined whenever
"."

1 k

il +ecct ik = n. Using section 13 we now have the integers

s, ..., " =s el
1’ "k v’ 7k

defined whenever i, +--+% iy < n. If il R ik =n it is readily

checked that

[M°n)

en
»
...,ik [M<R]

s

S
—il’ il’--o’ik
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2n
It follows readily from (13.1) that the §i ""’ik[M ] are rational
1

combinations of the Chern numbers, thus they are bordism invariants

of closed U-manifolds. Hence we receive homomorphisms

s, . :()U —> 27,
11500051 2n
defined whenever il +°° 0+ ik < n. For the empty partition«w = 0, we
have
2n -+ 2n 2n 2n
s (7] = L1 (17), o (M) > = Td (M7,

(14.1) Ifw = {il,iz,--',iki is a partition consisting of 1

repeated rq times, 2 repeated r_ times,***, S repeated rg times, then

2

gw[CP(n)]= wr2) .(- n : )
rl!---rsl(n 4 l —— rl_o-o_rs) ll +o.-+ lk .

Proof. The tangent bundle T of CP(n) is given by

T+l=@+1)%,5= [
hence

$,(%) =258 (B) sy (3D,
there being (n + l)l/rll-o-rsl(n + 1 - rl-°'°—rs)l such terms. Now
o odg

_ _ i1 +-.
sy (F)eeesy (5) = (5 -0 ,

i, 4+ i n
k; - l) 1 k[CP(n)} =(il 4ot ll{) .

The remark follows.
We have next a fundamental computation of Stong [23].

(14.2) Consider (CP(pk))p = CP(pk)x e X CP(pk), for p a given

e T 3 AW Y T TS v e v T T T
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prime, and let c ¢ Hg(CP(pk)% be given by

c=t®I® - @1 + 10t ®I®---B®] ++-+ @@ Q@

where t is the preferred generator of HE(CP(pk)). Let N = N

be the U-submanifold of (CP(pk))p dual to c¢. Then
k+1

3 . 1 = N - +...+ . > —
i) gil,...,lx[N] 0 mod p, i iy>p p
If i +-+++ 1, = pK*l _ p, then
ii) s, ,---,iZ =0mod p, £ <P
iii) s, 4++*,1 =0 mod p unless i; = pk - 1 for each j
"1l p —_— J -—
iv) Epk-l’.." K, = 1 mod p.
p terms

Proof. Let M = (CP(pk))p. Let  STRRATR N K(M) be given by
x, = 1@ OB (s -1 ®-- 0]

where € - 1 is ini;&’position and where § = ja . Then K(M) consists

of all polynomials

T by
x Leeex™ P
p

@(xl’ ”')Xp) =2a

rl’o--,rp

pk. Moreover

I

for which each ri

[t

T T
Kleee PO = (5 - 1) Licp(p)1-- (5 - 1) Plee(p™)]

which is, by (13.3), O mod p unless each ry is either O or pk.

We will be especially interested in the symmetric polynomials,

> k

therefore ford&= {il = r2 Z...Z rpi, ry < p, in the symmetric poly-

nomials
'y r
2 112 T
= s e P
X X %g xp .

Kk k
Note that x ,[M] = O mod p unlessw = 0 ore = (p ,--+,D ).

T s S AR L L
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For each w, let

¥* P
X0

{TU unless ry =*cc=7r

x, if Iy Teee=T

.

P

Extend x, — xt, to a homomorphism assigning to each symmetric

*
polynomial 9 a symmetric polynomial ¢ . Note that

¥*

(xy) = x*y* mod p for x,y symmetric. Adding this to the previous

fact that x, [M] = 0 unless @ = 0 or w = (pk,---,pk) we get

*
(xy+-+w) [M] mod p

x*y*'--w*[MJ mod p

(xy =+ w)[M]

for symmetric x,y,***,w & K(M).
Consider in particular the line bundle 7 over M with cl( ?) = C.

Then

T®E ® ---@O3
L+ (g -1))®-®1+ (g -1))
1+ Erxl + 2:xlx Bt Xy Xg Xy

-~
0

2 172

()(—1)*

xlxg' * 'Xp.

1 - * N 2 2 N
( - ?) _xl---xp xlotc xp °°'m0dp

Note for later reference that [(‘7 - l)*(l - % )]* mod p has term of

lowest degree xJ+l-'-x;+l. Hence if x is a homogeneous polynomial
of degree q and q + j 2 p&¥*t - p, where j > 0, then

i

x(g - DI - 70 = x (7 - D@ - 7)7(H] mod p

0 mod p
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i1f either J > 0 or if q > pk+l

- pand j = 0. This is true because
* * —
x (n -1) j(l - 7 ) is of degree > pEtl,
*
Let 1 : NC M and let ! = 1*;Z. Then 1" 7' (M) = T(N) + '

and

i
A . (N)+(» ' -1)7J
l""’lj—l,lj+l"°°’iZ

i
*
i§wm)—Z§i_“ i.,uuiWMztcl)L
j+1 X

i*s M) = s (M) + 25

i

H

8 V) i
l’ b4 j"l’

Proceeding inductively, we see that
* J o
s, =17 (5,00 + Zax ,(7 ' -1) «)

where the a_, are integers, the x ,, are homogeneous polynomials

and deg x + ] = deg w. Also ] > 0. Here we use the fact
W Wy w
that gcJ(M) is homogeneous of degree deg < in xl,-~',xp.
Let « be a partition of degree Z pk+l - p. Then

_ | J _
5,0 =50 - D+ Ta x (-1 '@ - )M
By an earlier computation we then get

s, =)@ - )[M] mod p

for deg 2 pk+l - p. Also by our earlier computation we get
- k+1
s @ - x)[M] = 0 mod p, deg > P - p.
Hence i) is established.
Suppose next that w = {il 2...2 iZ%’ with 1; +e--+ il = pk+l - p.

