Différentisble Mahifolds Which Are Homotopy Spheres

J. Milnor*

§1. Introduction

This paper will study the problem of classifying differentiable
n-manifolds which are hcmotopy spheres, under the relation of J-equiva-
lence. (See the "dictionary" below.) It is shown that the equivalence
classes form an abelian group which is denoted by €*. The only groups
GP which I have been able to determine completely are thé following:

o =e-0, € =0, @ =24, @ll=2992.

However partial information is obtained in many other cases. For ex~-
ample (according to 3.7, 5.8 and 6.9):

Theorem. For k > 1 the group @hk'l is finite but non-trivial.

Section 2 of this paper will study a sum operation for connected
menifolds of the same dimension. Section 3 defines an invariant 154
‘for certain (4k-1)-menifolds. Section I contains examples of homotopy

spheres for which the invariant AN’ takes on all possible values.

Section 5 describes a construction for simplifying manifoids,
which was communicated to the author by R. Thom. Using this construc-
tion it is shown that the invariant A‘(M) determines the J-equiva-
lende class of M uniquely. A correspording result for dimensions of
the form 4k + 1 is stated without proof. Section 6 studies the fol-
lowing question: Is every homotopy sphere the boundary of a Te-mani-

fold?
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Section T contains furthey discussion and a 1ist of unsolved pro-
blems. Operations of "pasting together" manifolds and "straightening

angles" are described in an appendix.

Dictionary of terms used. The word manifold will mean a compact,

oriented, differentiable menifold, with or without boundaries. (The
phrase "topological manifold" will be used in case the differentiable
structure has not yet been specified.) The symbol -M will be used

for the manifold M with orientation reserved.

Two unbounded manifolds Ml ’ M2 of the same dimension are

J-equivalent 41f there exists a manifold W such that

1) the boundary oW is the disjoint union of M and -M,, and
2) Ybvoth Ml and M, are deformation retracts of W .
Thus J -equivalent manifolds belong to the same cobordism class and to
the same homotopy type. This concept is due to Thom [3]. It is not

known whether J-equivalent manifolds are necessarily diffeomorphic.

By a homotopy sphere we mean a (differentiable) manifold without

boundary which has the homotopy type of a sphere. Similarly a homo-
logy sphere M must be unbounded and satisfy H, (M) = H*(Sn) . Here
denotes homology with integer coefficients, and Sn denotes the

unit sphere in Fuclidean space le. The notation Dn+l

By

will be

used for the disk bounded by S-.

1.1 Lemma, let M = awn"l vhere M 1is simply connected and
Xfﬂ is contractible. Then Mn is J-equivalent to Sn .

Proof, Choose an imbedding of Dn+l

Then (Wn+l-interior (Dn+l

in the interior of wn+l.

*
)) has boundary equal to the disjoint union

*
Here the symbol - stands for set theoretic subtraction.
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of M® and S% . It is not difficult éc see tHat Poth boundaries are

deformation retracts of W _intesior (ﬁn+l) .

A T-manifold Ww®  is characterized by the following property. If
W* is imbedded in a high dimensional Euclidean space R4 , then the
normal bundle vq is trivial. This concept is due to J., H. C. White~
head [2]. If W is a Tm-manifold, then clearly oW 1is also a

T-manifold.

Ww"  will be called almost parallelizable if there exists a finite

subset F so that Wn-F is parallelizable.

1.2 Lemma (J.H:C:Whitehead) Every parallelizable manifold is a

T-manifold. Every m-manifold is almost parallelizable.

Proof. A field of tangent n-frames on WQ:RP+Q induces a map T

from Wn to the Stiefel manifold Vn+q n* Note that f 1s covered by
2
a bundle mep from vq to a corresponding SO _-bundle over V .
q n+q,n
But the space Vﬁ+q . 1s (q-1)-connected., (See Steenrod [1] §25.6.)
J

For q>n this implies that f is homotopic to a constant; hence that

v® 1s trivial.

Similarly a field of normal q-frames on Ww*  induces f:WnL—>V

n+q,q °
Since Vh+q q is (n-l)-conneéted, the only obstruction to contracting
. ’ |

f lies in

BT (v, )

n+q,q
But this cohomology group can be killed by removing a finite number of

points from wn .

A similar argument shows the following.
1.3 Lemma. If every component of w® has a non-vacuous boundary,
then the three concepts: parallelizable, m-manifold, and almost parallel-

izable, are equivalent.
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The J-homomorphism of H. Hopf and G. Whi{‘.ehead will be denoted by

3,3 (80 )—> 1rn+q(sq) .
(For ;a, definition see Kervaire [4] §1.8. Caution: this homomorphism has
nothing to do with J-equivalence,) It will always be assumed that gq
is large. This homomorphism will play a fundamental role in what fol-
iows.

§2, The connected sum of manifolds

Let M1 ) M2 be connected differentiable manifolds of the same
dimension n . The sum Ml# M2 is obtained by removing an n-cell from
each, and then pasting the resulting boundaries together. There are
three difficulties with this:

1) The pasting must be done in such a way that Ml# M2 has an
orientation compatible with that of both Ml and M2 .

2) Even allowing for orientation, not every diffeomorphism be-
tween the boundaries will give rise to the same composite manifold.
(According to Milmor [1] it is possible to paste together the boundaries .
of two T-cells, obtaining a manifold which is not diffeomorphic to S7.)

3) . It is necessary to show that the result does not depend on

which n-cell is chosen.

Definition. Choose an orientation preserving imbedding hlan-éMl
and an orientation reversing imbedding hE:Rn-é M2 « Let Ml# M2 be
obtained from the disjoint union of Ml-hl(o) and M2-h2(0) by identi-

fying b (x) with hy(x/ I<)®) for each x #0 in R®.

Remark, It would be sufficient to specify hl(x) and h2(x) for
Izl <1 + & 1in order to comstruct this manifold Ml# M, . In fact by

removing all h,(x) with lxll <1/(2 + €) from each M;, and then



identifying hl(x) with he(x/ "x"2) for l+e > x> 1/(1+g) , we

obtain the identical manifold # M, .
The following will be proved in"a paper by J. Cerf.

2.1 Theorem of Cerf. Let M be a connected n-manifold. Given

two orientation preserving imbeddings f,f ':Dn—-> (interior M), there

exists a diffeomorphism g:M—>M which satisfies gf =’ .

2.2 Corollary. The sum Ml# M2 is well defined up to orientation

Preserving diffeomorphism.

