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§0. Introduction
— = =]

These are notes for lectures of John Milnor that were given

as a seminar on differential topology in October and November,

1963 at Princeton University.

Iet W be & compact smooth manifold having two boundary

components V and V' such that V and V' are both deform-

ation retracts of W, Then W is said to be a h-cobordism

between V and V' ., The h~-cobordism theorem states that if in

addition V and (hence) V! are simply connected and of dimen-
sion greater than 4 , then W is diffeomorphic to V X [0, 1]
and (consequently) V 1is diffeomorphic to V' , 'The proof is
due to Stephen Smale [6]. This theorem has numerous important
applications —— including the proof of the generalized Poincaré
conjecture in dimensions > § —— and several of these appear

in §9. Our main task, however, is to describe in some detail a

proof of the theorem.

Here is a very rough outline of the proof. We begin by
constructing a Morse function for W (§2.1), i.e. a smooth
function £ : W —> [0, 1] with V = £5(0), V' = £75(1)
such that f has finitely meny critical points, all nondegen-
erate and in the interior of W. The proof is inspired by the
observation (§3.4) that W is diffeomorphic to V X [0, 1] if
(and only if) W eadmits a Morse function as sbove with no crit-
ical points. Thus in §§4-8 we show that under the hypothesis

of the theorem it is possible to simplify a given Morse function
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f until finally all critical points are eliminated, In §h, ;g
is adjusted so that the level f£(p) of a critical point p is
an increasing function of its index, In §5, geometrical condi-
tions are given under which a pair of critical points p, q of
index A and A + 1 can be eliminated or 'cancelled'. In §6,
the geometrical conditions of §5 are replaced by more algebraic
conditions —— given a hypothesis of simple connectivity. In

§8, the result of §5 allows us to eliminate all critical points
of index O or n , and then to replace the critical points of
index 1 and n -1 by equal numbers of critical points of
index 3 and n - 3, respectively. In §7 it is shown that the
critical points of the same index A can be rearranged among
themselves for 2 < A <n - 2 (§7.6) in such a way that all
critical points can then be cancelled in pairs by repeated appli-

cation of the result of §6. This completes the proof.

Two acknowledgements are in order. In §5 our argument is
inspired by recent ideas of M. Morse [11][32] which involve
elteration of a gradient-like vector field for f , rather than
by the original proof of Smale which involves his ‘'handlebodies?,
We in fact never explicitly mention handles or handlebodies in
these notes. In §6 we have incorporated an improvement appearing
in the thesis of Dennis Barden [33], namely the argument on our
pages 72-T73 for Theorem 6.4 in the case A =2 , and the state-

ment of Theorem 6.6 in the case r = 2.
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The h-cobordism theorem can be generalized in several direc-
tions. No one has succeeded in removing the restriction that V
and V' have dimension > 4, (See page 113.) If we amit the
restriction that V and (hence) V' be simply connected, the
theorem becomes false. (See Milnor [34].) But it will remain
true if we at the same time assume that the inclusion of V
(or V') into W is a simple homotopy equlvalence in the sense
of J. H. C. Whitehead. This generalization, called the s-cobor-
dism theorem, is due to Mazur [35], Barden [33] and Stallings.
For this and further generalizations see especially Wall [36].
Lastly, we remark that analogous h- and s-cobordism theorems

hold for piecewise linear manifolds.
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Section 1. The Cobordism Category \.
f—e—— e e ]

First some familiar definitions. Euclidean space will be
denoted by R- = {(x]_,...,xn)lxi €eR, 1=1,...,n) vhere
R = the real numbers, and Euclidean half-space by

Rl:- = [(xl,c-o,xn) € Rnlxn _>_ O} .

Definition 1.1, If V 1s any subset of R°, & map

£f: V —> Rm is smooth or differentiasble of class d® if £ can

be extended to amap g: U —> Rm, where U DV 4is open in Rn,

such that the partisl derivatives of g of all orders exist and

are continuous,

Definition 1,2. A smooth n-menifold is a topological manifold

W with a countable basis together with a smoothness structure J

on M, )2 is a collection of pairs (U,h) satisfying four conditions:

(1) Bach (U,h) € J consists of an open set U(C W

(called a coordinate neighborhood) together with a homeomorphism h

which maps U onto an open subset of either Rn or Ri .
(2) The coordinate neighborhoods in J cover W,

(3) 1 (Ul’hl) and (Uz,hz) belong to J, then

~1 n
Byho": By(U; N U,) —> B or R,

is smooth,
(4) The collection J is maximal with respect to property

(3); 1.e. if any pair (U, h) not in 3 is adjoined to

Ji then property (3) fails,




The boundary of W, denoted Bd W, is the set of all points

in W which do not have neighborhoods hameomorphic to R (see

Munkres [5, p.8]).

Definition 1.3. (W; Vo vl) is a smooth manifold triad if

W 1is a compact smooth n-manifold and Bd W 1is the disjoins union

of two open and closed submanifolds VO and Vl .

It (W Vo Vl), (w; Vi, Vé) are two smooth manifold triads
and h: V, —> vy is a diffeomorphism (i.e. : homecmorphism such
that b and b are smooth), then we can form a third triad

| B 1
(W U, W' Y, v2) where W U W is the space formed from W and

and V!

W' by identifying points of V 1 under h, according to

1
the following theorem.

Theorem l.k. There exists a smoothness structure J _1:21_'

W Uh W' compatible with the given structures (i.e. 8o that each

inclusion mep W —>W U W', W' —>W U W' is & diffeomorphism

- onto its image.)

o is unique up to a diffecmorphism leaving VO’ h(Vl) =V,

and Vé fixed.

The proof will be given in § 3 .

Definition 1.5. Given two closed smooth n-manifolds M0 and

M, (i.e. M), M, compact, Bd M, =BdM = @), a cobordism from M,

to M, is a 5-tuple, (W; Vor Vy5 By, hl)' where (W; Voo Vl) is a

smooth manifold triad and h,: V, —> M

i* Y1 1

Two cobordisms (W; Vo» V5 By hl) end ((W'; vy,

MO to M]. are equivalent if there exista & diffeomorphism g: W —> W!

is a diffeomorphism, 1 =0, 1.

Vi; by, bi) from

[ 4
carrying VO to VO and Vl to




Vi such that for 1 = 0,1 the following triangle commnutes: 3

givy

Then we have a category (see Eilenberg end Steenrod,
[2,p.108]) whose objects are closed manifolds and whose morphisms
are equivalence classes ¢ of cobordisms, This means that cobordisms
satisfy the following two conditions., They follow easily from 1l.h
and 3.5, respectively.

(1) Given cobordism equivalence classes ¢ fram M o to
Ml and c¢' fram Ml to MQ, there is a well-defined class cc?
from MO to M2 This composi.tion operation is associative,

(2) For every closed manifold M there is the identity

cobordism class = the equivalence class of

‘M

(M x I MxO,Mxl;p,pl), pi(x,i)=x, xeM 1=0,1.

o)
That is, if ¢ 1is a cobordism class fram Ml to Mz’ then

LMlc a ¢ =CLM2.

Notice that it 1s possible that cct! = "M , but ¢ 1is not

"M . For example




¢ 1s shaded. ¢! 1s unshaded.
Here ¢ has a right inverse c!', but no left inverse. Note that the
manifolds in a cobordism are not assumed connected.

Congider cobordism classes from M to itself, M fixed.
These form a monoid H‘M , 1.e. a set with an associative composition
with an identity., The invertible cobordisms in HM form a group
GM . We can construct some elements of G, by taeking M = M!

M
below,

Civen a diffecmorphism h: M —> M', define ¢, as the
class of (M X I; Mx 0, Mx1; J, hy) where J(x,0) = x and

hl(X,l) =h(x), xeM.,

Theorem 1,6.

¢n1 = Cpmn for any two diffeamorphisms

h: M ——> M' and h': M' —_— M,

Proof: Iet W=MXTI Uh M* X I and let Jh: MXI —>W,
Jh,: M! X T —> W be the inclusion maps in the definition of

chch, . Define g: M X I —> W as follows:

g(x)t) = Jh(xyzb) 0

IN

ct

IN
-

g(x,t) = Jh.(h(x),Et-l) < t

-
IN
[
.

Then g 18 well-defined and is the required equivalence,




M ¥——s M

Definition 1.7. Two diffecmorphisms hO’ hlz
are (smoothly) isotopic if there exists a map £: M X T —3> M?
such that

(L) £ 4s smooth,

(2) each f,, defined by ft(x) = £(x,t) , 18 a diffeomorphism,

(3) £ =1 , £ =h .

Two diffeomorphisms h , hy: M —> M' are pseudo-isotopic™

if there is a diffecmorphism g: M X I ——> M! X I such that

g(x,0) = (ho(x),O) , &(x,1) = (hl(x)’l) .

Lemma 1.8, Isotopy and pseudo-isotopy are equivalence

relations,

Proof: Symmetry and reflexivity are clear, To show transi-

tivity, let ho, hl’ h2: M ——> M! Dbe diffeomorphisms and assume

we are given isotopies f, gt M X I ~———3> M! between h0 and hl
and betveen hl and h2 respectively, Ilet m; I —> I be a
smooth monotonic function such that m(t) =0 for o0 <t < 1/3,
and m(t) =1 for 2/3 <t < 1. The required isotopy

k: M X I —> M! between ho and hl is now defined by

k(x,t) = £(x,m(2t)) for 0<t <1/2, and k(x,t) = g(x,m(2t-1))
for 1/2 <t < 1, The proof of transitivity for pseudo-isotopies

is more difficult and follows from Lemma 6,1 of Munkres [5,p.59].

*®
In Munkres' terminology hO is "I-cobordant" to h1 .

(see [5,p.62].) 1In Hirsch's terminology hO 1s “concordant" to h,.




It is clear that if ho and hl are 1sotopic then they are

pseudo-isotopic, for if f: M X I ——> M' 18 the isotopy, then
~N A

f: MXI —> M' X I, defined by f£(x,t) = (ft(x),t), is a
diffecmorphism, as follows from the inverse function theorem, and

hence is a pseudo-isotopy between ho and hl « (The converse

for M = sn, n > 8 1is proved by J. Cerf [39].) It follows from

this remsxrk and from 1.9 below that if ho and hl are isotopic,
then ¢, =¢ .
By By

Theorem 1.9. ¢, = Geomsa ho is pseudo-isotopic to h

0 1 1

Proof: Iet g: MXTI — M! XTI be a pseudo-isotopy
1l

between h. and h., Define h_

. |
0 1 oxI.M XY —>MxXI by

(n-t

o X 1)(x,t) = (hal(x),t) « Then (hal Xx1l) o g is an

end ¢ .
1 hO

equivalence between cy

The converse 1s similar,




Section 2, Morse Functions

We would like to be able to factor a given ecobordism into
a composition of simpler cobordisms, (For example the triad in

Figure 2 can be factored as in Figure 3.) We make this notion

precise in what follows,

Vo
FIGURE 2 FIGURE 3




Definition 2.1, Iet W be a smooth manifold and

f: W —> R a smooth function, A point p e W 18 a critical

point. of f 1f, in some coordinate system,

of of of -
= = ,ee = = 0 ., Such a point 1s a non-degenerate
Bxl D 8x2 o an D

2
critical point if dEt(gizaf—, ) # 0. For exasmple, if in Figure 2
173'p

f 1is the height function (projection into the z-axis), then f has

four critical points Pys Py p3, Py,s all non-degenerate.

Lemma 2.2 (Morse). If p 1s a non-degenerate critical

point of £, then in scme coordinate system sbout p,

f(xll"‘)xn) = constant "xi- (XX "{+<+1+ooo +x121 for

some AN between O and n .

N 1s defined to be the index of the eriticel point p.

Proof: See Milnor [4, p.6] .

Definition 2,3, A Morse function on a smooth manifold triad

(W; /Y Vl) is a smooth function f: W ——> [a,b] such that

(1) £7Ha) = vy, £70) =V, ,

(2) M1 the critical points of f are interior (lie in

W - BAd W) and are non-degenerate,

As a consequence of the Morse Lemma, the critical points of
a Morse function are isolated. Since W 1s compact, there are only

finitely many of them,




Definition 2.4, The Morse number p of (W; Yy Vl) is

the minimum over all Morse functions £ of the number of critical
points of £,

This definition is meaningful in view of the

following existence theoren,

Theorem 2.5, Every smooth manifold triad (W; 'Y Vl)

possesses a Morse function,

The proof will occupy the next 8 pages.

Lemua 2,6, There exists a smooth function f£: W —— [0,1]

with f-l(o) = VO ’ f’l(l) =V, , such that f has no critical

point in & neighborhood of the boundary of W,

Proof: ILet Ul’ coey uk be a cover of W by coordinate

i

vl’ and that if Ui meets B4 W the coordinate mep

hi: Ui —_— Rl_: carries Ui onto the intersection of the open

neighborhoods. We may assume that no U, meets both VO and

unit ball with Rl:_ .

On each set U‘.l define a map

as follows, If U, meets Vo, [respectively Vll let £, = Ih,

where L 18 the map

LX= X [respectively 1 - xn] .

If U, does not meet Bd W, put £, = 1/2 identically .

i

Q




Choose a partition of unity [mi] subordinate to the cover {Ui)

(see Munkres [5,p.18]) and define a map f£: W —> [0,1] by

£(p) = @ (2)E () + oot + @ (P)F, (P)

where fi(p) is understood to have the value 0 outside U,.

f 1is clearly a well defined smooth map to [0,1] with f"l(o) =V

f-l(l) =V, . Finally ve verify that af £0 on BAW. Suppose

q € Vb [respectively q e Vl]. Then, for some 1, qi(q) > 0,

and g U, Iet b (p) = (x(p),..0,x"(p)). Then
3¢ k S0 , of of :
—_—= Tt -"— + Q. ——"' + eoe + () "-"" + ses .
3 =1 d P L ad 1P

Now fj(z) has the geme value, O, [respectively 1] for all

k a¢h 3 k
and I —% = { Z J] = 0., So, at gq, the first swmand
J=1 ox ax® J=1

of
is zero, The derivative ——%-(q) equals 1 [respectively -1]

ox
of
and it 1s easily seen that the derivatives ——%-(q) all have the

ox
Bfi St
same sign as ) (a) 3 J = 1, mwwe,k o Thus — (q) f 0. It
ox X

follows that 4f #0 on B4 W, and hence 4af 4 0 in a neighbor-

hood of B4 W.

The remainder of the proof is more difficult. We will
alter f Dby stages in the interior of W eliminating the
degenerate critical points. To do this we need three lemmas which

apply to Buclidean space,

Then

lo.




Iemma A (M. Morse). If £ is a C2 mapping of an open L]

subset U(C R to the real line, then, for almost all linear

mappings L: Rn ~——> R, the function f + L has only nondegenerate

critical points.

By "almost all" we mean except for a set which has measure

zero in HomR(Rn,R) XRY,

Proof: Consider the manifold U X HomR(Rn,R) . It has
a submanifold M = {(x,L)|a(f(x) & L(x)) =0) . Since
a(f(x) + {x)) = 0 means that L = -df(x) it is clear that the
correspondence x —3> (x,-df(x)) 1is & diffeomorphism of U onto M.
Each (x,L) e M corresponds to a critical point of f + L, and

d°¢

this eritical point is degenerate precisely when the matrix (ERE)
is singular. Now we have a projection m: M —> Hom(R",R)
sending (x,L) to L. Since L = -df(x) , the projection is
nothing but x —> -df(x) . Thus T 18 critical at (x,L) e M
precisely when the matrix dy = -(aef/axiaxd) is singular, It
follows that £ + L has a degenerate critical point (for scme x)
if and only if L 1is the image of a critical point of
T M —> HomR(Rn,R) R, But, by the theorem of Sard (see
de Rham {1,p.10]):

If Mn ——>Rn is any Cl map, the image of the

set of critical points 9£ 7 has measure zero in Rn.

This gives the desired conclusionm,
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Jemma B. Iet K 1_35_ a campact subset 9_{ an open set U

in Rn. If f: U——>R 18 02 and has only nondegenerate

critical points in K, then there is a number & > O such that

——— C——— —  w——

if ge U—>R 1is 02 end at all points of K satisfies

Baf Bag

axiax 3 ox 1Bx ]

(1) < 5, (2)

< 8

1, =1,.0eyn , then g likewise has only nondegenerate critical

points in K.
s.1/2
Proof: Iet |ag| = [( ) + ( 5_' ) ] .

2
o f
Then |af] + Idet(g{-g"')l is strictly positive on K. Iet p >0
1°%3

be its minimum on K. Choose & > O 80 small that (1) implies that
[lag] - [ag]| < w/f2

and (2) implies that

Hdet( )l - |det(5§53§')“ < pf2.

Then |dg| + |aet(g)-t5¥-)| > |ag| + Idet(gi-f&—'j-)l - uf2 ~pf2>0
i3

at all points in K. The result follows,

Lemma C. Suppose h: U —> U' is a diffeomorphism of

one open subset 2{ IP onto another and carries the compact set

KCU onto K'C U'. GCiven a number e > O, there is a number

8 > 0 such that if a smooth map f: U' ——> R satisfles
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2
of £
|f| < &, |§;q| < & l%{j?i_d_ <b i, =1, sy n

at all points of K' CU' , then £ Oh sgatisfies

2
foh fOh .
|£ on| < e gf""<e’ %{;53;—<€ 1,3=1 se0ey, n,
i J

at all points of K.

2
df%h 3 foh
Bxi ’ Biiaxj is a polynomial

Proof: Each of f Oh,

function of the partial derivatives of £ and of h from order
O to order 2; and this polynomiel vanishes when the derivatives

of £ vanish. But the derivatives of h &are bounded on the compact

set K. The result follows.