Then

Ew[N] = (s U(M))*(xln-xp)[M] mod p.

If £ < p then
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s MMl = Zgil[CP(pk)]®-~®six[cupk)] ®1®---®1

*
clearly has (s ,[M]) = 0 and hence ii) follows. Similarly if X =p

then (s w(M))* = 0 unless i, =++-= ip and hence iii) follows. If

1y =+++= 1, = p¥ - 1 then

s w0 @ - %7 (4] mod p
pK .. DK
Xy o--xp [M] mod p

s L[Nl

1 mod p.

Both Stong [23] and Hattori [15] have given proofs of the following
theorem. We are using Stong's proof here.
(14.3) STONG. Suppose that @: O.U —> 7 is a homomorphism.

2n -
Then 9 can be expressed as an integral linear combination of the

homomorphisn

U <
s : (\T — Z, iy +cc+ 1 -n.
il,occ’ik 2n l k

Proof. Given a partitionw = {il 2 is 2...2 ikg, let

let d(w)

o' ={jl

il ERET ik and n(w) = k. Suppose that

cen2 jxf. Define

v

w ! > w if d(w') > d(w),
Wr > Wif d(w') = d(w) and n( w') < n(«),

O > W if d(w?t) = d(w),n(w!') = n(w)

and if 3, = il,..-,js = ls’js+l > is+l' This is a linear ordering of

all partitions. We leave it as an exercise to show that if cul E w!

1
< ! <
w_ S < wt ',
and o 02 the[x; Ul + u2 wl + w2
Let [M] ¢ .O-*. Say that [M] is of type wif s ,[M] # 0 mod p and

if s ,[M] = 0 mod p for all w! > w. If M is of type «, and if N
w

if of type wz then M ¥ N is of type oJl + Uz. For instance, suppose
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w > “)l + Ug- Then

s (M x N] =32 s, Ms  [N].

wi+ ofl=w w!

If W' + Wty = U wl + “’2 then clearly either ' > ), or

PR B wg. Hence

su[M x N| =0 mod p, W> &, + o

Similarly §w1+u2[M X W] # 0 mod p.
In each positive dimension 2k, we now select a closed U-manifold

X2k, If k # p4 -1, for p a given prime, let sz be such that

Then [ng] is of type w(k) = k.
Ifk=p -1, let sz = CP(p - 1). It follows readily from
(15.1) that [X°P~®] is of type «(¥ - 1) = 0.
1tk = p* -1, (n 2 1) let X°¥ be the U-submanifold of
P 2pr+l_2
(CP(pT))* dual to c as in (14.2). According to (15.2), [X ] is
of type (p**1 -1) = (¥ - 1,--+,0" - 1)
U
Fix now the positive integer n, and consider {} @ z_ = QU /P QU .
on p en 2n
Consider partitions {il,-“,ikg of n. For each such we have

o1 21 U U
l x e s s x k
M M e Q 2n/p Q on

and the partition
wkll""’lk) = w(ll) tosot w(lk)

21 21
of degree £ n. Moreover [M 1]x...x[M k] is of type w (il,---,ik).

i o ORI 0 4 R A g 8 L P T R T T
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21 2i U U
f = 2_3 lx oo o X k ﬂ
If [X] i (M wEp e Q)] /p an

l"°"ik

with some a # 0 mod p, summed over all {i s* eyl } with
17,0051, i k

iy teect 1 =, let ajl""’jl be such that U(jl""’JI) takes 1its

maximum. Then [X] is of type ©Jyserrdy)-
A
That is, let (Z) 7(n) pe a direct product of T(n) copies of
Zp(7T(n) = number of partitions of n), and let it be indexed by the

partitions {il 2...2 ik? of n. Define

@Q/pﬁn—»w w

p)
by

duu) = (S d.,-- ,lK)[M])

Then i?is an isomorphism, as follows from the above paragraph.
U
It follows readily that every homomorphism € : ()2 —> Zp is
n
equal, mod p, to an integral linear combination of the
. In particular, every 6 1is equal mod p to an integral
ld(il"":ik)
linear combination of the s _, as w varies over all partitions.