Proof of the corollary. The only choice which occurred in the

definition was the choice of imbeddings hl ,h2 « Given other imbeddings

hi, hé, there exist diffeocmorphisms g of M so that

gihi(x) = h{(x) for [x <1 +€.

These g, give rise to a diffeomorphism g:Ml# M2-—>(M1# Me)' ; which

completes the proof,

2.3 Lemma. Suppose that the unbounded manifolds Ml ,M2 are
J-equivalent to M{ and Mé respectively. Then the sum Ml# M, is

J-equivalent to M{# M2' .

Proof. If the dimension n is < 2, then the assertion is
clear., Hence we may assume that n 2 3 . Choose manifolds wi 50

that 9 Wi is the disjoint union of the deformation retracts Mi and

4 4 ,
'Mi o Choose a differentiable arc‘ a, from pieMi to p; € M1 in

Wi » so that the interior of a, 1lies in the interior of W

1 i.We

will see that the inclusion map

hH Mi-Pi--—> wi -ai

is a homotopy equivalence.



Since the codimension n of p 4 in M is 3z 3, the homo-
morphisms Trl(Mi.pi J—> Trl(Mi) s Trl(wi-ai J—> vl(Wi) are isomorphisms.
Hence

Jyt Trl(Mi'pi o Trl(Wi-ai)
is an isomorphism.

A A
Let MiC Wi denote the universal covering spaces, and let 1’51 ai

denote the inverse images of Pys 8y o The inclusicn
~ A ”~ ~ r’S
(Mi’ Mi— ﬁi) — (Wi) Wi- ai)
gives rise to a homomorphism between exact sequences of homology groups.

Using the Five Lemma it follows that
is an isomorphism for all k . Therefore J 1is a homotopy equivalence.

(Compare J.H.C.Whitehead [3].)

Choose tubular neighborhoods Ni of a5 and let W be a mani-

fold obtained from W -N, and W,-N, by pasting together the boundsries
in such a way that O W is the disjoint unien of Ml# M, and -(Ml'# Mg’) .
Since the inclusions

M, - (Min Ni) —> W~ N,

are homotopy equivalences, it follows easily that the inclusion
M, # My—> W
is a homotopy equivalence., A corresponding argument takes care of the

inclusion (M{# Mé) —>W ., This completes the proof of 2.3.

It is clear that the operation # is associative and cocmmutative,
providing that we do not distinguish between diffeomorphic manifolds.

Furthermore the sphere acts as a zerc element: M # Sn =M.
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2.4 Lemma. Suppose that M 18 a homotopy n-sphere. Then MH(-M)

is J-equivalent to Sn .

Proof. Let U denote the interior of a disk D M . Consider
the topological manifold (M—U) x [0,1]. This is differentiable, ex~
cept along the "angles" Jd U x [0] and J Ux [1]. Let W be a dif-
ferentiable manifold obtained from (M-U) x [0,1] by straightening
these angles, (See the Appendix.) Then W is a contractible manifold

with boundary M # (-M) . Together with 1.1 this completes the proof.
Now combining 2.3 and 2.4 this proves:

2.5 Theorem. The set of all J-equivalence classes of homotopy

n-spheres forms an abelian group under the operation # .

This group will be denoted by 6°. Tt is clear that ©F = 0 .

Since Munkres [1l] has shown that a 2-manifold has an essentially unique

differentigble structure, it follows that @2 =0.

[Two subgroups of @" will also be studied. ®n(n0 will denote
the subgroup formed by all T-manifolds in @n, and ©°(d 7) will de-

note the subgroup formed by all boundaries of T-manifolds, ]

§3. The invariant x'(ML’k'l)

Iet M be a (bk-l)-manifold which i1s (1) a homology sphere, and
(2) the boundary of some 7w-manifold W . The intersection number of
two homology class @, of W will be denoted by <q,f> . Let I(W)

denote the index of the quadratic form
a'—'—><a’a>’

where « varies over the Betti group H2k(w)/(torsion). Integer co-

efficients are to be understood.
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Define I, as the greatest common divisor of I(M) where M ranges

k
over all almost parallelizable manifolds of dimension Uk which have

no boundary. This 'number has been studied by Kervaire and Milnmor [1].
(See 3.7.)

3.1 Lemma. The residue class of I(W) modulo I, 1is an invariant
of the boundary M .
Proof, If M 1is the boundary of two parallelizable manifolds wl

and W let N be the unbounded Yk-manifold obtained from Wl and

2’
-W2 by pasting together the common boundary. Clearly

I(N) = I(Wl) - I(WE).

et p be a point of M . Then the complement N-p i1s parallel-
izable. In fact N-p‘ is the union of parallelizable manifolds wl-p
and w2-p » having an intersection M-p which is acyclic. Given a
field of 4k-frames on Wl-p and on WE'P » 1t is possible to deform one
of the two so that they coincide along M-p . Therefore N 1s almost
parallelizable; and |

I (N)

]

0 (mod Ik) .

This completes the proof.
Not every residue class can occur:

3.2 Lemma. The index I(W) of an almost parallelizable manifold

is always divisible by 8; providing that o W is a homology sphere.

Proof. First observe that the intersection number <, o > 1is
always an even lnteger. This l1s the homology translation of the state-
ment that

s : B (W, 0 ; 2) —> B (W, 3V ; 2,)

is zero, If Sqak were not zero then the formulae of Wu (see Wu (1],



Kervaire [2]) would imply that W had a non-trivial Stiefel-Whitney
class in dimension < 2k.

Since OW 1is a homology sphere it follows by Poincare duality
that the matrix of intersection numbers has determinant + 1. But a
quedratic form with determinant + 1 which takes on only even values
must have index divisible by 8. (Compere Milnor [4].) .This completes
the proof.

Definition. The residue class of -é- I(W) modulo %‘-& will be
denoted by A‘(M).

3.3 Lemma. The properties of being (1) a homotopy n-sphere, and
(2) the boundary of a w-manifold, are invariant under J~-equivalence;
and are preserved by the sum operstion #. .

Hence the manifolds which have these properties give rise to a
subgroup of -

Definition. This subgroup will be demoted by €°(3 7).

3.4 Lemma. The invariant A‘(M) depends only on the J-equiva-
lence class of M. Furthermore

AN # M) = a00m) + A(M,).

The proofs of 3.3 and 3.4 are strailghtforward. Hence A’ gives
rise to a homomorphism
F L"k-l
A’ ® (3 m) —> Z,
7 I
It will be proved in Sections 4, 5 that A’ is an isomorphism, at

least fc;r k>1.