The €° topology on the set F(M,R) of smooth real-valued

functions on a compact menifold, M, (with boundary) may be defined
as follows, Let [Ud} be a finite coordinate covering with
coordinate maps ha: Ud —_— Rn, and let {Ca] be a compact
refinement of {qa] (cf. Munkres [5, p.7]). For every positive
constant & > 0, define a subset N(3), of F(M,R) consisting of

all maps g: M ——> R such that, for all «a,

* < %y a2ﬁa
‘ga' B, EEI < 5, 5;;3;3 < B

-1
at all points in ha(qa), vhere g = gha and i, J =1, .40, D ¢
If we take the sets N(8) as a base of neighborhoods of the zero

function in the additive group F(M,R), the resulting topology is




1k,
called the C° topology. The sets of the form f + N(8) = N(£,5)
give a base of neighborhoods of any map f ¢ F(M,R) , eand g ¢ N(%,8)

means that, for all o,

2 2
og, bfa bga'

Yl <8 |
- , -
Bxi ox 1ax 3 ox 1ax )

<8

X &%
k?1Q

lfa - %a| <& I

at all points of ha(Ca) .

It should be verified that the topology T we have con-
structed does not depend on the particular choice of coordinate
covering and compact refinement, Iet T' be another topology
defined by the ebove procedure, and let primes denote things
associated with this topology. It is sufficient to show that,
given any set N(5) in T, we can find a set N'(3') in T

contained in N(8) . But this is an easy consequence of Lemma C.

We first consider a closed manifold M, i.e. a triad

(M, #, #) , since this case is somewhst easier.

Theorem 2.7. If M is a campsect menifold without

boundary, the Morse functlns form an open dense gubset of

F(M,R) in the c® topology.

Proof: Let(Ul,hl),...,(Uk,hk) be a finite covering of M
by coordinate neighborhoods., We can easily find compact sets

C:LCU1 such thet C,, C, ..., C, cover M.

2
We will say that £ 1is "good" on aset S(CM if ¢

hes no degenerate critical points on S.
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I) The set of Morse functions is open. For if
f: M——> R 18 a Morse function, Lemma B says that, in a

neighborhood N1 of £ in F(M, R), every function will be good

in C,. Thus, in the neighborhood N = NN..nN of f,

every function will be good in Cl V... U Ck = M,

II) The set of Morse functions is dense, Let N be a
given neighborhood £ ¢ F(M, R). We improve f by stages. Let
N be a smooth function M ——> [0,1] such that A =1 in a
neighborhood of Cl and N =0 1in a neighborhood of M - U

1
For almost all choices of linear mep L: Rn > R the function

fﬂﬂ:f@)+MNL@ﬂﬂ)wﬂlmgwdm %CUl(mmaM.
We assert that if the coefficients of the linear map I, are
sufficiently small, then fl will lie in the given neighborhood

N of £,

First note that fl differs from f only on a compact set

K = Support A C U;. Setting L(x) = L(xl,...,xn) =T £;x, , note

that flhil(x) - fhil(x) - (hhil(x)) £ 8%,

for all x ¢ hl(K) . By choosing the £, sufficiently small we

i
can clearly guarantee that this difference, together with its first
and second derivatives, is less than any preassigned e throughout

the set hl(K). Now i¥ e is sufficiently small, then it follows

from Lemms C that £, belongs to the neighborhood N.

1
We have obtained a function fl in N which is good on
Cl. Applying Lemms B again, we can choose a neighborhood Nl of

£., N. C N, so that any function in N. 1a atill zood on 0
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At the next stage, we simply repeat the whole process with

fl and Nl, to obtain a function f2 in N, good in Cys

of £, N, C N, such that any function in N,

and a

neighborhood, N2

is still good on C2. The function f2 is automatically good on

Cl since it lies in Nl‘ Finally we obtain a function

fKENkCNk-lC”'CNlCN which is good on €, U ... UCy =M.

We are now in a position to prove

Theorem 2,5. On any triad (W, Vo» Vq)s there exists &
Morse function.

Proof: Iemma 2.6 provides a function £: W — [0,1]

such that (1) f‘l(o) =V, f'l(l) =V,

(11) £ has no critical points in a neighborhood of

Bd W.

Ve want to eliminate the degenerate critical points in
W - B4 W, always preserving the properties (1) and (ii) of £,
Iet U be an open neighborhood of Bd W on which f l;as no
critical points, Because W 1is normal we can find an open
neighborhood V of BA W euch that V CU. Let (U;) be a
finite cover of W by coordinate neighborhoods such that each
get Uy lies in U or in W - V , Teke a ccmpact refinement (ci)

of (Uj_] and let C. be the union of all those C, that lie in

0 i
U. Just as for the closed manifold of the last theorem we can use
Lemma B to show that in a gufficiently smell neighborhood N of
f, no function can have a degenerate critical point in C,. Also

0
f 1is bounded away from O end 1 on the compact set W - V.
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Hence, in a neighborhood N' of f every function, g, satisfies

the condition 0<g<1l on W -V. Let No=NnN'

suppose that the coordinate neighborboods in W - V are

. We may

Ul’ coey L&( . From this point we proceed exactly as in the previous

theorem, With the help of ILemma A we fnnd a function fl in No

vhich is good (i.e. has only nondegenerate eritical points) on Cl’

and a neighborhood N, of £, , N, C Ny 1in which every function

is good in Cl' Repeating this process k times we produce a

function £ oeN C LY Ceea C Ny which is good
on C,UC U...UC =M. Since kaNOCN' and

£V =£|v, £ satisfies both conditions (1) and (1i). Hence

fk is a Morse function on (W, Vo Vl) .

Remark: It is not difficult to show that, in the C2

topology, the Morse functions form an open dense subset of all
For some purposes it is convenient to have a Morse

function in which no two critical points lie at the same level.,

Lemma 2.8. Let f: W ——> [0,1] be a Morse function for

the triad (W; Voo Vl) with critical points p,, «.., D, - Then

f can be approximated 't_:_y_ a Morse function g with the same

critical points such that g(pi) f’ G(PJ) for 1 ;& J.

Proof: Suppose that f(pl) = f(p2) . Construct a smooth

function A: W —> [0,1] such that A =1 in a neighborhood
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U of P, and A\ = 0 outside a larger neighborhood N, where
ECW—Bdw and N contains no Py for 1;41. Choose el>0

so small that fo =T + ¢\ has values in [0,1] anad
fo(pl) # £5(p;) , 1 # 1. Introduce a Riemannian metric for W

(see Munkres [5, p.24t]), and £find ¢ and e' 8o that O <ec < |grad f|
throughout the campact set K = closure {0 < A < 1) and |grad A| <c!
on K. Let 0< e<min(e, cfc') . Then £, =f + er is agein a
Morse function, fl(pl) ;éf(pi) for i £ 1, end £, has the same
critical points as f£. For on K,

lered (£ + e\)| > |erad £| - |e grad A|
>ec - egc!
>0.

And off K, |gredA| =0, so |grad £l = |ered £| . Continuing
induetively, we obtain a Morse function g which separates all the

critical points. This completes the proof.

Using Morse functions we can now express any "coamplicated"

cobordism as a composition of "simpler" cobordisms.

Definition. Given a smooth function f: W ——> R, a

critical value of f dis the image of a critical point.

Lemma 2.9. let £: (W; Vs vl) — ([o0,1], 0, 1) be a

Morse function, and suppose that 0 < ¢ <1 where ¢ 1is not a

critical value of f. Then both £ '[0,c] and £ 'fe,1] are smooth

manifolds with boundary.
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Hence the cobordism (W; Vo Vs identity, identity) from
Vb to Vl can be expressed as the composition of two cobordisms:

one from V, to f'l(c) and ocne from f'l(c) to V

1e Together

with 2.8 this proves:

Corollary 2.10. Any cobordism can be expressed as a

composition g{ cobordisms with Morse number 1.

Proof of 2,9: This follows immediately fram the implicit

function theorem, for if w € f'l(c) , then, in some coordinate

system Xyy Koy ey X about w, £ 1looks locally like the

projection map R' —> R s (xl, coey xn) — X,




Section 3. Elementary Cobordisms
e ——— —k

Definition 3.1. Let f be a Morse function for the triad

(wn; V, V') . A vector field t on wn is a gradient-like vector

field for f if

1) ¢(f) > 0 throughout the complement of the set of critical

points of £ , and

2) given any criticasl point p of f there are coordinates
-y
(£, ¥) = (xl, cees X5 K9y eeny xn) in a neighborhood U of p so
that f = £f(p) - Iiﬂe + I&ﬂg and ¢ has coordinates

(-Xl, es 0y -]&’ }&,-’-l, ¢ ey Xn) throughout U .

Lemma 3.2. For every Morse function f on a triad (wn; vV, V1)

there exists a gradient-like vector field ¢ .

Proof. For simplicity we assume f has only one critical point

p , the proof in general being similar. . By the Morse Lemma 2.2 we may

-
choose coordinates (X, ¥) = (xl, ooy Xy X 0o

hood U, of p so that f = f(p) - !212 + ]§12 throughout Uj. Let U

be a neighborhood of p such that T (C Uy-

.eon s xn) in a neighbor-

Each point p' ¢ W - U0 is not e critical point of f . It
follows from the Implicit Function Theorem that there exist coordinates
xi, seey xﬁ in a neighborhood U' of p!' such that f = constant + xi

in U* .
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Using this and the fact that V - Uo is compact, find neighbor-

hoods Ul’ ceey Uk such that

1)w-UoCUlU-¢OUUk,

2) unu = $, 1i=1,...,k, and

i i i
3) U; has coordinates xj, ..., x  end f = constant +x] on

Ui, i = l’.no,k .
On Uo there is the vector field whose coordinates are

(-xl, sees Ky K s eees xn) , end on U, there is the vector field

a/Bxi vith coordinates (1,0,...,0), i =1,...,k . Piece together
these vector fields using a partition of unity subordinate to the cover

UO’ Ul, cesy Uk, obtaining a vector field ¢ on VW . It is easy to check

that ¢ 1is the required gradient-like vector field for f .

Remark. From now on we shall identify the triad (W; Y Vl)

vith the cobordism (W; V 1

o '1¥ ‘o

il: Vl ~———>-V1 are the identity maps.

, V 11) where 1.: Vj ——V and

o’ 0

Definition 3.3. A triad (W; Vo Vl) is said to be a product

cobordism if it is diffeamorphic to the triad (V0><[0,1]5 Vb)(o, vV.x1l) .

0

Theorem 3.4. If the Morse number p of the triad (w; Vo Vl)

is zero, then (W; /S Vl) is a product cobordism.

Proof: Let f£: W —> [0,1] be a Morse function with no critical

points. By Lemms 3.2 there exists a gradient-like vector field ¢ for f.
Then &(f): W ——> R 1is strictly positive. Multiplying ¢ at each
point by the positive real number l/g(f) , We may assume g(f) =1

identically on W .
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If p is any point in Bd W, then f expressed in some
coordinate system Xys ewes X, X >0, sbout p extends to a smooth
function g defined on an open subset U of RC. Correspondingly, ¢
expressed in this coordinate system also extends to U . The fundamental
existence and uniqueness theorem for ordinary differential equations (see
e.g. Lang (3, p.55]) thus applies locally to W .

Let ¢ : [a, b] —> W be any integral curve for the vector
field & . Then

S (£ 0 0) = &(n)

is identically equal to 1 ; hence

£(p(t)) = t + constant.

Making the change of parameter, V(s) = ¢(s - constant), we obtain an

integral curve which satisfies

f(y(s)) = s .

Each integral curve can be extended uniquely over a maximal
interval, which, since W is compact, must be [0, 1]. Thus, for each
Y € W there exists a unique maximal integral curve

\lry : [0, 1] —> W

vhich passes through y , and satisfies f(Vy(B)) =8 , Furthermore

vy(s) is smooth as a function of both variables (cf. §5, pages 53 - 54 ).
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The required diffeomorphism

h: V) x [0,1] — W

is now given by the formula

h(yo) s) = ‘lfyo(s) J)

with

b7Hy) = (y,(0), £(x)) .

Corollary 3.5. (Collar Neighborhood Theorem)

Let W be a compact smooth manifold with boundary. There exists a

neighborhood of Bd W (called a collar neighborhood) diffecmorphic to

hl

Bd W x [0,1) .

Proof, By lemma 2,6, there exists a smooth function £: W — R,

such that f'l(o) =BdW end df £ 0 on a neighborhood U of Bd W .
Then f is a Morse function on f'l[o, €/2) , wvhere g> 0 is a lower
bound for f on the compact set W - U . Thus Theorem 3.h4 guarantees

e diffeamorphism of f'llo, ef2) with Ba W x [0,1) .

A connected, closed submanifold -t C W' -BAW 1is said
to be two-sided if some neighborhood of Mt on W 18 cut into two

components when M2l ig deleted.

Corollary 3.6. (The Bicollaring Theorem)

Suppose that every component gf.g smooth submanifold M 2{ W lg_compact

and two-.sided., Then there exists E,“bicollar" neighborhood of M in W

diffeomorphic to M x (-1,1) in such a vay that M corresponds to M x O .
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Proof. Since the components of M may be covered by disjoint

open sets in W , it suffices to consider the case where M has a single
caomponent.

Iet U be an open neighborhood of M in W - BA W such that
U is compact and lies in a neighborhood of M which is cut into two
components when M 1s deleted., Then U clearly splits up as & union
of two submanifolds Ul’ U, such that U, N U

2 1l 2
each. As in the proof of 2.6 one can use a coordinate cover and a parti-

=M 1is the boundary of

tion of unity to construct a smooth map
¢: U ————>» R

gsuch that dp £ 0 on M, end <0 on U - Uy, =0 on M,

Q)>Oonﬁ--020

V C U, onwhich ¢ has no critical points.

We can choose an open neighborhood V of M, with

Iet 2¢" > 0 be the lub of ¢ on the compact set ﬁi -V.

let 2¢' < O be the glb of ¢ on the compact set 02

Then ¢'1[e',e"] is a compact n-dimensional sub-manifold of V

-V.

with boundary ¢"1(e') U ¢-l(e“) , and ¢ 1is a Morse function on
¢-l[e',e"] . Applying Theorem 3.1 we find that ¢'1(e',e") is a "bicollar"

neighborhood of M in V and so also in W.

Remark. The collaring and bicollaring theorems remain valid

without the compactness conditions. (Munkres [5, p. 51]).

We now restate and prove a result of Section 1,
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Theorem 1.4, Iet (W; Vo Vl) and (W; vi, Vé) be two smooth

manifold triads and h: Vl — Vi a diffeomorphism. Then there exists

& smoothness structure J for W Uh W' compatible with the given struc-

tures on W and W', .X is unique up to a diffecmorphism leaving VO,

h(Vl) =V}, snd V) fixed,

Proof. Existence: By Corollary 3.5, there exist collar neighbor-

hoods Uy» U]'_ of Vi» V]'_ in W, W' and diffeomorphisms
8t V) X (0,1] —> U, gy Vi x[1,2) —> U], such that gl(x,l) = X
x eV, and ge(y,l)-y, yevV]. et J: W——>sWwWuy W,

Jte WY ——> W U, W! be the inclusion maps in the definition of W U, it .

Define a mep g&: V, X (0,2) ———>W U, W' by
g(x,t) = J(Sl(x,t)) 0<t<l
g(x,t) = J'(se(h(X),t)) 1<t<2,

To define a smoothness structure on a manifold it suffices to define
compatible smoothness structures on open sets covering the manifold.
WU W' 1s covered by J(W - Vy), J'(W' - vl') , snd g(vy x (0,2)) ,
and the smoothness structures defined on these sets by J, j', and g

respectively, are compatible. This completes the proof of existence.

Uniqueness: We show that any smoothness structure J on
W Uh W! compatible with the given structures on ¥V and V' 1is isomorphic
to a smoothness structure constructed by pasting together collar neighbor-
hoods of Vl and V]" as above, The uniqueness up to diffecmorphism
leaving VO’ h(Vl) = Vi , end V! fixed then follows essentially fram

2
Theorem 6.3 of Munkres {5, p. 62]. By Corollary 3.6 there exists a
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bicollar neighborhood U of J(Vl) = J'(Vi) in Wy, W' and a diffeo-
morphism g: Vl X (-1,1) —— U with respect to the smoothness struc-
ture j, so that g(x,0) =3 (x) , for x ¢ Vy. Then J-l(U n 3(w))

and 3"1(Un3'(w')) are collar neighborhoods of V. and V! in W

1l 1l
and W', This canpletes the proof of uniqueness,

Suppose now we are given triads (W; Vs Vl) , (we; vi, Vé)

with Morse functioms £, £' to [0,1], [1,2], respectively. Construct
gradient-like vector fields ¢t and ¢§' on W and W', respectively,

normalized so that ¢(f) =1, ¢'(f') =1 except in & small neighborhood

of each critical point.

Lemma 3.7. Given a diffeomorphism h: V. —~——> V!

1 1
unique smoothness structure on W Uh W* , compatible with the given

there _:Eg_

i®

structures on W , W', so theat f and f' piece together to give a

smooth function on W Llh W' and ¢ and ¢' plece together to give a

smooth vector field.

Proof. The proof is the same as that of Theorem 1.4 above,
except that the smoothness structure on the bicollar neighborhood must
be chosen by piecing together integral curves of ¢ and ¢! in collar
neighborhoods of Vl and Vi . This condition also proves uniqueness.

(Notice that uniqueness here is much stronger than that in Theorem 1.4.)

This construction gives an immediate proof of the following result.

Corollary 3.8. n(W U, ¥'5 Voo Vé) < u(w; Vo vl) + p(weg vi, Vé)

where p 1is the Morse number of E_t_xg_ triad.

[ R Rl
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Next we will study cobordisms with Morse number 1 .

Iet (W; V, V') be a triad with Morse function f; W —— R
and gradient-like vector field ¢ for f . Suppose p eVW 1is a
critical point, and V, = f'l(co) and V, = f'l(cl) are levels such
that g < f(p) < c, and that c = f(p) is the only critical value in

the interval [co, cl] .
Let ODf. denote the open ball of radius r with center 0 in

1“°Dp'

Since ¢ 1is a gradient-like vector field for £ , there exists

Rp, and set OD

a neighborhood U of p in W , and a ccordinate diffecmorphism

n
g: OD2

has coordinates (-xl, vees Xy Xy s eees xn) throughout U, for

¢ —> U so that fg(X, ¥)=c - IRZ + |7]° end so that ¢

some -lf_xsn and scme € > O . Here )?n(xl, ceey )S‘)GR)\ and
- _ n-\ _ el 2 ey 2
Y = ('xx""l’ ce oy xn) e R . Set V—G - f (c - E ) a-nd Ve f (c + € ) .