U
Consider the free abelian group Hom (2 5 ,2) of rank T (n) and
n
let

K < Hom (() v ,2) =
2n

be the subgroup spanned by all the s , as « varies over all partitions
<
with d(w) - n. Now G/K is clearly a finite abelian group. Hence

there exists a basis §’l, for G and positive integers

cesy §7Tkn)

rl""’rTT(n) so that

19 T ) $ )

is a basis for K. Suppose rJ > 1. Some prime p is then a divisor
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of ry. Then K ® Zp #G6GQ® Zp. But from the preceding part of the

proof we have

K@z =6®z. =nom (QOY ,2 ).
P 2n’ p

P

The theorem follows.
(14.4) COROLLARY. Recall that for each partition

<
W= gil,---,ikg with d(w ) - n the integer

[Mgn_l where the r's are raticnal

£n X
s, MT] = erl...JI cjlcjr"'cjl
and jl 20002 'jZ varies over all partitions of n. Given integers

ajl""’jl’ one for each partition of n, let

s J. Feee+ jx = n) and let

A necessary and sufficient condition that there exist a closed

U-manifold N°D with ¢, c, +--C. LNgnJ = a. . for each
']l 32 Jx Jl,"',lz

{jl"”’jlg is that _:_;_w(a) be an integer for all partitions

<

© with d(w) n.

Proof. It is clear that this is a necessesry condition. Wwe
have only to prove it sufficient. Since Qg ~ (Z) i \n), it follows
n
from (14.3) that there exists integral linear combinations

91,...,97“11) of the s , such that

p 2 WP — (9[-0, @ ) [P)

g mw ‘
is an isomorphism .(). = (Z) (n)‘ There is also the embedding
£n

-

_O.g <. (2) \n) using Chern numbers, namely LMgnJ is identified with
n

the set of 7 (n) Chern numbers cjl“.cijM’gnJ, ordered in some way.

Finally there is

iy N WV S R 8 R P 8 U RN 1 O S T 4R R M AT A T T ST e ¢ 4 e
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R/

pt = (2) (n) —> (Q) Ma)
sending a = (ajl""’jz) into (?l(a),--., 9_”_(11)(&1)). Com-
mutativity holds in

O, oo™

en ~

ﬂ_ﬂ R}

(Z)Il(n) —_ (Q)‘ﬂin).

Moreover (Z)77(n)/_[1U is of finite order. Hence p! is a mono-
morphism and the coro??ary follows readily.
15. U-manifolds with stably framed boundaries.
Let M? denote a differentiable manifold and let
T denote its tangent bundle. Denote as usual the stable tangent

bundle of M" to be T + (2k - n where 2k - n 2 2. A stable framing

@ of M® is a homotopy class of maps

9: E(% + (% - n)) —> KX

2k
each of which maps every fiber of T+ (2k - n) linearly onto R .

As with U-structures, this is independent of the value of k as long
as 2k - n 2 2 (see [12, p. 16]).

A stably framed manifold is a pair (Mn,Q) consisting of a

differentiable manifold M® and & stable framing ¢ of Mn.

There is a bordism group C)fr of bordism classes of stably
framed closed manifolds. As witﬁ U-structures, given a stable
framing @ of M® one can define a stable framing - ©; one can also

define & stable framing 36 on oM? and thus define

-(M%,8) = (M%,-9), au",e) = (0 M 7e).




a2

For more details see [12]. One can then define a bordism relaticn

n
1

compact stably framed manifold W*'T with @™ the disjoint union

M? u/(-Mg) as stably framed menifolds. Denote the bordism class

containing Mn by [Mn]f and denote the sbelian group of bordism
by

on closed stably framed manifolds by M nuMg if there exists a

classes by £1fr‘ The cartesian product of two stably framed mani-

. n fr
folds is stably framed and (1*

= zzn {lir is a graded ring under
cartesian product [12].

The abelien group ()fr is known to be 1lsomorphic to the stable
stem'ﬂ‘n+2k(52k), 2k Z n 2 2, by the method of Thom. In particular

0 fr ~ 7 ana N IT is finite for n > O.
0] n

Every stable framing @ on M2 gives rise to & U-structure on M2,

For given

@: E(?z + (& - n)) —> ng

2k 2k
the natural operator J : R —~—> R given by

J(xl,xg,- ) = (=X_,%

" Xon-17%ek g2 X170 Xy ¥ )

pulls back to an operator
J: E(T + (8&k - n)) — E(7T + (2&k - n))
representing & U-structure 8! on M2, This leads tc a homomorphism
r I)fr N §1U
n n

mapping [Mn,Q]fr into [Mn,e']U. For n > O, f)gr is finite and (U
n
is free abelian. Hence r = 0 for n > Q.

That is, given a closed stably framed manifold Mn, n > 0, then
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closed U-meanifold N2n having the same Chern numbers ¢ That is,
to what extent can | 3M2nj € ()fr be detected by the Chern
numbers of M2n ? & en-t

Note that the Todd genus of a compact (U,fr)-manifold is de-
fined as a rational number. For closed U-manifolds, there is a
rational linear combination of Chern numbers giving Td[Mgn]. Simply
use this to define Td[MgnJ for M2n a compact (U,fr)-manifold. More
precisely, since Te K(M, M) there is T(7T) ¢ ﬁev(M, am;¢)[[t)],

also T- (M) = (T(7T))~" in HeV(M, aM;Q)[[t]1], and
M 1 = (17 (M), o (M) > .

