
Course Syllabus for Math 281: Algebraic K-theory

and Manifold Topology

Course Description

Let M and N be smooth closed manifolds of dimension n. An h-cobordism from M to
N is a compact smooth manifold B of dimension (n + 1) with boundary ∂B ' M q N
having the property that the inclusion maps M ↪→ B ↪→ N are homotopy equivalences. If
n ≥ 5 and the manifold M is simply connected, then the celebrated h-cobordism theorem
of Smale asserts that B is diffeomorphic to a product M × [0, 1] (and, in particular, M is
diffeomorphic to N).

If M is not simply connected, then it is generally not true that any h-cobordism B
from M to N is diffeomorphic to a product M × [0, 1]. In fact, one can introduce an
algebraic invariant τ(B) (called the Whitehead torsion of B) belonging to an abelian
group Wh(M) (called the Whitehead group of M). The invariant τ(B) vanishes whenever
B is diffeomorphic to a product M × [0, 1], and the converse holds provided that the
dimension of M is greater than 5 (this statement is known as the s-cobordism theorem).
The Whitehead group Wh(M) depends only on the fundamental group of M and vanishes
when M is simply connected, so that the s-cobordism theorem implies the h-cobordism
theorem.

For many purposes, it is useful to know whether there is an analogue of the s-cobordism
theorem for families of manifolds. Fix a compact smooth n-dimensional manifold M , a
finite cell complex X, and suppose we given a fiber bundle B → X where each of the
fibers Bx is an h-cobordism from M to some other n-manifold Nx (where the smooth
structures vary continuously with x). Under what circumstances can we deduce that B
is equivalent to a product M × [0, 1] ×X (so that the fiber bundle {Nx}x∈X is trivial)?
In this course, we will study an analogue of the Whitehead torsion which is adapted to
the parametrized setting:

• In place of the Whitehead group W (M), we will consider an infinite loop space
Wh(M) called the (smooth) Whitehead space of M , with π0Wh(M) = Wh(M).

• To every fiber bundleB → X as above, one can associate a map τ(B) : X →Wh(M)
which is well-defined up to homotopy. When X is a point, the homotopy class of this
map determines an element of π0Wh(M) ' Wh(M) which agrees with the classical
Whitehead torsion of the bordism B.

• The map τ(B) is nullhomotopic whenever B is equivalent to a product M×[0, 1]×X.
One of our main objectives in this course will be to prove the following converse: if
τ(B) is nullhomotopic, then the fiber bundles

B × [0, 1]k → X M × [0, 1]k+1 ×X

are equivalent for k � 0.



Meeting Time and Place MWF at 12, Science Center 310.

Office Hours Wednesday 2-3, or by appointment.

Texts Course notes will be provided on the course webpage. Some portions of this course
will follow the book “Spaces of PL Manifolds and Categories of Simple Maps” by Wald-
hausen, Jahren, and Rognes. Pointers to relevant literature will be provided as the course
proceeds.

Course Website http://www.math.harvard.edu/∼lurie/281.html

Prerequisites Familiarity with the machinery of modern algebraic topology (simplicial sets,
spectra, ...). Several other topics (such as piecewise linear topology, microbundles, im-
mersion theory, the language of quasi-categories) will receive a cursory review as we need
them. A high level of mathematical sophistication will be assumed.

Possible Topics

• Wall’s Finiteness Obstruction

• Simple homotopy equivalences and Whitehead torsion.

• Polyhedra and simple maps; “higher” simple homotopy theory

• Waldhausen’s algebraic K-theory of spaces

• Assembly; the “parametrized index theorem” of Dwyer-Weiss-Williams.

• Regular neighborhood theory.

• Piecewise linear manifolds, microbundles, and immersion theory

• The parametrized (stable) s-cobordism theorem

• Concordance spaces and the Hatcher spectral sequence

• Hilbert cube manifolds and infinite-dimensional topology

Grading Undergraduates or graduate students wishing to take this course for a grade should
speak with the instructor.
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Overview (Lecture 1)

August 27, 2014

Let M and N be smooth closed manifolds of dimension n. An h-cobordism from M to N is a compact
smooth manifold B of dimension (n+1) with boundary ∂B 'M qN having the property that the inclusion
maps M ↪→ B ←↩ N are homotopy equivalences. If n ≥ 5 and the manifold M is simply connected, then
the celebrated h-cobordism theorem of Smale asserts that B is diffeomorphic to a product M × [0, 1] (and, in
particular, M is diffeomorphic to N). This theorem has many pleasant consequences.

