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1. Introduction

The cyclic group, %Z/2, of order iwo plays a leading rdle

in the theory of real vector bundles and manifolds. More precisely,

it plays many parts, as abstract permutation group, as orthogonal
group in dimension one, as Galois group of ¢ over R, now clearly
distinguished, now merging one into another. The plot is not,

by any means, fully revealed. We recount here but a few scenes

in which Z/2 figures.

The results largely occur in some form in the literature,
many in the unpublished thesis [25] . Our purpose here is to
present a concise account from the particular viewpoint of Z/2-

homotopy theory and without detailed proofs.

We begin with an extremely simple, but fundamental, result;
as we shall see in §3, it lies very close to the theorem of Kahn
and Priddy. Here and throughout the essay L will denote the
real representation Rof Z/2 with the non-trivial action as

multiplication by +1.

Proposition (1.1) . Let £ and E' be real vector bundles
over a compact ENR X. Suppose that the sphere-bundles S(&) and
S(E') are stably fibre-homotopy equivalent. Then S(L®E) and

S(L®%') are Z/2-equivariantly stably fibre-homotopy equivalent.

Notation. Any space may be considered as a 7Z/2-space
with the trivial action. We use the same symbol for the original
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space and the corresponding Z/2-space. Thus, S{§) as Z/2-space
is the sphere-bundle with the trivial involution; S(L®E) is the

same space, but endowed with the antipodal action of Z/2.

As usual, let J(X) be the quotient of KO(X), the real K-theory
of X, by the subgroup generated by differences [§3-0%'] of vector
bundles %, %' over X whose sphere-bundles are fibre-homotopy

equivalent; so J(point) = 2. {(X) is defined similarly

Jas2

as the quotient of KO (X) by differences of Z/2-vector bundles

Z/2
whose sphere-bundles are equivariantly fibre-homotopy equivalent.

Two Z/2-vector bundles % and ¥' define the same class in J

E/Z(X)
if and only if their sphere-bundles are stably Z/2-fibre-homotopy
equivalent, that is, if S(Y®W) and S(Y'@OW) are equivariantly
fibre-homotopy equivalent for some real representation W of Z/2 .

(The same symbol W will often be used for a vector space and the

corresponding trivial bundle Xx W over X.)

The proposition (1.1) states that the linear map KO(X) — Koz/2
taking [€]to [L.§] -~ we shall often write L.§ for the tensor
product L®E - induces a map of quotients J(X)—> JZ/Z(X)' The
proof is simply the observation that E@L.5 may be identified

with the sum E@E equipped with the involution which interchanges

the factors (by mapping (u,v) to (u+v,u-v) in each fibre) .

More formally, let us define "doubling operations"
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s2 . KO(X)—> X0, (X) and S° : J(X)—>J_,.(X)

Z/? Z/2

to be the linear maps taking the class of a vector bundle € (or

sphere-bundle S(f)) to the sum §@P§ (or fibre-wise join S(&) * S(&)})

2

with the switching involution. Let

¢ : KO(X) — KO (X) and ¢ : J(X)—J (x)

/2 /2

be the inclusions of direct summands given by regarding any bundle

as a Z/2-bundle with the trivial involution. Write

5%(x) 1= S°(x)-o(x).

Then the proposition is proved by the commutativity of the diagram:

=2

KO(X) .—_._«)S KOZ/2(X)
J(X) ——— (x).
52 /2

There is an immediate corollary.

Corollary (1.2) . 1In addition to the hypotheses of (1.1),
gsuppose that A is a real line bundle over X. Then the sphere-

bundles S(2®&) and S(A®¥') are stably fibre-homotopy equivalent.

It is the explicit geometric construction of the operation
52 upon which the proof of (1.1) depends; in succeeding paragraphs,
particularly §§ 3-5, it will be a central theme. The mere definition

of the operation lies at a different level. 82 is simply

induction

i, : KO(X) — K0, ,,(X)

Z/2



corresponding to the inclusion i: O---» Z/2 of the trivial sub-
group. (The definition is reviewed in (5.3).) It is the
restriction to the diagonal of an external operation
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57 : KO(X) — KO (X xX)

/2

- XxX with, as always, the switching involution -~ defined as

the composition

KO(X) ——> KO(XxX) ————> KO
P, i,

E/Q(Xxx).
where P, Xx X —»>X is the projection onto the first factor.
In this form the definition extends to other generalized

cohomology theories, in particular to stable cohomotopy.

As is implicit in the notation, a sum operation Sk may be
defined for any natural number k. Write the permutation
representation Bk of the symmetric group <§k as the direct sum
IHBVK of a trivial summand and an irreducible representation of
dimension k-1. The statement (1.1) clearly remains true if we

substitute V. for L = V2 and Gk for %Z/2 = &

k 2"

In later paragraphs, too, there will sometimes be
generalizations, perhsps from Z/2 to Z/p, p an odd prime,
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perhaps from Z/2 = S~ to S1 and 37. We shall do no more than

record the fact. 7Z/2 is our proper subject.

(1.2) was first proved in answer to a question of Prof.
1. k. James, and initiated much of the work described here. His

own equivalent solution may be found in[41] Lemma (2.1).

2. The Euler class and obstruction theory

Z/2, as the subgroup {+1} of the group of units of R,
appears naturally in the study of r-fields, that is, r linearly
independent cross-sections, of a real vector bundle, as soon as
r is greater than 1. Pirst, we must recall in an appropriate
form the obstruction theory for a single cross-section. We
need to fix a notation for stable cohomotopy, and; in view of

the varying usage, do so with some care.

Notation. Let £ and % be real vector bundles over a compact

ENR X. «* will denote unreduced stable cohomotopy, considered
as a generalized cohomology theory. A tilde indicates the
agsociated reduced theory for pointed spaces. Thus, w*(X) is

a graded ring with identity. Define
w*(X;E=-7) 1= S*(T(E~7%))

to be the reduced stable cohomotopy of the Thom space of the
virtual bundle £ -% . We think of the stable cohomotopy of X as
a theory indexed by the category of virtual vector bundles and
stable fibre-homotopy equivalences over X. IfY<¢ X is a
closed sub-ENR, the relative group w*(X,Y; ¥-%) is defined to be
o (T(E -m)/T(E -miY)). Corresponding notation is used for

stable homotopy.

(In the literature 5, is often written, reasonably enough
as the 1limit of unstable homotopy groups, Wf (without a tilde).

The coefficients 'g-7%' are sometimes written with a change of




sign and with the dimension absorbed into the index '*'; the
complexity of the indices required here precludes writing them,

as is often done, as sub- or superscript.)

A superscript '+' will be used for one-point compactification,
the adjunction of a base-point + if the space is already compact.
§+ is to be understood as the fibre-wise one-point compactification
of § ., It is a fibre-bundle over X; its fibre is a sphere with
base-point. (For example, in the case that § = 0 is the zero
vector bundle, 0" is the trivial bundle X x SO. ) Then wO(X;E-"'L)

*i of stable

may be interpreted as the group, written {E*'; n e
fibre-homotopy classes of maps E+ —> n+ over X preserving the
base-point in each fibre (ex-maps in the terminology of [407).
(As is customary, [-; =] and {-; -} will denote respectively
the set of homotopy and the group of stable homotopy classes of

maps between pointed spaces.)

The way is prepared for the basic definition of obstruction

theory.

Definition (2.1) . The Euler class of the vector bundle ¥

is the class
v(®) e WO -8) = {o%; 'Y,

represented by the inclusion O*—~+ §+ of the zero section (induced

by 0 s §).

Clearly y(g) vanishes if § admits a nowhere-zero cross-section.
The converse is true in the 'metastable range'. Before describing
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this result, we list some elementary formal properties of the

Euler class.

Proposition (2.2) . Let ¥, §' be real vector bundles over X.
(1) Naturality. If f: X' —> X is a map, then Y(f*E) = f*y(f).
(ii) Multiplicativity. ~y(E@E') = v(E).Y(E").
(iii) Suppose that a: E'+-—+ E+ ig a fibre map which is 'polar'
in the sense that O is mapped to O, + to + in each fibre. It
defines a stable class in {E"; E+}X = <»O(X; E' -¥). Then

¥(§) = [al.v(§") .

The stable cohomotopy Euler class is defined by exact
analogy with the classical definition in cohomology. Indeed, the
group wO(DE,SE; -t) = the stable cohomotopy of the disc modulo
the sphere with coefficients in (the pullback of) § - is
naturally isomorphic to wo(X), the isomorphism given by a
tautological 'Thom class' u E<uO(DE,S§; -€). Y(E) is just the
restriction of u to the zero-section (X,2) ¢ (D%,S%). More
generally, if s is a cross-section of S(§) over a closed sub-ENR

Y, the relative Euler class Y(g,s) € wO(X,Y; -£) is defined to

be S*(u) for any extension $: (X,Y) —> (D§,SE) of the section s.

If t is another section of S{(¥) over Y agreeing with s on
a closed sub-ENR Z ¢ Y, define their difference class
§(s,t) € w '(¥,2;-§) = «%(¥,2) x (1,1); =€) to be the
relative Euler class of the pullback of § to YxI with respect
to the section over YxI uZxI which agrees with s on ¥xO,
t on Yx 1 and their common value on ZxI. It is an obstruction
to deforming t into s (by a homotopy constant on 2) and determines

the variation of the relative Euler class with the choice of



cross-section.

Proposition (2.3) . The difference class s(s,t) € w-1(Y,Z; -E)
is mapped to v(E,s) - v(E,t) € wO(X,Y; -E) by the connecting
homomorphism in the stable cohomotopy exact sequence of the

triple (X,Y,2).

The fundamental result in the subject is a straightforward
corollary of Freudenthal's suspension theorem (proved for a

cell complex X and subcomplex Y step by step over the cells).

Proposition (2.4) . Suppose that the dimensions dim X £ m
and dim £ = n lie in the metastable range: m < 2(n-1).
(i) A section s of S(t) over Y extends over the whole of X if
and only if v(¥%,s) € wO(X,Y; -EI) vanishes.
(ii) 1If s is a section of S(%§) over X, d an element of
wq(X,Y; -E), then there is a section t over X coinciding with

s on Y and such that §(s,t) d.

n

This leads at once to a classification theorem.

Proposition (2.%5). Suppose that m+1 < 2{n-1) and that
S(¥) has a cross-section s. Then the set of fibre-homotopy
classes of cross-sections t of S(g) extending s|Y over ¥ -
the homotopies understood to be constant on Y - is in
1-1 correspondence with w-1(X,Y; -%) under the map t+> §(s,t).

(The map is surjective if m+1 ¢ 2(n-1).)

This simple device of stabilization, formalized in (2.4)
and (2.5), has both conceptual and practical advantages.
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We turn to the question of r-fields, beginning with ?he
local classification problem. Let U and V(# 0) be real (Buclidean)
vector spaces and write o(V,U@V) for the Stiefel manifold of
isometric linear maps V — U@V with base-point, j say, the

inclusion of the second factor.

Now an element of O(V,UéV) defines, by restriction, a map
of spheres S(V) — S(U@V) commuting with the antipodal map, that
is, a Z/2-equivariant map S(L.V) — S{(L.(U®V)) or an equivariant
cross-section of the trivial sphere-bundle S{L.(U@V)) over the
sphere S{(L.V) . And so we are led to consider the relative
Euler class and difference class in 7Z/2-equivariant stable
cohomotopy. The equivariant theory is indicated by a subscript;

its definition, [77], is recalled in (4.1) .

Definition (2.6) . The local obstruction

-1

z/z((X’Y) x S{(L.V); -L.(U@PV))

e: [X/Y; oV, U@V)]—w
ig defined as follows. A map of pairs v: (X,Y)— (o(v,uv),J)
gives, as above, a 7#Z/2-equivariant cross-section, v' say, of
the trivial bundle L.(U@V) over Xx S(L.V). Set B(v): = 6(v',i').

(It clearly depends only on the homotopy class of v.)

Recall that if G is a compact Lie group and P — B a
principal G-bundle, B a compact ENR, then, just as KOG(P) is
identified with KO(B), [76]), so the G-equivariant stable cohomotopy
wa(P) is identified with w*(B). More generally, if E is a (virtual)
G-module, then wa(P; E) is identified with w*(B; PxGE) - coefficients

in the associated vector bundle over B.



Since 2Z/2 acts freely on S(L.V), the target group of @
may be rewritten as w_1((X,Y)xP(V); -H.(U@V)), where H,
associated to the representation L, is the Hopf line bundle
(S(L.V) xL)/Z/2 ofter the projective space P{V). (Had we not
wished to stress the equivariant theory, we might have proceeded
directly to this step by noticing that an element of the Stiefel
manifold determines a cross-section of H.(U@V) over P(V).) ¢

This group is canonically isomorphic by S-duality to
{x/Y; P(u@V)/P(U)}

On the other hand, the stunted projective space P(U@V)/P(U)
is included in a standard way in the Stiefel manifold o(v,UpVv)
by the 'reflection map' R {which takes a line in U@V to the

reflection in the orthogonal hyperplane).

Proposition (2.7). The composition 6.R
[ x/Y; PUBV)/P(U) ] — [ x/Y; o(V,u@V) ]
— { X/Y; P(USV)/P(U)}]

is the stabilization map.

The proof is by inspection.

(It is clearly enough to consider the case {X,Y) = (P(U@V),P(U))

and look at the image of the map which collapses P(U) to a point.
The argument is best described in geometric language (as in §5)

and for clarity we assume U = O.

For any closed manifold X there is a duality isomorphism

+ + 0
(X7 X7} =2 o (XxX; -TZX), where TZX is the tangent bundle on
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the second factor. The identity 1 € 3% 1%} corresponds to
the 'Atiyah duality class' A,(1) € wO(X.xX; -‘rZX) represented,
according to definition, by the diagonal A: X — XxX (with
the natural identification of the normal bundle with A*rzx).
(In the traditional terminology of homology theory, the duality

class is the 'cycle' defined by the diagonal.)

Specialize now to the case X = P(V), abbreviated to P.
There is a standard isomorphism TP(V)®R % {.V. We are required
to identify the duality class 8,(1) € C0—1(P}(P; ~H2.V) (where
H2 ig the Hopf bundle over the second factor) with the difference
class 8(1) = g(so,s1) of the two cross-sections of S(HZ.V) over
P(V) x P(V) induced on the orbit space by the 7Z/2-equivariant
maps P(V) x S{L.V) — L.V:

(CxJ, y) V> y-24y,%x (x, y € 5(V))

and y
respectively. ({y,x) is the scalar product.)

Now s, and s, are homotopic outside the diagonal O(P).