We give now a few examples. Let v? be a compact differentiable

oriented manifold and let x e K(Mn,‘aMn) be such that the composition
~ n
K, aM®) — K®)—> KoM )

maps x into the class of the stable tangent bundle in KO(Mn). We may
then use x to put a complex vector space structure on the stable
tangent bundle and one with a trivialization on its restricticn to

the boundary. That is, we can make M? into a (U, fr)-manifold (not

"

uniquely) with T(M, 9M) x ¢ K(M, 9M). Moreover ck(M) = ck(x).

2 2
Thus on the 2n-disk D2n, let x ¢ K(D n = ) have
(cn(x), r(Dgn)> = (n - 1)l Since KO(D ) = 0, we may consider
D‘en a (U,fr)-manifold with @ = x. Thus there exists a compact

(U, fr)-manifold D2n with
¢ [D*"] = (n - 1)t

and all other Chern numbers zero. Then

N (7S e R e T gy = - U
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MP is a U-manifold and [M"]

0 in [)_g Hence there exists a compact

U-manifold Wm'l with me'l = Mn. The point of the remainder of this
. . n+l . n

chapter is to consider such pairs (W M) .

A (U,fr)-manifold is a triple (M7, @,9) consisting of a diffe-

rentiable manifold Mn, a U-structure @ on M® and a stable framing ©
of OM™ such that 6' = @ @ Many non-trivial examples exist by
virtue of the above construction. Picking representatives of @ and
8, we may regard the stable tangent bundle T+ (2k - n) as a complex
vector space bundle on Mn with a given trivialization, &s & complex
vector space bundle, when restricted to @Mn.

Denote by ' the stable tangent bundle of Mn, a bundle of
k-dimensional complex vector spaces. Moreover we are given an
isomorphism @ of ”t"l aMn with the trivial bundle k on aMn. The

difference class
a( T 'k, @) & K", gM")

will be called the stable tangent bundle of the (U, fr)-manifold ue.

It is independent of the various choices made. Define
T= TM, 9M) & k(M, aM)

to be this element. The (U,fr)-manifold M then has Chern classes
ck(I"I) = ck(’t’) in Hgk(M, 9M). Therefore we can define Chern numbers
of a compact (U,fr)-manifold by
2n -
e, *ecc. [M*P] = e, (M)rore, (M), o(M) > .
The main purpose of this chapter is to solve the following.

©
n
PROBLEM. Given a compact (U,fr)-manifold M , when is there a
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Td[D2J = cl[D21/2 =1/2
ra[pF] = c2[D4]/12 = 1/12
1a[p°] = ¢, [0%]/720 = 1/120

etc.

For compact (U,fr)-manifolds of dimension 8, the above value
1/120 is not best possible. Denote by 7 the Hopf symplectic line
bundle over S4. There is the disk bundle D(?) with stable tangent
bundle pl( 7 - 2) e K(D( 7)), where p :13(7) e 84 is projection.
Now D()I)/S(?() ~ Hr(€), and there is Hopf symplectic line bundle

?' on QP(2). It is easily seen that

K(er(2)) =K(D(7),8( %)) — K(D( 7)) maps 7' -2
into p1(7 - 2). Thus we may consider D(Y) as a compact
(U,fr)-manifold with stable tangent bundle q' -~ 2. Then

2
(CS(DUZ)), o (D( 7)) > =1

for an appropriate orientzstion, and all other Chern numbers of D(Y )

are zero. Then
Td[D(7 )] = =3 cz[D( 7)]/720 = - 1/240.

The value 1/240 is best possible in dimension 8.

(15.1) THEOREM. Let MEn be & compact (U,fr)-manifold. A

necessary and sufficient condition that there exist a closed U-manifold

N°" with the same Chern numbers azs MU is that Td[#°D] be an integer.

rroof. The necessity is clear. We prove the sufficiency.

2n

Suppose that M is a compact (U,fr)-manifold with Td[MgnJ an integer.

Let
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for each partition of n, and let

. M 20002 i i +eo o4 i = nNn).
Ittty 3 Jy2dy iy =n)

We show that §Q(a) is an integer for each partition « with
d(w) < n.
There is T= T(M, @M) ¢ K(M, M) and the Atiyah classes

)’k( T) € K(M, 9M). Thus for & > Q there are the classes
§w('z’) e K(M, 9M). According to section 13,

s [M] =5 ,(T)[M]

wl

is then an integer for &> 0. But

k] Od(a) =5 u)[M]’

hence s ,(a) is an integer for « > 0. But _§o(a) = Td[MBn], which by
assumption is an integer. The theorem now follows from (14.4).
16. The bordism groups (1)’ *".

Suppose that M™ is a compact (U,fr)-manifold. Embed
M? smoothly in I™*EK o 2 5 2, so that M » QI™%K = 3M, so that
this intersection is in a single face of aIn+2k, and so that M is
perpendicular to @IBteK gt this intersection. The normal bundle »
to M in az’”zk may be supposed a complex vector space bundle with a
given trivialization on @M [12]. Let ‘;'k : E(;‘k) ~—> BU(k) be a
universal U(k)-bundle, let x, € BU(k) and denote by F the fiber of

_;k above Xo+ There is then a unique homotopy class of bundle maps




Jap—————— P A

a7

£
(E(fg),E( & amM)) — (E(;k),F)
T

v

(M, M) ——> (BU(k), XO)

passing to disk bundles, we may consider f as a map

(B(7)»80p) = D7) 0] —> (DUF 585 ) = D)

and passing to quotients we get a map

g = D(7)/S(7) = Dy | 9M) —> MU(K)/SE.
There is the natural map

ARk g +RK 5 b 7)/8(%) w (x| W

collapsing In+2k - Int D(;() to a point. Composing these, we get
rrom M® a map SPEK —5 MU(k)/8®* thus an element of

Tn+2k(MU(k)/52k), ok 2 n + 2.