Application 1 (Generalized Poincare Conjecture). Let X be a smooth manifold of dimension d which has
the homotopy type of a sphere Sd. Choose a pair of points x, y ∈ X with x 6= y, and let X0 be the manifold
obtained from X by removing the interiors of nonoverlapping small disks around x and y. Then X0 is a
manifold with boundary Sd−1 q Sd−1. If d ≥ 3, then removing the points x and y from X (or small disks
around them) does not change the fundamental group of X, so that X0 is simply connected. A simple
calculation with homology shows that the inclusions of each boundary component into X0 is a homotopy
equivalence: that is, X0 is an h-cobordism from Sd−1 to itself. Applying the h-cobordism theorem, we
deduce that M0 is diffeomorphic to a product Sd−1 × [0, 1]. The original manifold X can be recovered (up
to homeomorphism) from X0 by adjoining a cone on each of its boundary components. It follows that X is
homeomorphic to the sphere Sd.

Remark 2. Beware that the manifold X need not be diffeomorphic to Sd: the identification of X0 with
Sd−1 × [0, 1] may not be compatible with the identification of ∂ X0 with Sd−1 q Sd−1.

In the non-simply connected case, it is generally not true that an h-cobordism from M to N is diffeomor-
phic to a product M × [0, 1]. To guarantee this, one needs a stronger hypothesis on the inclusion M ↪→ B.
Before introducing this hypothesis, we need to embark on a slight digression.

Definition 3. Let X be a finite simplicial complex. Suppose that there is a simplex σ ⊆ X containing a
face σ0 ⊆ σ such that σ is not contained in any larger simplex of X, and σ0 is not contained in any larger
simplex other than σ. Let Y ⊆ X be the subcomplex obtained by removing the interiors of σ and σ0. Then
the inclusion ι : Y ↪→ X is a homotopy equivalence. In this situation, we will say that ι is an elementary
expansion. Note that Y is a retract of X; a retraction of X onto Y will be called an elementary collapse.

Definition 4. Let f : Y → X be a map between finite simplicial complexes. We will say that f is a simple
homotopy equivalence if it is homotopic to a finite composition of elementary expansions and elementary
collapses.

Any compact smooth manifold can be regarded as a finite simplicial complex (by choosing a triangulation),
so it makes sense to talk about simple homotopy equivalence between smooth manifolds. One then has the
following result:

Theorem 5 (s-Cobordism Theorem). Let B be an h-cobordism theorem between smooth manifolds M and N
of dimension ≥ 5. Then B is diffeomorphic to a product M × [0, 1] if and only if the inclusion map M ↪→ B
is a simple homotopy equivalence.

One of our main goals in this course is to formulate and prove a parametrized version of Theorem 5. Let
us now outline the path we will take.
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1 Theme 1: Higher Simple Homotopy Theory

The subject of “higher” simple homotopy theory begins with the following:

Question 6. Let B be a finite simplicial complex and suppose we are given a fibration q : E → B. Under
what conditions can we find another finite simplicial complex E′ and a fibration q′ : E′ → B which is
fiber-homotopy equivalent to q?

There is an obvious necessary condition: if q : E → B is fiber-homotopy equivalent to a fibration between
finite simplicial complexes, then each fiber {Eb}b∈B must itself have the homotopy type of a finite complex.
Let us say that a fibration q : E → B is homotopy finite if it satisfies this condition, and finite if the total
space E is itself a finite complex.

For a fixed base B, there is a bijective correspondence between equivalence classes of homotopy finite
fibrations q : E → B and homotopy classes of maps

B → qBAut(X),

where the coproduct is taken over all homotopy equivalence classes of finite simplicial complexes X, and
Aut(X) denotes the space of homotopy equivalences of X with itself. In other words, the coproduct
qBAut(X) is a classifying space for homotopy finite fibrations.

Following Hatcher ([2]), we will introduce another space M which enjoys the following analogous property:
for any finite simplicial complex B, there is a bijective correspondence between homotopy classes of maps
from B into M and equivalence classes of finite fibrations q : E → B where E is also a finite simplicial
complex (here the right notion of equivalence is concordance; we will return to this point later). We can
think of M as a sort of “moduli space of finite simplicial complexes.” Every finite simplicial complex X will
determine a point [X] ∈ M, and one can show that two points [X], [Y ] ∈ M belong to the same connected
component of M if and only if there is a simple homotopy equivalence from X to Y .

2 Theme 2: Simple Homotopy Theory and Algebraic K-Theory

To apply the s-cobordism theorem in practice, one needs to address the following:

Question 7. Let f : X → Y be a homotopy equivalence of finite simplicial complexes (or manifolds). When
is f is a simple homotopy equivalence?