0 1
Indeed, so+s1 vanishes precisely on the diagonal and outside
we may choose a linear homotopy tsod-(1-t)s1 (t € 1), The
proof is completed by observing that 55 and S, satisfy the
transversality condition of (5.13) so that S(so,s1) is actually
represented by the diagonal (with a certain isomorphism of the

normal bundle with H2.V-Iiwhich must be checked to be the

standard one) .

Here is a reformulation without the geometry. To interpret
the duality class we follow through the Pontrjagin-Thom
construction, The Thom class u € wO(D(TP),S(TP); -TP) of the
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tangent bundle TP corresponds under the isomorphism <P@ R

~ H.V to a relative Euler class y(H.V,s) in
wo((D(]R),S(]R))x(D(TP),S(TP)); ~H.V), where s is the section
given on the orbit space by the Z/2-equivariant map

D(R) xD(xS(L.V)) — L.V which takes the value tz + v at the
point specified by t € D(R), z ¢ S(L.V), v ¢ D{L.V) (in the
usual representation of the tangent bundle to the sphere as the
set of points (z,v) € S(V)xV with v perpendicular to z) . Embed
D(tP) as a tubular neighbourhood of the diagonal in Px P,
taking the point represented by (z,v) to ([z-ev ], [z+ev]) for
some small positive €. Then A, (1) € w-1(PxIN —HZ.V) is the
image in w’((D(R),S(R)) xPxP; ~H,.V) of y(H.V,s) under the
excision isomorphism (D(<P),S{zP)) — (PXP,PXP-S(TP)) and

<
restriction to Px P. (D is the open disc.)

8(1) on the other hand may be described as 1(H2.V,§) in
wo((D(]R),S(]R))xPxP; -H2.V), with § given by the equivariant X
map D(R) x P(V) x S(L.V) — L.V : (t,[x},y) >y -(1-t) (y,X)x.
The zeros of & occur on Ox A(P). Its restriction to the
tubular neighbourhood is given by (z,v) >tz + (2-t)ev +O(€2),

which agrees up to permitted homotopy with s. This establishes

the equality of A,(1) and ©(1) and hence the proposition.)

The reflection map R induces an isomorphism of homotopy
groups in a certain range. R, : T, (P(UV)/P(U)) —>
Ti(O(V.UGQV)) is an isomorphism if i <4 2 dim U, an epimorphism

if i ¢ 2dim U. (This is proved by induction on dim V, comparing

the homotopy exact sequences of the cofibration sequence:

P(UBV)/P(U) — P(UBVER)/P(U) —> (u@V)"

and the fibration sequence:
-
o(V,UpV) —> O(VOR,UGVHR) — (UBV) .

See [42] 3.4 .) (2.7) implies a similar result for ©. (It can

also be proved directly by induction on dim V. )

Lemma (2.8) . The local obstruction 6 of (2.6) is a

bijection if dim X+ 1 ¢ 2 dim U, a surjection if dim X <« 2 dim U.

With (2.5) this lemma establishes a bijection, in the range
dim X+ 1 < 2dim U, between [ X/Y; o(V,U@V)] and the set of
homotopy classes of nowhere-zero cross-sections of H.(USV)
over X x P(V) exteﬁaing the standard section on Y x P(V). From

this it is an easy step to the obstruction theory for r-~fields.

Proposition (2.9) . (X,g) as in (2.4), v = dim V,
m ¢ 2(n-r). Then ¥ admits V as a trivial summand if and only
if the Euler class

(L) € @) (x; - LE)
of & with the antipodal involution is divisible by y{(L.V} or,
equivalently, if the Euler class y(H.¥) € LEx PV - H.E)
of the tensorlproduct of § with the Hopf line bundle H over P(V)

vanishes.

There is a corresponding classification theorem, of
which (2.8) is a special case. The equivalence of the two

conditions in (2.9) is given by the following lemma.

Lemma (2.10) . There is a long exact sequence:



*

S R T W (X xP(V); - H.E) —>

*
.o w HEVIS - — W
> @y o (X3l (V - §))
in which the first step is multiplication by the Euler class

Y(L.V) € w (point; - L.V).

0
Z/2
Nothing more than thecJ;/z‘exaCt sequence of the pair
Xx (D(L.V),S(L.V)), the contractible disc modulo the sphere, with

coefficients - L.E, this sequence, in various guises, will be

a recurrent theme.

As obstruction theory (2.9) is not profound. But it is

convenient. Here is an illustration.

Example (2.11) . Consider a finite covering w : X'—> X
of odd degree. Then, in the metastable range of the proposition
(2.9) a stable bundle ¥ (dim § > dim X) admits an r-field if

and only if its pullback w*E to X' does.

The stable cohomotopy Euler class of an odd-dimensional
bundle is 2-primary torsion. (Apply (2.2)(iii) to the
antipodal involution of the bundle. 1-[a] has degree 2 in
each fibre. This is the classical proof that the cohomology
Euler class of an odd-dimensional bundle has order 2.) it
follows that Y(H.¥) in (2.9) will be 2-primary torsion if §
admits a sub-bundle of odd dimension. This is certainly true
in the example. Now y(m*§) = x*y(§) and ww*x(E) = ~, (1).v(E),
where ™, is the transfer wO(X' x P(V); - How*E) —>wo(Xx P(V); - H.E)
or wo(x') —~9cuo(x). Since w,(1) is invertible at the prime (2),

the proof is done.

¥e resume the discussion of 6. Suppose that U = 0.

Write 95 e {0(V); P(V)+} for the image under © of
1e[0(V); 0(V)) . This stable map 6 : O(V) —pn)?t

is a.splitting of the reflection map R : )Y — o). 6 -R
The splitting is natural in the following sense. The
projective orthogonal group PO(V), the quotient of O(V) by its
centre, acts on P(V) and O(V). R is PO(V)-equivariant. The
symmetry of 6_ is expressed by working in PO(V)-stable homotop
it is naturally defined as a PO(V)-equivariant stable map. The

proof of (2.7) respects the symmetry.

Remark (2.12) . (James [38] ) . p(V)* is & PO(V)-equivariant

stable retract of O(V).

The construction of © is also compatible with stabilization.

For any vector space V', 0(V) is included in O(V@®V') (as the

y:

subgroup fixing V') and P(V) in P(V@®V'). Let % be a compact

ENR with base-point * ., Then there is a commutative diagram:

[z; o(V)] — {23 21

[z; ovev)] — {2z; PVOV)'Y .
In the limit (that is, for dim V > dim Z+ 1) we obtain
~ =1 +
(2.13) e : Ko~'(z)=rLz; o(=)1-—{z; P=)"1,
+.
where O{t0) is the infinite orthogonal group and P() is the

infinite real projective space with a base-point adjoined.

This map will be described below, (3.14), in terms of the

1



Z/2-equivariant J-homomorphism.

An important element in our story will be the interplay

between the equivariant and the non-equivariant theories. The

-1
/2

has been interpreted by S-duality as { Z; P(V)‘} . Forgetting

group ((Z,%)xS(L.V); -L.V) = w-1((Z,*) x P(V); -H.V)
the action of Z/2, or lifting from the projective space to the
sphere, we obtain a homomorphism i* to u—1((Z,*) xS(V); -V)

% 717; S(V)*} (again by duality). The notation refers to the
inclusion i : 0 — Z/2, and i* will often be called restriction.
In its dual aspect i*: {2Z; P(V)+} — 17 s()*1  is the
transfer with respect to the double cover S(V)— P(V)

(essentially by definition « of the transfer or of S-duality,

according to taste). (See pp 37-9.)

The Z/2-equivariant obstruction theory for cross-sections
of real vector bundles translates easily into an S1-theory for
complex cross-sections of complex vector bundles and an SB—
theory for quaternionic bundles. We shall return to the complex

theory in §6.

It is difficult to give appropriate acknowledgment for the
obstruction theory outlined here. DMNost of it is already implicit
in the work of A. Haefliger and M. W. Hirsch [33] and of 7
1.K.James [38]. This account, taken from {25}, was influenced
particularly by M. F, Atiyah and J. L. Dupont [7], from whom I
have taken the notation © for the local obstruction. (The theory
has been developed in a differential topological framework by

J. P. Dax, H., A. Salomensen and U. Koschorke; see [55]. There is
a related current in homotopy theory due to J. C. Becker and

L. L. Larmore. )
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3. Spherical fibrations

A closer inspection of the proof of (1.1) shows how to 1lift,

in a natural way, a fibre-homotopy equivalence S(g) — S(E') to

an equivariant stable fibre-homotopy equivalence S(L.gE) — S(L.E").

The final goal of this paragraph will be the extension of this
result from sphere-bundles to spherical fibrations. We begin
with the definition and splitting of the equivariant spherical

fibration theory.

If V is a real vector space, we write H(V) for the space,

with base-point the identity, of homotopy equivalences S(V)-—> 8(V)

(with the compact-open topology). If W is a real Z/2-module,
Hz/z(w) denotes the subspace of H(W) consisting of the Z/2-
homotopy equivalences. (It is open and closed in the subspace
fixed by the invelution, but not equal to it. 1t is, perhaps,
neater to replace H(V) by the homotopy fibre, Ti(V), of the
composition H(V)x H(V) — H(V). H(V) is homotopy equivalent
to H(V) and the fixed subspace of E(W) to HZ/Z(W). ) Elements
of Hz/z(L.V) may be interpreted as cross-sections of the
trivial bundle L.V over the sphere S(L.V). The difference

construction defines, as in (2.6), a map
tz/z : [2; HZ/E(L.V)] —{z; PV}

for any compact pointed ENR Z.

/2

More generally, if, for any vector space E, H (L.V3E)

Z/2

denotes the subspace of H (L.VOE) of maps S(L.VBE) —>



S(L.V®E) which extend the inclusion S(E) —> S(L.V@E) of the
fixed subspace, the difference construction applied to sections
of L.V@E over S(L.V@E) agreeing with the standard section on
the subspace S(E) defines a map

Z/2

(3.1) X . [z; #%/?

(L.V;E)] —> {2; P(N*} .
There is a corresponding map

(3.2) z : [z; H(VE)] —> {z; s()*]

in the non-equivariant case, such that Y%.i* i*.tz/z .
Proposition (3.3) . Suppose that Z is connected. Then
the maps kz/z and ¥ of (3.1) and (3.2) are bijective if

dim Z < dim V-2, surjective if dim Z < dim V- 1.

This is immedjate from (2.5); connectivity is required
because H(V) is the space of homotopy equivalences, not

arbitrary maps, S(V) — S({V}.

The next lemma introduces an important phenomenon in
Z/2-equivariant spherical fibration and stable cohomotopy

theory: the splitting into free and fixed components.

Lemma (3.4) . For any compact ENR Z with base-point

and vector space V, there is a split short exact sequence of

groups:
_ﬂ
0 rz; 8%2(1.vin)] — [2; #22@WeL. 12 [2; 5] — o.
T
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The first map is given by the inclusion, p by the 'fixed point
map' HZ/Z(V @®L.V) — H(V) taking an equivariant self-map of
S(V@®L.V) to the induced self-map of the subspace S(v) fixed by
the involution,and ¢ by the join with the identity (taking f € H(V)
to the self-map f*1 of S(V)*S(L.V) =S(V@L.V)) . The group

structure is given by composition.

This is simply the exact sequence of the fibration:

1221,y ,v) —> 822 (v@L.v) — H(V).

See [397.

Now write the spherical fibration theory in dimension -1

of a compact ENR X as

Sph-1

(x) : = ln [x*; BERY]

nelN
( the direct limit over the standard inclusions or, better,
over the category of all Euclidean vector spaces and inclusions.
H(V) is included in H(V@V') by the join with 1 € H(V').) It
is an abelian group, the group of units in UO(X), and it will be

written additively. More generally, if Y ¢ X is a closed sub-ENR,

set
sph™ N (x,Y) : = Lip [x/Y; HERMI] .

The equivariant theory is defined to be

-1
Z/2

z/

sphol (x,Y) : = 1im [x/¥; HZ2(R"®L.R™)]
v—’
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and the free spherical fibration theory

1

5Phy e /2

(X,0) : = 1im [x/y; BZ2(.EY] .
[

With the observation (from (3.3)) that the inclusion
/2

HZ/Z

(L.v) — H (L.V;V) is highly connected if the

dimension of V is large, we may rewrite (3.4) as a splitting of

the Z/2-theory.

Proposition (3.5) . For any compact ENR pair (X,Y) there

is a split short exact sequence of abelian groups:

-1 -1

0 Sphe oo /2 /2

» -
(X,¥) — Sphy o (X,Y) 72— sph™(X,¥) —> 0.
-3

-1

A doubling operation s? Sph_1(X) — Sphy .,

(X) may be

constructed as follows. Given £ ¢ H{(V),
fxf: S(V)xS(V) —> S(V)x%xS(V)

is equivariant with respect to the switching map, and so, by the

identification of S(V@V) with the involution which switches the

factors with S(V@L.V), gives an element of Hz/2

z/

(V@L.V).

This map H(V) — H 2(V@L.V) defines, in the limit, 52 .

Now clearly, since the fixed point set of S(V) *S(V) is the
diagonal, /:.-52 is the identity. Thus, §2 defined as in (1.1)

(X).

=2 &2 N -1 -1
by §°(x}:1= 5%°(x) -o(x) is a map from Sph (X) to Sphg ..,/

Moreover, the composition i“.S2 with the map

-1

)
Phyre

i*: S (X) — Sph™ (X)
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which forgets the involution is multiplication by 2.

Theorem (3.6) . (Kahn-Priddy according to Becker-Schultz

[48], [(151)

i* Sph 1

;ree Z./Z(X) —»s;m"(x) is a split surjection.

§2 is the splitting. The original formulation of the

theorem will appear in the next paragraph.

This same doubling construction may be performed globally.
If f: S(§) — S(g') is a stable fibre-homotopy equivalence,
then £xf: S(g)*S(k) = S(E@L.E) — S(5")#5(8') = s(§'@L.§")
is an equivariant stable fibre-homotopy equivalence. Nultiplying
by a homotopy inverse S(§') —> S(¥), we obtain an equivariant
stable fibre-homotopy equivalence 52(£): S(L.E) —> S(L.E') .

The result may be stated rather formally as follows.

Theorem (3.7) . Let V(X) be the category of real vector
bundles over X with morphisms the stable fibre-homotopy equivalences
of the associated sphere-bundles. Let vfree(x) be the category
of real vector bundles over X with the antipodal action of Z/2
and morphisms the equivariant stable fibre-homotopy equivalences
that is, a morphism L.¥ —> L.E' is to be an equivariant fibre-
homotopy equivalence S(L.E®L.V) —> S(L.E'@®L.V) for some real

vector space V. Then there is a natural splitting (natural in X)
=2

8% V(X)) — Vg (0
of the restriction functor

* .

i*® s '\J‘free(x) - UV(X).