The principal difficulty with the invariant A’ is that it is
extremely difficult to compute. For example it would be very interest-
ing to evaluste A.'v for the topological spheres which are constructed
in Milnor [1, 5] and Shimeda {1]. The invariant A which is defined

in these papers is somewhat wesker, but much easier to compute.
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The numbers é-Ik can e described as follows., Let Bk denote
the k-th Bernoulli number;

1 _ 1 _
Blzg, Ba—'§'6, seey B6‘—691/2730’ XX .

Define jk as the order of the image

q
Il (Soq) C Ty + bk-1 (s*) for large q .

Define ak tobe 2 1if k¥ is odd and 1 if k is even. Then accord-

ing to Kervaire and Milnor [1]:

3.5 Lemma. Ik is equal to

B B 3 a /K.

The only unknown quantity here is the integer Jk .

3.6 Lemma. is a miltiple of the denominator of B, /bk .

Jk

Proof. For k even, this is proved in Kervaire and Milnmor (1].
For k odd this follows from the arguments of that paper, together with
the following:

Theorem of Hirzebruch (Not yet published.) If the unbounded mani-

fold th has Stiefel-Whitney class w

2 equal to zero, and if k is
odd, then the K—genus A [Myk] is an even integer.

On the other hand an upper bound for Jk is given by the order of
the largest cyelic subgroup of Wq + hk-l(sq)' The p-primary component
of vq + hk-l(sq) is known for k < pa(p-l)/é for any prime p. (See
Tode [1,2].) The full group is known (to me) only for k=1, 2, 3.
It turns out that the upper bound for thé P-primary factor of jk is

exactly equal to the lower bound in each known case.
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Combining the preceding information, we have:

2k—2( 2k-~1

3.7 Lemma. The number L I, is equal to 2 2 1)
= 8 “x B

(numerator Bk/k), multiplied by an integer whose prime factors p

satisfy pe(p-l) € 2k . In particular

§1, =2, §l,=28, §13=992, & I, eqals 8128 tines

a power of 2.

§4. Comstruction of (lk-1)-manifolds

The following is perhaps the simplest example of a symmetric matrix
with determinant + 1, with only even elements on the diagonal, and with

index different from zero. (Compare Milnor [b4].)

@]
(@]
o
o
-
H¥]
-
o

We will construct a manifold whk which bhas the above jintersection
matrix.
: 2k 2k
Let T be a tubular neighborhood of the diagomel in S X S :

say the set of all pairs (x,y) with distance d(x,y) €& . Thus T is
a Wbk-manifold having the homotopy tupe of Szk. The intersection number

of the fundamental 2k-cycle with itself is +2 .
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let o Sgk-——4> 82k be the "twelve hour rotation" which leaves

the north pole p fixed, and satisfied a(x) = -x for x on the
equator. Let T’ = (1L x a) T be the set of pairs (x,y) with
d(x,d y) <e. Ten T and T’ intersect only in a small neighbor-

hood of the pair (p,p), and a small neighborhood of the pair (-p,-p).

The universal covering space of TUT” consists of infinitely many
disjoint copies of T and infinitely many disjoint copies of T“ .

Numbering these copies T, and T{ ; We may assume that each j{

intersects only 11 and T&+1 .

Define wl as the subset

’ , . .
Tl u ?l U Té u Té v T3 U T3 u Tu u Th

of this universal covering space., Thus Wi is a topological 4k-manifold,
having the homotopy type of a union of eight 2k-spheres with a single
point in common. Choosing an appropriate basis for sz(wl) , the Inter-

section matrix is as follows:
21
121
121
121
121
121
121
12

To correct this intersection matrix it is necessary to introduce

an intersection between T{ and T3 s 80 as to obtain an intersection

‘number -1 . Choose a rotation of 82k X 82k which carries a region

of T pear the "equator” onto a region of T

near t h e "equator", so as to obtain an intersection number of
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-1 . Matching the corresponding reglons of Ti and T3 , we obtain a

topological manifold W,, with the required intersection matrix.

2,

This manifold W. is differentiable except along eight "angles"”

2

vhich have been intrnduced in the boundary. Let W3 be a differentiable

manifold obtained by straightening 4hese angles. (See the appendix. )

Unfortunately the transition from wl to We changed the homotopy

type. In fact the fundamental group 1rl(W2) = 1rl(W3) is infinite cyclic.
Next we will ki1l this fundamental group. A generator can, be represented
by a simple closed differentiable curve C 1lying on the boundary of W3 .

1 bx.2 3w

Choose an imbeddding h: 5 X D — which carries S:L X 0

3
onto the given curve C ., Let Wh be the space obtained from the dis-

Jjoint union

w3 1] D2 X th-e

by identifylng S' x D E-2

with its image under h . Then W), 1is
simply connected. In fact Wh has the same homotopy type as wl ; but
the same intersection matrix as w2 or w3 .

This space W).; is a differentiable manifold, except along the

1 hx-3

"angle" corresponding to S X S o Let W, be a differentiable

manifold obtained by "straightening" this angle.

k.1 Theorem. W 1is a parallelizable Lk-manifold with boundary
M, which is a homology (4k-1)-sphere. In fact for k>1 , M isa
homotopy sphere. The index I(wo) equals +8 . \
Thus the invariant h'(Mo) is defined and equal to +1 .

L,2 Corollary. The homomorphism A’ from @“k‘l(a m) to the

cyclic group of order é- Ik is onto, providing that k> 1 .
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4,3 Corollary. The group @l}k'l is non-trivial, providing

that k>1.

Proof that Wo 1s parallelizable. The only obstruction to

parallelizability lies in the group
B (Wos oy 3 (SO ))e

But 'sz(wo) is generated by eight cycles, each of which is contained
in a sub-manifold diffeomorphic to T 82kx Szk. Since 82k is a
m-manifold, it follrws that T 1s a 7-manifold, hence parallelizable.
Therefore Wo 1s parallelizahle.

Computation of H*(Mo). Since the groups Hi (Wo) have no torsion,

Hlsk -1

it follows by Poincaré-Lefschetz duality that Hi(wo ’Mo) ~ (w J)' is

isomorphic to Hom (Hhk-i(wo) s Z)e The natural homomorphism

Hi(wo) —_— Hi(WO,Mo) =~ Hom (Hhk-i(wo)’ Z)

is determined by the matrix of intersection numbers,

Now recall that HO(WO) =~ Z ; that Hi(wo) =0 for i #0, 2k;
and that the matrix of intersection numbers in dimension 2k has
determinant +1 . Plugging this information into the exact sequence
of the pair (Wd,Mé) » 1t follows that M, has the homology éf a

(4k-1)-sphere.