We may assume he® < min(|c - col, e - cll), so that V__ 1lies between

The situation

v, end f'l(c) and V_ lies between f'l(c) and V, .

is represented schematically in Figure 3.1.

\} Vo




e e

28.

p-1

let S denote the boundary of the closed unit diac p* in R

Definition 3.9. The characteristic embedding

q&f°sh'l x 00" —> V, 1is obtained as follows. First define an

embedding g: S*t x op®

for u e Sh'l, vV e Sn'x'l, and 0 <6 <1. Starting at the point ¢(u, 6v)

—>V__ by ¢(u, 6v) = g(eu cosh 9, e€v sinh 9)

in V the integral curve of ¢ 1s a non-singular curve which leads

from ¢(u, 6v) back to some well-defined point ¢i(u, ov) in V,- Define

the left-hand sphere S, of p in V, to be the image ch(S}"1 X 0).

Notice that SL is just the intersection of VO with all-integral curves

of ¢ leading to the criticalspoint P . The left hand disc DL is a smootl
Ls

ly imbedded disc with boundazz/ defined to be the union of the segments

of these integral curves beginning in SL and ending at p .

Similarly the characteristic embedding qpq: ot x 8P Mt sy

is obtained by embedding ODK X Sn”k-l —-—é>‘V€ by

1

(6u, v) —> g(eu sinh 9, ev cosh §) and then translating the image to

Vl‘ The right-hand sphere SR of p in Vl is defined to be
n-k-l)

¢R(O X S

. It is the boundary of the right-hand disk DR’ defined
as the union of segments of integral curves of ¢ beginning at p and

ending in SR'

Definition 3.10. An elementary cobordism is a triad (W; V, V')

possessing a Morse function f with exactly one critical point p .

Remark. It follows from 3.15 below that an elementary cobordism

(W; V, V') is not a product cobordism, and hence by 3.4 that the Morse

number p(W; V, V') equals one. Also 3.15 implies that the index of the

elementary cobordism (W; V, V), defined to be the index of p with res-

—mamde e blaa MAaroean ‘Pi'lnﬂ"""‘ (212] f - 18 well-d.GfinEd (ioea’ independent Of
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Figure 3.2 illustrates an elementary cobordism of dimension

.= 2 and index N\ =1 .

\/ V'

Figure 3.2

Definition 3.11. Given a manifold V of dimension n-l and

an embedding : gh1 « opH

—> V let X(V,p) denote the quotient

manifold obtained from the disjoint swm (V - o(s™™t x o))+ (o0* x s® 1)
by identifying o(u, 6v) with (gu, v) for esch u e 5*°%, v ¢ 21,
0<6<1l, If V' denotes any manifold diffeomorphic to X(V, ¢) then

we will say that V! can be cbtained from V by surgery of type (A, n-\)

Thus a surgery on an (n-1)-manifold has the effect of removing
an embedded sphere of dimension A-l1 and replacing it by an embedded
sphere of dimension n-\=l . The next two results show that this corres-

ponds to passing a critical point of index A of a Mcrse function on an

n-manifold.

. T . B
fent dgges . EY L . e esd P
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Theorem 3,12. 1f V' = X(V,p) can be obtained from V by

surgery of type (A, n-\), then there exists an elementary cobordism

(W; v, v*) and & Morse function f: W —— R with exactly one critical

point, of index X\ .

Proof. Ilet denote the set of points (¥, ¥) in
14

K* x B°™ = ' vwhich satisfy the inequalities -1 < -|>'c’|2 + |5‘r’|2 <1,
and [¥[|¥| < (sinh 1)(cosh 1) . Thus L 1is s differentisble manifold
with two boundaries, The "left" boundary, -‘5?[2 + IS"'I2 = ~1l, is

A-1 nen

diffeomorphic to § X OD under the correspondence

(u, 6v) <> (u cosh 6, v sinh 8) , 0< @ < 1. The "right" boundary,
-|?I2 + |Sr"|2 =1, is diffecmorphic to op™ x 821 under the correspon-
dence (6u, v) €—> (u sinh g, v cosh 9) .

Consider the orthogonal trajectories of the surfaces
-|ﬂ2 + |§'|2 = constant . The trajectory which passes through the
point (¥, 7)) can be paremetrized in the form t ——> (&, t7F) . If
¥ or ? is zero this trajectory is a straight line segment tending to
the origin.,. For ¥ and Sr" different from zero it is a hyperbola which
leads from some well-defined point {u cosh 6, v sinh @) on the left
boundary of L, to the corredponding point (u sinh g, v cosh ) on
the right boundary.

Construct asn n-menifold W = w(V,p) as follows. Start with the
disjoint sum (V - q;(s"‘l X 0)) x o+ L. Foreech ue s""l, v e sn""l,
0<@<Ll, and ¢ e D+ identify the point (¢(u, 6v), ¢) in the first

summand with the unique point (X, ¥) e L, euch that
2 2
(1) -X° + A" =c,

(2) (5?, ¥) 1ies on the orthogonal trajectory which passes through the

——tacde fae mmal A o At n)
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It is not difficult to see that this correspondence defines a
aiffeomorphism (St~ x (00°™ - 0)) x D* <¢—> L 0 (B -0) x (™ - 0)
It follows from this that w(V,p) 1is 8 well-defined smooth manifold.

This manifold w(V,p) has two boundaries, corresponding to the

2 2
values c = -|X]° + [ﬂ = -1 , and +1 . The left boundary, c¢ = -1,

can be identified with V , letting 2z € V correspond to:

1

(z, -1) ¢ (Vv - ("L x0)) x D*  for =z £ o™t x 0).

(u cosh 6, v sinh @) ¢ L, for z = g(u, 6v) .

The right boundary can be identified with X(V,p) : letting
z eV - cp(Sk'l X 0) correspond to (z, +1) ; and letting

n-A-1

(6u, v) € OD}” X S correspond to (u sinh @, v cosh 8) .

A function f: w(V,p) —> R is defined by:

f(z,c) = ¢ A for (z,c) e (V - cp(S)"le))xD:

2(2,7) = -|F° + |7° for (%,¥) € L,

It is easy to check that f 1is & well-defined Morse function with one

critical point, of index A\ . This completes the proof of 3.12.

Theorem 3.13. Let (W; V, V') be an elementary cobordism with

cheracteristic embedding o : S""'1 % op2~M

—> V. Then (W; V, V')

is diffecmorphic to the triad (w(V, @ ); V, X(V, @)) .

Proof. Using the notation of 3.9 with V = VO and V! = Vl, we

know from 3.4 that (f'l([co, c-ezl); v, V-e) and (f"l([c+e2, cl]); Vs vt

are product cobordisms. Thus (W; V, V') is diffeamorphic to (we; VeV
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|

vhere W_ = f'l([c-ez, c+52]) . Since (w(V,mL); v, X(V,¢L)) is clearly

diffeomorphic to (w(V_e,cp); v, x(v_e,q>)) , it suffices to show

€

(we,- V_es V) is diffecmorphic to (m(v_€,<p); V o X(V_e,q))) .

Define a diffecmorphism k: w(Ye, Q) ——> we as follows. For

1olet k(z,t) be the unique point

each (z,t) e (V_e - (p(SK-l X 0)) XD
of we such that k(z,t) 1lies on the integral curve which passes through
the point 2z and such that f£(k(z,t)) = €2t +¢c . For each (X,7) € L,
set k(X,¥) = g(eX, e¥) . It follows from the definitions of ¢ and of
w(v_e, @) , and the fact that g sends orthogonal trajectories in Ly

to integral curves in we, that we obtain a well-defined diffeomorphism

from w(V_e, @) to we. This completes the proof of 3.13.

Theorem 3.14. Let (W; V, V') be an elementary cobordism

possessing a Morse function with one critical point, g£ index N . Let

DL be the left-hand disk associated to a fixed gradient-like vector

field. Then V U DL 15.2 deformation retract g£ W.

Corollary 3.15. H,(W,V) is isomorphic to the integers 2Z in

dimension A &and is zero otherwise. A generator for HK(W,V) is

representel EX DL‘

Proof g{ Corollary.

We have H(W,V) = H (VU D, V)

née

H*(DL, sL)

Z in dimension A

ne

0 otherwise

where the second isomorphism is excision.
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Proof of Theorem 3.14. By 3.13 we may assume that for the charac

teristic embedding @ ¢ s x op®™ —> ¥V ve have

W= w(V, @)= (V- ¢L(S>"-l x 0)) x DY + L,

modulo identifications, where now DL is the disk

(& Ner, | Fleor.

Let
c= @V ey, | W<

be the cylindrical neighborhood of DL .

Y
io

We define deformation retractions rt from W to VUC and

ré from VUC to VUD. (Here t ¢ [0, 1].) Composing these gives

the desired retraction,

K Retraction: Outside Lk follow trajectories back to V .

In L follow them as far as C or V . Precisely:

A
1

For each (v, c) ¢ (V - ch(S}“-l oD®"M)) x D" define

rt(v, e) = (v, ¢ = t(c+l)).

For each (X, ¥) e L, define

® 7 ror (7] <3
rt -

% 1

(-5 s oY) tor 7| > 35

wvhere p = p(X, ¥, t) is the maximum of 1/(10|¥|) and the positive real

solution for p of the equation

2
D L PR R BRI - ) -

p
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Since for jiﬂ > %6 the eguation has a unique solution > O which varies

continuously, it follows easily that Ty is a well-defined retraction

from W to vVvuycdaC.

Figure 3,3. The retraction from W to VUC.

2" petraction. Outside of C define r] to be the identity.
(case 1).
In C move &long straight lines vertically to V U DL’ noving
more slowly near VN C . Precisely:
For each (X, ¥) € C define
. (X, (1-t)7)  for |R°<1 (Case 2)
r%(X, Sr-,) = = 2 1
(%, oy) for 1_<_[1?I <1+ 35 (Case 3)

/2

1
vhere o =o(¥, ¥, t) = (1-t) + t((‘iﬂz - 1)/|§ﬁ2) . One verifies that

r! remains continuous as [?lg —1, |i12 —~—> 0 . Note that the two def-
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costeh

lll[l"
TTTTTTT

_____——TasED CASE3~—_

Figure 3.4, fThe retraction from VUC to V U DL .

Remark. We now indicate briefly how most of the above results

can be generalized to the case of more than one critical point.
Suppose (W; V, V') 1is a triesd and f: W —> R a Morese functior
with eritical points Pys vovs P all on the same level, of indices

hl’ veey )"k + Choosing a gradient-like vector field for f , we cbtain

disjoint characteristic embeddings Py hi -1 x OD” A4 —_—V,

i =1ee.k . Construct a smooth manifold w(V; Pys eoes q:k) as follows,

k

Start with the disjoint sum (V - U (pi( M-l X 0)) x Dl o+ L + ..o + I.hk
ial 1

For each u ¢ Shi-l, v ¢ g2t , 0<g<1l,end c e pt identify the

point (g, (u, 6v), ¢) in the first sumend with the unigue point (X,7) €

such that

1) -1A%+ P =c, ma

(2) (X,¥) 1lies on the orthogonal trajectory which passes through
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As in Theorem 3,13 one proves that W is diffecmorphic to
w(V; Pys +++sy ® ) . It follows from thié, as in 3.1k, that
v u D1 Useeu U Dk is & deformation retract of W , where Di denotes
the left hand disk of Pys i=12...,k . Finally, if xln h2=...= hk- A
then H,(W,V) {is isomorphic to Z & ... ®Z (k swmands) in dimension A

and is zero otherwise. @enerators for Hx(w,v) are represented by

Dys eues Dpe These generators of H)\(w’ V) are actually completely deter-

mined by the given Morse function without reference to the given gradient-

like vector fileld — see [4, p. 20].
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Section 4. Rearrangement of Cobordisms
L — = o R

From now on we shall use ¢ to denote a cobordism, rather than an
equivalence class of cobordisms as in Section 1. If a composition cc!
of two elementary ccobordisms is equivalent to a composition dd! of two
elementary cobordisms such that

index(¢) = index(dt)

and index({e') = index{d)
then we say that the composition cct! can be rearrsnged. VWhen is this
posﬁible?

Recall that on the triad (W; Vo Vl) for cc! there exists a
Morse function f£: W —> [0,1] with two critical points p and p' ,
index(p) = index(c) , index(p') = index({e') , such that f(p) < % < f(p') .
Given a gradient-like vector field § for £ , the trajectories from p
meet V = f-l(le-'-) in an imbedded sphere S , called the right-hend sphere
of p , and the trajectories going to p' meet V in an imbedded sphere
Si , called the left-hand sphere for p' . We state a theorem which guar-

antees that cc' can be rearranged if Sp N S£ =g .

Theorem 4,1, Preliminary Rearrangement Theorem. Let (W; Vo Vl)

be a triad with Morge function £ having two critical points p, p' .
Suppose that for some choice of gredient.like vector field ¢ , the com-
pact set Kp of points on trajectories going to or fram p 1is disjoint
from the compact set KP' of points on trajectories going to or from p'.
It f(w) = [0,1] end &a,a' £ (0,1) , then there exists & new Morse

function g such that




() ¢ 18 = gradient-like vector field for g ,
(b) the critical points of g are still p, p° , and g(p) = a ,
gp') = a',
(c) & agrees with f near Vo UV, and equals f plus a constant in

some neighborhood of p and in some neighborhood of P! .

b,

L

(see Figure 4,1)
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Proof: Clearly trajectories through points outside K = E_ UK,

all go fram Vb to Vl. The function x: W « K -4>-V0 that assigns to

each point @ in W - K the unique intersection of its trajectory with

Yo

K in V,. It follows that if ne Vo> (0,1] is a smooth function zero

near the left.-hand sphere KP n Vo

then p extends uniquely to a smooth function p: W —> [0,1] that is

is smooth {cf. 3.4) and vhen q 1lies near K , then xn{q) 1lies near

» and cne near the sphere KP'Q Vo s

constant on each trajectory, zero near Kp and one near Kpt .
Define & new Morse function g: W — [0,1] by &lq) = 6¢(£(q),n(q))
where G(x,y) 1is eny smooth function [0,1] x [0,1] —> [0,1] with the

properties: (see Figure L.2)

__ el
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(1) For all x and y, %ﬁ—(x,y)>o and G(x,y) increases from O

to 1 &8 x increases fram Q0 to 1 .

(41) G(f(p),O) =8 G(f(P'))l) = a!

(111)  o6(x,y) = x for x near O or 1 and for sll ¥y,
%(x,o) =1 for x in a neighborhood of f£(p) ,
%-(x,l) =l for x in a neighborhood of f(p') .

®
A
.E:kato)
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QT 4//.- = G(rx‘ 1)
a }
(0,0 ; " *
Mp dey !
Pigure 4.2

The reader can easily check that g has the desired properties

(a), (b), and (c) .

.2, Extension: If more generally the Morse function f of

4,1 i3 allowved two gets of critical points p = {pl,...,pn} s

P! = (Pi,...,p;) with ell points of p at a single level f(p) and
all points of p!' at a single level ¢£(p') , then the theorem remeins

valid, In fact the proof may be repeated verbatim.
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Still using the notation of page 37 let A = index(c) ,
N' = index(c') , and n =dim ¥y . If

dim S, + dim 8! < dim V

R L
i.e., (n ~x=-21)+(n" «~1)<n-1
or A >N
then, roughly stated, there ig room enough to move SR out of the way
]
of SL.

Theorem k.4, If X\ > A\' , then it is possible to alter the

gradient-like vector field for f on a prescribed small neighborhood of

V 8o that the corresponding pew spheres §h and §£ in V do not

intersect. More generally if c¢ is a cobordism with geveral index )

eritical points PyrecosPy of £, and ¢' & cobordism with several
index A' critical points pi,...,pi of f , then it is possible to
alter the gradient like vector field for f on a prescribed small neigh-
borhood of V so that the corresponding new gpheres in V are pairwise

disjoint.

Definition 4.5. An open neighborhood U of a submanifold

Mmc Vv , Which is diffeomorphic to M" x R'"™ in such a wvay that ME

corresponds to Mm X O , is called a product peighborhood of }fl in Vv .

lenma 4.6, Suppose M and N are two submanifolds of dimension
m and n in a manifeld V of dimension v . If M hes & product neigh-
borhood in V , and m+n < v , then there exists & diffeomorphism h of
V onto itself smoothly isotopic to the identity, such that h(M) is dis-

joint from N .




- _ hl.

Remark: The assurption that M has a product neighborhood is

not necessary, but it simplifies the proof.

Proof of 4.6: Let k: M x R © —> UC V be a diffeomorphism onto a

product neighborhood ¥ of M in V such that k(M x 0) =M. Let

No =UNN end consider the composed map g = ﬂokﬂl{No where

m

: M X R s R ™ ig the natural projection.

The manifold k(M x X)/ V will intersect N 1if and only if

X e g(NO) . If N, is not empty, dim N, =10 < v-m ; consequently the

theorem of Sard (see de Rham [1,p.10]) shows that g(NO) has measure

-m

zero in Rv .. Thus we may choose a point ? e Rv-m - g(NO) .

We will construct a diffeomorphism of V onto itself that carries

M to x(M x T) and is isotopic to the-identity. One can easily construct
& smooth vector field ¢(X¥) on R " such that ¢(X) =@ for |X) < |9
and ¢(¥X) =0 for |X] 2'2|Eﬂ . Since ¢ has ccmpact support, and R
has no boundary, the integral curves y(t,X) are defined for all real
values of t . {(Compare Milnor [14,p.10].) Then (0,X) is the identity
on Rv-m, ¥(1,X) 1is a diffeamorphism carrying O to T, and y(t,X) ,

. 0<t<1l, gives a smooth isotopy from ¥(0,¥) to ¢(1,X) .

Since this isotopy leaves all points fixed outside a bounded set

in B° ™ we can use it to define an isotopy

h,: V—YV

t
by setting
k(q,y(t, X)) 1if w =k(q,X) €U
ht(W)::
w 1f WEV-UQ
Then h = h, is the desired diffeomorphism V —»V .

1
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Proof of Theorem 4.k; To simplify notation we prove only the

first statement of U.h. The general statement is proved similarly.

Since the sphere Sp hua a product neighborhood in V (cf. 3.9),
Lemme 4,6 provides a diffecmorphism h: V —> V smoothly isctople to the
identity, for which h(SR) ns, = @ . The isotopy is used as follows to
alter ¢ .