Wwe shall in fact interpret T 2k(MU(k)/Sgk) as bordism classes
n+

of compact (U,fr)-manifolds. Thus we define

u,fr T 2k >
= — .
() o (MU(k)/S*%), 2k n+ 2

The method of Thom shows that efery element of ()U,fr is represented
by some compact (U, fr)-manifold. We could give ancomplete bordism
description of this group, but we forego the tedious details.

Given an M®®, n > 0, and the associated map

g : R MU(k)/Sgk, there 1is
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Hgn(BU(k)) H2n+2k(82n+2k)
~le )
l g*
q* on+g
H2n+2k(MU(k)) ———— H8n+ k(MU(k)/SZK).

w_1
The image g*q g(cil...ciz), i oot ix = n, are invariants of

the homotopy class of g. But it can be seen that these can be con-

sidered as normal Chern numbers, namely

ettt fog, ooy ) o (7P 5 45.11( X)--eiy ) o) >

where 7f+-7 = 0. Since the Chern numbers c. M) can be expressed

Jl...jr
in terms of the normal Chern numbers, it follows that they are bordism

2n
invariants. Hence so also is Td[M ] a bordism invariant. Thus we

may consider Td a homomorphism
U, fr
a : )’ — q.
2n

The following interpretation of Td we owe to P. S. Landweber.

2n

(16.1) Let M, n > 0, be a compact (U,fr)-manifold and let

f: 82n+2K-——% MU(k)/Sgk be an associated map. Denote by T(k) the
Thom class in K(MU(k)), let o-be the orientation clsss of sPTEK
consider

onvek, 2k L

Hon+ex (S ) = By o (MU(K)/8%) <~ H _ (WU(n)).
Then
2n, _ (k) -1
Td[M¥"] = Leh T b6, L.(o)> .

(9]
Proof. If M°® is a closed U-manifold with associated map

g : 82n+2k —> MU(k), it may be verified that

R e D R T e oo s e Y
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(%) = Cen 1) g (o) >
Define for any compact (U,fr)-manifold Mgn,

_1
TV[Msz = <eh T(k),q* f () >

U, fr
Consider T,T' : an _ > g. It follows that T = T' on the image of

fr
u: QU — OUsfT. since av /Image u is finite, we must have
2n 2n en
T = T' in all cases. The remark follows.

In the diagram

0o — 0! L, 0bfir 3, ofr
2n 2n on-1

Td

note that the image of (Td)u is the integers, hence we get a homo-

morphism

fr U, fr Td
~o __,__._) B .
()2n—1 ~ flzn /Image u Q/z

Denote by E the composite homomorphism

E: QOF — yz.
2n-1

Recall now the homomorphism

e {sgn'l,s°} —> /2

of J. F. Adams [3]. Namely let

£ . S2n+2k—l : SEK

represent an element K of {Szn—l,so;. Attach a (2n + 2k)-cell to Sdk
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via f, thus obtaining a space X. Denote by

2n+2k

Ao © 5K (%), A e E (X)

2n+2k
generators induced by the standard orientations of the spheres.

According to Atlyah-Hirzebruch [6], there exists x a/E(X) with

chx =7, +r M oprops T Tational.

Then r mod 1 ¢ Q/Z is a function only of « and Adams defines
ec(o() = rmod 1 e @Q/Z.

We give a proof due to P. S. Landweber of the following theorem;
it replaces a more awkward proof of our own.

(16.2) THEOREM. Using the natural identifications

fr ~ 2k, _ §.2n-1 g0
ﬂ2n-1 Tr2n+2k—l(o )= {b ’ }

for 2k large, the homomorphism E : ler —> Q/Z coincides with the

2n-1
homomorphism e, :§:82n—l,so} —> Q/Z of Adams.
Proof. Suppose given a map f : 82n+2k—l —_— 82k representing
an element of () ;i—l' Using the natural embedding
iz 82k<: MU(k), we get f' = if : 82n+2k_l ——> MU(k). Regard f!