Proof that M, 1s simply connected, providing that k > 1. (For
k equal to 1 the group LY (Mo) depends on the choice of the curve
C. If C could be chosen s0 that (Mo) =0, then M would

provide a counter-example to the Poincaré hypothesis.)

Let K(C w3 denote the union of 8 copies of Sak, one in the center

of each T, and Ti' « ..Sinca the dodimension 2k of K 1is greater



than 2, it follows that 15.

1r2(w3, w3- K)=0.

But it is clear that d W is a deformation retract of w3- K . Hence

3
~né(w3, o w3) =0 ., From the exact sequence of this pair it follows

that wi(a W3) is infinite cyclic, generated by the closed curve C .

The manifold o W), can be obtained from 9 w3 in two steps, as

follows. (Compare Lemma 5.3.)

1) Remove a tubular neighborhood of C( o LAY Since the cu-

dimension k-2 of C in O W, 1is greater than 2, it follows that

3
vi(a w3- C) is also infinite cyclic.
) 2 hk-3
2) Fill in the resulting hole with a copy of D X .

The effect of this addition on the fundamental group is t.: kill the
generator., Hence ﬂi( d Wh) =0 .

Since the differentiable manifold Mb= d wo is bomeomorphic tu
o wh,' this completes the proof that MO is a homotopy sphere. Since

the index I(WO) is easily shown to be +8, this proves Theorem k4.1.

§5. Simplifying manifolds by surgery

This section will describe an operation, suggested tc the author
vy Thom, which can be used to kill off the lower homotopy groups I oa

manifold. To illustrate the method, the following will first be proved.

5.1 Theorem, Let M be an unbounded bk-manifold which is almost
parallelizable. (That is there exists a finite subset F, so that M-F
is parallelizable.) Then there exists an unbounded sk-manifold M’
which satisfies:

1) the index I(M") equals I(M),
2) M’ 1s also almost parallelizahle, and
3) M’ is (2k-l)-connected.
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Remark 1. It is not possible to kill off any further homotopy
groups: If M’ were 2k-connected, then the index I(M’) would have
to be zero.

Remark 2. The hypother.s that M 1is almost parallelizable is
essential here. As an example, for n=12, the complex projective space
PG(C) hes index 1. But for any 5-connected 12-manifold, the index
must be divisible by I3= 7936. (This follows sincd the only obstruc-

tion to almost parallelizability lies in H6(M; "'5(5012)) =0.)

Proof of 5.1. If M has several components, let Ml denote the
connected sum of these components. It is not hard to show that Ml is

almost parallelizable, and that I(Ml) = I(M) .

Suppose by induction that M is (q-1)-connected, where 0 < q < 2k.

Any given elemegt ae Fq(M )

can be represented by an imbedding
£:5% —>u.
(This presents no difficulty since the dimension bk is greater than 2q.

Compare Whitney [1].)

5.2 Lemma. Let £: Sq—-->Mn be an imbedding, with q < -é—n ; and

*
suppose that the Bundle £ (1) induced from the tangent bundle of
M is trivial. Then the noymal bundle V"% is trivial.

Proof. Let of dencte the trivial 50, -bundle over s%, and

let 'rq denote the tangent bundle., It is well known that the Whitney

1

sun t99 0" 1is trivial. We are assuming that the bundle v* % ¢ ¢9

~¢*(x®) 1s trivial. Therefore
Vn—g,D °q+1 - Ja-q ® Tq ® ol ~ B ® ol - °n+l

is trivial. That i1s: the inclusion son_q—--> son + carries the

1
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S0 - oundle v°"? intc the trivial bundle. But the homowmorphism

n-q

(so_.,)

(Son- q> T n+l

Fq-l g-1

is an 1somorphism in the stable range n-q > q « This completes the
proof.
"Let T be a tubular neighborhood of f(Sq). Then T can be

identified with the total space of the th-q ~bundle which is asso-

ciated with vhk q. Choosing a specific product structure for vh‘ q,

it follows that T is homeomorphic to Sq X th-q. Let M1 denote
a differentiable manifold obtained from M by

1) removing the interior of T , and

el | Mk-g-1

2) pasting a copy of D in its place, matching the

common boundary Sq X Shk-q'l.

5.3 Lemma. The manifold M is also (q-l)-connected. Further-
more 'trq(Ml) is isomorphic to ‘n‘q(M)/(a), where (@) denotes the

normal subgroup generated by «o .

Proof. Since f(Sq) has codimension U4k-q in M, it fullows
that vi(M-f(Sq)) 1s isomorphic to 7, (M) for 1 <lk-g-l . 1In
particular

vi(M-f(Sq)) =0 for 1<q, and

'Wq(M—f(Sq)) =~ (M)

Mhe manifold M - £(8%) can be obtained from M, by removing the

Me-a-1 o Codimension qa+1.

sphere O X S
Therefore

m (M) = M -2(s?)) =0 for 1<gq.

Case 1. ¢ =1 . Then Trl(Ml) can be computed as tollows. The

manifold Ml can be vbtained from M-T by first adjoining a 2-cel:
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p° x (constant) and then adjoining a 4k-cell., The first operation
jntroduces the relation « = O into the fundamental group ; while

the second operation leaves the group unchanged.

Case 2. q > 1 . Then the group Wq+l(Ml,M-f(Sq)) is isomorphic

q
to . HQ+1(M1, M-f(S?)) =~ Z . In the exact sequence

2 —> T (M-£(5%)) —> T, () —> 0,

it is clear that o(1) = @ , so that "ﬁ(Ml) m'ﬂq‘M)/(a) , as required.

This completes the proof of 5.3.

5.4 Lemma. If the product structure for the normal bundle
th-q is correctly chosen, then the manifold Ml will also be almost

parallelizable.

Before giving the proof, here is a description of some vector
fields on 83C p3*l,  Let €1 +0es Egp be the standard basis for
the tangent vector space of Dq+l. The outward normal vector at a

q =
point (tl, cony tq_,_l) €8 is =% & + .o+ tq+l €qul * Let

s{ denote the projection of €, into the tangent bundle of Sq .

p
Thus e{ =g- %L, so thet g, = e{ + 40

Proof of 5.4, Choose some field ® of vectors normal to f(Sq).
The "endpoints" of the vectors ¢, sweep out a subset of O T which
will be denoted by S X (1, O, eee, O)s The outward normsl vector to
3T atapoint of S x (1, O, «eep 0) will also be denoted by @
(since it can be considered as a translate of the vector P at the

corresponding point of £(s?)). Now conmsider the vector fields

’

g + tl P, &t t2 Pys ooy EQ+1 + tqfl » ’

along S x (1, 0, ess, O). These are orthogonal unit vectors in
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the tangent bundle of M.
Since M 1s almost parallelizable, there exists a field
(\Vl, ceny %}k) of bk-frames which is defined over M-F ., Here F

denotes some finite set which we may assume is disjoint from T .