This is a classical question which was answered by J.H.C. Whitehead. To each homotopy equivalence
f : X → Y as above, one can associate an algebraic invariant τ(f) called the Whitehead torsion of f , which
belongs to a certain abelian group Wh(X) called the Whitehead group of X. Whitehead proved that τ(f)
vanishes if and only if f is a simple homotopy equivalence. Moreover, this is automatic in many cases: for
example, if X is simply connected then the entire group Wh(X) is trivial (which is why one does not need
to consider simple homotopy theory in the statement of the classical h-cobordism theorem).

One of our goals in this course will be to study “higher” analogues of the Whitehead torsion, which can
be used to answer the following generalization of Question 7:

Question 8. What is the relationship between the spaces M and qBAut(X)? How close is the map θ to
being a homotopy equivalence?

To address Question 8, Waldhausen introduced the subject that is now known as Waldhausen K-theory,
or the algebraic K-theory of spaces. This theory associates to every space X a spectrum A(X), called the A-
theory spectrum of X. This construction is functorial in X. Consequently, to any space X one can associate
an assembly map

A(∗) ∧X+ → A(X).

We will denote the cofiber of this map by Wh(X) and refer to it as the (topological) Whitehead spectrum
of X. It is a generalization of the Whitehead group in the sense that there is a canonical isomorphism
Wh(X) ' π1Wh(X). One of the main theorems of this course will be the following result of Waldhausen:
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Theorem 9. Let Y be a finite simplicial complex. Then the homotopy fiber of the map θ : M→ qBAut(X)
taken at the point [Y ] ∈M is canonically homotopy equivalent to Ω∞+1Wh(Y ).

Remark 10. Any homotopy equivalence of finite simplicial complexes f : Y → Z determines a path between
the images of [Y ] and [Z] in the qBAut(X), and therefore allows us to lift [Z] to a point η of the homotopy
fiber

M×qBAut(X){[Y ]}.

Under the bijection π0(M×qBAut(X){[Y ]}) ' π1Wh(Y ) supplied by Theorem 9, the homotopy class of the
point η corresponds to the Whitehead torsion τ(f). Consequently, the statement that τ(f) = 0 if and only
if f is a simple homotopy equivalence can be regarded as a special case of Theorem 9.

Theorem 9 can be regarded as a definitive answer to Questions 8: it provides a purely “algebraic”
description of the homotopy fibers of the map θ. Of course, to deduce any concrete consequences from this,
one would need to understand the spectra A(X): this is a very difficult problem about which much is known,
but one which we will not consider in this course.

3 Theme 3: Simple Homotopy Theory as Stabilized Manifold The-
ory

There are several variants of Question 6 that one could consider:

Question 11. Let B be a finite simplicial complex and let q : E → B be a fibration. Under what conditions
is q fiber-homotopy equivalent to a map q′ : E′ → B of finite simplicial complexes which exhibits E′ as a
fiber bundle over B?

At first glance, it would seem that Question 11 should have a very different answer than Question 8.
Suppose that x and y are two points which belong to the same path component of B. If q : E → B is a
fibration, then we can conclude that the fibers Ex and Ey are homotopy equivalent. If q : E → B is a finite
fibration, then higher simple homotopy theory will tell us that Ex and Ey are related by a simple homotopy
equivalence. But if q : E → B is a fiber bundle, then it follows Ex and Ey are homeomorphic: a dramatically
stronger conclusion.

Somewhat surprisingly, it turns out that the answers to Questions 6 and 11 are the same:

Theorem 12. Let q : E → B be a fibration between finite simplicial complexes. Then q is fiber-homotopy
equivalent to a fiber bundle q′ : E′ → B. Moreover, one can arrange that the fibers of q′ are (piecewise-linear)
manifolds (with boundary).

In fact, one can be more precise. For each integer d ≥ 0, one can define a classifying space Md for framed
(piecewise-linear) manifolds with boundary. There are stabilization maps

M0 →M1 →M2 → · · ·

given by forming the product with the interval [0, 1]. Another of our goals in this course will be to prove the
following result of Chapman:

Theorem 13. The direct limit lim−→Md is homotopy equivalent to M.

Remark 14. Let K be a finite simplicial complex. Then K is always homotopy equivalent to a framed
(piecewise-linear) manifold M (with boundary). To find M , one can choose a piecewise-linear embedding of
K into some Euclidean space Rn and take a regular neighborhood of K (with respect to a sufficiently fine
triangulation of Rn). Theorem 13 says roughly that it is possible to perform this construction “in families.”
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4 Theme 4: The Classification of Manifolds

Fix an integer d ≥ 0. For each closed d-manifold M , let Homeo(M) denote the group of homeomorphisms of
M with itself. We will refer to the disjoint union (taken over all homeomorphism classes of closed d-manifolds)

N =
∐
M

BHomeo(M)

as the classifying space for manifolds of dimension d. For any nice space B, there is a bijection between
homotopy classes of maps from B into N and fiber bundles over B whose fibers are compact d-manifolds.