1 -1l. 1 -

Let a <z be s0 large that £ [a,-g—] lies in the prescribed

neighborhood of V . The integral curves of 7§ = ¢/¢(f) determine a

diffeomorphism

1 -1
9: {a,5] XV —> ¢ [_a,%]

such that f£{¢(t,q)) =t , and cp(%'—,q_) =q £V . Define a diffecmorphism
H of [a,%—] X V onto itself by setting H(t,q) = (t,8.(a)) , where
h‘b(q') is a smooth isotopy [a,Je-l] XV —>>V from the identity to h
adjusted so that h, 1s the identity for t near a and ht =h for ¢t

t

near %’- « Then one readily checks that

-1 S
¢! = (poHep ), ¢

is & smooth vector field defined on f‘l[a,%] which coincides with 'E

near £ V(a) and f"l(%) =V, and satisfies ¢'(£) = 1 identically. Thus

the vector field 8§ on W vwhich coincides with g(f)g' on f'l[a,é-] and

with ¢ elsewhere is a new smooth gradient-like vector field for f .

Figure 4.k,
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Now for each fixed q eV, Q(t,ht(q)) describes en integral
— -1 1 -
curve of § from o(a,g) in f (a) to Q(E,h(q)) =h(q) in ¢ 1(%) =V
It follows that the right-hand sphere o(a x SR) of p in f’l(a) is
carried to h(SR) in v . Thus h(SR) is the new right-hand sphere §h
£ R S. = . g 5. = =
of p Clearly S SL so SpNn§. h(SR) ns, ¢ as required,

This completes the proof of Theorem h.k,

In the argument above we have proved the following lemma which is

frequently needed in later sections,

Lemma 4,7. Given are a tried (u; Vg Vl) with Morse function ¢
and gradient-like vector field ¢ , a non-critical level V = f'l(b) and a
diffeamorphism h: V —3 Vv that is isotopic to the identity. If
f'l[a,b] », a<b, contains no ecritical points, then it is possible to
construct a new gradient-like vector field t for f such that

(a) § coincides with ¢ outside f-l(a,b)

(b) @ =ho g,vhere ¢ and @ are the diffecmorphisms
£7'(a) —> V determined by following the trajectories of ¢ and ¢,
respectively, |

Replacing f by «f one deduces a similar proposition in which ¢
is altered on f“l(b,c), b < ¢ , a neighborhood to the right rather than

to the left of V.

Recsall that any cobordism ¢ may be expressed as a composition of
a finite number of elementary cobordisms (Corollary 2,11). Applying the
Preliminary Rearrangement Theorem 4.1, 4.2 in combination with Theorem k4. L

we obtain
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Theorem 4.8. Final Rearrangement Theorem. Any cobordism c¢ may

bo expressed as a composition

c = coclcoacn [} n-= dim c )

where each cobordism Cy admits a Morse function with just one critical
level and wilth all critical points of index k .

Alternate version of L4.8.
Without using the notion of cobordism, we have the following prop-

osition about Moree functions: Given any Morse function on a triad

(v Vo» V) , there exists a new Morse function f , which has the same

critical points each with the same index, and which has the properties:

1 1
(1) f(v=-3, £(v)) =0+
(2) f(p) = index(p) , at each critical point p of £ .

Definition 4,9, Such a Morse function will be called self-indexing

(or nice) .

Theorem 4,8 is due to Smale [B] and Wallace [9]).
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In view of the Final Rearrangement Theorem another question
ariases paturally. Vhen is a composition cc' of an elementary
cobordism of index A with an elementary cobordism of index
A+ 1 equivalent to a product cobordism? Figure 5.1 shows how
this may occur in dimension 2,

Figure 5.1

/

‘il
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Let £ be a Morse function on the triad (W ; V_, v,)
for c¢c', having critical points p, p' of index A, A + 1
such that f(p) < 1/2 < £(p'). A gradient-like vector field
g for f determines in V = f-l(l/E) a right-hand sphere
SR of p and a left-hand sphere SL of p'. DNote that

t
dimSR+dimSL=(n-h-l)+;\=n-l=dimv.

Definition 5.1

Two submanifolds M, N° C v’ are said to have transverse

intersection (or to intersect transversely) if at each point

Qe MN N the tangent space to V at q 1is spanned by the
vectors tangent to M and the vectors tangent to N. (If

m + n<v this i8 impossible, so transverse intersection simply

means M N N = @.)




As a preliminary to the mejor Theorem 5.4 we prove:

Theorem 5.2

The gradient-like vector fleld €& msy be so chosen that 8

t
has transverse intersection with SL in V.

For the proof we use a lemma stated with the notation of

Definition 5.1:

Lemma 5.3 If M has a product neighborhood in V, +then there
is a diffeomorphism h of V onto itself smoothly isotopic to

the identity such that h(M) has transverse intersection with N,

Remark: This lemma apparently includes Lemma 4.6; in fact the .
proof is virtually the same. The product neighborhood assumed

for M is actually unnecessary.

Proof: As in Lemma 4.6 let k : MX R " —>UCV bea
diffeomorphism onto a product neighborhood U of M in V
such that k(M X &) = M. Let N,=UNN, and consider the
composed map g =::'°k'llﬂo where £ : MXR 2 —> R ig
the natural projection.

The manifold k(M X i?) will fail to have transverse
intersection with N if and only if Xe& R © is the image
under g of some critical point q e Nb at which g fails
to have maximal rank v - m. But according to the theorem of
Sard (see Milno£ (10, p. 10] and deRham (1, p.1C]) the imsge
g(C) of the set C C:Nb of all criticsl points of g has

measure zero in Rv-m. Hence we can choose a point ae Rv-m - g(C),




T

and, as in Lemma 4.6, construct an isotopy of the identity map
of V to a diffeomorphism h of V onto itself that carries
M to k(MX&). Since k(M Xd) meets N transversely, the

proof is camplete.

Proof of Theorem 5.2:

The above lemma provides a diffeomorphism h : V —> V smoothly

]
isotopic to the identity, such that h(SR) intersects S

transversely. Using Lemma 4.7 we can alter the gradient field
t so that the new right-hand sphere is h(SR), and the left-

hand sphere is unchanged. This completes the proof.

In the remainder of §5 it will be assumed that Sp has trans-

] t
verse intersection with SL +» Since dim SR + dim SL = dim V, the

intersection will consist of a finite number of isolated points.

For if q0 is in SR 1| SL there exist local coordinate functions

xl(Q), vory xn"l(q) on a neighborhood U of q  in V such

that xi(qo) =0,1i=1, ..., n -1, and UNS, 1is the locus

R
?
xl(Q) = see = xA(Q) =0 while UN SL is the locus xk+l(q)

t
L Ny is

e As & consequence there are just a finite number of traject-

= 400 = xn_l(Q) = 0, Clearly the only point in SR ns

t
ories going from p to p' , one through each point of SR n SL .

St111 using the notations introduced on page 45 we now state

the major theorem of this section.




Theorem 5.4 First Cancellation Theorem

1
If the intersection of S, with S, 48 transverse and consiste

R L
of a single point, then the cobordism is a product cocbordism. In
fact it is possible to alter the gredient-like vector field ¢
on an arbitrarily small neighborhood of the single trajectory T
from p to p' producing a nowhere zero vector field ¢' whose
trajectories all proceed from Vo to Vi. Further ¢' 1s a
gradient-like vector field for a Morse function f' without
critical points that agrees with f near Vb U Vi.

(See Figure 5.2 below. )

Remark: The proof, due to M. Morse [11](32], is quite formidable.
Not including the technical theorem 5.6 it occupies the following

10 pages.
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Figure 5.2

Before Alteration

V.

After
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First we prove the theorem making an assumption about the

behavior of £ near T.

Preliminary Hypothesis 5.5

There is a neighborhood uT of the trajectory T from p to

p', &and a coordinate chart g : U& —_— Rn such that:

1) p and p' correspond to the points (0,...,0) and

(1, 0,...,0).
— -
2) g* g(‘l) = fl (X) = (V (xl), - xe,QlO’ "'xk, -xk+1, Xh_'_e,..., xn)
where g(q) = X, and where:

3) v(xl) is a smooth function of X)) positive on (0, 1),

zero at O and 1, and negative elsewhere. Also,

%%I (xl)l =1 npear x; =0, 1.

Figure 5.3

‘8% (\ \j.--’\r"xt\

Assertion 1)

Given an open neighborhood U of T one can always find in U
a emaller neighborhcod U' of T s8o that no trajectory leads

from U' outside of U and back again into U!'.

Proof: 1If this were not so, there would exist a sequence of

(partial) trajectories Tys Toseees Tppeeo where T, goes from

a point Ty through a point By outaide U to a point tk’

and both sequences [rk] and [tk] approach T. Since W - U *
B —




oL

is compact we may assume that s, converges to 8 g W - U, The
integral curve ¥(t, s) through s must come from vV, or go
to Vl or do both, else it would be a second trajectory Joining
P to p!'. Suppose for definiteness that it comes from Vo.
Then using the continuous dependence of ¥(t, s') on the init-
jal value 8!, we find that the trajectories through =ll points
near 8 originate at Vb. The partial trajectory T;, from

VO to any point 8' near s 1s compact; hence the lesst dis-
tance d(s') from T to T, (in any metric) depends continucusly
on s' and will be bounded away from O for all &8' 1in some
neighborhood @€ s. Since Ty € TBk the points r, cannot
approach T as k —> @, & contradiction.

Let U be any open neighborhood of T such that U ( Un
and let U' be a 'safe' neighborhood, T U'( U, provided

by Assertion 1).

Assertion 2)

It is possible to alter ¢ on a compact subset of U'
producing a novwhere zero vector field ¢!, such that every
integral curve of ¢! through a point in U was outside U at
some time +t' < 0 and will sgain be outside U at some time

t" > 0.

Proof:

Replace pl¥) = (v(xl), “Xpy esey xn) by a smooth vector field

: 2 2,1/2
TR = (v1(xy, 0)y Xpy uvy %) where =[x+ uuu + 2TV




o
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and
(1) v'(xl, p(X)) = v(xl) outgide a compact peighborhood
of g(T) 4in g(Uu?').
(11) v'(xl, 0) is everywhere negative,
(see Figure 5.4)
Figure 5.4

$
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This determines a nowhere zerc vector field ¢' on W. In our

local coordinates, the differential equations satisfied by

the integral curves of E' on UT are
dx e |
dxy 2 5l
———tma T2 ' S TS um ——— ] oy
i - V'ix. e g X9 eers Tag X\,
Vg2 _ Pn o
dt At2? T2 4t n

Consider the integral curve X( t) = (xl(t), ceey xn(t)) with

initial value (x_z, ceny xg), a8 t dincreases.

o o
K"’a’ teay xn

Ixn(t)l = ng et| increases exponentislly and R(t) eventually

(a) If one of x is nonzero, say xz # 0, then

leaves g(U) (g(U) is compact, therefore bounded).

(b) If ;/;;_2 = ... =x0 =0, then p(Rt)) = (D)% + oeu +
a 241/2 -t
)7 e

bl decreases exponentially. Suppose ¥(t) remains

(x
in g(U). Since v'(xl, p(X’)) 1s negative on the x, -axis,
there exists & > O 80 small that v'(xl, po(X")) 1s negative
on the campact set Ky = (e a(T)] p(¥) <8},

Then v'(xl, p(¥)) has a negative upperbound .o < O on Ky -




Eventually p(X (t)) <&, and thereafter

dx, (t)

dat
Thus X (t) must eventually leave the bounded set g(U) after

< -a.

all.

A similar ergument will show that X(t) goes outside g(U)

a8 t decreases,

Assertion 3)

Every trajectory of the vector field &' goes from Vb to Vl.

Proof:

IT an integral curve of E' 18 ever in U' 1t eventually gets
outside U, by Assertion 2), Leaving U' it follow traject-
ories of &; 8o once out of U it will remain out of U
permanently by Assertion 1), Consequently it must follow a
trajectory of § to Vi. A parallel argument shows that it
comes from Vo. On the other hand if an integral curve of ¢!

is never In U' 1t is an integral curve of ¢ +that goes from

Vb to Vi.

Assertion &) In a natural way, &' determines a diffeomorphism

g:(lo,1]xV, ;0xV,1xXV)}—>(W;V, V)

Proof: Let w(t, q) be the family o® integral curves for E°.
Since ¢! i1s nowhere tangent to EdW, an application of the
implicit function theorem shows that the function Tl(q)
[respectively TO(q)] that sssigns to each point q € W the

time at which V(t, q) reaches V, [respectively minus the




time vhen it reaches Vb] depends smoothly on 4. Then the
projection ¥ : W —> V_ given by w(a) = ¥(-t_(a), a) is
also smooth., Clearly the smooth vector field Tl(w(q)) £'(q)

hae integral curves that go from Vb to V, in unit time. To

1
simplify notation assume that ¢' had this property from the

outset., Then the required diffecmorphism ¢ maps
(t, 9,) —> ¥(%, ;)

and its lpverse is the smooth map

¢ —> (v (q), m(q)).

”~

Asgertion 5) The vector field ¢' is a gradient-like vector

field for a Morse function g on W {with no critical points)

that agrees with f on a neighborhood of VB v Vi.

Proof: 1In view of Assertion 4) it will suffice to exhibit a
Morse function g : [0, 1]xvo——> {0, 1] such that %%>0
and g agrees with fl=f¢¢ near OXVOleVo (we
may assume that V_ = f'l(o) and V, = f'l(gg). Clearly there
exists & > O such that, for all q e Vb, sgi (t, g) >0

if <% or t>1 -5, Let A : [0, 1] —> [0, 1] be a

smooth function zero for t & [6, 1L - 8) and one for t near

0 and 1., Consider the function

of
g(u, q) = fg {n(t) &E (t, a) + [1 - A(t)Ix(q))at

1 ofy 1
wvhere k{a) = (1 - J_ a(t) 5= (¢, @)at)/ [o[1 - a(t)]as.

Choosing & sufficiently small we may assume that k(gq) > 0O

for all q ¢ Va. Then g apparently has the required properties,
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Granting the Preliminary Hypothesis, this completes the
proof of the Flrst Cancellation Theorem 5.5. To establish

Theorem 5.5 in general 1t remains to prove:

]
Assertion 6) When Sp end 8 have a single, transverse
intersection it 1s always possible to choose & new gradient-
like vector fleld E' 80 that the Preliminary Hypothesis 5.5

is satisfied.

Remark: The proof, which occupies the last 12-°'paoges of this
section, has two parts -~ the reduction of the problem to a

technical lemma (Theorem 5.6), and the proof of the lemma.

Proof: Let T(¥) be a vector field on R~ that is of the
form described in the Preliminary Hypothesis, with singularities
at the origin O and the unit point e of the xl-axis. The
function

X
PR) = £(p) + 2f P v(edat - o - i m o v e 4

is a Morse function on R° for which W(¥) is a gradient-
like vector field. By a suitable choice of the function v(xl)
ve mey errange that F(e) = f(p') , 1i.e. EIi v(t)dt =

£(p') - £(p) .

Recall that according to the definition 3.1 of a grad-
ient-like vector field for £, there exists a co-ordinate
system (xl, coey xn) about each of the critical points p
and p! in which f corresponds to a function i;xi *oeae i.xi
of suitable index, and { has coordinates (+ X ,..., i.xn)

Then one readily checks that there exist levels hl and ba,
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8, = f(p) < b, <D, < £f(pt) = 8,5 and diffecmorphisms g, &,

of closed, disjoint neighborhoods Ll’ L2 of O and e onto

neighborhoods of p and p' respectively such that:

(2) The diffeomorphisms carry # to ¢, F to f, and points
on the segment oe +to points on T,

(b) Let p, denote TN (b,), 4 =1, 2. The image of L,

is a neighborhood in gL [al, bl] of the segment pp; of
T, while the image of L2 is a neighborhood in gL [bz, 32]

of the segment p_p' of T (see Figure 5.5).
oP

Flgure 5,

K
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Observe that the trajectorles of W(¥) with initial points
in a small neighborhood U, of gil(pl) in gilf'l(bl) pro-
ceed to points in gélf-l(be) that form a diffecmorphic image
Ué of Ui and in doing so sweep out a set Lb diffeomorphic
to Ui X {0, 1] such that Ll ) Lo U L2 is a neighborhood of
oe, There 18 a unique extension of 8y to a smooth imbedding
Ei of L UL  into W determined by the condition that Y
trajectories go to £ trajectorles and F levels go to f
levels.

Now let us suppose for the moment that the two imbeddings
of U, into f-l(ba) glven by Ei and g, coincide at least
on some small neighborhood of gél(pz) in U.. Then Ei and

2
€, together give a diffeomorphism E of a small neighborhood
V of oe onto a neighborhocod of T in W +that preserves
trajectories and levels. This implies that there is a smoothsy;
positive, reasl-valued function k defined on g(V) such that
for =ll points in g(V)
By M=kt

Choosing the neighborhcod V of oe sufficiently small wve
may assume that the function k 1s defined, smooth and positive
on ell of W. Then E!' = k¢t is a gradient-like vector field
satisfying the Preliminary Bypothesis 5.,5. So when the above
supposition holds the proof of Assertion 6) is complete.

In the general case, the vector field § determines a
diffeomorphism h : f'l(bl) —_— f"l(hz) and the vector field

N determines a diffeomorphism h' : U —> U,. Clearly the




supposition made in the previous paragraph holds if and only
1f h coincides with h = geh'gil near p,. Now, by Lemma
4,7, any diffecmorphism isotopic to h corresponds to a new
gradient-like vector field that differs from ¢ only on
f'l(bl, bE)' Thus Assertion 6) will be established if H can
be deformed to a diffeomorphism h which coincides with h
near p, and for which the new right-hand sphere E(SR(bl))
in level b2 still has the single transverse intersection P,
or b, here indicates the level in

Y 2
vhich the sphere lies.)