Assertion., It 1s possible to deform this field (Vs oees whk)

so as to obtain a field (Wi, ceey \ll):k) of Uk-frames such that

along 5% x (1, 0, ..., 0):

\vl"—’sl‘l"tl@l’ '..,\vq}‘l:s

qg+1 * tq+l #

)

This is proved as follows. Define a matrix 2 (tl, coey tq+l

by the formulse

b x
e""t = z a—\", i=l,2,-..,q+l.
171 % j=1 1Y

This defines a map from s? to the Stiefel manifold th a+1°
This map is null-homotopic sinf:e Trq(vhk, q+1 ) =0 . Hence it can

be lifted to a null-homotopic map of s? into th Lk
2

(tl, sesy tQ"'l_.) —_— ” aia" ’ i-= l, csey Lk .

Let ¥/ = ¥, outside of a neiéhborhood of s%x (1, 0y ess, O) but

let ‘ =
Vi = Eayy ¥

for points in s? x (1, o, ...;;— 0) , and for all i o« ‘The null-

homotopy cen now be used to define wyi' throughout the neighborhood,

We may assume that the vectors ¢/ along f Sq) are translates
. i

of those along Sq X (l, 0, csey O) )

Now choose the product structure for the normal bundle of f(Sq)

which 1s determined by the field
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4 4
Py w@%"'” i
of normul (4k-q)-frames. In terms of this product structure, conmstruct

the manifold

.

M, = M-(imterior T) v pdtl , ghk-a-l

The bk-frame (wi, ceey wﬁk) in M-(interior T) can be extended throughout

Dq+l

X (1,0y...,0) as follows. FKote that the vector @ along

5% x (1,0,...,0) can be identified with the normal vector t. 37 in
¥l Hence the vectors W{ = 3{ + 0, (1<i<g+1) along

Sq x (1,0,...,0) can be identified with the standard basis for the
tangent bundle cf Dq+l x (1,0,...,0). BHence these vectors w{,...,wé+l

can be extended.

4 ’ - g+l
The remaining vectors qua’ vaey th are normal tc D . The

projection s? x Shk'q-l——+> Shk"q"l carries these vectors onto a

fixed (U4k-gw])-freme at the point (1,0,...,0) € Slbk‘-q-l.

Hence it is
certainly possible to extend (wé+2""’ Wﬁk) over DI x (1,0,...,0)
as a field of normal (4k-g-1)-frames.

Thus & field of Uk-frames has been defined over the subset
(M-(interior T)-F) u (0% x (1,0,...,0))

of Ml- P. The complement of this set in Ml- F consists of a single
kk-cell: (interior Dq+1) X (Shk'q"l -poiat). Let F’ consist of F
together with a single point in this cell. Then it is clearly possible
to extend the Lk-frame field throughout Ml—F' . This completes the

proof that M1 is almost parsllelizable.

Remark. It cannot be proved that Ml is parallelizsble, even assum-

3,M1_~.sl‘

ing that M is parallelizable. As an example take M = Sl X 3
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5.5 Lemma (Thom). The manifold M, belongs to the same cobordism
class as M.
Proof. Let W be the space obtained from the disjoint union cof

g+l v Dl&k

Mx [0,1] and D "% by pasting together T x (1] and

bk
Sq X D & q’ using the product structure for T constructed above. A

differentiable manifold wl is obtained frou W by "straightening" the

hk-g-1

angle 3 Tx [1] =8¥xs It 1s clear that 3 W, is the dis-

Joint union of Ml and -M, which completes the proof.

Proof of 5.1. Suppose that M 1s (q-1)~-connected, almost parallel-
izable, and that 'rrq(M) has r generators. The above construction
yields & manifold Ml which is (g-1)-connected, almost parallelizable,
and such that Trq(Ml) has r-1 generators. Iterating the construction
r times, this ylelds a manifold Mr which is g-connected. Continue by

induction on q until we obtain a manifold M’ which is (2k-1)-connected.

According to 5.5 the manifold M’ has the same cobordism class as
M. Therefore the index I(M’) is equal to I(M). (Compare Thom [1].)

This completes the proof of 5.1.

5.6 Theorem. Let M be a homology sphere of dimension hk-1, k > 1,
a a
which bounds T - manifold. If A‘(M) = O then M bounds contractible
la)
manifold,

5.7 Corollary. If M is a homotopy (lk-1)-sphere with A“(M) = O,

then M is J-equivalent to sl‘k’l; providing that k > 1 .

5.8 Corollary. For k > 1 the group @hk'l (8 w) 1is cyclic of
order é-l’k .
The proof of 5.6 is similar to that of 5.1, but also uses the

following three results.



5.9. Theorem. Let W be a simply connected manifold of dimen-
sion 2n, n > 2. Then every element of Trn(W) is represented by an

imbedding f: S° —> W.

The proof is a modification of Whitney's proof that every n-mani-
£old cen be imbedded in 2n-space. (See Whitney {2].) Detalls will not

be given. I do not know whether this theorem is true for n = 2.

5.10. Theorem. Suppose that a quadratic form over the integers
has determinant + 1, index O, and takes on only even values. Then
it is equivalent to a quadratic form with maetrix diag(U,U,...,U),

where U = (g é‘).

Proof. This follows from theorems 1, 2 of Milnor [k] (making use

of theorems of Eichler, etc).

[The following remark is due to H. Sah. In order to prove 5.10
it is sufficient to prove that there exists an isotropic vector: that
is an o # O such that the value < o, > of the quadratic form is
zero. The existence of an isotropic vector is not difficult to prove;
using the Hasse-Minkowski theorem that such a vector exists if and ounly
if (1) the form is indefinite and (2) for each prime p the correspond-
ing form over the p-asdic numbers has an isotropic vector. Given such
an o let o =a/r be indivisible. Since the determinent is + 1,

there exists p with <a1, B> =1. Define
B, =B-%<B, B
1 5 <P P20y

Then

<al’al>=<61’ Bl>=o}<a1, Bl>=1'
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Now cansider the set of all 7 which satisfy < o5 7 >=Z Bys 7 > = 0.
By induction on the rank we can choose a basiﬂ for this set so that the
matrix has the required form.]