U

= h
on-1 0, there

: B -
as representing an element of 2n+2k_l(MU(k)) 0

exists an extension of f' to a map

2nt+gk 2n+2k-1
)

(D 5 ) —> (MU(k),s%%),

from which, passing to guotients, we get a map

2n+2k

g : S —> MU(k)/S7K,

U, fr fr
representing an element/6 of () Izl,fr. Moreover 8: () 2;1 —— an N
n _

R g et e e g < i g
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clearly mapS/e into the given element o« of ()fr . Hence
2n-1

E(X) = TJ/B mod 1. By (16.1) we have

1
Tdﬂ = <ch ™,q7 g, (o) > .

Recall now the space X obtained by attaching D2n+<k to
£ g?tek-l 9Bk e above map
2n+2k _2n+2k-1 2k
(D ,85TFNTT) — (MU(k),87T)

gives rise to a map h : X —> MU(k) so that

h
X —> MU(k)

[

2n+2k &
S > MU(k)/s%E
. . . : 2n+Zk _
is commutative. Here p is the collapsing map X —> S =
From
2k 2n+2k
—> X — 8 ]
L= \i h g

RN MU(k) —> MU(k)/Sgk

SZk

D

via

2n+2k/s2n+2k-l

we see that h® : H (MU(k))—> H (X) maps the Thom class of HSK(MU(k)

into /A . The Thom class is the lead term of ch Tk, hence
2k

! k
chh (T )=7"N_ +rpn

2k 2n+2k

1
hence we may choose x = h (Tk) in Adams definition. Let

1 1 =1.
o' E H2n+2k(x) have <§\2n+2k,(y > 1. Then
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B(«) = <cn T ,q5 g (o) > mod 1

en %) b (ot)>  mod 1
@ en ™), 1> mod 1l

r mod 1

il

e ()

The theorem follows.

We are now in a position to borrow the results of Adams [3] which
completely analyze the image of e,- For each positive integer n, de-
note by Bn the nth Bernoulli number. Denote by ay the denominator of

Bn/4n in lowest terms (for references, see [£,20]). Let

d d

on - Zen’Yon+l T 8gn41/ 2

According to Adams | 3 |, the image of e  : {Sgn“l,SO} —> G/Z consists
precisely of the integral multiples of the following nambers;
(a) §B¥71,8°3, multiples of 1/dg
(b) §sB~%,8°}, multiples of L
(c) {SSk-5,SO}, multiples of l/do

ok-1
(a) {s%77,5°}, multiples of 1/2.

f
(16.3) CORULLARY. The homomorphism Td : [}g’ T —> Q maps pre-
n

cisely onto the integral multiples of the following numbers:

ﬂ?’fr onto multiples of 1/dg
8k
U, fr .

onto multiples of 1
8k-2
U, fr . .

0 onto multiples of l/a?k 1
8k—4 o
U,fr

0 onto multiples of 1/2.

8k~6

Rt e e e . W e



103

We can now answer completely the question of section 15. 1In

U U, fr fr
10— O 25 Q77 % QO — 0,
2n 2n 2n-1

g,fr
define D (T  to be the image under @ of Tor Q) 7T, 1t is

2n~1 en £
easily verified that«( ¢ D if and only if given [Mzn] s.[1U3‘r
2n
with Z[Mznj = ekthere exists a closed U-manifold having the same

Chern numbers as M°®. Now @ maps ﬂg’fr/(lmage u + Tor Qg’fr)
n n

fr
i somorphically onto /D. But by (16.3) and (15.1),
fr 2n-1
0 /D is then a cyclic group; in fact
2n-1
fr fr
Q /D N Zy Q /D = 0,
8k-1 2k 8k-3

aF m=z, ,QfF /=g,
8k-5 2k-1 . 8k-7
Put negatively, an element of f\fr can be detected by Chern numbers
if and only if it can be detectein;; the Adams homomorphism e,
Note also that @ maps Tor flU’fr isomorphically onto D. This

U, fr .
can be used to give Tor Q in low dimensions:
en

(see Toda [25]).

We can also define groups . It is possible to define them

{2SU,fr
n

as all bordism classes of compact (SU,fr)-manifold. However we define

them here by

QSU,fI' :

2k
mw MSU(k)/S k large.
n n+2k( (k)/s ), g

There is an exact sequence

Su su, fr fr suU
e )T S0 — N 0N —e-
n n n-1 n-1
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Also there are homomorphisms Td : (1SU — Z and T4 : flgsu’fr-—é Q.
n

2n

Generalizations of the following are very well-known.

(16.4) Let Y i be a closed SU-manifold. Then Td[M8k+4] is even.

+
Proof. The manifold M8k 4 gives rise to an associated map
+
g+ SSOE S wsu(ak - 2)

and

Ta[8*5*] = Len 19 R) g (o) >
= Lon g TWRR) | o>

T(4n-2)

However it follows from Chapter I that is symplectic, hence

ng(4n—2) is in the image of

~J —~

8k+4
which maps a generator onto twice a generator. Hence Td[M ] is

even.

SU
since () = 0 and ()SU = 0 [12], we have the diagram
8k+3 8k+5

u sU
0o—O%Y 2,0 ’fr—~>§)fr —> 0
8k+4 8k+4 8k+3

l (1/2)1d
Q

and we see from (16.4) that (1/2)Td maps image u into Z. Hence we

get an induced homomorphism

fr
: — Z
ESU ()8k+3 vz

which coincides with the homomorphism eq of Adams [3]. Let

E = B on.()fr .
SuU U 8k-~1
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(16.5) The homomorphism Eq;, : [2,2; L —> Q/Z maps onto all

integral multiples of l/ak where a, is the denominator of Bk/4k

in lowest terms.