Remark 15. In this overview, we will focus our attention on topological manifolds and homeomorphisms,
rather than smooth manifolds and diffeomorphisms. All results have analogues in the smooth setting, but
many of the statements are a bit more complicated.

One basic problem in high-dimensional topology is to understand the homotopy type of the classifying
space N (equivalently, to understand the homotopy type of the homeomorphism groups Homeo(M)). As
a first step, one can approximate N by another space Nh, which classifies manifolds “up to h-cobordism”
rather than up to homeomorphism. This approximation is much easier to understand: for d ≥ 5, there
is a completely algebraic description of Nh in terms of algebraic L-theory. Consequently, the problem of
understanding the classifying space N is reduced to the problem of understanding the homotopy fibers of
the map N→ Nh. This requires us to analyze the problem of “straightening out” h-cobordisms:

Question 16. Let M be a compact manifold and let q : E → B be a fiber bundle, where each fiber Eb is
an h-cobordism from M to some other manifold Nb. When is E isomorphic to a product M × [0, 1]×B?

When the base B is a point, the s-cobordism theorem gives a complete answer to Question 16 (at least for
dim(M) ≥ 5): the h-cobordism E is a product if and only if the inclusion f : M ↪→ E is a simple homotopy
equivalence, or equivalently if the Whitehead torsion τ(f) vanishes. Another of our main objectives in this
course is to study a parametrized s-cobordism theorem:

Theorem 17 (Parametrized Stable s-Cobordism Theorem). Let q : E → B be as in Question 16, where B
is a finite simplicial complex. Then there is an obstruction τ(E) ∈Wh(M)−1(B) which vanishes if and only
if there is a fiberwise equivalence

E × [0, 1]k 'M × [0, 1]k+1 ×B
for k � 0.

Remark 18. The obstruction τ(E) is given by the homotopy class of the map

B → Ω∞+1Wh(M) 'M×qBAut(X){[M ]}

classifying the finite fibration E → B and its fiber-homotopy equivalence to the constant bundle M×B → B).

Warning 19. As stated, Theorem 17 does not imply the (topological) s-cobordism theorem. In the special
case where B is a point, it asserts that an h-cobordism E with vanishing Whitehead torsion becomes
homeomorphic to M × [0, 1] after forming a product with [0, 1]k for k � 0. The s-cobordism theorem says
that we can take k = 0 provided that dim(M) ≥ 5.

One might hope for a common generalization which asserts that if τ(E) = 0 and dim(M) is sufficiently
large (compared with dim(B)), then E is equivalent to M × [0, 1]×B.

5 Theme 5: Infinite-Dimensional Topology

Theorems 12 and 17 suggest that higher simple homotopy theory can be viewed as a “stabilized” theory
of manifolds where we allow the dimension to grow. It turns out that many aspects of the theory can be
elucidated by considering manifolds of infinite dimension, such as the Hilbert cube

Q = [0, 1]× [0, 1]× · · · .
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For example, one has the following theorem of Chapman:

Theorem 20. Let f : X → Y be a map of finite simplicial complexes. Then f is a simple homotopy
equivalence if and only if the induced map X ×Q→ Y ×Q is homotopic to a homeomorphism.

Theorem 20 greatly expands the usefulness of simple homotopy theory. For example, it implies that
the Whitehead torsion is a topological invariant, which is not a priori clear from its definition (and was not
known before Theorem 20).

If time permits, we’ll discuss the proof of Theorem 20 and some related results (many of which are also
due to Chapman) which imply that the moduli space M admits several “infinite-dimensional” descriptions:

• It is a classifying space for fibrations whose fibers are compact ANRs.

• It is classifying space for fiber bundles whose fibers are compact and locally homeomorphic to Q (such
spaces are called Hilbert cube manifolds).
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The Wall Finiteness Obstruction (Lecture 2)

August 28, 2014

We begin with the following:

Question 1. Let M be a compact manifold. Does M have the homotopy type of a finite CW complex?

Of course, if M is triangulable, then it is actually homeomorphic to a finite simplicial complex. This
provides an affirmative answer 1 when M is smooth (since any smooth manifold can be triangulated).

For general topological manifolds, Question 1 is not so easy to answer. As a starting point, we note that
any (paracompact) topological manifold M has the homotopy type of a (possibly infinite) CW complex X:
this follows from the theory of absolute neighborhood retracts, which we will review in a subsequent lecture.
Of course, we should not expect that X can be chosen finite in the case where M is noncompact (for a
counterexample, consider the “surface of infinite genus”).

Let us fix a homotopy equivalence f : M → X, where X is a CW complex. If M is compact, then f(M)
is contained in a finite subcomplex X0 ⊆ X.