1
with SL(be). (The b

For convenience we will specify the required deformation
of h by giving a suitable isotopy of h;lh that deforms hglh
on a very small nelghborhood of Py to coincide with the
identity map on a still smaller neighborhood of pl. Observe
that, after a preliminary alteration of 85 i1f necessary,
hslh- 1s orientation preserving at p; = hglh(pl) and both
h;lh SR(bl) and SR(bl) have the same intersection number
(both +1 or both -1) with SL(bl) at p,. (For a defin-
ition of intersection number see §6.) Then the folldwing

local. theorem provides the required 1lsotopy.

let n=a+b. Apolnt x ¢ R® may be written x = {(u, v),
ue R, ve RO . We identify u e R® with (u, o) € R and

veR with (o, v) & R,

Theorem 5.6

Suppose that h is an orientation-preserving imbedding
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of R into R® such that

1) b(0) = 0 (where O denotes the origin im R%)

2) h(R®) meets i only at the origin, The intersection is
transverse and the intersection number is +1  (where we
agree that R® meets Rp with intersection number +1).

Then given any neighborhood N of the origin, there exists

a smooth isotopy b, : K® —> K, 0 <t <1, with h =h
such that

(1) h;(x)r-h(x) for x = 0 and for stn-N,ogtgl.

1 i
(11) hl(x) = x for x in some small neighborhood Ny

of O.
(111) B (8*) n & = o.

R 4

hiR%) F h(R®)

Figure 5.6 //) > F}“
/\ h(N)
Lemna 5.7

Let h : R" —> R® be the map in the hypothesis of Theorem

5.6. There exists a smooth isotopy h, : R® —> R, O <t<1,

t
such that

(1) b, =h and h is the identity map of R°.,
(11) for each te [0, 1], b (R*) N E® = 0, and the inter-

section is transverse.
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Proof of Lemma 5.7:

since h(0) = 0, h(x) may be expressed in the form
h(x) = xlhl(x) + ews + xnpn(x) y X = (xl, veey xn) , Wwhere
hi(x) is a smooth vector function of x and (consequently)
hi(O) = g%; (0) ,1=1, «.., n. (see Milnor [k, p.6))., 1If
we define ht by
1 1

h)_o(x) =  B(tx) = xb (tx) + ... + x h"(tx), 0 <t <1,
then ht(x) is clearly a smooth isotopy of h to the linear
map

1 n
hl(x) = x;h (0) + «o. + x b (0)

Since n(R®) and ht(Ra) have precisely the same orienting
basis hb'(0), ..., b®(0) of tangent vectors et O e R°, it
follows that for all t, 0<t <1, ht(Ra) has transverse

b

positive intersection with R P

st 0. Clearly h.(R')NR =0.
Thus if hl is the identity linear map we are through.

If not, consider the family A ( GL{(n, R) consisting of
all urientation-preserving non-singular linear transformations
L of R° such that L(R®) has transverse positive inter-
section with ﬁb, l.e. 1l transformations with matrices of
the form L = (%+;)
where A is an a X a matrix and

det L.>0 , det A > Q.

Assertion:; For any I, £ A there 1s a smooth isotopy Lt’
0<t<l, deforming L into the identity, such that 1L, € A
for all ¢t; or, equivalently, there is a smooth path in A

from L +to the identity.
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Proof: Addition of a scalar multiple of one of the first a
rows [columns]) +to one of the last b rows [respectively,
columns) clearly may be realized by a smooth deformation
(= path) in A. A finite number of such operations will reduce
the matrix L to the form

1 = (519)
vhere B ie & b X b matrix and (neceesarily) det B> 0. As
is well known a finite number of elementary operations on the
matrix A, each realizable by a deformation in GL(a, R),
serve to reduce A to the identity matrix. A similar state-
ment holds for B. Thus there are smooth deformations At, Bt’
0<t<1l of A and B to identity matrices with det At >0
and. det Bt > 0. They provide a deformation in A of L' %o

the identity. This completes the proof of the assertion and

also the proof of ILemma 5.7.

Proof of Theorem 5.6: ILet h,, 0 <t <1, be the isotopy of S5.7.
Let EC N be an open ball about 0O and let 4 be the distance
from O to R° - h(E). Since b, (0) = 0 and the time interval
0<t<1 is compact, there exists s small open ball El

sbout O with E CE so that [b (x)[ <@ forall xe E.

1
Now define

ht(x) = ht(x) for x e E|

h(x) for x e R® - E
- E) As an
initial step we wlll extend it to an isotopy of h that satis-

As it stands, this is an isotopy of h'ia U (Rn

fies at least the conditions (I) and (IX) of Theorem 5.6,

r@r'




. oz

Flrst observe that to any isotopy h _, 0<t<1l, of h

t,
there corresponds a smooth level-preserving imbedding

E : [0, 1] x R® —> [0, 1] x R®
and conversely. The relation is simply
H(t’: x) = (t: h-b(x))-

The imbedding H determines on its lmage a vector field
ch
t
?(t: y) = H(t, x)* 'EBE‘ = (1, tx )

vhere (t, y) = H(t, x) , i.e. ¥y = ht(x). This vector field,
together with the imbedding ho’ completely determines ht and
hence H. 1In fact
¥(t, ¥) = (t, b,h" (y)) 1s the unique family
of integral curves with initial values {0, y) € O X ho(Rn).
These observations suggest a device due to R. Thom. We
will extend the isotopy b, to all of [0, 1] X R®, by first

t
extending the vector field

ch
P (6, ) = (1, 5= (071 ()

to a vector field on {0, 1] X R® of the form (1, E’ (t, ¥)).

Figure 5.8

The Vector Fleld ¥ (t, y)
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Clearly h_ admits an extension to a small open neighborhood
of its closed dowain ([0, 1] x (E U (R® - E)}. This gives
an extension of F(t, y) to a neighborhood U of its closed
domain. Multiplication by a smooth function identically one
on the original closed domain and zero outside U produces an
extension to [0, 1] X R". Finelly, setting the firast co-ord-
inate eqqal to 1 we get a smooth extension

(e ) = (1, U, Y.
Notice that a family of integral curves ¥(t, y) is defined
for y e R° and for all t e [0, 1]. For y e R® - h(E)
this is trivial. For y £ h(E) 41t follows from the fact that
the integral curve must remain in the compact set ([0, L] X h(E).
The family  glves a smooth level preserving imbedding

v: [0, 1] x R® —> [0, 1] x R®
Then the equation

v(t, ¥) = (¢, Eth-l(.v))

sexrves to define the required extension of ht

isotopy of h that satisfies at least conditions (I) and (II)

to a2 smooth

of Theorem 5.6.
Using a similar argument one can prove the following
theorem of R. Thom which we will use in Section 8. (For a full

proof see Milnor [12, p.5] or Thom {[13]).

Theorem 5.8 Isotopy Extension Theorem.

ILet M be a smooth compact submanifold of the smooth manifold

N without boundary. If ht,O <t <1, is a smooth isotopy of

i : MC N, then ht is the restriction of a smooth isotopy
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ht,O < t<1, of the identity map N ——> N such that ht
fixes points outside a compact subset of N.
Returning to the proof of Theorem 5.6, let E% denote
the extended isotopy. The last condition (III) of Theorem

5,6 will be violated if h, introduces new intersections of

the imege of R® with R° as indicated in Figure 5.9.

RL A
—  hiRY

_ l
h AR —|

Figure 5.9 Af (/f’i
4

1)
WEY - 5 X £ .=hlE) a

Y

Hence we can use E;

where no new intersection can occur. We will apply the above

only for small values of t, say t < t',

process to construct a further deformation of E;, which
alters h ., only at points in E, where h , coincides with

h After a finite number of steps we will obtain the isotopy

L1
required. The details follow,

Note that we can write the isotopy ht of Lemma 5.7 in
the form
(*) B (x) = xu (6, x) + ooo + x B8, %)
where hi(t, x) is a smooth function of t and x,
i=1, ..., u, eand (consequently) hi(t, 0) = EEE (0).(The
proof given in Milnor (%, p.6] is unaffected by the para-

meter t.)




There exist positive constants X, k  such that for all «x
in a neighborhood of the origin in R® and all t e (o, 1]
1) | 2ua)| < g

e) Iua ht(x)l > k]xl for x ¢ Rg, where ®, R® —> R*

is the natural projection.

Proof: The first inequality comes from differentiating (*).
The second follows from the fact that ht(RE) is transverse

to Rb for all t in the compact interval ([0, 1].

We now complete the proof of Theorem 5.6 with an inductive
step as follows, Sﬁppose we have somehow obtained an imbedding
h:R® —> R isotopic to h such that

1) For some t, 0<% <1, h(x) coincides with

h, (x) for all x near O and with h(x) for all
o

x outside N,
b

2) n(R*) n R = o,
We perform the construction for ﬁ; glven on pages 61 to 63
teking h 1in place of h and [to, 1] in place of {0, 1]
and making the following two special choices (a) and (b).
(2) Choose the ball E( N so small that, for all points

x € E, h(x) = b, (x) and the inequalities of Lemma 5.9
o]

hold.

Note that on the set [t ,1] x (E, U (R® - E)) vhere H_ is

initially defineda:e have
($) I—%él‘ll < Kr , r = radius of E.
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Now EE%{Q_ is the R -component of #(t, y). So it is clear

from the construction on page {62) that we can

(b) choose the extended R -component _(f(t., y) of ¥, y)
to have modulus everywhere less than klr.

Then B, will satisty  (§) everywhere in [t_, 1] x R'.
We assert that h, will introduce no new intersection

t

of the image of rR? with Rb for t0_<_t$_to+§ . In

fact 4f xe R n (E - El), the distance of E£ (x) from

Q
R’ is

lna Eto(x” = In, hto(x” >kr

Thus (§) shows that for to <t< to + % we have

]na'ﬁt(x)l >kr-(t- t )Kr >o0.

Finally, to make possible composition with similar

isotopies, we may adjust the parameter t so that the isotopy

— L

- -3
by, t, St <t =min (1, t + ), satisfies

—

ht(x) = rﬁ(x) for t near t_

|
Ht(,)(x) for t near t

Since the constant k/K depends' only on ht’ the required
smooth isotopy is a composition of a finite number of isotoples
constructed in the above mapner. So Theorem 5.6 ies complete.
This means that Assertion 6) (page 55) is established, and

hence the First Cancellation Theorem is proved in general.




671 .

§6 A Stronger Cancellation Theorem

Throughout these notes singular homology with integer
coefficients will be used unless otherwise specified.

ILet M and M! be smooth submanifolds of dimensions r
and & in a smooth manifold V of dimension r + & that inter-
sect in points Pys veesly » transversely. Suppose that M 1is
oriented and that the normal bundle y(M') of M' in V 1ig
oriented, At Py choose a positively oriented r-frame
gl, ...,gr of linearly independent vectors spanning the tangent

space Tﬂp of M at D, . Since the intersection at Py is
i

transverse, the vectors gl, ...,gr represent a basis for the

fiber et p, of the normal bundle v(M).

Definition 6.1 The intersection number of M and M' at Py

is defined to be +1l or -1 according as the vectors gl, ...,gr
represent a positively or negatively oriented basis for the

fiber at p, of v(M'), ‘he intersection number M''M of

M and M' is the sum of the intersection numbers at the points

Pi‘

Remark 1) In an expression M'-M we agree to write the mani.

fold with oriented normzl bundle first.

Remark 2) If V is oriented, any submanifold N is orientable
if and only if its normal bundle is orientable. In fact given

an orientation for N there is a natural way to give an orien-
tation to v(N) and conversely. Namely we require that at any

point in N a positively oriented frame tangent to N followed




U
&%,
by & frame positively oriented in «(N) is a frame positively

oriented in V.

Bence if V 15 oriented there is & natural way to orient

v(M) and M', The reader can check that with these orientations.
MM = (-1)7° mMruu,

I{ the orientation and orientation of normal bundle are not

related by the above convention we clearly still have

M-M' = + M'.M provided V 4s orientable.

Now assume that M, M' and V are compact connected
manitolds without boundary. We prove a lemma which iwplies that
the intersection number M+M' does not change under deformations
of M or ambient isotopy of M'! and which provides a definition
of the intersection number of two closed connected submanifolds
of V of complementary dimensions, but not necessarily inter-
secting transversely. The lemma is based on the folloving
corollary of the Thom Isomorphism Theorem (see Ehe sppendix

of Milnor [19]}) and the Tubular Neighborhood Theorem (sece

Munkres [5, p.46] end Lang {3, p.73] or Miloor [12, p.19]).

Lemma 6.2 (without proof)
With M' and V us above, there is a natural isomcrphism

v E (M) —> H_(V, V- M),

Let « be the canonical generator of HO(M') =2, and
let [M) e Er(M) be the orientation generator. The announced

lemme 18: '




Lemna 6.3 In the sequence :é%
B () 8> B (V) B> H (v, v 5 M), '

vhere g and g' are induced by inclusion, we have g'eog([M])
= M**M ¥{(a).

Proof: Choose disjoint open r-cells Ui, ...,Uk in M con-

taining pl, esesP) respectively. The naturality of the Thom
isomorphism jmplies that the inclusion induced map
Hr(Ui, v, - pi) — Hr(V, V - M)

is an isomorphism given by 71 -_— € Vv(a) wvhbere 71 is the
orientation generator of Hr(Ui, Ui - pi) and Ei is the inter-
section number of M and M'! at Dy The following commutative
diagram, in which the indicated isomorphism comes from excision
and the other homomorphisms are induced by inclusion, campletes
the proof.

B(M)—B—bﬂ(v)—ﬁ'-bﬂ(v, v - M)

&__ﬂ,___w-——-“"—-"—rr’_

B (M, M- M0 M) > £ B (U U; - py)
1=1

We can now reinforce the First Cancellation Theorem 5.k,
Let us return to the situation of Theorem 5.4t as set out on
page U5, Nemely (Wn; Vs Vi) is a triad with Morse function
f having a gradient-like vector field §, and p, p' with
£(p) < 1/2 < £(p') are the two critical points of f, of index
N, A + 1 respectively. Suppose that an orientation has been

' -1
given to the left-hand sphere 8, in V =f (1/2) and also

L
to the normal bundle in V of the right-hand sphere SR‘

Theorem 6.8t Second Cancellation Theorem

Suppose W, V6 and Vi are simply connected, and A > 2,




30
A+l1l<n-~3 If SR . SL = +1, then Wl is diffeomorphic to
v, X {0, 1]. 1In fact if 8g SL = 41, then & can be altered
near V so that the right- and left-hand spheres in V inter-

sect in a single point, tranaversely; and the conclusions of

Theorem 5.4 then apply.

Remark 1) Observe that V = f“l(l/Q) is also simply connected.
In fact, applying Van Kampen's theorem (Crowell and Fox [17, p.63])
twice ve find nl(V) £ xl(D;—h(p) Uuvuy D£+l(q)). (This uses

AN>2,n-2A>3). But by 3.4 the inclusion De(p) UV U D (a) CW

is a homotopy equivelence, Combining these two statements we see

that nl(v) =1,

Remaerk 2) Notice that conclusion of the theorem is obviously

true whenever A =0 or A =n - 1. Also the reader can verify

with the help of 6.6 below that the theorem holds even with the

-~
A

single dimension restriction n 2.6 ! (The cases we will not

check aye A =1 and A =n - 2.) The one extension of use

to ue comes from turning the triad around:

Corollary 6.5 Theorem 6.4 is also valid if the dimension

conditions are X\ > 3, (N +1) S.h ~ 2

| 4
Proof of Corollary: Orient SR and the normal bundle vSL

]
of SL in V. Now W 1is simply connected hence orientable.

So V is orientable and it follows from Remark 2) page 67 that

SL . SB = i.sn . SL = i;.

If we novw apply Theorem 6.4 to the trisd (W'; Vi, Vb) with
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Morse function -f and gradient-like vector field ~t we clearly

get Corollary 6.5.
The proof of 6.4 will be based on the following delicate

theorem which is essentially due to Whitney [7].

Theorem 6.6

Iet M and M'! be smooth closed, transversely intersecting
submenifolds of dimensions r and s in the smooth (r + s)-men-
ifold V (without boundary). Suppose that M 1is oriented and
that the pormal bundle of M' in V is oriented. Further suppose
that r+8>5, 8>3, and, incese r =1 or r =2, suppose
that the inclusion induced map ul(v - M) —> nl(V) is 1-1 into.

let p, a e M M' be points with opposite intersection num-
bers such that there exists a loop L contractible in V that
consists of a smoothly imbedded arc from p to q in M followed
by a smoothly imbedded arc from q@ to p 1in M' where both arcs
mies M N M' - (p, al.

With these assumptions there exists an isotopy ht,o <t<1l,

of the identity 1 : V —> V such that

(1) 'The isotopy fixes 1 near M n M' - (p, 4]
(11) b, (M) N M* =M M - {p, q)

Fgure 6.1




S
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+2

Remark: If M and M' are connected, r >2 and V is simply
connected no explicit assumption about a loop L need be made. For
applying the Bopf-Rinow theorem (see Milnor (4, p.62]), with com-
plete Riemannian metrics on M - S and M!' - S, where

S=MnNM - (p, q), we can find a smoothly imbedded axrc p to q
in M and similarly q to p in M' giving a loop L +that misses

S. The loop L 1is certainly contractible if V is simply connected.

Proof of 'Theorem 6.4

According to 5.2 vwe can make a preliminary asdjustment of ¢

1 )
near V so that SR and S intersect transversely. If S_N S

L R L
1
is not a single point, then SR - SI = + 1 implies that there
exists a pair of points Py ql in SR n SL with opposite inter- %
section numbers. If we can show that Theorem 6.6 applies to this o

situation, then after we adjust ¢ near V, using Lemma 4.7, Sg

t
and SL will have two fewer intersection points. Thus if we repeat
|
this process finitely many times SR and SL will intersect

transversely in a single point and the proof will be complete.

Since V 1is simply connected (Remark 1 page 70) it is clear
that in case A > 3 all the conditions of Theorem 6.6 are satis-
fied. If A =2, it remains to show that nl(v - sR) —_— nl(V) =1
is 1-1, i.e. that nl(V - sR) = 1, Now the trajectories of ¢
determine a diffeomorphism of Vo - SL onto V - SR’ where SL
denotes the left-hand l-sphere of p 1in Vo. let N be a pro-

duct neighborhood of S, in VO. Since n-A-1=mn-32>3,

L
we have nl(N -‘SL) = 7, and the dlagram of fundemental groups

corresponding to



+3
Vb 1
& O PN
v <s N is m (V- S ) g
0 L
N & \ //5!
(VO - SL) I"l N z -
=N -8

L

Van Kampen's theorem how implies that nl(vo - SL)= 1. fThis

completes the proof of Theorem 6.4 modulo proving Theorem 6.6.