17. Egg groups ()* .

In these last two sections we shall outline within the

framework of these notes a complete proof of the assertions that

e, ! (1fr —> Q/Z is trivial and that the image of
k+5

ec : ()%T —> Q/Z is 22. In particular the argument for the second
8k+1

part will complete our proof of the Anderson-Brown-Peterson theorem
discussed in section 1l1.
By analogy with ()U,fr we shall geometrically define the bordism

n
’SU. Let (Bm - n)R ®T —> Bn be the stable tangent bundle

groups fig
of a compact manifold with boundary. Let A —> Bn and A(ZZ-—a Bn
respectively denote the associated bundle with fibre 0(2m)/U(m) and
0(2m)/SU(m). There is the principal fibringxf?? f—%'zlwith fibre

U(m)/SU(m) = U(l). A (U,SU)-structure on BO is a pair consisting of

[

& homotopy class of cross-sections ofﬂifj(———é Bn defined over 6Bn
together with a compatible class of cross-sections of‘Z{——é B defined
over all of BR., This is independent of m for m large [12,(2.3)1].

Such a (U,SU)-structure induces a natural SU-structure on 8" of
course. Note that the cross-section of A — B induces & principal

U(1l)-bundle over Bn, which along ﬁBn already has a homotopy class

of cross-sections; thus, the first Chern class cl(Bn) lies in

H*(Bn, aBn;Z). The remaining Chern classes lie in H*(Bn;Z) of course.
we shall say B” bords if and only if B" <:ﬂwn+l as a compact

regular submanifold where

i) v = awn+l \(Bn)o admits an SU-structure extending that on

98" = gvh

o % L RO 3 R N Ty R i e



106

ii) wn+l admits a U-structure compatible with that on '0Wn+l.

We should observe that cl(wn+l) E H2(Wn+l,vn;z) and under the
induced homomorphism Hg(wn+l,Vn;Z) - Hg(Bn, aBn;Z),cl(wn+l) -—> cl(Bn).
We can define —Bn suitably and in the usual way arrive at the bordism

groups () U»SU together with an exact sequence
n

SU U suU
e —> 00 5 N > —s N —
n n n n-1

U, SU

If n = 2 (mod 4) we can define Td : () U’SU-——9 Q. We recall
n

{16] that for n/2 odd, Tnfz(cl’°°"cn/2) = can/B(cl""’cn/2)' Since
2, N n -
c; e H'(B", 0B ;Z) and Pn/2(°l""’cn/2) e HB g(Bn;Q) we have

Tn/2(cl’ ’cn/2) e H*B®, 2B®;Z) so we can put

d n = R ) - n
Td[BR] ‘<Tn/2(cl’ ’cn/2)"rénj> e Q. Suppose B® bords, then
BD < whtl a5 described, and

n-2, n+l

2 +1 .n
c, & H (wn » v ;Z)’Pn/2(01’°°"°n/2) e H (W 3Z), hence

Tn/z(cl,...,cn/z) € Hn(wn+l,Vn;Z). On the other hand, the fundamental
class generates the kernel of Hn(Bn, aB%2) — Hn(wn+l,Vn;Z), so
Td(B™) = 0 by the usual reasoning. This shows Td : Ilg’SU — § is
well defined if n = 2 (mod 4).

(17.1) LEMMA: If n = 6 (mod 8) then (IE’SU —> @/Z is trivial,

but if n = 2 (mod 8) the image is Z

—— 2'
We showed in [12,(18.3)] that ():E+5 = 0, hence we have
flU —_— ()U’SU —> 0, thus Td : ()U’SU —> @ is integral valued.
8k+6 8k+6 8k+6
In the second case, (lSU consists entirely of elements of order 2,
8k+1
hence we see immediately that 2 Td : 0 U’Sg —> (Q is integral valued.
8k+

Finally we must see that the value 1/2 is taken on for 8k + 2.

The tangent bundle of the closed 2-cell
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- {zl|z( <14

may be identified with Dz X C. Along ’aDg = S~ there 1s a non-

zero cross-section z —> (z,z). Thus D® becomes a (U,SU)-manifold.

It is well known that ¢ (D2), the obstruction to the extension of this
partlcular cross-section, is the generator of H2(D2, ﬂD »2), hence

Td [D ] = = fi/2. 1n general, let M®E be a closed SU-manifold. Since
(0% x ¥®%) = g1 x u®® this product is naturally a (U,SU)-manifold.
The reader can show Td[DgxMakJ = 1/2 Td[MBKJ. We take Td[Msk] =1

to see that the value 1/2 is tzken on in dimension 8k + 2.

If we also define QSU’fr we obtain a commutative diagram
. n :

i i

e 0%
n+l n

\ lSU,fr
s

f
—->O-U O.U’r——>0. L
n-

/\lUSUJSU/
oot

where the two vertical sequences and the two hroizontal are both

exact. Note that for n = 2 mod 4

0U,fr

n w
E%U,SU Q
4




108

is commutative. From this diagram we see that if £ e ker (1)_frl -—%‘IISUI)
n—

SU
then e (£) =0 e G/Z, but if n = 6 mod (8) 08k+5 o, thus

ec t Ogr s — O/Z 1s trivial. On the other hand 2« lies in the
fr .

kernel for 8k + 1, hence e, : ()8k+l —> Q/Z has image at most Zg'

To show this image is exactly 22 we need

(17.2) LEMMA: There is an elenent [Mak] € {)SU for which

Td[Mak] = 1, and for which [M J[S ] is in the 1mag of

fr (\SU
O8k+l 8k+1°

If K¢ I).fr is the element, then e o(X) # 0 since if
U, fr
/56 07777 nas 6/3 K then the image of ﬁln_(). 25U 45 frers from

8k 28k g 8k+ 2
(M 1[D"] by an element of the image [18k 4{)gksg and

Td([M ][D J) = 1/2. The proof of this lemma is done in the next
section.