5.11. Lemma. Let f: 82k —_ th be an imbedding, and suppose

that

1) the homology class B of f(Sek) has self intersection
number < B, B> =0 and

2) the induced bundle f*(Thk) over S is trivial.

Then the normal bundle v2k is trivial.

Proof. Just as in 5.2 it is seen that vzk corresponds to an

element o e Tox l( SOEk) which is annihilated by the homomorphism

(s0 ).

Toie1(S00y) —> Ty 1 (850, o

Since the group nék_l(so

the exact sequence

2k+l) is already stable, it follows from

2k d
’Tak(s ) &7 —> (so

To-1(50%) = Moy 1(S051)

that @ =0n for some n € Z.

The element OJl € Wék_l(sozk) corresponds to the tangent bundle
of Szk, with BEuler class equal to twice the generator of sz(szk).
Therefore the Euler class of ng is equal to 2n times a generator
of sz(SZK)f But this Euler class can be interpreted as the self-

intersection number < B, B > times a generator. Therefore 2n = O,

hence o = 0. This completes the proof.



2k,

Proof of 5.6. Iet M be a (lbk-1)-manifold with A‘(M) =0. An
argument similar to the proof of 5.1 shows that M bounds a manifold
W which 1s almost parallelizible (hence parallelizable) and (2k-1)-
connected. The index I(W) is congruent to zero modulo Ik. Hence
there exists an almost parallelizable Ukemanifold N, without bound-
ary, which satisfles I(N) = ~I(W). By 5.1 we may sssume that N is

also (2k=l)-connected.

Now consider the sum Wl =W # N. This is a parallelizable
bkxemanifold with index zero, and with boundary M. The self-inter=-

section matrix of W, has determinant + 1 by the Poincerd duality

theorem, and has only even elements on the diagonal. (Compare the
proof of 3.2.) Therefore, according to 5.10, it is possible to choose

a basis [al,...,ar, Bl,...,Br} for sz(wl) so that the intersection

matrix is given by:

3 3> =0, <ay, By>=5

i3’

(Here ® is a Kronecker delta.)

13
According to 5.9 there exists an imbedding £: S2k —> wl which

represents the homology class al According to 5.11 the normal bundle
of f( Sak) is trivial. Hence we can remove a tubular neighborhood

2k+1 % SEk-l

and replace it by D , Yylelding a new manifold W2.

From the pair (W., Wl-f( SZk)) we obtain an exact sequence

s 0 2 ngk(wl-f(sak)) —> B, (W) ds 7 — ...
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wheare J(')’) is the intersection number of ¥ with the homology class

o of f(SQk) . ?‘k))

Therefore sz(wl-f(s is the subgroup of Hek(wl)

generated by [al, cees® sBys e .,Br) .

From the pair (W2 s Wl-f(Sak)) we obtain an exact sequence

d 2k
—> 2 =5 1y, (W ~2(s7)) —> By, (W) 40> hh

where Jl1 is the class &, . Hence sz(wz) is freely generated by
the classes {ozz,...,ozr, ﬂz,...,sr]. Note that the intersection num-

bers of these classes in W2 1s the same as that in Wl' In fact

any 2k-cycle in W2 can be deformed so that 1t does not intersect

the submanifold © X §2%"L hich has codimension 2k + 1.

Now choose an imbedding f2: 52k _— W2 vwhich represents the

class C,. We may assume that f2(82k) is contained in the

parallelizable manifold

2k=-1 2k
) = Wl - f(s ))

W, - (0xs
hence the normal bundle is trivial. Iterating this procedure r times,

we obtain a manifold W -~ vhich is 2k-connected, and therefore

1
contractible. This completes the proof of 5.6.

This argument can be modified slightly to prove the following.
5.12. Theorem. The groups 65(8 7) and 6)13(8 T) are zero.

Proof. et M = BW6 where W6 is parallelizable. Just as
above, we may assume that W6 is 2-connected. The self intersection
matrix of H3(W6) is skew symmetric with determinant + 1. Hence it

is equivalent to a matrix of the form dieg(U'*,U',...,U') where
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ut = (-g é)' (See for example Veblen [1] pg. 183.) The normal bundle

of any 3=sphere in W6 is trivial since ﬂé(SO } = 0. Hence the

3
argument above shows that we can kill H3(W6).

The argument in dimension 13 is similar, using the fact that

W6(SO7) = 0. This completes the proof of 5.12.

Remerk. The following assertion will be proved in a later paper.
For any n of the form Uk + 1, the group 6°(dw) is either zero
or cyclic of order two. The proof will make use of the Arf invariant
of a certain quadratic form over the field Zg.
5.13. Theorem. The groups @6(BV) and ®lh(3v) are zero.

Outline of proof. Ilet M?k = W2k+l, where W2k+l is

parallelizsble. Just as above we may assume that W2k+l is (k-1)-
connected. Furthermore the group Hk(w2k+l; Q) with rational
coefficients is not difficult to kill. Thus we may assume that
Hk(W2k+l) is & finite group. Any element of this group is represented
by an imbedded k-sphere with trivial normsl bundle. Hence one can
form Wiak*l as before. However the homology group Hk(Wi2k+l)
depends on the particular product structure which is chosen for the
normal bundle. The following question arises: Given an arbitrary |
normal vector field ¢, does there exist a field of nommal (k+l)-
frames (¢i""’¢k+l)? For k equal to 1,3 or 7 this is possible,
since the homomorphism

wk(so ) —> ‘n‘k(Sk)

k+l

1s onto. Hence it is possible to choose (qi""’¢k+l) so that
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Hk(Wi'm'l) is smaller than Hk(wzk"'l). However for other values of k

this homomorphism is not onto, so that the proof does not go through.

§6. The group @n/ 8% (3 )

The main result of this section will be that the factor group
Gn/en(b T) is always finite. [This is the group of all homotopy
n-spheres modulo those which bound w-manifolds.] Upper bounds for this
group are given, but no icwér bounds., It is possible that every homotopy

sphere is the boundary of é. T-manifold.

Let MC R°'Y be a homology sphere, with g > n. The only obstruc-

tion to triviality of the normal bundle is an element ,
e BE(M; w1 (S0.)) ~m , (S0,)

This coefficient group has been computed as follows by R. Bott [1]:

n modulo 8 |
T 280 |

2 3 b 5 67
2,02 0 0 O °

0
z 2

1
(This teble is valid for a>n>2.)