Proof of 6.6

Suppose that the intersection numbers at p and g are
+l and -1 respectively, let C and C' be the smoothly
imbedded arcs in M &end M' from p to q extended a little
wvay at both ends. Let Co and C; be open arcs in the plane
intersecting transversely in points a and b, and enclosing a
disk D (with two corners) as in Figure 6.2 below. Choose an
embedding @, : C U c; ~—> M UM' 8o that cpl(Co) and
wl(C;) are the axcs C and C', with a and b corresponding
to p and q, The theorem will follow quickly from the next

lemma, which embeds a egtandard model.

Lemma 6.7 For some neighborhocd U of D we can extend

Ra—l

' -
¢1|U n (C0 U Co) to an embedding ¢ : U X R* 1 X —_— ¥

such that @ (M) = (Un C)x K™ x 0 end

- ' -
etM) = (Uncy) x o x 7Y,

Figure 6.2 The Standard Mcdel
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Assuming Lemme 6,7 for the moment, we will construct an
isotopy Ft ¢ V——=> YV such that Fo is the identity,

Fl(M) NM =MnM - (p, q), and F, is the identity outside
the image of ¢, 0<t < 1.
1 X

Let W denote (U X R " x R°1) and define F, to be

the identity on V - W, Define F% on W as follows,
Choose an isotopy Gt ¢ U—> U of our plane model such

that

1.) G, is the identity map,

2.) G, 1s the identity in a neighborhood of the boundary

U-U of U, 0<t<1, snd

3.) Gl(U n co) n c; = @. (See Figure 6.3.)

1 c:°
—> [0, 1] be a smooth function

such that with x ¢ Rr—l, ye Rt

r-l

let p: R x R®”

1 for |x|%+ [y <1
plx, ¥) =3 e

0 for |x|° + |y|2 > 2.

rel s8-1

Define an isotopy Hf «: UXR X R 1 x s-1

—> UxX RF™* xR

by

Ht(u, X, y) = (Gt (u), x, y) , ue U

p(x, y)

It is easy to see that Ft(w) =q@oH o ¢“l(w), w € W, defines

the required disotopy on W. This flaszdhes the proof of Theorem

6.6, modulo proving 6.7,

Lerma 6.8 There exists a Riemannian metric on V such that
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1.) in the associated connection (see Milnor [4, p.44]) M and
M' are totally geodesic submanifolds of V (i.e. if a
geodesic in V 18 tangent to M or to M! at any point
then it lies entirely in M or MN', respectively.)

2.) there exist coordinate neighborhoods HP and Nd about
P and q in vwhich the metric is the euclidean metric and
so that N_n C, Nb n ct, Nﬁ nc, and Nﬁ N C!' are straight

p
line segments,

Proof (due to E. Feldman): We know that M intersects M’
transversely in points Pys +oesPp with p = Dy and q = Py-
Cover M UM' by coordinate neighborhoods wl, coosW in V
with coordinate diffeomorphisms h1 s W, —> Rr+8, i=1, ¢eo,m,

i
such that .

a.) there are disjoint coordinate neighborhoods Nip eeesly
with p, e N (ji& CV; end N NW, = g for 1 =1, ...,k
and J =k +1, ...,m.

h)hiWNHDC§xO
b, (W, nM)COXE 1 =1, oo,k

c.) hy (w1 NC) end hy (W, N C') are straight line segments

r+s

in R '°, 1 =1,2.

Construct a Riemann metric < V', w > on the open set
Wo = Wl U... U wm by piecing together the metrics on the wi
induced by the hi’ i=1, e , using a partition of unity.
Note that because of a.) this mctric is eucliacean in fae

Ni, 1= l, c-"ko




(8]

+6
With this metric construct open tubular neighborhoods T

and T' of M and M' in W, using the exponential map (see
Lang [3, p. 73) . By choosing them thin enough we may essume
'
that TN T CNlU...UNk and that
. - ot 8 r 8 _ T8
b(TNT NN) o0, x 00, CR" XR =R " ,
i=1, «e.)k , for some €, €' >0 depending on 1. The situ-

ation is represented schematically in Figure 6.h4.

M | P:

Figure 6.4 1:

AA/ ; ' N,
i %
W;
Iet A: T—> T be the smooth involution (A = A o A =
identity) which is the antipodal map on each fiber of T. Define

new Riemann metric <§7’, w> on T by <\7’,§’> =

A A

P S > -3
(KV, ">+ <AT, AFT>).

a
1
2
Assertion: With respect to this new metric, M 1is a totally
geodesic submanifold of T. To see this, let w be a geodesic
in T tangent to M at some point 2z € M. It is easy to see
that A is an isometry of T in the new metric and hence sends
geodeslcs to geodesics, Since M. ig the fixed point set of A,
it follows that A(w) and @ are geodesics with the same tan-
gent vector at A(Z) = 2. By uniqueness of geodesics, A is
the identity on w. Therefore w ( M, which proves the
assertion.

Similerly define e new metric < ¥, w>,, on T'. It

Ai
follows from property b.) and the form of T N T' that these
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two new metrics agree with the old metric on TN T* and hence
together define a metric on T U T'. Extending to all of V the
restriction of this metric to en open set 0, with M U M'

OoCOCTUT, completes the construction of & metric on V

satisfying conditions 1.) and 2.).

Proof of Lemma 6.7 (The proof eccupies the rest of Section 6)

Choose a Riemannian metric on V prcvided by Lemma 6.8.
Let <t(p), t(a), t'(p), t'(qa) be the unit vectors tangent to
the arcs C and C' (oriented from p to q) at p and a.
Since C 1is a contractible space, the bundle over it of vectors
orthogonal to M is trivial. Using this fact construct a field
of unit vectors along C oxrthogonal to M and equal to the
parallel translates of t'(p) and of -t'(q) along NP nc
and Nﬁ N C respectively.

Construct some corresponding vector field in the model.

(See Figure 6.5)

Figure 6.5
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Using the exponential map, we see that there exists a neighbor-
hood of C, 1in the plane and an extension of @ilco to an
imbedding of this neighborhood into V. Actually, the expnnential
map gives an imbedding locally, and then one uses the following
lemma, vhose elementary proof may be found in Munkres [5, p.49

Lemma 5.7 (which is incorrectly stated)]

Lemma 6,9 Let A, Ybe a closed subset of a compact metric space
A. Let £ : A—> B be a local homecmorphism such that fle
is 1-1. Then there is a neighborhood of W of Ab such that
£lw is 1-1. |

Similarly extend ¢1|0; to an imbedding of a neighborhood
of C; using a field of unit vectors along C! orthogonal to
M! which along Qp N C' and Né N C' consists of the parallel
translates of T(p) and -t(q) respectively. When r =1

this is possible only because the intersection numbers at p

and q are opposite,

Using property 2) of the metric on V (see 6.8) we see
|
that the imbeddings agree in a neighborhood of Co v Co and

hence define an imbedding

of a closed annular neighborhood N of BdD such that
cp;l(M) =NnC_  and ¢;1(M') =NnN c;. Let S8 denote the
inner boundary of N and let D, C D be the disc bounded by
S in the plane. (See Figure 6.5)

Since the given loop 1. 1is homotopic to the loop ¢é(s),

the latter is ccutractible in V. Actually ¢é(s) is contractible

—‘___




in V- (MUM') as the following lemma will show.

Lemma 6.10

If V: s 25, ie a smooth manifold, M, a smooth submanifold of
codimension at least 3, then a loop in Vy - M, that is con-
tractible in Vl is alsy contractible in Vl - Ml

Before proving 6.10 ve recall two theorems of Whithey.

Lemma 6.1). (See Milnor {15, p.62 and p.63]) Let f : M, —> M,
be a continuous map of smooth manifolds which is smooth on a
closed subset A of Ml' Then there exists a smooth map

g Ml —> M, such that g 2 f (g is homotopic to f) and

gla = £|A.

Lerma 6.12 (See Whitney [16] and Milnor [15, p.63])

Let £ : Ml —_— M2 be a smooth map of smooth manifolds which
is an imbedding on the closed subset A of Ml Assume that
dim M? > 2 dim Ml + 1. Then there exists an imbedding

g : M1 —_ M2 approximating f such that g = £ and g'A = fIA.

Proof of 6.10:

2 1
let g : (D7, 87) —> (Vl, v, - Ml) give a contraction

in Vl of a loop in V, - M,. Because dim (Vl —Ml) >3

the above lemmas give a smooth imbedding

h: (08, 8Y) —> (v, Vv, - M)

1l
2
The normal bundle of h(Da) i3 trivial since h(D") is

2 n-2
contractible. Hence there exists an imbedding H of D X R

such that g|81 is bhomotopic to hlSl in V, - Ml
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into V, such that H(u, o) = h{u) for ue D2. Teke € > O

-2

so small that |¥]<e, ¥e R, implies H(S' x X¥) CV, - M.

Since codimension M, >3, there exists (cf. 4.6) X, € R2-2 ,
IRl <€, such that H(D®x F)NM =@ Nowin V - M we

have g|sl = hISl = H]Sl % 0 < H'Sl % i; < constant. This com-

pletes the proof of Lemma 6.10.

Now we can show that ¢(S) 1is contractible in V - M U M'.
For it is contractible in V - M' by 6.10 if r > 3, and if
r = 2 by the hypothesis that nl(V - M) —> nl(V) is 1-1.
Then, since s > 3, q(S) is also contractible in (V - M') - M =
V-(MUM) by Lemma 6.10.

We now choose a continuous extension of P to U=NU D0

wé t U —>v

that maps Int D into V - (M U M'). Applying Lémmas 6.11
and 6.12 to q);'lnt D we can obtain a smooth imbedding
¢3 t U—>V coinciding with 9, ona neighborhood of
U - Int D, and such that cp3(u) g MUM' for ug C_ U c;.

It remains now to extend P3 to UX erl X Rs'l as
desired. |

We let U' denote ¢3(U), and for convenience in nota-

1
tion we shall write C, C', Cy» and CO in place of U' n C,

}
utnct, un Co, and UN Co, respectively.

Lemma 6.13 There exist smooth vector fields B1s vees Epyo
Mys seesfg 3 along U' which satisfy condition 1.) below
and such that E,, ..., &, , satisfy 2,) and Tys seer Mgy

satisfy 3.)
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l.) are orthonormal and are orthogonal to U!

2.) along C are tangent M

3.) along C' are tangent to M'.

Proof: The ldea is to construct gl, ver o0 gr-l in steps, first
along C by parallel translation, then extending to C U C' by
a bundle argument, and then to U' by another bundle argument.
The details follow,

Iet T and <! be the normalized velocity vectors along
C and C', and let V' be the field of unit vectors along ct
which are tangent to U!' and are inward orthogonal to C'. Then
v'(p) = 1(p) and v'(a) = -t(q) (see Figure 6.6)

Figure 6.6

wC W’

b \
». \)"P) :T(P\ C, ’\‘ V;ﬂ‘v

Choose r -1 veétors gl(p), ...,gr_l(p) which are
tangent to M at p, are othogonal to U', and are such that
the r-frame <(p), gl(p), ...,gr_l(p) is positively oriented
in TMp‘ Parallel translating these r - 1 vectors along C

gives r - 1 smooth vector fields gl, veoy gr_l along C.

These vectors fields satisfy 1.) because parallel translation
preserves inner products (see Milnor [4, p.u#6]). They satisfy

2.) because parallel translation along a curve in a totally




geodesic submanifold M sends tangent vectors to M into tangent

vectors to M (see Helgason, Differential Geometry and Symmetric

Spaces, p. 80). Actually, given the construction of the Rieman-
nian metric in 6.8, condition 2.) easily follows from the exist-
ence of the "antipodal isometry" A on a tubular neighborhood
of M (compare the argument on p.76). Finally, by continuity
the r-freme =, gl, voay gr_l is positively oriented in TM
(= tangent bundle of M) at every point of C.

Now parallel translate gl(p), ...,gr_l(p) along Np nct
end ¢;(a), ...,k ;(a) along N_ N C'. By hypothesis the '
intersection numbers of M and M' at p and q are +1 and
-1. This means that 1(p), gl(p), ...,Er_l(p) is positively
oriented in V(M') at p while t(a), &(a), ..oy, (a) 18
negatively oriented in v(M*) at q. Since v'(p) = v(p) and
v'(q) = -1(q), we can conclude that at all points of both
Nb N C' and Nd n c', the frames v°', Eo "”gr-l are posi-
tively oriented in v(M').

The bundle over C' of (r - 1)-frames gl, ceey gr_l
orthogonal to M! and to U', and such that v!', gl, ..a,gr_l
is positively oriented in v(M!) is trivial with fiber SO(r - 1),
which is connected. Hence we may extend gl, aa.,gr_l to a
smooth field of (r - 1)-frames on C U C' that satisfy condi-
tions 1) and 2).

The bundle over U' of orthopnormal (r-1)-frames orthogonal
to U' is a trivial bundle with fiber O(r +8 - 2)/0(s - 1)

=V, l(R.rw-a), the Stiefel manifold of orthonormal (r - 1)-

frames in Rr+8'2. 8o far we have constructed a smooth cross-

—4__________________#
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section gl’ ...,gr_l of this bundle over C U C!'. Composing
gl, ""gr-l with the projection into the fiber, we get a
smooth mep of C U C' into O(r + s - 2)/0(s - 1) which is
simply connected since s > 3. (see Steenrod [18, p.103]).
Hence there is a continuous extension to U' and by Lemma 6.11
there exists a smooth extension. Thus we can define gl, ...,gr_l
over all of U' to satiefy 1.) and 2.).
To define the remaing desired vector fields, observe that

the bundle over U' of orthonormal frames Mys s=eslgq in

TV such that each ny is orthogonal to U' and to gl, ...,gr_l
is a trivial bundle because U' 1is contractible. Let the

desired field of frames Mys eeeoslg_y OB U* Ybe a smooth
- cross-section of this bundle. Then gl, ...,gr_l, Nys» »eo2Ngy
satisfy 1.). Furthermore, since gl, ""gr-l are ortho-
gonal to M' along C', it follows that Mys seerfgy sat-

isfy 3.). 'This finishes the proof of Lemma 6.13.

Completion of Proof of Lemma 6.7

Define amep UXR T x R°t —> v vy

r-1 s-1
(WyXg5eeesX 1s¥yseees¥y q) — expliilxiei(¢3(u)) +J§lyjn3(¢3(u))].

It follows from Lemma 6.9 and the fact that this maep is a local
diffeomorphism that there exists an open e-neighborhood N;
about the origin in K12 = "1 x 8°! such that if

P, * U X Ne ——> V denotes this mep restricted to U X Ne then
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Py is an embedding. (U may have to be replaced by a slightly

smaller neighborhood, which we still denote by U,)

Define an embedding ¢ : U X R?-l X RE’"l ~—> V by

plu, 2z) = ¢h(u, ~52__), Then cp(Co x B1 x 0)CM and
1+'z|2

¢(C; X 0 X Rs-l) (C M' because M and M' are totally geodesic
submanifolds of V., Moreover, since @(U X 0) = U' intersects
M apnd M' precisely in C and C', transversely, it follows
that,for e > 0 sufficiently small, Image(p) intersects M
and M' precisely in the above precduct neighborhoods of C and

C'. This means ¢ *(M) =C X K0 x0 and ¢ (M) =

' —
Co x 0 x R® l. Thus ¢ 1is the required embedding. This ends

the proof of Lemma 6.7.
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§7 Cancellation of Critical Points

in the Middle Dimensions

Definition 7.1 Suppose W is a compact oriented smooth

n-dimensional manifold, and set X = BdW. It is easy to check
that X 1is given a well .defined orientation, called the induced

orimntation, by saying that an (n - 1)-frame =< of

17 " %a
vectors tangent to X at some point x € X 1s positively orien-

ted if the n-frame v, 11, SRPLNEY is positively oriented in
wa’ where Vv 1is any vector at x +tangent to W but not to

X and pointing out of W (i.e. v is outward normal to X).

Alternatively, one specifies [X] e Hn_l(x) as the induced

orientation gemerator for X, where [X] 1is the image of the

orientation generator [W] e Hn(w, X) for W under the bound-
ary homomorphism nn(w, X) —> Hn_l(x) of the exact sequence

for the pair (W, X).

Remark: The reader can easily give a natural correspondence
between an orientation of a compact manifold Mn specified by

an orientation of the tangent bundle (in terms of ordered frames)
and an orientation M specified by a generator [M] of Hn(M; Z)
(cf.Milnor [19, p.21]1). It is not difficult to see that the two
vways given above to orient BAW are egquivalent under this nat-
ural correspondence. Since we will always use the second way to

orient BdW, the proof is omitted.

Suppose now that we are given n-dimensional triads

(W3 v, vt), (W'; v', V"), and (W UW'; V, V"). Suppose also




that f 1is a Morse function on W U W' with critical points

Qs eeerq, € W and q;_, ,ql; € W' such that Qs -9,

are all on one level and are of index ), while qi, ...,q;

are on another level and are of index A+ 1, and V' is a
non-critical level between them. Choose a gradient-like vector
field for f and orient the left-hand disks DL(ql), cony DL(qZ)
in W and D;(qi), ...,DL(q;) in W',

Orientation for the normal bundle VDR(qi) of a right-hand
disk in W 1is then determined by the condition that DL(qi) have
intersection number +1 with DR(qi) at the point q,. The
normal bundle VSR(qi) of SR(qi) in V' is naturally isomor-
phic to the restriction of VDR(qi) to SR(qi)' Hence the orien-
tation of VDRqu) determines an orientation for VSR(qi).

Combining Definition 7.1 and the above paragraph we conclude
that once orientations have been chosen for tge left-hand disks
in W and W', there is a natural way to ori;nt the left-hand
spheres in V' and the normal bundles of the right-hand spheres
in V'. Consequently the intersection number SR(qi) - S;(q;)
of left-hand spheres with right-hand spheres in V' are well
defined.

]
From Section 3 we know that HK(W, V) and HX&l(w UWt, W)

= fol(W', V') are free abelian with generators
(D (g )], ---»0(a,)] and [p(a))], ..., (Dp(qy)], respect-

ively, represented by the oriented left-hand disks.