As observed in §1, the corresponding KO-theory is very simple.
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Recall that the J-homomorphism

J:  KoT'(x,Y) ——> Sph”(X,Y)

is defined as the limit of the maps [ X/¥; O(V)] — [x/Y; H(V)]
given by the inclusion of O(V) in H(V). There is a similarly
defined equivariant J-homomorphism

-1

JZ/Z : KOZ/Z

-1

(X,Y) —> Sphy,

(x,Y).

-1

The operation §2: K0-1(X,Y) —3 X0 (Xx,Y), defined in §1, is

Z/2
just multiplication by the class [L] € KOZ/Z(point). o(Vv) is
a subspace of HZ/2(L.V) ana the composition 5°.d (= 4, ,.5%)
-1 -1 -1 .
KO~ '(X,Y) — Sph (X,Y) — Sphfree Z/Z(X'Y) - the construction
§2 extends to the relative group - is the limit of the
induced maps [X/¥; 0(V)]— [x/¥; #Z%(1.n)] .

Again, the doubling construction may be carried through

unstably to define a homomorphism {2z; H(v)]—[2z; HE/E(L.V;V)]
Denote its composite with ‘QZ/Z, (3.1), by
e [z3 BT —{z; P

The corresponding unstable version of the 'free J-homomorphism’

-1
Ko (z,%) — Sph . z/2

(Z,%) is the local obstruction €.

Proposition (3.8) . The properties of % are summarized in

the commutative diagram:
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[z; o(V)] — [3z; HZ/Z(L.V)]

o
¢ Z/?
m
[z; BO)] ——— {z; (V)" ]
< ix

{z; s}

More generally, writing H(V,U@V) for the homotopy fibre
of the map of classifying spaces of spherical fibrations

BH(U) —> BH(U@V), one may define a map
m s [X/Y; H(V,U@V)] —> {X/Y; P(UBV)/P(U)}

extending the local obstruction €, (2.6) . (For the application
below it is enough to work with QH(V,U@®V), the homotopy fibre
of H(U) — H(U@V), without mentioning classifying spaces. )
Then, according to I. M. James [37], n is a bijection if

dim X < 2(dim U=-1). This leads to an obstruction theory for

fibre-homotopy equivalences between sphere-bundles.

Proposition (3.9) . If f is a fibre-homotopy equivalence
S(g) —» S(§') between sphere-bundles over X, then
=2 o]
Al = € . . T
v(L.EY) = [§7(D)].v(L.F) Wz (X5 -1 .

(§2(f) defines an element of w (X;L.E-L.E'). ) Conversely,

0

/2

if dim % < 2(dim§ ~ 1), then a stable fibre-homotopy equivalence
§

between' ¥ and E' satisfying this condition is representable by

an actual fibre-homotopy equivalence S(¥) — S(E').

The first statement should be regarded as a generalization
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of the fibre-homotopy invariance of the Stiefel-Whitney classes
of a vector bundle, which is the corresponding statement in

equivariant cohomology theory with ]Fz-coefficients.

Having considered in some detail dimension -1, we come to
spherical fibration theory in dimension O, which, of course,
generalizes the former. Call a spherical fibration E — X with
an involution on E covering the identity on the base Xa
M-sgherical fibration if every point of X has a neighbourhood
U over which the restriction of B is Z/2-fibre-homotopy
equivalent to a product Ux S(W)-— U for some 77/2-module W.

The set of Z/2-stable fibre~homotopy equivalence classes of
sich Z/2-spherical fibrations is a monoid under the fibre-wise
join and is embedded in the associated abelian group Sph%/z(x).

s (X) will be the group of 72/2-spherical fibrations

0
phfree /2
with free involution, and Spho(x) the usual group of (non-
equivariant) spherical fibrations. Note that Spho(point) = Z,

. 0
SPhY e /2 (POINE) = Z) Sphy /p(point) = ZOZ .

Theorem (3.10) . Sph (X) splits naturally as a direct

[¢]
N Z/2
sum SphO(X)@SphO (X) i* Spho (x) —)Spho(X)
free Z/2 ’ * free 7Z/2

~
is a split surjection.

A more precise statement can be made, as in (3.7), in
the language of categories. Roughly speaking, a stable
spherical fibration has, up to fibre-homotopy equivalence, a

natural free involution.

For an odd prime p, there is a similar splitting of the
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Z/p-spherical fibration theory into free and fixed components.
The operation gP gives, not a splitting, but a lifting of
(multiplication by) p-1 : Spho(x) — Spho(x); this lifting is
natural with respect to automorphisms of the group Z/p - it
maps into the subgroup of Sphgree E/p(x) fixed by the group of
automorphisms (Z/p)° . (3.8) and (3.9) are specific to Z/2,
as indeed is much of the impact of the theory; 2 is

distinguished as the smallest prime!

The splitting (3.5) translates readily into a splitiing
of #Z/2-stable cohomotopy theory. Sph—1(x) is the group of units

o] .
w (X)* in stable cohomotopy.

Lemma (3.11) . Let § be the connecting homomorphism of
the exact sequence of the pair (D(V),sS(V)), (2.10):

(2 s} = o (Xxs(N); - V) — o 0.
An element x € [X‘; H(V)] defines an element X € wo(x)' .

fr(x) = x-1 € x) .

This is an elementary application of (2.3). Sph-z1/2(x)

s . 0 . . :
is the group of units wm/z(x) in equivariant cohomotopy.

Affixing a label 'Z/2' where appropriate, we obtain:

Lemma (3.12) . Let ¢ be the connecting homomorphism

+. + _ -1
{x*s PDT} = @z (XxS(La); - LV) —> ©pg/p(X)

of the pair (D(L.V),8(L.V)). An element x ¢ [ x*; HZ/2(1.V)]

-1

-1
free Z/Z(X) = SphE/Z(X) = w%/z(x)'.
(x).

determines an element X € Sph

§c%/? 0

(x) = i.-1 € Wy
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Identify Sph™'(z,#) and w’(z,¥) respectively with the
kernels of the restriction maps Sph_1(Z) -—)Sph-1(¥) = Z/2 and
u)o(Z) —)mo(*) =Z. 1f 2 is connected, then every element of
wo(z,*) is nilpotent and Sph-1(Z,*) is precisely the set 1 +uP(Z,*).
(If z is a suspension, then Sph-1(Z,*) and uo(z,*) are isomorphic
as groups.) The same is true in the equivariant theory and (3.5)

0]
may be rewritten as a splitting ofcnz/z(?,*).

Proposition (3.13) . For any compact ENR pair (X,Y) there

is a split short exact sequence of abelian groups:

o]
Z/2

§ is the limit of the connecting homomorphisms (3.12).

0 — {x/¥; P} 5wl () é—j'}:) w%(x,Y) —> o.

The translation has been wade using (3.3) and (3.12), on
the assumption that X/Y is connected. To complete the proof it
is sufficient to check the asserticn when X is a point. (This
may be done, for example, by looking at the set of connected

components of the subspace of H(V@L.V) fixed by the involution.)

We are ready for the promised description of ©. Let

-1

-1
F: KO (X) — Kom2

(X)
be multiplication by L; it is a splitting of the restriction i* .
The last proposition identifies {X*; P(w)*} with an ideal of
4] . : : < ¢}
wz/z(x) . (1t is an ideal because ¢ in (3.12) is an wz/z(x)-

homomorphism.)

-1
7Z/2 Z/2

and 9 : ko~ (x) — {2*; P(=)"] are related by the formula:

-1 _ [¢] .
Remark (3.14) . ¢ JF: KO (X) — Sph (x)y = wz/z(x)
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J 2.F(x) = 1+ 8{(x).

z/
©® is thus seen to be quadratic. If x, y € KO-1(X), then
Olxey) = 6(x) +8(y) +6(x).8(y) € @y ,(X) .

+

+ o] . .
3 {Xx%; S(»)"]-— w (X) is an isomorphism, although in

accordance with the sign conventions of §2 (adopted implicitly
in (2.3) and (2.7)) it is the negative of the obvious one.
(6: ¢x%; s(N*1 5 &%) is evaluation on -1 € w(s(V)).)

With this identification J(x) = 1+i*6(x) € «°(x)* .

Apart from A. Haefliger and M. W. Hirsch [33] and I. . James
[39], the presentation here draws from the paper (15} of J. C.
Becker and R. E. Schultz. The splitting, (3.13), was first known
from equivariant framed bordism theory, {77). I owe much insight
and, in particular, (3.4) to discussion with Prof. Becker. The
proof of the Kahn-Priddy theorem given here is essentially that
of G. B. Segal [80]; the translation will be clearer in §4.
Independent expositions along these lines were given by the
author [25] and L. li. Woodward [90]. It is a pleasure to
acknowledge the influence of Dr. Woodward's (published and un-

published) work on the final form of this account.
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4. Stable cohomotopy

This paragraph is concerned with the formal framework of
Z/2-equivariant stable cohomotopy theory. It has been clear

for some time that 1t should be a bi-graded theory. (See, for

example,[597 ¢ )

Definition (4.1) . Let X be a compact Z/2-ENR. Then the
%Z/2-stable cohomotopy of X in dimension (-i,-3)

w—i,—j(x) . = 1_1’1‘, [('.Rj*'m@Li-j‘m)‘/\ x*; (m“‘eL")"]Z/z.
m,neN

(The limit is taken over the inclusions. 1" means the sum of n

copies of L; in some contexts it is more natural to write nL. )

The choice of indexing is determined by the existence of
two maps:
restriction i* : w-l'-j(x) - w'i(x) (forgetting the
involution) and the
. -i,-3 -3, /2
fixed point map p : « (X) — w (X Yo (A map
f: (R3+mﬂ)Ll—a+n)+ AxT— (]Rm@Ln)+ restricts to a map

pLE): (R A (x2/2)* 5 (B®)* of the fixed point sets.)

A product can be defined in w**(X) such that the maps i*
and p are ring homomorphisms. The ring is 'graded commutative’

in the sense that:
PPN N _. -. _" - L]
(4.2) x.x' = (-t)** 3 5 x (xew Limd(x), xtew 1ty (x))

where t € wo’o(point) is defined as the class of (—1)+: (R@L)+
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—s (ROL)Y.  i%(t) =1, p(t) = -1,

The Z/2~coefficient groups will be written: Wy 3 : =
-i,-j . ’
w ' “(point) . They are related to the non-equivariant groups

w; in the following lemma.

Let bew_1'o be the Euler class of L, that is, the element
represented by the inclusion ot > 1L* (of the zero subspace in

LY. i*(v) = o0, Jp(b) = 1.

Lemma (4.3) . There is a long exact sequence:

b i* i
e > Wy . > >
141, 1,5 Wy @y g > e

in which the successive maps are multiplication by b€ w
~1,0’
restriction and induction, in the group-theoretic sense, along
the inclusion i : 0 — Z/2 of the trivial subgroup in Z/2.
The composite i*,.i, s j i
p e i*,i 3 wi—~) “"i,j_)“’i is multiplication by

14 (-nid,

1t is the Z/2-stable cohomotopy exact sequence of the pair

(D(L),8(L)), with coefficients.

The rather specialized splitting lemma (3.13) may be

reformulated as follows.

Proposition (4.4) . Consider, for any compact Z/2-ENR X
and integer j, the direct system

G w TR —'3«) w1 =3y 3 ..

of abelian groups. Then the fixed point map P induces an
isomorphism
-i,~] - Z/2
ur W Im s G
i
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1f the action is free on X, then the direct limit is
easily seen to be zero. The essential case is that in which the
action is trivial; assume this to be so. We need to consider
relative groups; let ¥ ¢ X be a closed sub-ENR. The direct
limit of the stable cohomoiopy exact sequences of the pairs
(X,Y) x (D(Ln),S(Ln)) (n > 1) is an exact sequence:
w-n,o

(4.5) . o>{ XY P} — “’Oz/z(xry) - ];ﬁ“ (X, X) — -

n

(w%/z(x,y) ig the name that we have given in earlier paragraphs
to w7 9(x, 1)) Comparison of (4.5) and (3.13) proves the

proposition. (There is a direct proof in Appendix A, (A.1).)

(4.4) and (4.5), with coefficients, relate the coefficient
ring w,, to the stable homotopy of stunted projective spaces.
If n > O, the infinite stunted real projective space P;’ is
usually defined as the quotient P(w)/P(Rn) . Por present purposes
P: for any n, positive or negative, is the Thom space P§+n of
the (virtual) bundle nH over P(RNH) for 'sufficiently large N' .
(Formally, it is the functor lim {- ; Pﬂ“‘} on compact pointed
ENRs. ) N

Proposition (4.6) . There is a long exact sequence:

% P ~ 00
~ o0
.o Pr,) — W, s — — . P, . .s .
— wj( 3-1) @55 wy w3_1( 3-1) —>
At the level (j,j) there is a splitting o : “)j —3 wj j : p.€ =1,
*
Remarks (4.7) .
(1) Wy o = Lt (t2 = 1) is the Burnside ring.
s
(ii) w, . =0 if i < 0 and j< O,
1,3

~ (Pm ) if 5 £ -1
wj jei ir ) =ty
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~ o0 s : s s
wj$wj(Pj_i) for 1 ¢ § (with splitting given by

viie) .
1,3 is a graded w, -module,

(iv) The induction map i, factors as a composition

(1ii) (a':j(P;i))

~
S.i, ;s o (P
* wy wa( j—i)_""i,j

of w,,-module homomorphisms (that is, T, (x).y) = x.i.(y) and
*
§(x.2) = x.6(z) if X € o, ¥ € w,, 2 € 4, (PF) ).

(v) i, : w

o Z~«>wolo = ZPZt takes 1 to 1+t.

(vi) There is a further decomposition:

We . = W . W, (F°
03 = w93De e ED

v - _ ) .
(i, : wj——-) uj(IPg) = wj(P(w)) is split by the map which collapses

P() to a point. )

The process of translation from spherical fibration theory
to stable cohomotopy gives the Kahn-Priddy theorem (3.6) its

original form.

Theorem (4.8) . (Kahn-Priddy) . Let Z be a connected
compact ENR with base-point. Then the transfer

. +

i {2y Pt -—{z; sl

is surjective.

(For an odd prime p, the transfer maps the subgroup of
. + .
§2; (BZ/p) } fixed by the group (Z/p)° of automorphisms of
Z/p onto { Z; S()* 1 . It follows that the transfer
b
Z; - H 5 M ]
{2; (88" J1/(p-11] — Lzy s YT /(117 s

surjective.)

Let V be a vector space. The transfer w, : wO(S(V))—~>

]
w (P(V)) for the double cover W : S{V) —> P(V) coincides with
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induction i, : wO(S(V)) — ey »(S(L.V)). Write T < RV
for the element defined by t € u%/z(point); -1 is represented
by the antipodal involution (—1)+ . HY-—— H' of the Hopf bundle.
Then n (1) = 1+%, (4.7)(v), and, by the formal properties of
the transfer, the theorem may be restated as the surjectivity,
when dim Z < dim V, of the map {Z; P(V)'} — 29(2) given by

evaluation on -(1+%) € G2V (= '(:JO(P(V)+)) .