If n is congruent to 3, 5, 6 or T modulc 8, this clearly implies

that ¢ is zero.

If n is equal to 4k then the obstruction class %an be identified
with a certain fraction of the Pontr,ja.gin- class pk(Mn). (See Kervaire
{3] or Kervaire and Milnor [1].) But Hirzebruch's index formula (Hirzé-
bruch {1] p. 85) implies that the Pontrjagin class of a homology sphere
is zero. Again it follows that¢g =0 .

Finally suppose that n is congr'uent to 1 or 2 modulo 8 , S0 that

Trn_l(SOq) 3 22 « A theorem of Rohlin asserts that the obstruction class



is annihilsated by the homorphism

J s9) .

L 'rrn_l(soq) — T

n+q-1 (

(See Rohlin [1] or Kervaire and Milnor {1].) If J,; 1s non-trivial,

1
it follows that ¢ = 0. This proves:

6.1 Theorem. Every homology n-sphere is a T-manifold, unless

1) n=1or 2 modulo 8, and

2) +the homomorphism J,.p 1s zero.

1
For n =2 1t is well known that Jl is an isomorphisni. For

n=9, 10 we have:

6.2 Lemma of Kervaire [S5]. The homomorphisms Jg and J'9 are
non;trivial.

Therefore:

6.3 Corollary. For n <17 every homology n-sphere is a m-manifold.

I do not know whether conditions (1) and (2) of 6.1 are ever satisfied.

However in any case the followlng is true,

6.4 Iemma. For any n +the homotopy n-spheres which are T-manifolds

form & subgroup en('rr) C @" vhich has index at most 2.

Proof. We may assume that wn_l(so q) =~ Z, . The obstructlon corre-
spondence M—> ¢ (M*) ¢ vn_l(soq) is easily seen to be additive, and

invariant under J-equivalence. This completes the proof.

Now let M® be any m-manifold without boundary, and consider the

question: Is Mn ‘the boundary of a T-manifold? The theory of Thom [2]

can be used to give an answer as follows.

Choose an imbedding of M in the interior of a cube

a field
{0, 1] x ... x [0, 1] = T+ , and choose @ of normal g-frames. Then the
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Thom construction yields a map
(e, 3 ™9)—>(s?, vase point),
and hence a homotopy class

t(p) € 'lrn+q(Sq) .

(See Thom [2] p.30, or Kervaire (1] p.223, or Kervaire and Milnor [11,
proof of Lemme 1.) This class is zero if and only if there exists a

w-manifold W Y such that

1) dw=M'x[0], and

2) the field ¢ of normal gq-frames can be extended throughout W.

Now let ¢ vrange over all possible fields of normal gq-frames. The
set of a1l homotopy classes” t(p) will be denoted by
. q
20 C my  (57)
Evidently M® bounds & w-menifold if and only if
0et’(M) .

6.5 Lemma., If M, and Mz’ are T-manifolds; then

to #M) D0 ) + tT0My)

(I do not know whether equality holds.) Proof. Let W be a manifold
formed from the disjoint union of M, X ’[o, 1], M, X {0, 1] and D® x Dl
by metching D° x [-1] with a cell in M X (L]; matching D% x [1] with
a cell in M2 x [1]; and then straightening corners. If the orientations
are correct, then O W will be the disjoint union of M; # M,, -M, end
-M2 . TFurthermore W has the homotopy type of the union of Ml and M2

with a single point in cormon. ;
Choose an imbedding of W in R x [0,1] so that «M, and <M,

bey
go into R ¢ x [0], while MI#ME goes into R*™% x [1]. Now given
- flelds ® P of normal q-Puamas of Ml and M2 regpectively, there
exists an extension V¥ which is defined throughout W.
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If @ denotes the restriction of ¥ to Ml#M2 s then it is clear that
t(g) = t(qzl) + t(cpe) . This completes the proof of 6.5.

Now consider the special case M = Sn

Every fleld ¢ of normal
q-frames determines an element

Qe 'n'n(SOq) .

Kervaire hes shown that t(p) is equal to + Jn(a) . (See Kervaire ([4].)

Since any @ may occur this proves:
6.6 Lemma. The set t°(S") is equal to Image 3 C wn+q(sq) .

Applying 6.5 to the identity
M # st =M
’ n P4 4
this shows that t°(M ) D +t’(M°) + (image Jn)' In other words t°(M>) 1is
& union of cosets of (image Jn)‘ This suggests that we define t(M,n) as
the subset of ‘
= q i
cokernel J_ 7Tn+q(S )/ (image Jn)

which corresponds to t'(Mn ).

6.7 Theorem. The Thom construction yields & correspondence

M —> (M) C (cokernel Jn)
with the following properties:
a) 1:(1»‘1"1 ) 1s defined and non-vacuous for every unbounded T-manifold.
b) t(M") contains O if and only if M" bounds a T-manifold.

c) t(My #M,) Dt() + t(n,).

a) +(s®) = {0}.

e) If M, 1s J-equivalent to M, then t(b&) = t(Mz).

£) 1t M is a homotopy sphere, then 1:(Mn ) consists of a single element.

Proof. Properties (&) through (d) follow from the discussion above.

Property (e) follows immediately from the definition. To prove (f) recall
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that M° # (-M*) 1s J-equivalent to s®. Therefore (0} )t(Mn) + t(-Mn).

But this would be impossible if t(M") contained more then one element.

6.8 Corollary. The factor group Bn(‘ir)/en(a ) is naturally iso-

morphic to a subgroup of (cokernel Jn)‘

6.9 Corollary. This factor group is finite for every n. Hence the

subgroup €°(d w) C Gn"_ has finite index.

To conclude this section, here is a summary of what is known about
the group (cokernel J ). Toda has computed the p-primary component of
the stable group T, q(Sq) for the range n < 2p (p-1)-3. (See Toda [2].)
Combining this information with §3.6 the p-primary component of
(cokernel Jn) is determined for the same range. As an example (compare
Milnor (3]):

Assertion. The p-primary component of (cokernmel Jn) is zero for

n < 2p(p-1)-2, and is ZP for n = 2p(p-1)-2.

The 2-primary component can be determined for n < 13, making use of
Toda [1], together with §6.2 and §3.6. The following is a tabulation of

the first thirteen groups.

n_ = |12 3456 18 9 10 11 12 13 1ikgeq19
cokerJn= I OZE,OOOZEOZQZ—I-Z2 Z6 0 OZ3 2-group
Since 62 is known to be zero, the first unsolved case occurs for

n = 6. Is the group @6/@6(3 T) non-trivial?
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§7. Discussion

Combining the results of the preceding sections, we have the
following estimate of et for small values of n.