Lemma 7.2 Let M be an oriented closed smooth manifold of

dimension ) embedded in V' with ([M] ¢ HX(M) the orientation
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generator, and let h : HK(M) —_ HK(W, V) be the map induced
b . * e = * * 9 b

¥y inclusion. Then h([M)) SR(ql) M [DL(qL)] + + SR(qz)
*M [DL(qE)] where SR(qi) « M denotes the intersection number

?
of SR(qi) and M in V',

Corollary 7.3 With respect to the baseg represented by the

oriented left-hand disks, the boundary map o : HX+1(W UW!, W)
—_— Hx(w, V) for the triple W UW' DW DV 1is given by the

t ]
matrix (aij) of intersection numbers 8,y = SR(qi) . SL(qj) in

V!, naturally determined by the orientations assigned to the

left-hand disks.

Proof of Corollayy: Consider one of the basis elements

1 t
t
[DL(qj)] € lgwl(w UW!, W), We can factor the map o into the

composition
] t
H}\(S (qj))
i*
nHl(w Uw', W) ; > H)&l(w', V') ————> H (V')

boundary
\\

W) H}\(l‘f'*’ )

T Hl(wl, )

Here e 1is the inverse of the excision isomorphism, and i,
is induced by inclusion.

1 t
By definition of the orientation for SL(qj)’ we have

boundary ° e([D;(q;)]) = i*([SL(q;)]).

| § 1
The result follows by setting M = SL(qj) in Lemma 7.2.
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Proof of 7.2: We assume £ =1, the proof in the general case

bei ilar. = = =
eing similer. Set q =gq,, D DL(ql)’ Dp DR(ql)’ and
Sp = sR(ql). We must show that h([M]) = Sp i [ ].

Consider the following diagram:

T L
B (V') ° §\\)H)\(V', VAR
] I

%\(w)\ BX(V Up, VU (D - a))

r)

The deformation retraction r : W —> V U DL constructed

in Theorem 3.14 maps V' - 8p to VU (DL - q), so the

homomorphism h, induced by r|V' is well-defined. The ob-

1
vious deformation retraction of V U (DL - q) to V induces
the isomorphism h2‘ A1l the other homomorphisms are induced by
inclusion,

The diagrem commutes because i, = (r|v'), (since the maps
i, r|[v' : V' —> W are homotopic) and the corresponding dia-
gram of topological spaces and continuous maps commutes pointwise,
with r|v' in place of 1.

From‘Lennna 6.3 we know that ho([M]) = 8o M ¥(a) where
a e HB(SR) is the canonical generator and V : HO(SR) —_—

HX(V', v - SR) is the Thom isomorphism. Hence in order to prove

M
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that h([M]) = SR-hq [DLJ’ by commutativity of the diagram it

suffices to show that

(%) hy o b, ° h (¥(a)) = [ ).

The class y(x) is represented by any oriented disk D"

which intersects SRL in one point x, transversely, with inter-

section number SR - DK = 41, Referring to the standard form for

an elementary cobordism given in Theorem 3.13, and the conventions
by which D(SR) is oriented, one can see that the image r(DK)
of DK under the retraction r represents

) R, S
DR D" = SR D +1

times the orientation generator h;l'hgl([DL]) for H}\(V UD,

vVu (DL - q)). It follows that
-1, -1
th(a) = h2 h3 ([DL])
or h3h2hl v(a) = [DL]

as required. Thus the proof of 7.2 is complete.

Given any cobordism c¢ represented by the tyiad (W; Vv, V'),

according to 4.8 we can factor c = cocl »e. C, 80 that cA

admits a Morse function all of whose critical points dre on the

same level and have index A. Let cocl cee ck be represented

by the manifold WA.(:W, A=0,1, ..., n, and set W_, =V, so

that

\'f =w_leonlC cos Cwn =W
Define C, = H}\(W)\, LN \?
be the boundary homomorphism for the exact sequence of the triple

wx-a C wx-l C wx ‘

= : _—
) = Hy(W,, W, ;) eandlet 9:C, C

A-1
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Theorem 7.4 C, = {CA’ 0} is a chain complex (i.e. £ = 0)

and H (C,) = H (W, V) for all a.

Proof: (Note that we do not use the fact that Cx is free abe-
1lian, but only that H*(Wh A l) is concentrated in degree A.)
That 82 = 0 1is clear from the definition. To prove the

isomoxphism, consider the following diagram.

B ) —> 0

a1 hars ) —> B (0, W) o) —> B\ (harr ¥aa

"1’ :
Catl R M, W) =
>
Balhar o) = 6

The horizontal is the exact sequence of the triple (wh#l’ wk,

) and the vertical is the exact sequence’of (WK, W

wk-z A-1?

WA-E)' One checks easily that the diagram commutes. Then clearly

B (Cy) = H (W, s W _5) But H, (W W, o) 2 H (W, V). Leav-

-2 A+L?
ing the reader to verify this last statement (see Milnor [19, p.9])),

we have the desired isomorphism HX(C*) = HX(W, V).

Theorem 7.5 (Poincare Duality.)

If (V; Vv, V') is a smooth manifold triad of dimension n and
W 1is oriented, then Hx(w, V) is isomorphic to Hn-k(w, V)

for all A.

Proof: Let c=cc; ... c and C, = [Ck’

respect to a Morse function f as above, and fix a gradient-like

___

o)} Ybe defined with
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vector field & for f. Given fixed orientations, the left-hand

disks of c¢. form a basis for C. = Hx(wk, W .). From 7.3 we

A A A=l

know that with respect to this basis the boundary map o : Cx

— Cx-l is given by the matrix of intersection numbers of

oriented left-hand spheres of N with right-hand spheres of

Cyol having oriented normal bundles.

ess C for

t
Similarly let Wu'(:W represent ®nep cn_u+l n

t
H = 0, l’ ey n and Seti W~l

as before. For any right-hand disk DR’

= V!, Define C' =H (W', W' _)
N u( w oTp-l

and o' : C!' —> (!
M u-1

the given orientation of v(DR)'(from the oriented left-hand

disk) together with the orientation of W give a naturally de-

fined orientation for D_. Then 9J: C; —> C! . is given

R p-1
by a matrix of intersection number of oriented right-hand spheres
with left-hand spheres having oriented pormal bundles.

Let C'F = (c'*, 8'} be the cochain complex dusl to the
chain complex C} = [C&, 3t} (Thus c'¥ = Hom(C&, %)). Choose
as basis for C'M +the basis dual to the basis of C& which is

determined by the oriented right~hand disks of <,

bu.

An isomorphism CA —_— C'D-K is induced by assigning to
each oriented left-hand disk, the dual of the oriented right-
hand disk of the same critical point. Now, as we have stated,

o

)
emepemptrn = * S .
C, > C, , 1is given by a matrix (aij) (SR(Pi) L(pj))

- -A\+
It is easy to see that O' c?A 5 A+l is given by the

t 1
- . ted
matrix (bij) (SL(pJ) SR(pi))' But since W is oriented,

biJ = i-aij’ the sign depending only on A. (cf. 6.1 Remark 2.

The sign turns out to be (-l)k-l.) Thus O corresponds to + &',

]



and it follows that the isomorphism of chain groups induces an
- *

lsomorphism K (C,) = FMer™).

Now 7.1 implies H}\(C*) 2 H}\(w,' V) and Hu(c;) = Hu(w, vt)
for each A and pu. Moreover, the latter isomorphism implies

TP

that H'(C' ) 2 B*(W, V') for each p. For if two
chain complexes have isomorphic homology then the dual cochain
complexes have isomorphic cohomology, This follows from the Uni-

versal Coefficient Theorem,

Combining the last two paragraphs we obtain the desired

isomorphism ax(w, V) = HP"K(W, V'),

Theorem 7.6 Basis Theorem

Suppose (W; V, V') 1is a triad of dimension n possessing

a Morse function f with all critical points of index A and
on the same level; and let ¢ be a gradient-like vector field
for f. Assume that 2 <A< n -2 and that W 1is connected.
Then given any basis for Hk(w, V), there exist a Morse function
f!' and a gradient-like vector field ¢' for f£' which agree
with £ and ¢ in a neighborbood of V U V' and are such that
f' has the same critical points as f, all on the sesme level,
and the left-hand disks for ¢!, when suitably oriented,

determine the given basis.

Proof: Let Pys coy Py be the critical points of f and let
by ey b, be the basis of Hx(w, V)2Z2e® ... 82 (k-summands)
represented by the left-hand disks Di(pl)’ ceey DL(pk) vith
any fixed orientations. ILet the normal bundles of the right-

hand disks DR(pl), cesy DR(pk) be oriented so that the matrix

e —
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(DR(pi) . DL(p J)) of intersection numbers is the identity k X k

matrix.

Consider first any oriented A-disk D smoothly imbedded in

W with BAD(C V. D represents an element

by + ... + b E Hx(w, V)
for some integers oi’ ceny Ok 3 that is, D 1is homolgous to
aiDL(Pl) + ve. ¥ OkDL(pk)' It follows from an easily proved

relative version of Lemma 6.3 that, for each §j =1, ..., k

Dp(py) « D = Dplpy) - [oyDy(p,) + ... + D (py)]

U

o Dp(py)-Dy () + ... + qDp(py)-Dp  (p)
= .
J
Thus D represents the element
DR(Pl)' D b1 + ... + DR(pk)' D b.
We shall construct f' and ¢! so that the new oriented
]
left-hand disks are DL(pl), DL(pE), cees DL(pk) with
! 1 1
. = = . =0
Dp(py) * Dp(py) = Dplpy) * Dy(p)) = 41 end Dylp,) * Dp(p;)
for j =3, 4 ..., k. It follows from the previous paragraph
that the new basis is then bl + b2,
cause a basis element to be replaced by its negative simply by

b2, coay bk‘ One cen also

reversing the orientation of the corresponding left-hand disk.
Since a composition of such elementary operations yields any
desired basis, this will complete the proof.

The steps involved are roughly as follows: increase f in
a neighborhood of Py alter the vector field so that the left-
hand disk of p, "sweeps across" p, with positive sign, and

then readjust the function so that there is only one critical value.
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More precisely, using 4.1 find a Morse function f, which

agrees with f outside a small neighborhood of Py such that
fl(pl) > f(pl) and f, has the same critical points and gradient-
like vector field as f, Choose t_ so that fl(pl) >t > £(p)
and set V= £ (5 ).

The left-hand () -~ 1)-sphere S
hand (n - )\ -~ 1)-spheres SR(pi) of the p,, 2<1i<k, lying
in V_are disjoint. Choose points a e S, and be SR(pE)'
Since W, and hence Vo’ is connected, there is an embedding
@ (0, 3) —> Vv, such that ml(o, 3) 1intersects each of
SL and SR(PE) once, transversely, in ¢i(l) = a end ¢2(2) = b,

and such that q)l(O, 3) A (SR(p3) U...U SR(pk)) = @.

n-x-~l

1 X R

Lemma 7.7 There exists an embedding ¢ : (0, 3) X R
— VO such that

1.) of(s, 0, 0) = ¢l(s) for s € (0, 3), ~

2.) ¢M(s.) =1x B0, ¢ Hs,(p,y)) = 2% 0x BBMY ang

3.) the image of ¢ misses the other spheres. Moreover, ¢ can

A~-1

be chosen so that it maps 1 X R X 0 into S, with

L

le

positive orientation and so that ((0, 3) X R o)

intersects SR(pE) at o2, O, 0) = b wvith intersection

number +1,

Proof:
Choose & Riemann metric for V_ so that the arc A= @1(0, 3)

is orthogonal to S. and to SR(PE) and so that these spheres

L
are totally geodecic submanifolds of Vo (ef, Lemme 6.7).

Let p(a) and p(b) be orthonormal (A - 1)-frames at

a and b such that p(a) is tangent to s, at e with

L of Py in V6 and the right-
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positive orientation and u(b) is orthogonal to SR(pE) at b
with intersection number +1. The bundle over A of orthonormal
(A- 1)-frames of vectors orthogonal to A 1is a trivial bundle
with fiber the Stiefel manifold Vx_l(Rn-z), which is connected
since A -1 <n -2, Hence we may extend to & smooth cross-
section p along all of A,

The bundle over A of orthomormal (n - A - 1)-frames of
vectors orthogonal to A and to pu is a trivial bundle with
fiber v (&°M)

(R . Let n be a smooth cross-section.

A1
Now use the exponential mep associated to the metric to
define the desired embedding ¢ with the help of tke (n - 2)-
frames pn. The details are similar to those in the completion
of the proof of Lemma 6.7, page 83 . This finishes the proof

of Lemma 7.7.

Completion of Proof of the Basis Theorem 7.6

Using ¢ we construct an isotopy of Vo which swveeps SL
across SR(pg), as follows. (See Figure 7.2)

Fix a number & >0 and let o : R —> [1, 2%] ~be a smooth
function such that a(u) =1 for u> 26 eand afu) >2 for

u < bd.

Figure 7.1
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As in the last paragraph in the proof of Theorem 6.6, page
T4, construct an isotopy H, of (0, 3)x ML o g1
that

1l.) Ht is the identity outside some compact set, 0<t<1l,

2.) B, X, 0)=(ta([R°) +1-t), 7 0) for Pe ™!

R\-a

l‘Rk‘l‘o

10,3) o 1\ \f, ¢ 3

& Sn

‘\d——“-\““~\\‘\\\~_~___b
g SL:FO(SL‘ - b
Flgure 7.2

. . -1
Define an isotopy F, of vV, by Ft'v) =@eH o9 (v)

for v e Image (¢) and Ft(v) = v otherwise. From property

1.) of Ht ve see that F% is well-defined.

Now using Lemma 3.5 find a product neighborhood Vo x [0, 1]
embedded in W on the right side of Vb such that it contains no
critical points and Vb X0 = Vb . Using the isotopy Ft’ alter
the vector field ¢ on this neighborhood as in Lemma h.?, obtain-~

ing a new vector field E¢' on W.
Since & and E' agree to the left of A (that is, on

f;l(- 0, to]), it follows that the right-hand spheres in VO

o
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associated to ¢' are still SR(pg), . SR(Pk)' The left-hand
t
sphere of Py associated to §' is SL = FB(SL)' From property
]
2,) of B, we know that S, misses SR(p3), ceey SR(pk)’ Hence
by 4.2 we can find a Morse function f!? agreeing in a neighbor-
hood of BAW with £ (and so with f), having t' as asso-

ciated gradient-like vector field, and having only one critical
value,
This completes the construction of f!' and &'. It remains
to show that the new left-hand disks represent the desired basis.
The left-hand disks of Pps +oes Py asgociated to ¢' are
still DL(pE), coey DL(pk) since &' = ¢ to the left of the
neighborhood Vb x [0, 1], that is, on fil(-w, to]. Since
£' = £ also to the right of V0 x [0, 1], the new left-hand
disk D;(pl) intersects DR(pl) at p, = D;(pl) n DR(pl) with
intersection number DR(pl) . DL(pl) = +1. It follows from
property 2.) of H_ that DL(Pl) intersects DR(p2) in a single
point, transversely, with intersection number DR(PQ) ° Di(pl) = +1.
Finally, property 3.) of ¢ implies that D;(pl) is disjoint
from Dh(PB)’ ceuy DR(Pk) and hence that DR(pi) o DL(pl) =0
for 1 =3, ..., k. Thus the basis for HK(W, V) represented
by the left-hand disks associated to ¢! 1is indeed b, + D

1 2’ b2’

cesy b which completes the proof of T.6.

k}

Theorem 7.8 Suppose (W; V, V') is a triad of dimension n > 6

possessing a Morse function with no critical points of indices
0,1 or n -1, n. Futhermore, assume that W, V ani V' are
all simply connected (bence orientable) and thet H (W, V) = O.

Then (W; V, V') is a product cobordism.




®

Let ¢ denote the cobordism (W; V, V'). It follows from

Theorem 4.3 that we can factor ¢

= 0203 ese C so that ¢

n-2

admits a Morse function f whose restriction to each ck is a

Morse function all of whose critical points are on the same level

and have index A. With the notation as in Theorem 7.4 we have

the sequence of free abelian groups cn-2 —§4> Cn-3 —é— ces —§4>
! o 3

C>\+l > Ck > ... > CE' For each A, choose a basis

zh+l, cesy zx+l for the kernel of Jd : C —> C.. Since

1 kx+l AHL A

H,(W, V) = 0 it follows from Theorem 7.4 that the above sequence

igs exact and hence that we may choose bk+l, coey bMl e C
l kk A+l
+
such thet b;‘l-é-> zy for 1=1, ..., k. Then 2, ..,
zx+l pML pML
) F ***
kx+l 1 kx is a basis for Ch+l'

Since 2 < A< A+1<n -2, using Theorem 7.6 we can find

.
-~

a Morse function f!' and gradient-like vector field &' on c

so that the left-hand disks of N and c represent the

A+L
chosen bases for CK and C

AHL”
Let p and q be the critical points in cx and cM_1
corresponding to 2" and bk+l By increasing f' in a neigh-

1 1 °
borhood of p eand decreasing f£' 1in a neighborhood of q (see

= ¢l ' has exact
.1, 4.2) ve obtain 341 = CrCpCqtas’ where ey 1y

one critical point p and cq has exactly one critical point q.

Let Vo be the level manifold betwveen cp and cq.




By I

It is easy to verify that cpcq and its two end manifolds are
all simply connected (compare Remark 1, page 70). Since

+
9 bi 1. z; the spheres SR(p) and SL(q) in V_ have inter-

section numoer +1. Hence the Second Cancellation Theorem 6.k

or Corollary 6.5 implies that cptq 18 2 product cobordism and
that f' and its gradient-like vector field can be altered on the
interior of cpcq so that f' has no critical points there.
Repeating this process as often as possible we clearly eliminate

all critical points. Then, in view of Theorem 3.L, the proof of

Theorem 7.8 is complete.
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§8 Flimination of Critical Points of Index O and 1.

Consider a smooth trisd (W©; V, V'). We will always
assume that it carries a 'self indexing' Morse function f (see
L.9) and an associated gradient-like vector field E. Let

1

-1, 1 -1 1l
W = f [-§,k+-2—], k=0,1, ..., n, and V=1 (k+-2—).