Corollary (4.9) . (Kahn-Priddy) . 2 connected, dim Z <
dim V. Then evaluation on the torsion element 1-% € wO(P(V)):
+ ~ 0
5 v — w
Lz; 'Yy (2)(5)

is surjective at the prime (2).

This is immediate. It follows that the order of 1-%, to

be computed in §7, bounds the exponent of the 2-torsion of 'JJO(Z) .

Being surjective and a natural transformation on the stable
homotopy category, the transfer i* of (4.8) has a splitting.
However, the translation of §2, which we must now discuss, will

in general be non-linear.

For a compact ENR X, the doubling operation 52 of §3 was
a homomorphism wo(x)' — w%/z(x)' from the group of units in
wO(X) to that in w%/z(x). It has an evident extension to a

squaring operation

P %) — woz/z(x),

or, without restriction to the diagonal in Xx X, an external
operation
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2

P2 @) Wl (xxX),

[¢]

Z/2

taking the class of a map f: (BMTA X7 — (R™M)* to that of
n, . N\+

faf: (RPOFH & 3xx)* — (B"®R™)" (with the switching

involution). The same construction defines an operation

P o i) — w2 ).

It is quite different in character from 32, a much more

sophisticated concept.

Lemma (4.10) . The squaring operation I’2 B wj — W,
JIJ
on the coefficient ring has the following properties.

(1) P2(x.x') = Pz(x).PZ(x') (x, x' € w,).
(i1) P2(x+y) = Pz(x) +i,(x.y)+ P2(y) (x, y € coj) .
(iii) i*.Pz(x) = x2 .

(1v)  p.Po(x)

X .

Corollary (4.11) . (Bredon [19] ) . p:w; 3795 is an
Y J

epimorphism if i £ 2j. It is split if i < 2].

2 . <
Although P~ is not in general linear, b.P2 is (by (4.7)(iv),

that is, Frobenius reciprocity, since i*(b) = 0).
Analogous to §2. define

L wj(P(“’)) < wj,j

=2 ) -
by P2(x) := b9.P%(x)-®(x). Then, if j > 0, -F° (notice the

sign) 1is a splitting of the restriction map i* : ¢« (P(»)) —»
dJ
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%) and we have reproduced the proof of the Kahn-Priddy theorem,

j,
this time exactly following G. B. Segal [8017 .

For the coefficient ring it is convenient to state the
result in the following form; compare (T.11). a(i+2) is the

Hurwitz-Radon number.

Corollary (4.12) . Sﬁppose that i > O and i~-j = 0 (mod a(i+2)) .
Then 3i* : o;i,j——+ Wy is surjective.
With the machinery at hand it would be a pity to omit an

account of Nishida's theorem (at the prime (2)).

Theorem (4.13) . (Nishida [71] ) . Every torsion element

in the graded ring w, is nilpotent.

We establish the basic lemma from which the theorem, at 2),

easily follows.

Lemma (4.14) . Suppose that x € @y with 2°x = 0 (8 > 0)

and y € ©q with g > Q0 and p =0 (mod a(g+2})). Then
s-1 _2
x

2 y € 25w

2p+q

2 ‘s
i : . .10
Consider the square P : w — Wy, 4 By (4.10)(ii),

0 = pP(2%) = 2%P°(x) + 25 (2511, () .

According to (4.12) there is a class ¥ e ©q,peq which restricts
i

to y. Then

34

-1, 2 - "
28 i (x"y) = 2° 1i,(xz.i“(y))

= 25-1i‘(x2).§ (Frobenius reciprocity)
- 8,2 s-1. 2 ~
27 (P (x) + 2 i, (x").y € 032p+q,2p+q'

But i, : @, w. is the inclusion of a direct summand, (4.7)

J Jsd
(vi), and the proof is done.

Corollary (4.15) . Every torsion element in the Z/2-

coefficient ring w,, is nilpotent.

Indeed, consider a torsion element in w,,. By Nishida's
theorem, some power X, Say, in jS,j' satisfies i*(x) = O and
p(x) = 0. If i < 0, there is nothing further to prove: x = 0.
If i 2 0, then o1ty = 0, (4.6), and x is divisible by b, (4.3);

i+2 |
hence x is zero.

The operation 52 is well known, either as the (generalized)
Hopf invariant or as Segal's operation 92, [80]. 1Its relation
to 92 will be discussed in the next paragraph. As Hopf

invariant ?2 has the following properties.

(4.16) j =1 {mod 2). Then the composition with the
Hurewicz homomorphism to Eé—homology is the classical Hopf

. s ~ 00 o
invariant: W > oj(PO) —> Hj(PO) = T,.

(4.17) j =3 (mod 4). Then the composition with the
Hurewicy homomorphism to real KO, -theory is the 2-primary e-

invariant: w. —3 G AP°) —— K oy 3
j wJ( o)~ KOj(PO) z(31/% .

. =2 .
The connection of P~ with the Hopf invariant H of the EHP-
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sequence fits less happily into the present framework; it is

discussed in the Appendix A .

The construction of squaring operations goes back to Steenrod's
definition in ]Fz—cohomology. In stablezhomotopy it was employed
by G.E. Bredon in [19] . The notation P° is taken from M. F.
Atiyah [41. The proof of (4.13) is Nishida's original proof
(clarified for the author by an exposition given by G. B. Segal).
(An account in the language of framed manifolds was given by

J. Jones in [451. {(4.12) was isolated by J. mukai in [701.)
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5. Pramed manifolds

It is not our business here to discuss the bordism theory
of Z/2-framed manifolds, but simply to put the homotopy-
theoretic concepts of the last paragraph into a geometric setting.

All manifolds will be smooth.

For any closed manifold X (understood to be compact), with
tangent bundle TX, the Pontrjagin-Thom construction defines what

is variously called the index, direct image or Umkehr homomorphism:

w*(X; -7X) —> w*{point) .
(Recollect that w*(X; ~tX) is, by definition, the stable cohomotopy
C}*”‘(T(ﬂ) of the Thom space of the normal bundle v of some
embedding of X in r%. ) And, in general, for any map f: X — Y
of closed manifolds one has f,: w*(X;-1X) — *(¥; =-7Y), or

with coefficients in a virtual bundle « over Y :
(5.1) f, 1 (X ¥ =TX) — w*(Y; ¢ -TY) .

f, is induced by a stable map of Thom spaces T(x -tY) —
T(f*® ~-TX) - the Atiyah S-dual of f£: T(-f*x) — T(-%). (The

Atiyah duality is actually defined by an index construction. )

Example (5.2) . Consider the unit sphere S(V) in a vector
space V. <S(V)®R = V (where, to be definite, 1 ¢ Ris
identified with the outward unit normal vector of the embedding
S(V) ¢ V). The index map

O/ 0 R
w (8(V); ~tS(V)) — « (point)

coincides, up to a minus sign, with the connecting homomorphism
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m_1(S(V); -V) — wo(point)

of the exact sequence of the pair (D(V),s(V)) .

There are two generalizations of the index construction:
to an equivariant theory and to a fibre-bundle theory. (The
account by M. F. Atiyah and I. M. Singer,[10] I and iv, is

recommended. )

Example (5.3) . Induction. Let i: H — G be the
inclusion of a closed subgroup H in a compact Lie group G. Write
the Lie algebras, with the adjoint action of the group, as ‘\’a
and o respectively. The composition

o]
wO(G/H; Gx. h) — w (G/H;Gx ) — mo(point;#)
G H H H H

of the forgetful map i* and restriction to the base-point H € G/H
ig an isomorphism; compare (7.7) . Now the tangent bundle

<(G/H) is (}xH (op/+) =and we have an index map wg(G/H; GXH+Y)

— wg(point;wk) defining group-theoretic induction:

i, wg(point;‘&) — wg(point;ox,)
and more generally

i, ¢ wg(x;ﬂ) — wg(X;B})
for any compact G-ENR X. (Introducing coefficients -# and
multiplying by the Euler class (/%) € @}O{(point; - /%) one
obtains a map i,.Y(4/f) : wg(x) — wg(x) . The corresponding

K-theory is discussed in {751 .)

In the fibre-bundle theory one considers manifolds over a
fixed compact ENR B, that is, locally trivial fibre-bundles over
B with fibre a closed manifold and structure group the group of
diffeomorphisms of the manifold. Such a manifold w : E — B

over B has a bundle (W) of tangents along the fibres and there
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is an index:

wy t w*(By - e(w)) — w*(B) .
Everything works as before, only fibre-wise over B. The index
with coefficients in a virtual bundle « over B is represented
by a stable map over B : TB(u) N TB(“’*M - t(w)) between bundles
of Thom spaces and this is the S-dual over B of the map
TB(-~«*¢) —_— TB(-a() induced by w. Collapsing the base-points
of all the fibres to a single point, we obtain a stable map
T(e) —3 T(w*st ~(¥w)). I1f B happens to be a closed manifold and
T a smooth fibre-bundle, then this map is S-dual to the map
T(-+«*o = *tB) — T(-% -<tB) defined by w; <E splits as
w*rB@T(w) . In other words, the definition of w, : w*(E;mte« ~<(x))
—> o*(B; %) is consistent with (5.1). It is also consistent
with the equivariant theory; if P -——» B is a principal G-bundle

and X a closed G-manifold, there is a commutative square:

* -
mG(X. X)) —» mE(PxX;—rX):w*(PxGX;—PxGTX)

wh(point) —— s w(P) = w*(B) .

When w is a finite cover it is customary to call ¥, : w*(E) —>
w*(B) the transfer. (The Becker-Gottlieb transfer in general is

the composition w, .y(T(mw)) : *(E) — w*(B) with multiplication

by the Euler class. )

Qur first subject is the representation of stable homotopy

classes by framed manifolds. A framing of a closed manifold X

X . . ~ i
is a stable isomorphism tX = R". The index homomorphism may be

39



written: w*”‘(x)——y wt(point). The class in the stable i-stem

6]
«, represented by X is the image of 1€ w (X). In the same way

1
a manifold X with a (smooth) involution and a 7/2~equivariant
framing, that is, an isomorphism

rX@]RmQLn ~ mji»meLi—ju:
for some m, n, represents an element of wi,j .

In equivariant bordism theory wi,i ig realized as the
bordism group of a restricted class of framed manifolds ( [777 .
[(341,0721) . The components of the splitting wig T
wi@ wi(P(w)) may be represented by manifolds with triviel and
free involution respectively. The first is clear, For the
second, interpret ui(P(w)) as the framed bordism group of P(w).
An element is given by a framed manifold X with a map & : X —
P(w) . Let w: A)i _, X be the pullback of the universal double-
cover S(») —» P(=) . Then X with the covering involution is a

free Z/2-manifold; it is equipped with a stable framingvi 2 gt

1ifted from the framing of X.

Proposition (5.4) . The Z/2-framed manifold ¥ so constructed
represents the class -[x,g] €wi(P(w)) € w4
*
In order to use duality we must replace P(w) by a finite
projective space P(V). g:X s P(V) lifts to a2 Z/2-map g : %
— 5 S(L.V). The proof, using (equivariant) (5.2), is just the

transitivity of the index:

WO B o SR -

0 N -i-1 -i .
wz/z‘(x)'*‘gj“* wZ/Z (s(L.V); ~L.V) ‘S__-) wz/z(p01nt).
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X represents - g.8,(1) .

The restriction i*: Wy g (or, in other language,
the transfer (,Ji(P(Aoo)) — wi(S(oo)) ) takes the element defined by
~ ~
X to the class [X] of the framed manifold with the involution
forgotten. According to the Kahn-Priddy theorem, if i > O then

every element of ©y may be so represented.

Now the group KO_1(X) - [X*; 0(w)] acts, freely and
transitively, on the set of framings of X. Let X' denote the
manifold X with framing twisted by the element

a = R.g : X —> Ple) —> 0()

of order 2 in KO~

(x) .
Lemma (5.5) . (Ray, Brown, Jones [741,[22],[45]) .

(8 = [x]-0x7  in o

It will be sufficient to show that w_ : wo(’i) — wO(X)
takes 1 to 1-J(a), where J: Ko~ (x) 5 W2(x)° is the 4-
homomorphism to the group of units in the stable cohomotopy
ring. For the index wo(x) — Wy defined by the framing of X
takes J(a) to [X'] and W, (1), by the transitivity of the index,
to [}] . This follows, by taking the balanced product ')‘ix z/2"

from the universal statement (from (4.7)(v)):

Lemma (5.6) . The equivariant transfer {or index for the

tgtandard' framing - there are only two - of S(L))

Y
z/2

maps 1 to 1+t .

(s(L)) =2 — w(?)z/z(point) = ZP At
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1t may be instructive to state the generalization of (5.6)
from the real/SO( = Z/2) to the compléx/S1 and qmaterniom’.c/S3
cases. write K = R, ¢ or H; G = S(XK) - the group of
units of norm 1, with adjoint representation of . We can think
of K as & (left) G-module in two ways: with the action of G by
left multiplication, denoted by E, or with the action by
conjugation, when it splits as R®G . The group itself may
similarly be considered as a ¢-manifold either as S(E), written
Gl, or as S(]R@u&), written Gad . Gl will be given the framing

arising from the natural trivialization
Gy x 9 —>1Gy ¢ (X,V) VX .

{That is to say, the tangent space at X ig identified with the
tangent space 9% at 1 by right translation. ) It represents an
element [Gl] € wg(point;v&). As the boundary of the disc

D(RDY), S(B@o{) has an obvious framing R@T ¥ RB%G; the

framing we choose differs from it by the equivariant twisting r:
= —> E
S(R@%) G O(E)
defining the representation E.

Proposition (5.7) » (Knapp, Stolz {541, (831) -

[Gl] = [S(]R@%)] in wg(point;%).

However, the two manifolds are certainly not equivariantly

framed-cobordant.