Exercise 2. Prove this.

Let g be a homotopy inverse to f . Then the composite map

X
fg→ X0 ↪→ X

is homotopic to the identity map from M to itself. This motivates the following:

Definition 3. Let X be a CW complex (or, more generally, a space with the homotopy type of a CW
complex). We say that X is finitely dominated if it is a retract (in the homotopy category of CW complexes)
of a finite CW complex Y . In other words, X is finitely dominated if there exists a finite CW complex Y
and a pair of maps

i : X → Y r : Y → X

such that r ◦ i is homotopic to the identity map from X to itself.

Of course, every finite CW complex X is finitely dominated: we can take Y = X and the maps i and r
to be the identity. More generally, if X is homotopy equivalent to a finite CW complex, then X is finitely
dominated.

Question 4. Let X be a finitely dominated CW complex. Does X have the homotopy type of a finite CW
complex?

We will see that the answer to Question 4 is “no” in general, but “yes” in many cases (for example,
when X is simply connected). Moreover, the topological question of deciding whether or not X is finitely
dominated will be reduced to an algebraic one (the vanishing of a certain K-theory class).

Remark 5. It is not true in general that every finitely dominated space X has the homotopy type of a
finite CW complex. Nevertheless, it can be shown that every compact manifold has this property: that is,
Question 1 has an affirmative answer, though we will not establish that in this lecture (a proof is given in
Kirby-Siebenmann; if time permits, we’ll discuss a stronger result later in this course).
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We begin by summarizing some of the finiteness properties enjoyed by finitely dominated spaces.

Lemma 6. Let X be a finitely dominated space. Then:

(a) The set π0X is finite.

(b) For each base point x ∈ X, the group π1(X,x) is finitely presented.

(c) Let x ∈ X and let X◦ ⊆ X be the path component of x. For each abelian group V with an action of the
fundamental group π1(X,x), let H∗(X◦;V ) denote the cohomology of X◦ with coefficients in the local
system determined by V . Then the construction V 7→ H∗(X◦;V ) commutes with filtered direct limits.

(d) For each x ∈ X as above, there exists an integer n such that H∗(X◦;V ) ' 0 for ∗ > n and any
representation V of π1(X,x).

Proof. Choose finite CW complex Y and a map i : X → Y which admits a left homotopy inverse r. Note
that π0Y is finite and that the map π0X → π0Y is injective (it has a left inverse given by r). This proves (a).
To prove (b), we note that for each x ∈ X the induced map i∗ : π1(X,x)→ π1(Y, y) is split injective. Since
Y is a finite complex, the group π1(Y, y) is finitely presented. It follows that the group π1(X,x) is finitely
presented, which proves (b). Let Y ◦ be the path component of y. By composition with a left inverse to i∗,
we see that representations V of π1(X,x) can be extended functorially to representations of π1(Y, y), which
we can regard as local systems on Y ◦. Using cellular cochains to compute H∗(Y ◦;V ), we see immediately
that the construction V 7→ H∗(Y ◦;V ) commutes with filtered direct limits. We can functorially identify
H∗(X◦;V ) with a direct summand of H∗(Y ◦;V ), so the construction V 7→ H∗(X◦;V ) also commutes with
filtered direct limits. This proves (c), and assertion (d) follows if we take n = dim(Y ).

Remark 7. Lemma 6 actually characterizes finitely dominated spaces; we will give a proof at the end of
this lecture.

We next show that conditions (a) through (c) guarantee that X behaves approximately like a finite-
dimensional CW complex.

Proposition 8. Let X be a CW complex which satisfies conditions (a), (b), and (c) of Lemma 6. For
each integer n ≥ 0, there exists a finite CW complex Z of dimension < n and an (n − 1)-connected map
f : Z → X.

We will deduce Proposition 8 from the following more precise statement:

Lemma 9. Let X be a CW complex which satisfies conditions (a), (b), and (c) of Lemma 6. Suppose we are
given an (n−1)-connected map f : Z → X, where Z is a finite CW complex. Then there exists another finite
CW complex Z ′, obtained from Z by attaching finitely many n-cells, and an n-connected map f ′ : Z ′ → X
extending f . In particular, we have dim(Z ′) ≤ max{n, dim(Z)}.

For the remainder of this lecture, it will be convenient to always assume that the space X is connected
(we can always handle disconnected spaces by considering each connected component separately). Fix a

base point x ∈ X, let G = π1(X,x), and let X̃ be a universal cover of X (so that G acts on X̃ by deck
transformations).