1

@::92:85:0’ -

96 is either 0 or Z5»
97 is cyclic of order 28, -

99 hag order at most 8, -

G;l is cyclic of order 992,

13

elh is a 2-group,

615 has order 127 times a power of 2. This group contains an )

is elther _O or Z3,

element of order 8128.
Evidently the biggest hiatus in the results is the following.

Problem 1. Are the groups ®2k(&w) finite for k # 1,3,7? A
solution would probably be based on a detailed study of (2k+l1)-manifolds

which are (k-l)-connected. (Compare §5.13.)

Another outstanding problem is the decision as to whether every

homotopy sphere bounds & m-manifold. (See §6.)

Problem 2. Is there any theory which related the invariant

t(M?)(: (cokernel Jn) with the topology of M™? In particular does

this invariant vanish for a homotopy sphere?

Another question would be the relationship between this psaper

and the Poincare hypothesis.
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Problem 3. Does there exist & homotopy 3-sphere M such that
(M) £ o2

Such a manifold could not be homecmorphic to S3. In fact

J. Munkres, S. Smale and J. H. C. Whitehead have proved that the

differentiasble structure of a topological 3-manifold is unique up to

diffeomorphism.
hk-1
Problem 4. Are the homotopy spheres MO homeomorphic to
hkal

S ? (See §h. Note that k must be > 2.)
The following seems to be & very deep question.
Problem 5. Are J-equivalent manifolds necessarily diffeomorphic?

An affirmative answer would imply the generalized Poincare
hypothesis for differentiable manifolds. For if M is a
homotopy n-sphere then M # (=M) is J-equivalent to s®. But if
M # M, 1is diffeomorphic to s® then an argument due to Mazur [1]

implies that M 1itself is homeomorphic to S .

Most known invariants of differentiable manifolds depend only on
the J~-equivalence class. For example:

Assexrtion. If Ml is J=equivalent to M2 then some homotopy
n

equivalence Mi — M2 is covered by a bundle map Tln _ o

between the tangent bundles.

Proof. Suppose that the boundaries M1 and -M2 are deformation
retracts of W. Choose & non-singular vector field on W which

points out of W along NE. and into W along M2. The orthogonal

complement of this vector field in 1n+; yields en SOn-bundle gn
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" ‘
over W. Now the bundle maps 'rln — T L Tgn can be used to

construct the required bundle map.

Problem 6. Is the "simple homotopy type" of M invariant under

J-equivalence? (See J. H. C. Whitehead [1], [4].)

Appendix: Pasting and straightening

Let R+ denote the set of real numbers t with O 5 t < oo,

Assertion. If W is a differentiable manifold with boundary,

then there exists a neighborhood U of OW, and a diffeomorphism
h: oW X R, —>U
which satisfies the identity h(x,0) = x.

(A proof of this assertion is given in Milnor [2]. Alternatively

this may be taken as part of the definition of "manifold with
boundary™.)

Given two manifolds W., W2 end an orientation reversing

diffeomorphism

let M denote the space obtained from the disjoint union of Wl and

W,

5 by identifying each x € awl with #£(x).
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8.1. lLemms.. The topological manifold M can be given a

differentiable structure which is compatible with that of W, and W,.

8.2, lemms. If two such differentiable structures are given,

then the resulting differentiable manifolds are diffeomorphic.

Proof of 8.1. Choose neighborhoods U, of BWi in W and

i’
diffeomorphisms
h, : awi XR —> U,

as above. A homeomorphism

h: 3w1XR—>U1u02CM

is defined by the formula
hl(x,t) for t

2
h(x,t) = B
hg(fx,-t) for t <O0.

Taking h to be a diffeomorphism, this defines the required differen=-

tiable structure.

Proof of 8.2. Iet M and M' be the two differentiable mani-
folds. Choose a contravariant vector field P along the boundary of

W, which points out of W,. Considering W, and W, as submanifolds

1 1 1 2
of M, +this ylelds a vector field ¢é along the boundary of Wé
vhich points into W,. On the other hand, considering W, and W, as

submanifolds of M', the fileld P corresponds to some other field

®,' along the boundary of W,.

Choose & diffeomorphism g,: Wy, —> W, which leaves BWé point-

wlse fixed, and carries the vector field ¢, into @.'. (The
2 2

construction is not difficult.) Then a homeomorphism g: M —> M' is



obtained by combining & with the identity map of wl. It is easily

1

verified that g sand g ~ are differentisble of class ot

Approximate g by a ¢ -differentiable mep g'; where the
a.pproximatioxi must be close enough so that the Jacoblan of g' has
rank n everywhere. (See Whitney [1].) Then g': M —>M' is the

required diffeomorphism.

Several times in this paper.it has been necessary to consider
n-manifolds with boundary which are differentiable except along some
(n=2)~dimensional submanifold of the boundary. The simplest example
of such an object is the quadrant R_X R _ C R°. This example can be
"stralghtened" by introducing new coordinates as follows. Map

R+ X R+ onto the half-plane R X R+ by the correspondence
(r cos 8, r sin 6) L (r cos 26, r sin 26)

for 0<r, 0L56< g Thus f 1s a diffeomorphism, except at the
singular point. Another example is provided by the three~quarter-plane

R " XRURXR o This can be straightened by the transformation
(r cos @, r sin 6) —> (r cos ((2647)/3), r sin ((26+7)/3)),

VE

A higher dimensional example is given as follows. Let Wl and

WZ be differentiable manifolds with boundary. Then Wl X W2 is

differentiable except along BWl X awa. Some neighborhood Ul X U2

of this singular set is "diffeomorphic® to

(awlx awz) X (R+x R+).
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Form a new differentiable manifold W as follows. Take the

disjoint union of Wy X W, - BWi X BWé and Bwl X BWé XRXR,, and

identify

hl(xl, r cos 8) x h2(x2, r sin 6) € U, XU,

with

(xl;;xQ, r cos 26, r sin 26)

for each x, € AW, x, € M,, 0<r, 050 < This construction will

s

be referred to as "straightening the angle®". Note that the differen-

tiable structure of awl X Wy, end of Wy X BWZ, is left fixed, so

that Lemma 8.2 applies to-their union OW.

A similar construction works for each of the examples considered

in this paper.

Princeton, January 23, 1959.
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