The key to the proof is the observation that [Gl] and [Gadj
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1ift in the exact sequence of the pair (D(E),S(E)) to

wa‘(S(E); 9-E). For G, = S(E) this is clear, by (5.2). To
. . + _ . _

describe [Gad] , identify op with S(R@y) = Gaa (with base

point 1) by mapping x € g to (-1+x)/1-1+x| . Then
[0 = 3(F)-1 in o(S(R@F,M ¢ (RO,

where J is the equivariant J-homomorphism KO?(S(]R@(*)) —
o} . - -1 -1 .
w
G(s(m@o})) and r € KO, (S(R@ey),*) ¢ KO, (S(R@p)) is the
class defined by r. (r € KOG(]R@?) - K-theory with compact
supports - is represented by the endomorphism of the trivial
bundle E = K over ]R@cg. = K given by left multipIication by the
element of the base. It has additional structure as an element
of real, complex or quaternionic K-theory. ) Now J(T) - 1 is
1ifted to w?(S(E) x (S(R@®,*)3 -E) as the difference class of
the two cross-sections of S(E) defined by r and 1, (3.11) .
Little remains to be proved: w(-;(S(E); - E) % 7. (But
it is neater not to use this fact. The identification is
natural with respect to automorphisms of K and the equality
X i3 s o] . . .
(5.7) is valid in meAut(]K)(p01nt,oa,) - the equivariant theory

of the semidirect product of G and the automorphism group of XK. )

To translate the result into cobordism theory, let P —» X
be a smooth principal G-bundle over a framed closed manifold.
The balanced product PxG then takes equivariantly framed G-
manifolds to framed manifolds. According to (5.7), P=Px GGl

is cobordant to PxGS(]R@oé) - so if G = S1 to the product
1

Xx8S .~ with a certain framing (as could have been deduced

from (2.7) and (3.14) ) .
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The remainder of the paragraph treats of the squaring
operation and the Hopf invariant. Cancelling the earlier
notation, we let X be a framed manifold representing a class
x € W, Then Xx X with the involution which interchanges the
factors has an evident Z/2-framing: (X xX) is stably isomorphic
to R"@R™ with the switching involution, that is, to R"@L" .
(And, of course, if E — B is a smooth principal Z/2-bundle, the
tangent bundle of Ex /2 (XxX) is stably the pullback of the
bundle TB® ]Rm@ )m over B, where A is the line bundle Ex 2./2 L

corresponding to the double cover. )
Lemma (5.8) . XxX represents Pz(x) in @, .
m,m

The description of 132(x) = mez(x) -6(x) ¢ ©pm?
pictorially just the square X x X minus the diagonal, has a new
subtlety. Let 8 : X — X x X be the inclusion of the diagonal.
Since the normal bundle is stably Lm, there is an index
homomoxrphism ¢

o}

o]
Ayt wz/z(x) — wm/z(XxX; -mL) .

By the transitivity of the index,
=2 . m
(5.9) P°(x) = index(b - A,(1)) € w .
m,m
Consider the now familiar direct limit of the stable
cohomotopy exact sequences of (X x X) x (D{nL),S{(nL)}) . It may be

rewritten in the following form.

Lemma (5.10) . For any framed manifold X of dimension m,
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there is a split short exact sequence:

0 = (S(2) x (XxX)) > w (XxX;—mL)e——-‘)_f__ch(X)———% 0.

0
zZ/2 z/2

The first term is the S-dual of w;/z(s(nL) x (X xX);-(men)L)

— -1
= w (S(nL)x (X xX);-(m+n)H) for large n; the final term

/2
is given by (4.4) . The splitting is the composition

ALes 2 wO(X)~—)woz/2(X)~—>w%/2(XxX;-mL).

Hence b" ~ A,(1) actually defines an element of
mm(S(w) X g2 (Xx X)) whose image in wm(P(w)) under the map

S(®) X /2 (XxX) — S(»)x 72 * = P(») collapsing XxX to a

. . =2 c s
point is P"(x) . It is illuminating to describe this element
directly. Choose an embedding i : X — R~ with trivial
n
normal bundle R corresponding to the given stable trivialization

of tX. It extends to a tubular neighbourhood 1 : Xx]Rn —_>

RO . .
. Now note that, if V is a real vector space, the

complement VxV -V of the diagonal in VxV with the switching
involution is (L.V-0)xV, which is diffeomorphic to
S(L.V)xR=xV and as far as homotopy is concerned just S(L.V).

The restriction of ix i defines a map (XxX)x (Bn x RY - ]Hn) —

m+1n m+n )

w+n
(R x R - R , so up to homptopy a Z/2-map

sy ¢ (XxX)xS(nL) — S((m+n)L) .

Let s, be the composition (X x X)x S(nL) -— S(nL) —> S({m«n)L) of

the projection and the standard inclusion.

Lemma (5.11) . The difference class s(so,s1) in
-1

wz/z((XxX)xS(nL); - (m#n)L) of 8, and sy regarded as sections
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m .
of the trivial bundle (men)L maps to b - £,(1) in

0

s ~mbL).
wz/e()(xx, mL)

Here is the reasoning. By (2.3) s(so,s1) is mapped to the

difference of relative Euler classes

¢ ((men)Lys) = 1((men)Lys,) € w‘z’z/z((xxx) x (D(nL),$(nL)); - (mem)L)

The first is, by definition, bm times the 'Thom class' in
wgz/z(D(nL),S(nL); -nL) . As for the second, notice that away
from the diagonal X ¢ XxX 5, factors up to homotopy through
the projection onto XxX-X and so extends to a nowhere-zero
section on (X xX -X)xD{(nL). Thus the obstruction is
concentrated on the diagonal. Take an equivariant tubular
neighbourhood p(L.tX) ¢ XxX of the diagonal. Then on this
neighbourhood s, : p(L.t) x S(nL) — s((m+n)L) is simply, up to
homotopy, the restriction of the map

D(Loe) xD(nL) = D(L.(r®@R™) 2= D(L.E™™)

n m+n
given by the stable trivialization TOR 2 R of tX. . By

inspection the relative Euler class is A, (1).

It is amusing to translate into the language of
differential topology the proof of the Kahn-Priddy theorem in

the form:

(5.12) Any framed manifold X of dimension m > 0 is cobordant

to a framed manifold Y admitting a free involution compatible
m . .

with the framing (that is, TY 2 R stably equivariantly) .
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Recall the classical representation of the BEuler class of
a smooth vector bundle £ over a closed manifold B as the cycle
given by the submanifold Z of zeros of a generic smooth cross-
section s (generic meaning transverse to the zero-section) . The
normal bundle of Z in B is identified with the restriction of €
and in a tubular neighbourhood D(X|2) of Z the section s is, up
to homotopy, just the 'diagonal' cross-section of the pullback
of €. We have an index map wo(z) — wO(B; ~-%) and by definition
(of the index map and of the Euler class) the image of 1 is
v(E). The corresponding description of the difference class

of two sections 8, S, of S(g) is as follows.

Lemma (5.13) . The section (SO"S1) of the fibre-product
S(E)xBS(E) is homotopic to a section (to,-t1) transverse to
the diagonal S(¥) . £(sy.8,) € w_1(B; -E) is represented by

the inverse image C of this diagonal.

Precisely, the normal bundle w of C in B is equipped with
an isomorphism v @R * EIC and the index homomorphism which it
defines takes 1 € @ (C) to §(ty,t,) € & '(B; -E). outside C

tO and t’ are linearly homotopic.

This, then, is the recipe for finding Y in (5.12) . Choose

the embedding i : X —> ]Rm+n as above and construct the smooth

sections S5 84 of the trivial bundle (m+n)L ( = E) over

S(nL)x{(XxX) (= B). Deform s s, to t t. and take Y to be

[F M| [CR |
the obstruction submanifold (representing, although this is
irrelevant to the proof, s(so,s1)) ;3 this may be done

equivariantly by working on 5(nL) x Z/Q(XXX)' On the other hand,

forgetting the involution, we may deform S, to the constant map
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so' with value (0,..,0,1) . If iis a product of an embedding
Xan'1 ———>2|Rm+n_1 with the identity R -— R, as we may assume it
is by adding 1 to n, then (so',-s,l) is already transverse and
the obstruction submanifold is just Xx (0,..,0,-1) . Now

( —s,') and (to,-t1) are homotopic by a smooth homotopy

so' N
constant near the end-points and transverse to the diagonalj; the

inverse image of the diagonal is a cobordism between X and Y.

The construction (5.11) is really very old. It extends
the classical definition of the Hopf invariant as a linking
number. (Forgetting some of the informationvin 5(30,51) by
restricting to the subspace (XxX)xS(L) of (XxX) x 8(nL), we
obtain a class in w-z‘l/z((XxX) x S(L); - (m+n)L) = mm+n-1(XxX).
It is represented by the map (x,y) v i(x) -i+(y) : XxX —>

m+n
- 0,

R where i“ is given by pushing i out along the first

positive normal field. )

There is a special case in which 132(x) admits an even
simpler description: namely when the framing of X is given by
a genuine trivialization of ¢X. (As is well known, any framed
manifold is cobordant to such an X; but it would be inappropriate

to quote this corollary of Kervaire's theorem (8.4) here. )

Remark (5.14) . (Loffler [631) . Let s be the 'diagonal’
cross-section of the trivial bundle mL over a tubular
neighbourhood X x D(mL) of the diagonal X in Xx X defined by the
igomorphism TX = R™ . s extends to an equivariant cross-
section transverse to the zero-gection. The zero-set of s is
the union of X and a manifold with free involution representing
=2
B (x), (5.9).
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We next relate the squaring construction to the definition
of the Kervaire-Arf invariant of a framed manifold. Recall the

definition of a quadratic form. Let P be a module (projective,

finitely generated) over a ring R, commutative for ease of
notation. Then %Z/2 = {1,T} acts on the group B = HomR(P®P,R)
of bilinear forms PxP —> R by interchanging the factors.
Classically, a symmetric bilinear form on P is an element of the
group BZ&/Z of invariants, or, in terms of group cohomology -
which is the novelty, of HO(Z/Z; B) . A quadratic form on P is
an element of the group B?Z/2 = B/(1-T)B, or HO(Z/Z; B). (A
coset [b] defines a quadratic function P — R : x +——b(x,x).)

Associated to any quadratic form is a symmetric form, according

to the symmetrization map

Z/2
Bz/g“"’B / : (bl — b+ Tb.

Once the definition is formulated in the language of Z/2-
homology, it is fairly clear how to define symmetric
(A. S. Mi%8enko [ 69] ) and quadratic (A. A, Ranicki [73]) forms
on a complex of modules. We give the translation into algebraic
topology for the singular (]FZ) cochain complex of a manifold.
Let H denote homology with ]Fz-coefficients. Borel has defined
the Z/2-cohomology of a compact Z/2-ENR Y :

&/2(1) =

H*(S(») x Z/ZY) B Then a symmetric form should be an element of

m
H XxX i
z/2( )y a quadratic form an element of Hm(s(w) xz/z(xxx)).

The symmetrization map is the segment

m

H (S(e) x z/z(xxx)) — HZ/Z

(XxX)

of the ]Fg—cohomology version of the sequence (5.10) .
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m

= " i1 b
pefinition (5.15) . uy < A (1) -b € Hz/z(XxX) wi e

i i manifold
called the canonical ]Fz—sxmmetrlc form on the closed
X (A, is the direct image in cohomology; b denotes the
. »
Hurewicz image of the element of the same name in stable‘

cohomotopy. )

The terminology is justified by the well known fact that

the restriction i*(ux) ¢ H™(X xX) satisfies:
i m-i
{1*(u)e Gxyixxx = {xoy}iX] (x e B (X), y € B (X))

Definition {5.16) . An IF,-guadratic form on X is an

izati is the
element q € Hm(S(w) X2 (X x X)) whose symmetrization 1

canonical symmetric form uy .

k
If m = 2k is even, it defines a quadratic form Q : H (X)
— F, in the classical sense: Q(x+y) = Q(x) + Q(y) + {xvy}lX] .

The squaring operation

P HN(X) —»quk/z(}(xx)

was introduced by Steenrod in his definition of the Steenrod

squares (as the square on the cochain level) . There is a cap-

product pairing

<, > H‘;Z/Z(Xxx) @ H (5() x 7 /(X xX)) —> H__ (P(=)) .

Q(x) is equal to <P2(x),q) € ]F2.

Set H = H*(X) and write K and 1 respectively for the
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kernel and image of 1+ T : H®H — H®H. The equivariant groups

decompose canonically as:

2k

Hy /o

(X xX) = Zk)r>0 Lr/rp2leT) g g2k

_ 2k 2(k+r)
By (8G0) x 5 p (XxX)) = LHOW/IFT @ > 0crex LK/ .
2 . . 2k .

P (x) is then simply x®x in K~ . We shall write Q also for the
component of q in {(H@H)/I}zk; it determines the quadratic
function on Hk .

The Hopf invariant 4,(1)-b" € w (S()x ./, (XxX)) thus

z/2
provides, by the Hurewicz map, a natural quadratic form for the
framed manifold X. If m =2 (mod 4), the Arf invariant of Q is
called the Kervaire-Arf invariant of the framed manifold. It
vanishes if X is a framed boundary. (Here is a sketch of the
proof. If X = 3W, one must show that Q is zero on elements
1ifting to H(W).  1In order to avoid discussing manifolds with
boundary we consider the closed framed manifold ¥ = W .u.xw
obtained by gluing two copies of W along the boundary X; the
*folding map' gives a retraction of Y onto W. The inclusion
J: X—3 Y of X as codimension 1 submanifold represents O in
w'(¥). In other words, j, : w (X)—> w(¥;-R) takes 1 to
Zero. It follows formally that (jx j), : w%/z(Xxx; -mL) —>
w%/z(YxY; ~(me1)L-R) kills A,(1) -b™. Then in homology

(Jx3)y(q) = 0 ¢ Hm(S(w)x (YxY)), which implies that Q is

z/2
zero on j*Hk(y). )

With this definition, the dependence of the quadratic

form on the choice of framing is particularly easy to describe.
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Consider a change of framing a: X —> O(=). 8(a), (2.13), is
an element of {X*; P(e)*} , or, by S-duality, w (PE@) xX) -

Distinguish the new quadratic form by a prime.

Lemma (5.17) . a-a' = ha,(6(a)), where
By wp(B(®)xX) —> w (8G=)x 5 5 (XxX))

is the diagonal map and h is the Hurewicz homomorphism.

The variation of the quadratic form thus depends on the
'gpherical class' he(a) € Hm(P(W)xX). A classical computation
in cohomology, recalled below, using the fact that the total
Steenrod square Sgq fixes a spherical class, that is, something

in the image of stable cohomotopy, establishes:

Proposition (5.18) . (Browder [20], Jones-Rees [47])
Q' (x) -Q(x) = <x,w> if m+2 is a power of 2,
0 otherwise,
where w € HE(X) is the pullback via 6(a) € {X"; P()"} of

the generator of Hk(P(“’)) .

1t follows from (5.5) and the Kahn-Priddy theorem that
the Arf invariant of X is zero unless m+2 is a power of 2.

(This is the proof of J. Jones and E. Rees. )

Consider the homomorphism x5 P(w)+} _"Zi> o Hi(X)
taking a stable map to the image under the induced map in
cohomology of the several generators of HY(P(=)). The dual or

inverse total Steenrod square YSq is defined by Sg.xSq = 1.