U,Su
The groups ()’

n are isomorphic to 7T +0(k+l)(CP(be)/CP(l)/\MSU(K))

In [12,(14.5)] the homotopy groups were computed, and
flU.SU “'$1§U2 +.flg_4. In fact the present exact sequence involving
flU SU is the same as [12,(15.1)].

18. The image of 07 1n 050

The purpose of this section is the construction of

those elements in.f):E+l which can be represented by a stably framed
closed manifold.

(18.1) LEMMA: Let [V'] e )T be an element of order £ and let

n
[MKJ € ()SU be an element whose image in SU, fr is divisible by 2.
k — = *"x =2 227251028 DY

There is then zn element [Mn+k] s,flfr whose image in fo Xl is
n+x n+x

[E}(V?] and 2[MP*K] = g ¢ OFT .
n+k
proof: Let (BX, §, @) be such that 2[BX] = [¥] mﬂSU fr then

2( OBK] =0 in f)irl. There is a compact stably framed manlfold C

whose boundary, aCk, is the disjoint union of two copies of OB R
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k k
labeled 9Bl and 9}32. There is also a compact stably framed wmanifold

Cn+1 whose boundary is the disjoint union of two copies of Vn, labeled
n n
Vl and V2. ‘ .

We consider CEHK = (Ck x Vil u(-—l)k aBi{x Cth ). Since

k n Kk k k k n+l
ACExV]) = 9By KV} Y BgXV] and (-1)° J(@B]xCT ) =
- aBll(XVilu - aB}f ng we see that CP"¥ is a compact stably framed
menifold with

QC‘l”k—(aB xV)u (23 xvg).

+1
The two ends of Cil can be identified to form a closed stably framed

manifold M'n+k. We also have

Cn+k - (CKX vB \./(—l)k QBK X Cn+l)

2 2 2
and

n+k k n k n

= XV - X
9¢, (7B xV,)w -( 2B, xV))

0f course Cr11+k and Cr21+k are diffeomorphic as stably framed manifolds,
thus the closed stebly framed manifold Cl C Dtk represents 2[TvIn+KJ
Observe, however, that (-—l) 2(0 x ¥ ) = (-l) [aBlXC l\/(—l) (C’(x Vil)]

Ul(a85xc™™ U1 cfx vl = 7™ wel™, so 2l™™] = 0 1n QT .
n+k
To see that the image of [MP¥] in .()_SUK is [MK][VR] we first note
+

k

n+l )
1 2

(-1)* Q(Blfxcml) = (-1)%¢ aBlfxc ) u(BLl{ ><V:ILl B

cince 2[8¥%] = [M*] in {)iu’fr there is a W&t with M5 u(—Bl:f) u(—Bg)
in ’C)WKH'. There is no loss of generality in assuming

Ow‘”l = M’k 1% (;Bl.f) u(—Bg) \-/CK. we now form Mk+}vil so
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k+1 ny, - wmn n _(nk n _(rk n _ck n
2w ;(Vl) =M xvlu (levl)u (Bzxvl)u (C xvl).

1 1 n k

k+ n k n
() .
to W x Vl along Bl x Vl Bf2 XVl The boundary

of the result is a disjoint copy of M‘kx V;l together with a copy of
n+k

] +
We glue (—l)kBK X Cn

MK that is, of -(C¥x vy vdBlfoil w IBK xV3) with

285 x v = 285 xv® hence [MPE] = [MX][v®] in NSV .
o Vy 1%V nek

(18.2) THEOREM. There is an element [M8] £ _()_S with Todd genus 1
81" < [BY] # 0 lies in the image f)fr — 05U
N 8n+1 8n+l

Proof: We first see that [MB]n x [§l] # 0 by (11.1) since [Ma]

for which [M

1s to have odd Todd genus. In section 15 we showed that
ﬂ:u’fr/im(ﬂ iU) = 2240 and we constructed a bordism class in
(SU>TT with Todd genus 1/240. There is, then a [B8] & NSUIT yitn
a[88] = 1/2, and [#8] e HZ’U with [M8] — 2[B®] ¢ ﬂgU’fr?

We prove (18.2) for this bordism class by induction. It is
valid for n = 0. Suppose there is [VOB+1] ¢ Qg;ﬂ, with 2[v8ntl| = g,
whose image is [M8an [-S-l] 3 Q:’U+ . We apply (18.1) with
[vR] = [vOP*L) ang [M¥] = [8] %o obtein |y8(a+l)+l

This provides a full proof of the Anderson-Brown~Peterson theorem
of section 11. Geometric constructions used in (18.2) are &« para-

phrase of the Toda bracket formation used by Adams.
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