Proof of Lemma 9. If n = 0, then we can either take Z ′ = Z (if Z is nonempty) or Z ′ = ∗ (if Z is empty).
We next consider the case n = 1. If Z is not connected, then we first enlarge Z by adding 1-cells

connecting the different components of Z (the map f extends continuously over this enlargement by virtue
of our assumption that X is connected). Without loss of generality, we may assume that there exists a 0-cell
z ∈ Z such that f(z) = x. We let Z ′ be obtained from Z by attaching several loops based at the point z,
and we define f so that it carries these loops to generators of the group G = π1(X,x). Since G is finitely
generated, this only requires finitely many 1-cells.
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We now consider the case n = 2. Let z ∈ Z be as above, and consider the group homomorphism
φ : π1(Z, z) → G induced by f . Since π1(Z, z) is finitely generated and G is finitely presented, the kernel
ker(φ) is generated as a normal subgroup by finitely many elements of π1(Z, z). Each of these elements
can be represented by a loop in the 1-skeleton of Z. We first enlarge Z by attaching 2-cells along each of
these loops (since the corresponding elements of π1(Z, z) are annihilated by φ, the function f will extend
continuously). We may therefore reduce to the case where φ is an isomorphism.

We can now treat all of the cases n ≥ 2 in a uniform manner. For any abelian group V with an action
of G, we let H∗(X,Z;V ) and H∗(X,Z;V ) denote the homology and cohomology of X relative to Z with
coefficients in V . Since f is (n− 1)-connected, the groups H∗(X,Z; Z[G]) vanish for ∗ < n. It follows from
the universal coefficient theorem that we have canonical isomorphisms

Hn(X,Z;V ) ' HomZ[G](Hn(X,Z; Z[G]), V ).

Since X satisfies condition (c) of Lemma 6 and Z is finite CW complex, the construction V 7→ Hn(X,Z;V )
commutes with filtered direct limits (exercise!)

It follows that the construction

V 7→ HomZ[G](Hn(X,Zn; Z[G]), V )

also commutes with filtered direct limits. In particular, Hn(X,Z; Z[G]) is finitely generated as a module
over Z[G].

Set Z̃ = Z ×X X̃. Applying the relative Hurewicz theorem to the map Z̃ → X̃, we deduce that the
Hurewicz map

πn(X,Z) ' πn(X̃, Z̃)→ Hn(X̃, Z̃; Z) ' Hn(X,Z; Z[G])

is an isomorphism. Consequently, the group πn(X,Z) is finitely generated as a Z[G]-module. Each element
of πn(X,Z) supplies a recipe for attaching an n-cell to Z and extending the definition of f over that n-cell.
Without loss of generality, we may assume that the relevant attaching maps factor through the (n − 1)-
skeleton of Z. Let Z ′ be the CW complex obtained from Z by attaching n-cells corresponding to a set of
generators of πn(X,Z), so that f extends to an n-connected map f ′ : Z ′ → X.

For any space X satisfying conditions (a), (b), and (c) of Lemma 6, Lemma 9 allows us to construct
a sequence of better and better approximations to X. It is condition (d) that will allow us to stop this
construction.

Definition 10. Let X be a CW complex and let n ≥ 2 be an integer. We will say that X has homotopy
dimension ≤ n if it satisfies condition (d) of Lemma 6: that is, if H∗(X;L) vanishes for ∗ > n and any local
system of abelian groups L on X.

Remark 11. Definition 10 makes sense for any value of n, but is not really the right condition when n = 0
and n = 1: in those cases, one should also require vanishing for “nonabelian” cohomology.

Lemma 12. Let X be a CW complex satisfying the conditions of Lemma 6. Let Z be a finite CW complex
of dimension ≤ n− 1 and let f : Z → X be an (n− 1)-connected map. If X has homotopy dimension ≤ n,
then the homology group Hn(X,Z; Z[G]) is a finitely generated projective Z[G]-module.

Proof. Let V be any abelian group with an action of G, which determines local systems on X and Z which
we will also denote by V . Since Z is (n− 1)-dimensional, the local cohomology groups H∗(Z;V ) vanish for
∗ ≥ n. Using the exact sequence

H∗−1(Z;V )→ H∗(X,Z;V )→ H∗(X;V ),

we see that the groups H∗(X,Z;V ) vanish for ∗ > n. Any exact sequence of representations 0→ V ′ → V →
V ′′ → 0 gives rise to a long exact sequence

Hn(X,Z;V ′)→ Hn(X,Z;V )→ Hn(X,Z;V ′′)→ Hn+1(X,Z;V ′) ' 0

3



It follows that the construction

V 7→ Hn(X,Z;V ) ' HomZ[G](Hn(X,Z; Z[G]);V )

is a right exact functor of V , so that Hn(X,Zn−1; Z[G]) is a projective Z[G]-module. As in the proof of
Lemma 9, it is finitely generated because the construction V 7→ Hn(X,Z;V ) commutes with filtered direct
limits.

