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Boy’s Surface
Rob Kirby

Boy’s surface is an immersion of the real projec-
tive plane in 3-dimensional space found by Werner 
Boy in 1901 (he discovered it on assignment from 
Hilbert to prove that the projective plane could 
not be immersed in 3-space) [1]. Many beautiful 

pictures of it can be found on 
the Internet, but here we will 
build it from the inside out, so 
as to see clearly the features of 
Boy’s surface.

To begin, there must be a 
triple point where three planes 
intersect as with the coordinate 
planes in R​3​. In fact, the number 
of triple points of an immersed 
surface S​ in R​3​ must be congru-
ent, modulo 2, to the square of 
the first Stiefel-Whitney class of 
S​ in H​2​(S​;​Z​/2).

Take a square in the xy​-plane 
with vertexes at (±1,​0,​0) and 
(0,​±1,​0), and similar squares 
in the xz​-plane and y​z​-plane, as 
drawn in Figure 1. The 1-skel-
eton of this polyhedron is the 
logo for the Park City Mathemat-
ics Institute; the logo inspired a 
general-audience talk I gave on 
this subject in July 2006 at Park 
City. The construction given here 
is not original, though I know 
of no written account. I learned 
about it at the PCMI from Bob 

Edwards, whose memory of the construction was 
triggered by the logo.

Now add to Figure 1 four 2-simplexes to “op-
posite” triangles; two, dark pink and purple, are 
drawn in Figure 2. “Opposite” means that no two 
of the four 2-simplexes have an edge in common. 
This polyhedron P​ is a 2-manifold, for each edge 
lies on the boundary of a square and a triangle; 
at any of the six symmetric vertexes we have the 
cone on a figure-8 (a circle immersed in the plane 
with a double point), which is abstractly a 2-disk. 
The squares and triangles form R​P​2​ because their 
Euler characteristic is 1 ​= ​6​−​12​+​7.

Note that if we take a cube and cut off each 
of its vertexes in a maximal way, then we have a 
solid with 8 triangular faces (corresponding to the 
original 8 vertexes) and 6 squares, one each in the 
middle of an original side. If antipodal points are 
identified, then we get R​P​2​ and the polyhedron 
P​ constructed above. Note also the symmetries 
of this object.

The defect in P​ is that this polyhedron is not 
smoothly immersed. The edges can be rounded, 
but the 6 cone points cannot. To remedy this, pair 
off the 6 cone points by 3 “opposite” edges, (in 
Figure 1 the red edge is such an edge). Each edge 
may be used to “cancel” the figure-8 cones at the 
ends of the edge, as illustrated in Figures 3-7.

A neighborhood of the top vertex is drawn 
in Figure 3. This neighborhood can be flattened 
out to look like the polyhedron in Figure 4; it is 
still a cone on a figure-8. A neighborhood of the 
red edge is homeomorphic to the polyhedron in 
Figure 5, having cones at both ends. Flattening 
then gives the polyhedron Q​ in Figure 6. Q​ is 
the image of a rectangle, immersed except at the 
cone points. This can be changed, relative to the 
boundary, to the immersed image of a rectangle 
as in Figure 7, where the two cone points have 
been canceled.
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triangular faces (bowed slightly out) is 
the only one to hit that point on the 
round 2-sphere.

Smale’s classification of immer-
sions in this dimension states that, if two im-
mersed 2-spheres have Gauss maps with the same 
degree, then they are connected through an arc of 
immersions. Thus the eversion exists, although 
Boy’s surface only shows how to turn the immersed 
0-sphere bundle inside out.
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When this process is done to each of the three 
pairs of vertexes (cone points), then we have ob-
tained Boy’s surface, an immersion of the projec-
tive plane. It is a piecewise linear immersion, but 
its edges and corners can easily be rounded to get 
a smooth immersion.

Note that there is an immersed circle of double 
points that passes through the triple point three 
times. This immersed circle consists of the original 
coordinate axes in R​3​ together with the three edges 
that were used in canceling pairs of cone points. 
A neighborhood of that circle in R​P​2​ is of course 
a Möbius band, and its complement a disk that is 
embedded.

This smooth immersion (or any other) may 
be used to see Smale’s eversion of the 2-sphere 
[3]. This is an arc of immersions that turns the 
2-sphere inside out; its existence was proved by 
Smale and various constructions ([2]) have been 
carried out since. The normal 0-sphere bundle (the 
endpoints of the normal [−1,​1]-bundle) is an im-
mersed 2-sphere, and it may be turned inside out 
by taking the endpoints and moving them through 
each other to their opposites along [−1,​1]. This 
is not generic, for at half time, the 2-sphere is im-
mersed as Boy’s surface, whereas a generic arc of 
immersions will not have a 2-dimensional multiple 
point set.

To evert a round 2-sphere, one has to see how 
to move the round 2-sphere through immersions 
to the 0-sphere bundle, then pass it through itself, 
and then go back to the round 2-sphere by the 
inverse of the first step.

The first (and third) step is known to be pos-
sible. An immersed 2-sphere has a Gauss map de-
fined by taking a point on the 2-sphere to a point 
on the standard unit 2-sphere in R​3​ that is the end 
point of a unit normal vector pointing out of the 
immersed 2-sphere. (This requires orienting the 
2-sphere, and then everting will move the outward 
normal to the inward normal.) The normal 0-sphere 
bundle to Boy’s surface has a degree-one Gauss 
map because the outward normal on one of the 

Figures 3 (left), 4 (above), and 5 (right).
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