Lemma (5.19) . (Steenrod-Whitehead) . If (ai) lies in the
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i +, - i
image of {X'; P(w)'} HZiao HY(X), then

(xSq)371a, = (2;1-1
X i .'J aj .
In particular,
j-1 e a1 s
Zi$.‘i (180)? a; = O if j+1 is not a power of 2,

aj if it is.

In the application (5.18) 4, translates into %Sq, by the
definition of the Steenrod squares and the triviality of the
Wu classes of the framed manifold, and in fact Q'-Q = w®wW
or O in {(H@H)/I}2k . The success of the method leads us to
ask what restrictions are imposed on Q by its origin in stable

cohomotopy. The action of Sq = Sq®©S5Sq on H®H passes to the
quotient (H®H)/I.

Proposition (5.20) . (Jones [461). k+1 = 2° (mod 2%*'),

Then Q+Sq(Q) = © if k1 = _2t (mod 2t+2

k+2

)1

t
z2® 2z for some z € H (X) if k¢l = 2

(mod 2%*%) .

The proof is a matter of interpreting the statement: Sq(q)
= q. It requires knowledge of the action of Sq in H*Z/Z(Xxx);
[67]3.7. As an immediate consequence of (5.20) one has:

I Lo .. .
Uysax) = Zj oo (x8a xyse Iy ar x e 8N,

i > 0, with a correction term {(x,z) if i = 2t and k+1 = 2t
t+2)

(mod 2

The Z/2-homotopy theoretic description of the quadratic

form on a frumed manifold is also well adapted to another
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problem. Let w: ¥ —> X be a double cover. The framing of X
1ifts to a framing of X. How are the quadratic forms related?
As usual X is considered as a Z/2-space with the trivial
involution. We also require % with the covering involution T
and refer to it then as ¥Y; it is equivariantly framed. Now the
inverse image under wXx ™ : ixi 5 XxX of the diagonal X
splits into a fixed, diagonal component A(;{) and a free, off-
diagonal one V(Y), where v: X —»%xX takes y to (y,Ty).
Hence the 1ift of the 'quadratic form' A, (1) -b™ in
w%/e(){xx; -mL) to wgz/z(’ix'i;-mL) is the sum (A (1) ™) o+
V,{(1) of the quadratic form on ¥ and an off-diagonal correction

term. The second term is substantially simpler than the first,

for Y is a free Z/2-manifold and there are isomorphisms:

wm(S(‘”) X g2 Yy — w%/z(Y)

|

w (X) ———> L) .

The vertical maps are induced by the projection @, the top row
is the Gysin sequence (4.5) with S-duality. So V,(1) is
described directly in the free component as the image under the
map wm(S(w) X /e Y) — wm(S(w) X /2 (ixi)) induced by ¥V of

the element corresponding to the fundamental class [X] in wm(x).
The associated quadratic form r € Hm(S(w) X2 (;(x')’()) is
clearly independent of the framing; 1its definition uses only
Poincaré duality. Let § be the quadratic form determined by the

framing. The splitting in cohomotopy translates at once into:
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Proposition (5.21) . (Brumfiel-Milgram[237) .
(vxw)*q = G+ r.
If m = 2k is even, then the quadratic functions on the middle

cohomology satisfy: Q(w,x) = a(x) +R(x) (x ¢ Hk('i)) .

(v x™)* and w, are the transfer maps in homology and
cohomology respectively., Our interest here lies not so much in
the result (5.21) as in the method of proof, to which we shall

return shortly.

Consider next an immersion i : X — R , with normal
bundle v, of the framed manifold X in Euclidean space. The

derivative of i embeds ¥X as a sub-bundle of the trivial bundle

RO X .
and so, as in §2, defines a Z/2-cross-section s of the

m+n ~

trivial bundle L over S(L.TX) . Let ¥: xxXx — 1™ ve

the section (x,y) > i(x) ~1i(y) of L™ over XxX. Choose an

equivariant tubular neighbourhood D(L.TtX) ¢ XxX of the

diagonal. Then, up to homotopy, s coincides with the restriction

~

of § to S(L.tX). We see that the relative Euler class

{((men)L,s) € @)  (XxX-D(L.tX),5(L.cX); - (men)L) is an

0

/2
obstruction to the existence of a regular homotopy of i to an

embedding. (In a certain metastable range this is the precise
obstruction, by the theory of Haefliger-Hirsch [33].) On the
other hand, Y ({(m+n)L,s) € w?z/z
just the Euler class X(L.») of the normal bundle multiplied by

(D{L.T),S(L.T); - (m+n)L) is

the 'Thom class' of L.Tt. 1In this way we obtain a decomposition

mn o o]
w (XxX; - (m+n)L) into a diagonal and

of X((m+n)L) = b z/2

an off-diagonal component. This may be given geometric content

in the following manner.
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il ot 20 e A TSR AR e Y ST

The normal bundle v is equipped with a stable

trivialization, 82y »@]RN 2 ]RIHN for some N » m, classified by

amap £: X —V to the Stiefel manifold of N-frames in
n+N,N

Y . g(f), (2.6), is an element of wzz/z(}(x S(NL); - (neN)L)

= {X*; P:} . It is equal to the difference of Euler classes
¥ (L.») = ¥(nb) € 3% P;’} c UOZ/Z(X" -nL) . (The
coefficients L.v and nL are jdentified via the stable
isomorphism. ) The index of 8(f) in 5m(P°;) c wm—n,m is called
the (stable) Smale invariant of the immersion.

We turn to the obstruction to embedding. The restriction
of 8 to XxX-B(L.rX) is %/2-equivariantly homotopic through
a homotopy constant on S(L.tX) to a section transverse to the
zero-section. The zero-set of this cross-section is a manifold
Y with free involution and a stable framing of tY as ]Rm-Ln

It represents the off-diagonal component of bm+n in

‘*’Oz/z(xxx‘ - (m+n)L) :

(5.22) PP = p, x(L.w) « Y] .

The stable class in @ on.m defined by Y is called the double-
=ily
point invariant of the immersion. If the only singularities

of i are transverse double intersections, then Y may be taken

as L(x,y) € XxX | i(x) = i(y), x # y} ; whence the nale:

Proposition (5.23) (Kervaire[5373) - Consider an
immersion X ——»Fm”) of a fremed manifold in Euclidean space.
Then the sum of the Smale invariant and the double-point
invariant is equal to (-) the Hopf invariant .52 (x) € Gm(P;’)
of the class X €w defined by X.
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The off-diagonal term [Y] lies in the free summand of
4]
@ s - i
ZZ/Z(XXX’ (m+n)L), and just as in the example (5.21), we may
define it directly as an obstruction class, o(i) say, in
wm(s(“‘) X /2 (XxX); nH) to deforming i into an embedding.
(\(((m+n)L,s) is an element of the group
0 Q
© -
Z/2(}(x}( D(L.T),5(L.t); - (m+n)L), which is isomorphic to
S(o _° . N N
wm( ( )XZ(Z/Z (XxX -D(L.7)); nH). o(i) is defined by mapping ’
(=3
X xX-D(L.t) into XxX.) We shall regard o(i) as an element
of the S-d -1 5 (1
ual group (.)ZZ/Z(XxXxb(NL); - (m+n)L - NL) for N » m.

1t is defined here whether X is framed or not.

Before compounding the elements of (5.21) and (5.23) in a
final example, we must indicate the connection between 132 and
; 2
Segal's operation © . Let w: E—> B be a finite cover of a

compact ENR B. There is an index map, or transfer, =, :
4] 0 "

w (E) — w (B). w,(1) is the element of wO(B) represented

by the finite cover in the sense of [80] . A finite cover with

[o]

an involution similarly represents an element of w
z/2

(B).

Proposition (5.24) . 52 ° i
) Po(r, (1)) € NE/Z(B) is represented

by the finite cover
{(x,y) €Ex B | x+y} —> B

with the free involution which interchanges the factors of the

fibre-product.

If B is a point, this is (5.9) in dimension zero. The

fibre-bundle version is no more difficult.

Now let = : X — X be a finite d-fold covering of a

closed connected m-manifold X, m > O, defining a class u
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. m+n
(1) € wo(x). An immersion i: X — R * snduces, by
~
composition with ©, an immersion ®*i of X. The obstructions

o(i) and o(w*i) are related by the equation:
(5.25)  Po(w).o(i) = (wxT),0lc*i) - AL (B2 () Y (L))

in w;Z1/2(XxXx S(NL); - (m+n)L - NL), for N> m. P2(u) lies in
0 52 - . . )
MZ/Z(XXX), P (u) in wZ/Z(Xxb(NL), NL), that is

{x*; P(=)*} . A is the diagonal of X, ¥ the normal bundle.

The equality is proved by 1ifting o{i) to (v xTw)*o(i) on
ix'i, where it splits into two terms corresponding to the
diagonal X and off-diagonal ’ixxi-}’z parts of ('va)-1(x) =
ixxi. The first is o(w*i); the second should be thought of

as an obstruction to embedding X fibre-wise in the normal bundle

v over X.

We specialize to the case m = n. The Poincaré dual of the
Hurewicz image of o(i) in ]Fz-cohomology lies in
HO(S(%)XZ/2 (XxX)). Let I(i) in HO(P(‘*’)) = IE‘2 be its image
on collapsing XxX to a point. For a generic immersion 1 is

the number modulo 2 of self-intersections.

Proposition (5.26) . (Brown [21]). Let ©: Y—Xbea
finite d-fold cover of closed manifolds of dimension m > O and
i an immersion of X in _RZm 1lifting to an immersion w*i of X.
Then I(w*i) = d.I(i) + o] if m+1 is not a power of 2,

am(v)[x] if it is,
where L is a certain characteristic class of finite coverings.
For a double covering w classified by a € H‘(x; 11"2), &m(ﬂ) =a"
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We have only to describe the Hurewicz image of the final

term in «25). i 13
(5.25). Let (nli(‘rf))i 50 be the image of Pz(u) under
the map of (5.19). Then the term A*(}_De(u).\f(b.»)) reduces to
Z 0¢i¢m di(T)wm_i[X) , where w is the normal Stiefel-
Whitney class, that i Z m-3
R at is, to 0¢ig¢m (xSa) B(i(w)[xil (by

the standard property of the Wu class) . And (5.19) completes

the proof.

My account of quadratic forms and the Kervaire-Arf invariant
owes much to J. Jones [45], [46] and is dependent on the
definition given by A. A. Ranicki. The definition of the double-
point invariant of an immersion and the whole geometric approach
to the Hopf invariant comes from the work of U. Koschorke and

B. Sanderson [57] and R. M. W. Wood [89]. The original version
of (5.26) in [21] dealt with the double cover ST —» P”; this is
now seen to be typical. (The more general problem was posed by

L. : . .
Smith. ) There is a systematic study of constructions such

as (5.13) in [55] .

59



Ae Appendix: On the Hopf invariant

We shall need a generalization of (4.4).

Lemma (A.1) . Let A be a pointed Z/2-space and (X,Y) a
compact 7Z/2-ENR pair. Then the fixed point map gives an

igsomorphism P

Z/2 /2
Lim /s M ab P2 s Lu) /2, ZB/23

n

(The direct limit is taken over successive inclusions. )

It is simplest to work from first principles. As in (4.4)
we may assume that 7Z/2 acts trivially on X, and then there is
a splitting o of p. Consider the special case of a Z/2-map
£: (/) A(L™)* —> & such that p(£): X/Y —>a%/? ig pull-
homotopic. Then f is annihilated by composition with the

my* i the first term of the
inclusion A —> (L) A A, for it lifts to e fi

- ny+ Z/2
homotopy exact sequence: [(x/Y)a R aS(L)s Al —>
zZ/2 .
[ x/) A (1M A}ZZ/Q_—) [%/¥; Al of the pair
(D(Ln) S(Ln)) This is converted into a general proof by
s .

re-labelling.

i tient:
If V is a real vector space, write gv(A) for the quoti

(S(L.V) x 5 p AV/(S(LaV) x z/2*)"

Lemma (A.2) . Suppose that the involution on X is trivial.

Then there is a canonical isomorphism:

{ 2/¥3 sy aat?? = prys B .
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Its definition is an exercise in S-duality (in its Z/2-
equivariant and fibre-bundle over P(V) manifestations) . (A.1)

and (A.2) together yield a splitting theorem extending (3.13).

Corollary (A.3) . X with trivial involution. Then there

is a split short exact sequence:

A —
¢

0 — {X/Y; PB(A)} LN {x/Y; A32/2 SN {x/Y; AZZ/Z} —0.

The relation of the operation §2 introduced in §4 to the
Hopf invariant H of the EHP-sequence is best understood by
generalization. Let “1(V+,V*) denote the space of all base-
point preserving maps vt V*, with the standard topology and
the zero map as base-point. Corresponding to the unstable
version n of 3 in §3, there is an operation

Bo: [z; mv* v —> Lz; RODTY .

Now let B be a compact ENR with base-point. Then the

construction, via the difference class and S-duality, extends

to define

Bo: [z WV, VA BY] —> {25 B (BaB)Y

(-)1'>$ is the Hopf invariant of the EHP-sequence, [67] 1.11. The

verification is facilitated by the observation:

Remark (A.4) . The projection BxB ~—> BaB ( = (BxB)/

(BvB)) has a natural #Z/2-equivariant stable splitting.

There is an operation s, {B; BvB}—>{BxB; BvB?z/z.
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The image of the inclusion B —» Bv B of the first factor defines

the splitting.

The splitting (A.3) interprets the stable Hopf invariant

2. {z; Bl —> {23 P(BaB)} as:

(A.5) 5.5%(x) = Ai(P2X)-(AB)*‘(X) (x e lz; B1),

Z/2

where PZ: i2; Bt —> {ZaZ; Ba 8t is the squaring

operation and AZ and Ad the diagonal maps Z — %ZA2, B —>BaAB.

The definition of the Hopf invariant H = -?2 in full
generality allows us to refine the statement (5.9). A1) "
€ mm(S(co)x 7/2 (XxX)) is equal to H{XJ, the flopf invariant

of the fundamental class [X] € wm(x). (The geometric
description (5.11) may also be made more precise. - S(SO,s,l) €
wm(S(nL) X2 (XxX)) is the Hopf invariant of the unstable

class in ‘“’m+n(sn) defined by the embedded manifold with trivial

normal bundle. )

The naive account given here of the Hopf invariant (or
cyclic pth power operation for an odd prime p) is founded on the
free action of %Z/2 (or Z/p) on a sphere and the consequent
interpretation of the classifying space BZ/2 (or BZ/p) as a
projective (or lens) space. At the heart of the sophisticated
theory is the theorem of Barratt-Priddy-Quillen relating finite
sets (or symmetric groups) to stable homotopy theory. Then
comes the sequence of operations or stable splittings, one for
each symmetric group, beginning with the classical Hopf
invariant: V.P. Snaith [82], #.G. Barratt-P. J. Eccles [11]
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G. B. Segal [80] (in terms of covering spaces), U. Koschorke-

B. Sanderson [58] (self-intersections of immersed manifolds),

H. Hauschild [35] (equivariant homotopy, generalizing (A.5)) .
Of course, localizing at the prime (2) we may reduce (by passing
from a symmetric group to its Sylow 2-subgroup) to an iterated
Hopf invariant, and in practice it may be convenient to do so.