Remark 13. In the situation of Lemma 12, the relative homology groups H∗(X,Z; Z[G]) vanish for ∗ 6= n.
For ∗ < n, this follows from our connectivity assumption on the map f : Z → X. On the other hand,
suppose there were some m > n for which Hm(X,Z; Z[G]) 6= 0. Choose m as small as possible and set
A = Hm(X,Z; Z[G]). Using the projectivity of Hn(X,Z; Z[G]), the universal coefficient formula gives

Hm(X,Z;A) = HomZ[G](Hm(X,Z); Z[G]), A) = HomZ[G](A,A) 6= 0.

This is impossible, since Hm(X;A) and Hm−1(Z;A) both vanish.

Of course, the projective module P = Hn(X,Z; Z[G]) depends on the choice of (n − 1)-connected map
f : Z → X. For example, we could enlarge the CW complex Z by adjoining some several (n − 1)-spheres
which map trivially to X; this would have the effect of replacing P by a direct sum P ⊕ Z[G]r, where r is
the number of additional spheres. This motivates the following:

Definition 14. Let R be a ring and let P be a finitely generated R-module. We say that P is stably free if
P ⊕Ra is a free R-module for some a ≥ 0.

Proposition 15. Let n ≥ 3 and let X be a space which satisfies the conditions of Lemma 6 which is of
homotopy dimension ≤ n. Choose a finite CW complex Z of dimension < n and an (n− 1)-connected map
f : Z → X. Then the following conditions are equivalent:

(i) The space X is homotopy equivalent to a finite CW complex of dimension ≤ n.

(ii) The projective module P = Hn(X,Z; Z[G]) is stably free.

Proof. Suppose first that P is stably free. As indicated above, we can then alter the definition of Z (attaching
some extra spheres) to arrange that P is actually free. In this case, we repeat the construction of Lemma
9 but slightly more carefully: we choose a basis for Hn(X,Z; Z[G]) ' πn(X,Z) and attach only n-cells
corresponding to those basis elements. This produces a map f ′ : Z ′ → X which is an isomorphism on
fundamental groups where the relative homology H∗(X,Z; Z[G]) ' H∗(X̃, Z̃

′; Z) vanishes, so that f ′ is a
homotopy equivalence by Whitehead’s theorem.

Conversely, suppose that X is homotopy equivalent to a finite CW complex of dimension n. Without
loss of generality we may assume that the map f is cellular, so that the relative homology Hn(X,Z; Z[G])
can be computed by a cellular chain complex of finitely generated free Z[G]-modules

0→ Z[G]rn → Z[G]rn−1 → · · · → Z[G]r0 → 0.

Since this complex is acyclic away from the top degree, it is split exact: that is, it has the form

0→ Qn ⊕Qn−1 → Qn−1 ⊕Qn−2 → · · · → Q1 ⊕Q0 → Q0 → 0.

It follows by induction on i that each Qi is stably free; in particular P = Qn is stably free.

Remark 16. I believe it is an open question whether Proposition 15 is also valid for n = 2 (the proof given
above certainly does not apply).

Corollary 17. Let X be a finitely dominated space which is simply connected. Then X has the homotopy
type of a finite CW complex.
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Proof. Every finitely generated projective Z-module is free.

Proposition 15 allows us to quantify the failure of finitely dominated spaces to be homotopy equivalent
to finite CW complexes.

Definition 18. Let R be a ring. We let K0(R) denote the Grothendieck group of projective R-modules:
that is, the free abelian group generated by symbols [P ], where P is a projective R-module, modulo the
relations

[P ] = [P ′] + [P ′′]

when there exists an isomorphism P ' P ′ ⊕ P ′′.
The construction n 7→ n[R] determines a group homomorphism Z → K0(R). We let K̃0(R) denote the

cokernel of this homomorphism. We refer to K̃0(R) as the reduced K-group of R.

Proposition 19. Let X be a finitely dominated space of homotopy dimension ≤ n. Let Z be a finite CW
complex of dimension < n and let f : Z → X be an (n − 1)-connected map. Then the image of the class

[Hn(X,Z; Z[G])] in the reduced K-group K̃0(Z[G]) does not depend on the choice of Z or f .

Proof. Let Z ′ be another finite CW complex of dimension < n equipped with an (n − 1)-connected map

f ′ : Z ′ → X. We wish to show that [Hn(X,Z; Z[G])] = [Hn(X,Z ′; Z[G])] in the group K̃0(Z[G]).
Starting with the map ZqZ ′ → X and repeatedly applying Lemma 9, we obtain a homotopy commutative

diagram
Z

f

((!!
Z ′′ // X

Z ′.