Theorem 8.1

Index Q) If HO(N, V) = 0, the critical points of index O can
be cancelled against an equal number of critical points of index 1.
Index 1) Suppose W and V are simply connected and n > 5.

If there are no critical points of index O one cen insert for
each index 1 critical point a pair of auxiliary index 2

and index 3 criticel points and cancel the index 1 ecritical
points against the auxiliary index 2 critical points. (Thus

one 'trades' the critical points of index 1 for an equal

~
-~

number of critical points of index 3.)

Remark: The method we used to cancel critical points of index
2<Ax<n-2 in Theorem 7.8 fails at index 1 for the follow-
ing reason. The Second Cancellation Theorem 6.4 holds for A =1,
n > 6. (see page 70) , but we.would want to apply it where the
simple connectivity assumption of 6.4 is spoiled by the presence

of several index 1 critical points.

Proof for Index O;

n-1 o
R and SL intersecting

in a single point, then the proof will follow from 4,2, 5.4 (The

If in ‘Vb+ ve can always find §

First Cancellation Theorem) and a finite induction (cf proof for
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index 1 below). Consider homology with coefficients in
zZ, = Z/2Z. Since H (W, V; Z,) = 0, by Theorem 7.4,
ﬂl(wl, W; z2) —§-> H(wo, V; z2) is onto. But d 1is clearly
given by the matrix of intersection numbers modulo 2 of the right-

hand (n - 1)-spheres and left-hand O-spheres in V0+. Hence

for any S;™' there is at lesst one S0 with Spt 80 # 0
mod 2. This says Sg-l n S; consists of an odd number of points

which can only be 1. This completes the proof for index 1.

To comstruct auxiliawyy critical pointe we will need

Lemma 8.2

Given O < A <n, there exists a smooth map £ : R" —> R
so that f(xl, cesy xn) = x; outside of a compact set; and 8o
that f bhas Jjust two critical points Pys Pps non-degenerate,

of indices A, A + 1 respectively with f(pl) < f(pe).

1

Proof: We identify R® with R x R* x R°™™; and denote a

general point by (x, y, z). Let y2 be the square of the
length of y € Rh.
Choose a function s(x) with compact support so that

x + s(x) has two non-degenerate critical points, say X s Xye

Figure 8.1 X+ 5(x)
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First consider the function x + s{x) - y2 + z2 on R®. This

has two non-degenerate critical points (xo, 0, 0) and (xl, 0, 0)

with the correct indices,
Now "taper" this function off as follows. Choose three

smooth functione a, B, 7 : R —> R+ with compact support so

that

1) a(t) =1 for |t] <1
2) |a'(t)] < 1/Max |s(x)]| for a1l t (Primes denote derivatives.)
3) B(t) n
k) r(x)
5) lr'(x)| < 1/M:x (t g (t))

| - [ ‘5““?\"@ g___/csvap\-\x .
Nc\ e Ja\ N

1 vwhenever a(t) # O.

1 whenever 8'(x) # O.

P 1

Y

C)v‘a?\'\ S}

Now let

£=x+8(x)aly® +2°) + 7(x)(¥° + 2°) B(y° + 2°).
Note that

(2) £ - x has compact support

(b) Within the interior of the region where o = 1 (hence
p=1) and y =1 +this is our old function, with the old crit-
ical points.

() Lo1+e(x)al? +28) + 27 + 2°) BG° + 2°)
The third term has absolute value <1 by (5). Hence if

s'(x) =0 or a(y2 + zg) = 0 we have %& # 0. Thus we must

only look at the region where s'(x) ¥ O (hence ? = 1) and
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a(y2 + 22) # 0 (hence B =1) to look for critical points.

(d) Within the region » =1, B =1 we have grad (f) =
(1 + 8'(x) aly® + 2°), 2y(s(x) @' (4% + 2°) - 1), 22(s(x) a'(y?
+2°) +1)). But s(x)a'(3°+2°) +140 by (2). Hence the
gradient can vanish only when y = O, z = 0, and therefore

Q = 1. But this case has already been described in (b),

Proof 8.1 for Index 1l:

The given situation may be represented schematically

\'f Vl+ V2+ etc,

]
[ ]

index 1 = 2 3
The first step of the proof is to comstruct, for any right-hand
(n - 2)-sphere in V,, of a criticel point p, =& suitable
l-sphere to be the left-hand sphere of the index 2 critical

point that will cancel p.

Lemma 8,3

If S;-a is a right-hand sphere in V, , there exists & l-sphere
-2

imbedded in V1+ that has one transverse intersection with Sﬁ

and meets no other right-hand gphere.

Proof:

Certainly there exists & small imbedded 1l-disc D ( Vig o

n-2
which, at its midpoint qo, transversely intersects SR , and

which has no other intersection with right-hand spheres. Trens-

late the end points of D left along the trajectories of ¢ to

-_———_
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a pair of pointe in V. Since V 1is connected, and of dimension
n-1>2, these points may be joined by a smooth path in V
which avoids the left hand O-spheres in V. This path may be
translated back to a smooth path that joins the end points of D
in Vl+ and avoids all right-hand spheres. Now one can easily
construct a smooth mep g : Sl _— Vi+ such that

(a) g‘l(qo) is a point a g st and g smoothly imbeds a closed
neighborhood A of a onto a neighborhood of q, in D.

(b) g(Sl - a) meets no right-hand (n - 2)-sphere.

Since dim V =n - 1 > 3, Vhitney's theorem 6.12 provides a
smooth imbedding with these properties. This completes the proof

of 8.3,

We will need the following corollary of Theorems 6.11, 6.12,

Theorem 8.4

If two smooth imbeddings of a smooth manifold \Mm into a smooth
menifold N° are homotopic, then they are smoothly isotopic

provided n > Zm + 3.

Remark: Actually 8.4 holds with n > 2m + 2 (see Whitney [16])

Proof of Theorem 8.1 for Index 1 continued:

Notice that Vé+ is elways simply connected, In fact the
inclusion v2+_(:w factors into a sequence of inclusions that
are alternately inclusions associated with cell attachments and
inclusions that are homotopy equivalences. (see 3.1hk). The cells

attached are of dimension n - 2 and n -1 going to the left

and of dimension 3, 4, ... going to the right. Thus V,  is

4__——-—5_
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connected since W is, and nl(V2+) = ﬂl(W) =1 (cf. Remark 1

page T0). Given any critical point p of index 1, we con-

struct an 'ideal' l-sphere S in V , @s in Lemma 8,3. After

1
adjusting & 1if necessary to the right of V2+ we may assume
that S meets no left hand 1l-svheres in Vi, (see 4.6, L.7).
Then ve can translate S right to a 1l-sphere Sl in V2+.

In a collar neighborhood extending to the right of V2+,

we can choose co-ordinate functions Xy vees X embedding an
open set U into Rn. so that flu = X (cf. proof of 2.9).

Use Lemma 8.2 to alter f on a compact subset of U inserting
a pair q, r, with f(q) < f(r), of 'auxiliary' critical points
of index 2 and 3. (see Figure 8.3).

Vs

+

Figure 8.3

Let 82 be the left-hand l-sphere of q in V2+ . Since
v,, is simply connected, 8.4 and 5.8 imply that th=re is an

isotopy of the identity V2+ —_— V2+ that carries 82 to S1 .
Thus after an adjustment of § to the right of V,, (see b.7),
the left-hand sphere of q in V2+ will be Sl . Then the
left-hand sphere of q 1in Vl+ is S, which, by construction

intersects the right-hand sphere of p 1in a single point,

:—h’_
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Without changing &, alter f (by 4.2) on the interiors
1.1 -
3, 1 3] andof £ L, k], k = (£(a) + £(x))/2,

transversely,

of f

increasing the level of p énd lovering the level of q so
that for some & > O
l+5<f(p)<l%<f(Q)<2-5

Now use the First Cancellation Theorem to alter f and ¢ on
f'l[l + 8, 2 - 5] eliminating the two critical points p and
q. Finally move the critical level of r right to 3 (using
k.2),

We have now 'traded' p for r, and the process may be
repeated until no critical points of index 1 remain. This

completes the proof of Theorem 8.1.
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§9. The h-Cobordism Theorem and Some Applications.

Here is the theorem we have been striving to prove.

Theorem 9.1 The h-Cobordism Theorem

Suppose the triad (W°; V, V') has the properties
1) W, V and V' are simply connected.

2) H(w, V)=0

3) dim W =n>6

Then W is diffeomorphic to V x [0, 1]

Remark: The condition 2) is equivalent to 2)° H,(W, V') = O.

[

*
For Hy(W, V) =0 implies H (W, V') = O by Poincaré duality.
*
But H (W, V') = 0 implies H,(W, V') = O, Similarly 2)!

implies 2),

Proof: Choose a self-indexing Morse function £ for (W; v, V'),
Theorem 8.1 provides for the elimination of critical points of
index O and 1. If we replace the Morse function f by -f
the triad is 'turned about' and critical points of index A
become critical points of index n - A. Thus critical points

of (original) index n and n - 1 may also be eliminated. Now

Theorem 7.8 gives the desired conclusion.

Definition 9.2 A triad (W; V, V') = 0 1is an h-cobordism and

V 1is sald to be h-cobordant to V' if both V and V' are

deformation retracts of W.

Remark: It is an interesting fact (which we will not use) that

an equivalent version of Theorem 9.1 1s obtained if we substitute

for 2) the apparently stronger condition that (W; V, V') be




an h-cobordism. Actually 1) and 2) together imply that

(W; V, V') is an h-cobordism. In fact

(1) nl(v) =0, nl(w, vV)=0, H/ (W, V) =0 togéther imply

(i1) ni(w, V) =0 i=0,1, 2, ...

by the (relative) Hurewicz isomorphism theorem (Bu, [20, p.166];
Hilton [21, p.103]). In view of the fact that (W, V) is a
triangulable pair (Munkres [ 5, p.101)) (ii) implies that a
strong deformation retraction W —> V can be constructed.

(See Hilton [21, p.98 Thm 1.7).) Since 2) implies H (W, V') = 0,

V!t is, by the same argument, a (strong) deformation retract of

W.

An important corollary of Theorem 9.1 is

Theorem 9.2

Two simply connected closed smooth manifolds of dimension

2 5 that are h-cobordant are diffeomorphic.

A Few Applications (see also Smale [22] [6])

Proposition A) Characterizations of the smooth n-disc Dn, n > 6.

Suppose W* is a compact simply connected smooth n-manifold,

n > 6, with a simply connected boundary. Then the following

four assertions are equivalent.

1). W® 4s diffeomorphic to D".
2) Wt is homeomorphic to p°.
n

3) W is contractible..

k). W' has the (integral) homology of a point.

——___—_-M
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Proof: Clearly 1) =>2) =>3) =>L4). So we prove 4) =>1),

If D, 1is a smooth n-disc imbedded in Int W, then (W - Int D_;

BAD_, V) satisfies the conditions of the h-Cobordism Theorem.

In particular, (by excision) H,(W - Int D, BdDo) = Hy (W, Do) = 0.
Consequently the cobordism (W"; @, V) 1s a composition of

(Db; ¢, BdDo) with a product cobordism (W - Int D_; BAD_, V).

It follows from 1.4 that W is diffeomorphic to D_.

Proposition B) ‘The Generalized Poincare Conjecture in dimensions

> 5. (See Smale [21).)

If Mp, n>5, is a closed simply-connected smooth mani-
fold with the (integral) homology of the n-sphere s, then
M® is homeomorphic to S8°. If n =5 or 6, M’ is diffeo-

morphic to s,

Corollary If a closed smooth manifold Mn, n > 5, is a homo-
topy n-sphere (i.e. is of the homotopy type of s™) then M is

homeomoxrphic to st

Remark: There exist smooth 7T7-manifolds M7 that are homeo-

morphic to s! but are not diffeomorphic to s?. (See Milnor

[24].)

Proof of B Suppose first that n> 6. If D (M is a smooth
n-disc, M - Int D satisfies the conditions of A).

In particular

Hi(M - Int Do) Hp-i(M - int D_, aDo) (Poincare duality 7.5)

[}

Hp-i(M, Do) (excision)

O if 1 >0
(exact sequence)

1}

Z if 1 =0




e W

(\o

Consequently M = (M - Int Do) UD_  1s diffeomorphic to a union

of two copies D? » D, of the n-disc with the boundaries identi-

fied under a diffeomorphism h : BdDE —_— BdDg.

Remark: Such a manifold is called a twisted sphere. Clearly every

twisted sphere is a closed manifold with Morse number 2, and

conversely.

The proof is completed by showing that any twisted sphere

_an n n . oR n
M= Dl Ub D2 is homeomorphic to S . Let g Dl —> 8 be
an imbedding onto the southern hemisphere of S° (:Rp+l i.e.

the set (¥ | [¥| =1, x ,, <0). Each point of D, may be

2
written tv, 0 <t <1, ve BAD,. Define g : M —> 8" by
(1) g(u) =g (u) if ueD
L nt -1 nt
(11) g(tv) = sin 5 gl(h (v)) + cos 5 e, Vvhere e ..
= (0, .., 0, 1) &€ B®*Y , for 811 points tv in Dp.

Then g is a well defined 1-1 continuous map\gnto g™ , and
hence is a homeomorphism. This completes the proof for n 2_6.
If n=5 we use:

Theorem 9.1 (Kervaire and Milnor [25], Wail [26])

Suppose M' 48 a closed, simply connected, smooth manifold with

the homology of the n-sphere 8%, Then if n = b, 5, or 6, M
bounds a smooth, compact, contractible manifold.

Then A) implies that for n =5 or 6 M® 1is actually diffeo-

morphic to Sn.

Proposition C Characterization of the 5-disc
>

Suppose W” 1is a compact simply connected smooth manifold that has

the (integral) homology of a point. Let V = Baw.

1) If V is diffeomorphic to S’4 then W 1is diffeomorphic to D5.

———
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2) If V 1is homeomorphic to Sh then W is homeomorphic to
D’

Proof of 1) Form a smooth S-manifold M =W U D’ where h

is a diffeomorphism V ——->-BdD5 = Sh. Then M 1is a simply con-
nected manifold with the homology of & sphere. In B) we proved

that M is actually diffeomorphic to Ss. Now we use

Theorem 9.6 (Palais [27], Cerf [28]), Milnor [12, p.11]})

Any two smooth orientation-preserving imbeddings of an n-disc

into a connected oriented p-manifold are ambient isotopic.
Thus there is a diffeomorphism g : M —> M +that maps

D5(: M onto a disc Di such that Dg =M - Int Df is also a

disc. Then g maps W ( M diffeomorphically onto Dg.

Proof of 2) Consider the double D(W) of W (i.e. two copies

of W with the boundaries identified — see Munkres [5, p.541}).
The submanifold V ( D(W) has a bicollar neighborhood in D(W),
and D(W) is homeomorphic to s” by B). Brown [23] has

proved :

Theorem 9.7 If an (n - 1)-sphere I, topologically imbedded

in Sn, has a bicollar neighborhood, then there exists a home-

- n
omorphism h : Sn —_— Sn that maps X onto Sn l(: S°. Thus
s - £ has two components and the closure of each is an n-disc

with boundary L.

It follows that W is homeomorphic to D5. This completes the

proof of C).




Proposition D) The Differentiable Schoenfliess Theorem in

Dimensions > 5.
Suppose § 1is a smoothly imbedded (n - 1)-sphere in s®. 1Irf

n > 5, there is a smooth ambient isotopy that carries X onto

the equator s°t C s".

Proof: s® - 5 has two components (by Alexander duality) and
hence 3.6 shows thet 5 is bicollared in S°. The closure in
s® of a component of s® - £ is a emooth simply connected
manifold Do with boundary I and with the (integral) homo-
logy of a point. For n > 5, Do is actually diffeomorphic
to D" by A) and C). Then the theorem of Palais and Cerf
(9.6) provides an ambient isotopy that carries D, to the

lower hemisphere and hence BdDO = L to the equator.
n-1 n
Remark: This shows that if f : S —> S 1is a smooth

imbedding, then f is smoothly isotopic to a map onto gt-1

C Sn; but it is not in general true that f is smoothly

n-1 . n

isotopic to the inclusion 1 : S —2> 3 . It is false if

n-1 1

f=1o0g, where g : 8 —> 8" is a diffeomorphism
which does not extend to a diffeomorphism D° —> D°. (The
reader can easily show that g extends to p* if am only if
the twisted sphere D;_1 Ug Dg is diffeomorphic to S°.) Im
fact if f 1is smoothly isotopic to 1, by the Isotopy Exten-
sion Theorem 5.8, there exists a diffeomorphism 4 : gt —> g"
such that d ¢ 4 = f =1 o g, 'This gives two extensions of g

to a diffeomorphism D° —> D°.

t.m_-——_
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Concluding Remarks:

It is an open question whether the h-Cobordism Theorem
is true for dimensions n < 6. Let (W%; V, V') be an h-
cobordism where W" is simply connected and n < 6.

n=0,1l, 2: The theorem is trivial (or vacuous).

n=3: V and V' must be 2-spheres. Then the theorem is

easily deduced from the classical Poincaré Conjecture: Every

compact smooth 3-manifold which is homotopy equivalent to S3

1s diffeomorphic to S3. Since every twisted 3-sphere (see

page 110) is diffeomorphic to g3 (see Smale [30], Munkres ([31])
the theorem is actually equivalent to this conjecture,

n =L4: If the classical Poincaré Conjecture is true V and V'

must be 3-spheres. Then the theorem is readily seen to be

equivalent to the '4-Disk Conjecture': Every compact contract-

ible smooth MN-manifold with boundary s3 is diffeomorphic to

QE. Now a difficult theorem of Cerf [29] says that every twisted

h_sphere is diffeomorphic to Sh. It follows that this con-

Jecture is equivalent to: Every compact smooth 4 manifold which

I
is homotopy equivalent to Sh‘ is diffeomorphic to S .

n = 5: Proposition C) implies that the theorem does hold when

V and V! are diffeomorphic to Sh. However there exist many
types of closed simply connected 4-manifolds. Barden (unpublished)
showed that if there exists a diffeomorphism £ : V' —> V
homotopic to rlv, where r : W —> V 1is a deformation
retraction, then W is diffeomorphic to V x [0, 1]. (See

wall [38], also (371.)
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