The Arf invariant is an example.

Remark (A.6) . k odd. There is a commutative diagram:

&, (P2) b @, (PP
ok Fp) ——— @, (P
A

1

1

H i*

e i
1
&’l

—_— =

ok e z/2 = w, (B(Z/2 §Z/2); k)

s : R,
(<><>)xz/2 (P(») x P(»)) is the classifying space of the wreath
product Z/2\%Z/2. i

72 Sz/ liore generally, Em(P;:'\ P;) is the Thom space
of kY, where Y is the 2-dimensional real vector bundle over
B(Z/2 §%/2) associated to the representation S°(L) of z/2 z/2
(The construction in §1 gives an operator 32 : RO(Z/2) —>

RO(Z/?SZ/Z) on the real representation rings. )

In the notation of (5.18), Arf(Q) - Arf(Q') = Q(w) if k+1
is a power of 2. With (5.5) this provides a manageable
description of the Arf invariant of a framed manifold with free

involution and leads to a geometric proof of the remark.

(A.3) is the simplest example of a general splitting in

equivariant stable homotopy theory; see, for example, [35]
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6. K-theory

Notations and concepts will be carried over from equivariant
stable cohomotopy to real KO-theory without comment. Thus, the

KO -theory of a space is a Z x Z-graded ring, commutative in

z/2

the sense of (4.2). The Hurewicz homomorphism

w{l’ Koi!

of the coefficient rings takes elements of stable cohomotopy
to elements of KO-theory denoted by the same symbol. Parallel

local coefficient notation will be used.

Let § be a real vector bundle over a compact ENR X. C(§)
will be the associated bundle of Z/2-graded Clifford algebras.
(The standard reference is [ 6] .) A Clifford module is a
graded real vector bundle g over X with a structure homomorphism
C(§) — End p (of graded algebras) . The Grothendieck group of
such Clifford modules will be written Koc(g)(x). Now we can
state the basic 'periodicity' theorems of Z/2-equivariant

K-theory.

Theorem (6.1) . (Karoubi-Segal[49] p.193, [7] Theorem 3.3)
There is a natural isomorphism

KOC(E)(X) — xoz/z(x; L.5).

1f C(E)° denotes the opposite algebra (opposite in the
graded sense), then similarly
KO o(X x KO s - L., .
() (X) 2/2(X’ L.E)
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o] :
The duality between modules over C(§) and those over c(E)° gives

a natural identification:
. s L., = X; - L. .
(6.2) < KO, ,,(X; L) KO /o€ E)

Proposition (6.3). Let § be an oriented real vector bundle
of dimension a multiple of 4. Then there is a Bott isomorphism

(X) — KO (X; L.§-E)

K0z/2 z/2
defined by multiplication by a canonical periodicity class M(E)

such that i*«(E) € KO(X;E§-%) = KO(X) is the identity.

The proposition, reduced to algebra by (6.1), may be
generalized by introducing coefficients in an arbitrary Z/2-vector

bundle. In particular,
(6.4) KOy /(%5 - 1.8) = KO /o (X3 = %)
for an oriented bundle § of dimension a multiple of 4.
This periodicity reduces KOE/Z-theory to a Z/8x Z/4-graded
theory. N(R4) defines an element u in KOO 4" The identification
-
(6.2) leads to an involution
T KO, . — KO

1,3 Zj’i,j

of the coefficient ring. The periodicity is defined by

multiplication by the central units e K0, 4 and u.“\f(u)"1 € KOg -
1] y

For reference we recall from [26] the tabulation of the

coefficient ring KO,, and the restriction mep i* : KO,, —> KO, .
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Table (6.5) . KO-theory coefficient rings.

3 0o 0 o 0 ) 0 0 )
i 2 o o o Zd Abn® AS @AtnS AayS  me
mod

4 1 0 0 o Aby  Ap@Aty  Aay 0 0

3.2 2 3
o zola’ mv Bt Za Za za®  Ze@Zte
K, =32t o 1 2z 3 4
i mod 8
2

KO, 0o o0 o z1 ™ Ay 0 Ze

(For typographical reasons Z/2 has been abbreviated to A.)

i*(a) = 7, i*(d) = 2, i*(e) = c. 4 =<w(e), a = T(b). =ab = 1-t.

operation

2

P2 : Kko“I(x) —> K02

33xy .

It is compatible with the square in stable cohomotopy and has the
same formal properties (4.10)(i)~(iii). If j = O, then

Pz[E] = [E®E] with, of course, the involution which switches the

factors. The equivariant K-theory KO (X) of a space with

z/2
trivial involution splits as a direct sum KO(X)@KO(X)t of two
copies of KO(X) corresponding to the splitting of Z/2-vector
bundles into positive and negative eigenspaces. E ®E is

decomposed as the sum of the symmetric and the exterior square:

- < N ~Cr

K1)

an

]

"
i
v

<23,=3 -23
Indeed, x2 = i'Pz(x). But i* : KO 291 J(X) — KO )
1
is zero if j = 3 (mod 4); (6.1) interprets it as a map KO (X)
+1
— KOE(X) extending to a KO*(X)-homomorphism KO*(X) — KO*" (%),

which vanishes since KO_1 = 0.

A similar argument shows that the square of an element

2

- ) 2 -
x € KO 1(x) is described by the formula x = wn.2 (x) € KO “(X).

(K0—2'71(X) is isomorphic to ko~ (x). p°(x) translates into

62(X)=: —zz(x). i* becomes multiplication by %.)

So we have the basic machinery of 7Z/2~equivariant KO-theory.
One of the merits of ;he theory is its accessibility. The
Euler class has played an important part in the investigation of
cross-sections of vector bundles. We wish to describe here its
relation to the perhaps more familiar rational cohomology

characteristic classes.

Define a Z/4-graded cohomology theory R by

Ri(){) i = Z n=1imod 4 Hn(X;Q) .

The Chern (Pontrjagin) character defines a natural transformation

ch : KO* —> R* of cohomology theories.

Proposition (6.7). Let k be an oriented real vector
bundle of even dimension n over X. Identify RO(X; ~E) with
R™(X) by the Thom isomorphism. Then

¢] 0

ch : KO (X;-8) —> R (X;-%)

maps the KO-theory Euler class ¥y(E) to the classical rational

cohomology Euler class e(¥) € H(x; @) ¢ R%(x) .



If the dimension of ¥ is a multiple of 4, then
y{L.%¥) € KOZ/Z(X; - L.E) corresponds, by (6.4), to a class in
KOZ/Z(X; -E). This latter group splits as KO(X; -E)PKO(X; ~§)t,
because Z/2 acts trivially on X and E. Write the image of

v(i.§) as y +y 5 v, y_ € KO(X:-§). v ¢y =Y(§).

Proposition (6.8) . E oriented of dimension 4k. Then
ch:  ko%(x; -t) —> RO(x; -§)

2(k—i)L

maps ¥, - y_ to (2 4108550 € RO, where (L,,(8)) is

the Hirzebruch L-class ([36] 1.5).

The rational L-class of an oriented vector bundle is thus

described in terms of the KO -Euler class of the vector

Z/2

bundle with the antipodal involution.

In the discussion above KO-theory has been presented as an
abstract cohomology theory and the analytic character intrinsic
in its very definition ignored. Atiyah's work on 'K-theory and
Reality' showed that, in order to prove theorems in real KO-
theory, one should, by analogy with algebraic geometry, extend
it to the Real KR~theory defined on a category of spaces with
involution. In this context R with the involution -1 is
traditionally written iR. The basic periodicity theorem
KR(X) = KR(X; R@iR), and hence KR(X) = KR(X; E¢if) for any
real vector bundle E, then permits the definition of the
cohomology theory KO* and gives sense to KO(X; -%) as KR(X; if).
This is the way to understand the statements (6.2) and (6.3): in
term§ of KRZ/Z-theory. Here the abstract Z/2-action in Koz/2
and the Galois action of Z/2 in KR are conceptually quite
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different. However, KR-theory does define in itself a /2~
equivariant cohomology theory. This will be interpreted later
as complex Hermitian K-theory. In the example which follows
the 'Real' character is the more apparent, although the
distinction is by no means clear-cut. Notice that, in the
indexing of (4.1), the KR-theory in dimension (=-i,-j) of a

i-23
compact Z/2-ENRX is what is normally written as KR J(X).

We are aiming now at a Real version of the local
obstruction, or 'free J-homomorphism', €, but must begin with a
résumé of the complex theory. As in §82 and 3 (X,Y) will be a
compact ENR-pair, Z a compact ENR with base-point. The notation
used in §3 for the free spherical fibration theory is

: X N
cumbersome. Let G be a finite cyclic group or § . We set
-1 . G
L(6)"(X,Y) := lim [x/Y; H (W] ,
e

where the limit is taken over all real G-modules W for which
the action of G on the sphere S(W) is free and HG(W) is the
space of G-homotopy equivalences S{W) —» S(W). The elementary
proof of the splitting lemma (3.5) may be generalized, by an

inductive argument, to show that the obvious map
- 0 .
16) () — wg)

to the group of units in equivariant stable cohomotopy is a

split injection.

Let V be a real vector space. Write VC for ¢ ®JRV’

U(VC) for the unitary group, CP(VC) for the complex projective
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space and Q(Vc) for the 'quasi-projective space' (iBZ)+A CP(VC)+.
iR is the Lie algebra of S1 ~ the complex numbers of unit
modulus. E, as in (5.7), will be the standard complex

representation of S1.
The complex 8 is a map
= -1 N
[z; vl — iz vl = o (2 x8(E @y V)i -E@E V),
defining in the limit
(6.9 & : ¥z = [z ve] — 1z o=} .
As in the real case, there is a map:
g 1,-1
T L) (2,0 —— {25 Q@)1 ,

which is always a bijection (even when Z is not connected). It

s s *
identifies {X"; Q(»)} with an ideal (and direct summand) in

0
w

1(X). Now consider the commutative diagram:
S

k0 — 5 wsHT'wo

-1 .
R i w07
S 1 S

S

in which the top row is defined by the inclusion of U(VC) in
1

S
H™ (E ®RV) and F is the tensor product with E. Vie have
I F(x) = 1+8(x) (x ekTN(X)) .

S
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This description shows that 8, (6.9), is quadratic. There
is a linear map in the opposite direction

e: Lz; Q)b — [z; U] = K (2)

defined using the infinite loop space-structure of the infinite
unitary group. If f:2 — Q(VC) is a stable map, set €(f) :=
*(r) € R’1(Z), where r € R‘1(Q(VC)) is represented by the
reflection map R : Q(VU) < U(VC)' (Recall that R is defined

by writing (V) as (T x€R(V))/(1x CR(V)). R(z,0x7) (z ¢ sT,
x G'S(VC)) acts on x as multiplication by z and fixes vectors
orthogonal to x.) The composition €.9 is linear, because
7&'1(Q(vc) AQUY)) = K1(CP(VC)XCP(VC)) is zero. By construction

and the complex version of (2.7), (e.9).R = R; more is true.

Proposition (6.10) . (Segal [79]) . The composition €.®
[2; U)) — {25 Q=) —>[2; U=

is the identity.

It suffices to consider Z = U(Vc) and the inclusion U(VC)
—> U(w), Write n = dim V. Since the multiplication map
Q(Vc)n < U(Vc)n — U(V,) induces a monomorphism in K-theory,

we can reduce to the case 2 = Q(VC)n , which is easily checked.

(The identity €. = 1 is natural. The projective unitary
group PU(VC) acts on U(VC) and on Q(Ve). 6 is defined by a
PU(VC)-equivariant stable splitting Bs : U(VC) —a»Q(VC) of R.
Now note that the U(VC)-equivariant K-theory of a compact
PU(VC)-ENR splits as a direct sum of components corresponding
to the irreducible representations of the centre S1 of U(VC)'
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The Adams conjecture is another topic that is profitably
r is given by an element in KU(V )(Q(V )) of weight 1. Bs*(r)
studied by Real methods; again we start with the complex
is the canonical class (of welght 1) in KU(V )(U(V M. )

1 . .
theory. Fix a prime 1 and let j: Z/lN —> S be the inclusion

of the subgroup of lN-th roots of unity. We consider the
We turn to the Real theory. U(VC) and Q(V\E) are given the
J-homomorphism, f say:
involution induced by conjugation; the fixed point sets are

0(V) and the real projective space p(v)¥ (with disjoint base- . ] o
j*.d WP KX —>K—1(X) — e (X)° —"“’z/n(“
point) . There is little to change, save the notation. X, Y s1 S S

and 2 will be Z/2-ENRs. L(S )o ' (X) will be a subgroup of the

E/Z

1 The automorphism group (Z/lN)' of Z/lN acts on wZ/N(X)
group of units in S xZ/2-stable cohomotopy. The fixed sub-
(Precisely, any endomorphism is given by multiplication by an

1
space of Z must be connected if ‘gs : L(S Vo (L) —

2 . 0
7Z/2 Z/ integer q and induces an endomorphism q* of wz/N(X); an
{7; Qo is to be a bijection. v y
)

automorphism defined by a q prime to 1 shall act by q, := (q*)
This 'Galois symmetry' lifts (at (1)) to the action of the

Proposition (6.11) . Let Z be a compact Z/2-ENR with
Adams operations in K-theory.
base-point. Then there is a splitting €. = 1:

KR'(z) = [25 u(e)]1%/? z/2

z/2
—{z; )} 2 502y U]
Proposition (6.12) . Let q be an integer prime to 1.

Then, at the prime (1),
The construction of £ uses KR as Z/2-cohomology theory,

£(e0x) = qefx) € Wl (0, (x € KT .

or, equivalently, the Z/Z-equlivariant infinite loop space- Z/N

structure of U(m). .
The reduction to be used in the proof is also applicable

. to (6.10). Let B be the space of maximal tori of a compact
iIf Z is a suspension (iR) A B with the involution on B .
i /2 ~ connected Lie group G. The torus-bundle E = {(T,g) € BxG|
trivial, then [ Z; U(w)] is identified with KO(B) by KR-
€T over B projects onto G by a map, say w: E-— G, of
periodicity and 1z; Q()} 212 _ (8, epe)*1%/? splits as a & ! prod J P y
degree 1. Since both E and G are framed manifolds, =*:
direct sum {B; P(«)"} @ {B; B0(2)"} of the fixed point and
cuo(G) — wO(E) is a split monomorphism. (The index W, :
free components, (A.3) . (Recall that the classifying space of o o
w (E) —» w (G) defined by the framings supplies a splitting;

0(2) = s X Z/2 may be written as S(e) x CP(»). ) (6.11) is

/2

0]
-, % is multiplication by the unit T, (1) € w’(G).)
essentially a desuspension (in effect if not in spirit) of a
result of J.C. Becker and D. H. Gottlieb [13] and (6.10) a

It is sufficient to verify the assertion (6.12) when X is
desuspension of Segal's original result.

U(Vw) and x is the universal class. To do this we may 1lift from
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G = U(VC) to E = U(VC)XNT’ where T is a maximal torus and N
its normalizer in G. Here the identity may be checked quite
explicitly, by writing T as (S1 )n and N as the wreath product
S1SGn . (Compare the Becker-Gottlieb solution of the Adams

conjecture [14] .)

It is more satisfactory to state the proposition in terms
of the free summand L(E/lN)_1(X). This is mapped by the Z/lN-

to the ideal {X*; B(m/M*] i (X) and identified by
1

0
nw
Z/AN

the map: x+— 1+ E(x) with the group of all units in w (x)

o]
z/ln
which lie in the coset 14 {x7; B(?Z/lN)‘] . (B(Z/)N) is the
classifying space, the direct limit of the lens spaces
S(E@V)/(Z/lN). ) Now let L(l)(E/lN)-1(X) be the intersection
of 1+ {X"; B(Z/IN)'*}(AI) with the group of units in the l-adic

completion w (X)z\l) . It is a finitely generated Zz\l)-

0
Zéﬁ
module (the sum if X is connected, and not empty, of a finite
group and Lfl)(z/lN)"(point) = Ker (Z()) »(ZAN)"}). £ is
continuous for the l-adic topology - its image is finite - and

defines a EE‘ )-linear map

1

N -1
KT (X)) — L0y (Z40)7 1 (x),

which, according to (6.12), is equivariant with respect to the
action of the group Zfls of l-adic units on the left by the
Adams operations and on the right through the projection onto

(Z/N)" .

We now recover the S1—theory as an inverse limit. An
homology argument shows that the restriction maps give an
isomorphism:
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£x5 (AR)*a (531)‘}’(‘1)—> lim {x* B(@AN I -
N
The inverse limit is taken over the transfer maps defined by the
inclusions Z/lN ~y Z/1N+1 . TFor the sake of consistency, CP(»)
is interpreted as the classifying space of S‘I . The action of
zgls 1ifts to the inverse limit and ® extends to a E&S‘

equivariant map
-1 + . + 1.+ A
KT H(X)gyy — X5 (AR)T A (85) }(1)'

(Again, ‘this is better understood as a J-homomorphism by

introducing a theory L(*l)(s’)”(x). )

This completes the discussion of the complex theory; the
parallel development of the Real theory is straightforward. Only

the prime 1 = 2 is interesting, (9.6)(ii).

Remark (6.13) . Let X be a compact Z/2-ENR. An element x

€ (X)(Z) is invertible if and only if i*(x) € wO(X)(Z)

0
“mse

is invertible.

Hence the reduction employed in the proof of (6.12)
generalizes at once; an involution on the group G induces an
O [¢]
. 1 s * . ol i
involution on E and w* : wz/z(b)(z)% MZ/Z(E)(Z) is a split
monomorphism. However, it is not necessary to localize; the

z/2 z/2

restriction of w: E —3 G has degree 1 on each

component of the fixed point set. (Notice, too, that both the

/2

space B of maximal tori and the subspace BZ fixed by the

involution have Euler characteristic 1. )
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One further point deserves mention. CP(w) with the action
of Z/2 by conjugation is the classifying spade of the group S1
with the involution: z+— z_1. See pp 105,6. The classifying

space of the subgroup with involution Z/lN is, similarly,

realized as an infinite lens space.

The Real (6.12) establishes, by passage to fixed sub-
spaces, the real Adams conjecture for a suspension, although
that was not our primary concern. Real methods are appropriate
in the general case, too. If £ is a Real vector bundle over a
compact Z/2-ENR X, then, for odd q, there is a stable Z/2-map
e (qaqé)‘ over X with the (non-equivariant) degree in each

fibre odd. (See (B.2).)

Both the formulation of the periodicity theorem (6.3) and the
construction of the KO-Euler class Y(L.E) stem from the work of
M. F. Atiyah and J. L. Dupont [7] . (6.6) is well known; the
argument has the merit of immediate extension to equivariant
KOG-theory, G a compact Lie group. (See J. Berrick [17] for
an application.) The method of proof, if not the statement, of
(6.7) and (6.8) is now standard; see [10] III. The Real J-

homomorphism has also been studied by H. Minami [68] .
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7. The image of J

As a first step in understanding Z/2-equivariant stable
cohomotopy, and hence as a means of defining universal elements
in any Z/2-cohomology theory, we shall describe the computation
of the KOZ/Z-theory d and e invariants. The methods and many
of the results are to be found in the fundamental work of

J. F. Adams.

w, &%) is uninteresting: it follows from (4.3) and

(4.4) that

(7.1) w, ;®Z[}]is equal to w; ®z[3] if i-j is odd,

(wi@mj)®?z[ 3] if i-j is even.

We shall work throughout this paragraph modulo odd torsion.

According to the split exact sequence:

.b i*
—_—tT sy W T W
0= 10 0,0 c=--=2 Yo 0
-
w1 0is a free abelian group on one generator, a say, such that
’
ab = 1-t. From KO-theory, (6.5), i*(a) is the Hopf element
m e W, . (In fact, the classical Hopf map 33 —> Sz, written

1
as S(C2) —> CP(cz), is equivariant with respect to complex

conjugation and so may be regarded as a map (R@L2)+ —
(R@®L)*.) This element a is the first of an infinite family

generating the torsion-free part of wi 0 is 0.
»
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We write a(i) for the Hurwitz-Radon number, the order of
Ko(P(RY)), and set a'(i):= a(i) if i # 0 (mod 4), 2a(i) if

i =0 (mod 4) .

Theorem (7.2) . There is a 'natural' graded subring M,

of Y with the following properties.

K, = mb' if i >0,

MO = ZPpLt,

Mi = E,/.i, if i > 0, is free on a generator M such
that bl p, = ar(i)(1-t).

The kernel of the Hurewicz homomorphism d : Weg T KO*O

is precisely the torsion subgroup and «, = W, @Ker(d).

o]
Lo i € w is.
The restriction i My 3 ist
of order 2 and detected by the d-invariant if i = 1 or 2 (mod 8);
equal to the element of order 2 in the image of the
J-homomorphism, J: Z = K0i+1_)mi if i= 3 or 7 (mod 8);

zero otherwise.

The epithet 'natural' in the statement of the theorem is
to be taken both in the technical sense that the yi.are defined,
rather than their existence postulated, and in the colloquial
sense. The method of proof may be seen as an attempt to

realize the KO-theory periodicity operators in stable cohomotopy.

Proposition (7.3) . In the coefficient ring w,, there are
operators, defined if i-j is odd,

A wi,j — wi+8,j and

T: wi,j_ﬁ)wi+2k,j if j-i = k (mod 4), k = 1 or 3,

with the properties listed.
(1) a=1°.
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(ii)} Regard the d-invariant w _, -— KO,, as a map from a ZxZ-
to a Z/8x Z/4-graded ring. Then d.A = d and d.T =7T.4.
(iii) T(b) = a; A(b) generates the free component of w'?,O .
(iv) x ¢ wi5e If i-j is odd, then i*A(x) lies in the Toda
bracket < i*x,2,8¢> . (8s is the element of order 2 in wo. )

If i-j =3 (mod 4), then i*T(x) € < i*x,2,7m> .

Remark (7.4) . If x € ey jand i-j is odd, then (1+t)x is
s
zero (by inspection, because x is fixed by the involution),
Thus, 2i*{(x) = O.

¥, will be the smallest subring of w*o containing b and

*
closed under the action of the operator T. We illustrate the
construction of T in the simpler case, k = 1. Let V be a real
[¢] .
= i . t
vector space. a € “i,0 wz/z(pon.nt, L) 1lifts to an
0 /p(8(1¥); 1), that is, of wO(B(V); ). As

observed in §2, elements of this latter group may be thought of

element of &

as stable fibre-homotopy classes of maps B —> 0" over P(V).
By collapsing the base-points in each fibre to a single base-

point, we obtain a stable map

) — )t

of Thom spaces. The whole procedure is functorial and so
produces an O(V)-equivariant stable map. In particular, if V

3 with the

is equal to E, the basic representation H of S
action by left multiplication, (5.7), a leads to an SB-
equivariant stable map

a,: P et
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From b comes, similarly, the 'inclusion' b, : I’(E)“H — P(E)".

Lemma (7.5) . There is a unique SB-equivariant stable map
r: p(E)! — p(e)7H
such that b,.T = a, .
In fact, T generates the group of stable SB-maps P(E)H

-3 P(x-:)‘H .

Remark (7.6) . Notice that, for any quaternionic vector
space V, the balanced product construction 'S(V).xSB' applied to
T will produce a stable Sp(V)-equivariant map P(V)H ——9P(V)-H.
(Sp(V) is the symplectic group and P still the real projective

space. )

The statement (7.5) on the lifting of a,, on the face of
it an Sj-equivariant result, is converted to Z/2-homotopy

theory by a simple observation.

Remark (7.7). Let H (not the Hopf bundle) be a closed
subgroup of a compact Lie group G, X and Y respectively an H-

and a G-ENR. Then G-maps Gx X —> Y (with G acting on the

H
first space by left multiplication) correspond, by restriction,
to H-maps X — Y. The same is true stably and, in particular,

if X is compact and W a (virtual) coefficient H-module, then

* - = .
wG(GxHX, Gxﬂw) = u;{(x,w).

The reduction is effected by identifying P(E) with the

homogeneous space SB/(Z/Z); the Hopf bundle is 53x L.

Z/2
The same method is used for the construction of the operator T
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in the stable cohomotopy ring. The map T induces

T W RE); - H) — W IRE) ),
S S

X = d inte - =
that is, an operator (03-1,j OJE/Z(p01nt, L) — w

J+1,3
-3 int; L) . The extension t operat )
wz/z(pou;t, L) e extensio o an operator wi,; ——
w, .o 5 for j-i = 1 (mod 4) depends on the fact that 4H over
’

P(E) is equivariantly trivial (isomorphic to E), so that T
defines a stable map P(E)HN”)H — P(E)(‘m-”H for any

integer N.

T in the case k = 3 is defined by constructing a stable
SB-map P(E)3H — P(E)_BH . The torsion subgroup of 0)6,0 is
of order 2, generated by x say, and there are two natural
candidates for the map T differing by x,. X is killed by
multiplication by a or b, and the choice of T does not affect
M, .

The operator A is constructed from an S1-equivariant
stable map P(E)'® — P(E)™H, where E is now € with the action
of S1 by multiplication; it is an equivariant version of the
original operator 'A' of Adams [1] . (There is also a stable

- 2
S1-map P(E)3H —> P(E) H defining the operator a2.T or T.a" .)

(7.2) describes the image of the d-invariant w, P —>
b}
KOi 3 for j = O. The same method will give a description of
9’
the remaining, torsion cases. We turn our attention to the e-
invariant. The Adams operation v3 extends to a stable operation
Z/z-theory KOEE) localized at the prime (2).

The associated e-invariant will be a homomorphism:

on the bigraded KO
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N

/(%2 = 1) (xo, )

Ker(d) (¢ w; ;) —> (KO
i, i+1,3+1

ie1,3+17(2) (2) *

W L . .
hen j 3 (mod 4) Koi,j 0 and it takes the form (j # -1):

(7.8) e : w,

lij
(Z(z)@z(z)t)/(z"(i‘”(1+t) _2v(j+1)(1_t)) if i+1 = 0 (mod 4).

— Z/,v(3+1)+1 if i+1 F 0 (mod 4),

Here v is the 2-adic valuation: v(Zs.odd) = 8, The second

group is the quotient of the ring Z(z)[t]/(tz-‘l) by a principal

jdeal.

Theorem (7.9) . (Mahowald) .

j+1 = 0 (mod 4), j £ -1

or 3. Then the image of e, (7.8), is as follows. Set i :

0

max { i | j+1 e is surjective if 1 > i

0 (mod a(i+1)) } .

o
If 1 <,

2V 1) 0 (141)

then the image is generated by:
if i+1 % O (mod 4),

1+t and (2v(j+1)/2a(i+1)).(1—t) if i+1 = 0 (mod 4),

with the exception of the case i 7, 3+1 =4 (mod 8), when it

is generated by 1+t and 4(4 - (1-t)).

of

w

There is an M, -submodule B, . s
J

J

fB*j = 0; and the restriction i*B,. ¢ w, lies

such that u*j
Ker(e)@B*j ;

in the image of J, with the exception of the cases i 6, 8
and 9, j+1 = 4 (mod 8), when the image in w, is, respectively,

2 -
zZ/2.»", 7%/2.(v+ms) and Z/Z.('vz3+1120').

(v is the generator of the kernel of e in w ¢ is the

8;
generator of w

7')
This theorem is a generalization of the vector field
theorem of Adams in the form:
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. i, 0~ o o (PP) = m/2
(7.10) j+1 =0 (mod 4). Then b : wj(Pj_i)—éwJ( 3) /

is non-zero if and only if j+1 = O (mod a(i+1)) .
The point is that the e-invariant detects '(:)j(P?) .

We indicate the idea of the proof by defining a 'Clifford

w5 i which under the action of T and b
O)
generates a substantial part of the summand B*j .

element' cj <

if 1O+1

0 (mod 8), this will include the whole

0 or 1 (mod 8) and j+1

of B, in dimensions i ¥ 3 (mod 4). (In the other two cases

i3

io+1 = 2 or 4 (mod 8), it is necessary to introduce another

generator in dimension io+5 or io+3 (= j+7 (mod 8)) to achieve

the same effect. This depends on a constructive reading of

Lemma (4.8) of [27] .)

1O+1

29 . (®I*,m¥") admits the structure of

Write V:
a Z/2-graded module over the Clifford algebra C(V). The
multiplication defines a trivialization of the bundle (j+1)H
over the real projective space p(V) and so an isomorphism
(7.11) wj(P(V);(jH)H-—H.V) E w_1(P(V);—H.V)
(in the local coefficient notation of §2) . The second group
contains a canonical element corresponding under S-duality to
will be its image under the map (7.11), the

1€ wo(P(V)). ey

{surjective) stabilization map (P(V) —> P(=)) and § of (4.6):

W (P(V); (G+DH=-H.V) —> & (PF, )o@, .
SR (Ge1) ) Byt )y

is non-zero; it generates the image of J in ISP (This is

i*c,
J 0
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