==

f ′

66

It will therefore suffice to show that we have equalities

[Hn(X,Z; Z[G])] = [Hn(X,Z ′′; Z[G])] [Hn(X,Z ′; Z[G])] = [Hn(X,Z ′; Z[G])].

In other words, we may replace Z ′ by Z ′′ and thereby reduce to the case where the map f factors as a
composition

Z
g→ Z ′

f ′→ X.

Note that the map g is automatically (n − 2)-connected. Using Lemma 9, we see that g factors as a
composition

Z
g′→ Z+ g′′→ Z ′

where g′′ is (n−1)-connected and Z+ is obtained from Z by attaching finitely many (n−1)-cells. Replacing
g by g′ or g′′, we are reduced to two special cases:

(a) The map g is (n− 1)-connected. In this case, we have a short exact sequence

0→ Hn(Z ′, Z; Z[G])→ Hn(X,Z; Z[G])→ Hn(X,Z ′; Z[G])→ 0

(the exactness on the left follows from Remark 13). This sequence splits (since Hn(X,Z ′; Z[G]) is
projective), so we have

[Hn(X,Z; Z[G])] = [Hn(X,Z ′; Z[G])] + [Hn(Z ′, Z; Z[G])].

It will therefore suffice to show that the class [Hn(Z ′, Z; Z[G])] vanishes in K̃0(Z[G]). This follows from
Proposition 15, since Z is a finite CW complex.
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(b) The CW complex Z ′ is obtained from Z by attaching (n − 1)-cells. In this case, we have an exact
sequence

0→ Hn(X,Z; Z[G])→ Hn(X,Z ′; Z[G])→ Hn−1(Z ′, Z; Z[G])→ 0

which gives

[Hn(X,Z ′; Z[G])] = [Hn(X,Z; Z[G])] + [Hn−1(Z ′, Z; Z[G])]

= [Hn(X,Z; Z[G])] + [Z[G]r]

= [Hn(X,Z; Z[G])].

Proposition 19 motivates the following:

Definition 20. Let X be a finitely dominated space. Choose an integer n ≥ 2 such that X has homotopy
dimension ≤ n, a CW complex Z of dimension < n, and an (n − 1)-connected map f : Z → X. The Wall
finiteness obstruction of X is the element

w(X) = (−1)n[Hn(X,Z; Z[G])] ∈ K̃0(Z[G]).

Proposition 21. Let X be a finitely dominated space. Then the Wall finiteness obstruction w(X) is well-
defined.

Proof. We have already seen that w(X) does not depend on the map f : Z → X. We now check that it is
independent of n. Let us temporarily denote w(X) by wn(X) to emphasize its hypothetical dependence on n.
Choose any integer n ≥ 2 such that X has homotopy dimension ≤ n; we will show that wn(X) = wn+1(X).
To prove this, choose a CW complex Z of dimension < n and an (n− 1)-connected map f : Z → X. Using
Lemma 9, we can extend f to an n-connected map f ′ : Z ′ → X where Z ′ is obtained from Z by attaching
finitely many n-cells. We then have a (split) short exact sequence

0→ Hn+1(X,Z ′; Z[G])→ Hn(Z,Z ′; Z[G])→ Hn(X,Z; Z[G])→ 0

which gives the relation

[Hn(X,Z; Z[G])] + [Hn+1(X,Z ′; Z[G])] = [Hn(Z,Z ′; Z[G])] = 0 ∈ K̃0(Z[G]).

By virtue of Proposition 15, the finiteness obstruction w(X) is zero if and only if X has the homotopy
type of a finite CW complex.

We conclude this lecture by tying up a few loose ends. We start with a converse to Lemma 6.

Proposition 22. Let X be a CW complex satisfying conditions (a) through (d) of Lemma 6. Then X is
finitely dominated.

Proof Sketch. Write X as a union of finite subcomplexes Xα. It will suffice to show that the identity map
id : X → X is homotopic to a map which factors through some Xα. We can replace each of the inclusions
Xα → X by a fibration pα : Eα → X; we wish to show that one of these inclusions has a section.

For each integer m, let τ≤mEα denote the mth stage in the relative Postnikov tower of Eα over X (so
that we have a fibration pα,m : τ≤mEα → X whose fibers have no homotopy groups above m). Suppose we
are given a section sm of some pα,m. Note that if m ≥ 1, then the fiber product

(τ≤m+1Eα)×Eα X

is a fibration over whose fibers have the form K(Ax,α,m + 1), where x 7→ Ax,α is a local system of abelian
groups on X. Consequently, the obstruction to lifting sm to a section of pα,m+1 is measured by a cohomology

6



class η(sm) ∈ Hm+2(X;Aα). If m + 2 is larger than the homotopy dimension of X (which is finite by
assumption), then η(sm) automatically vanishes, so any section of pα,m can be lifted to a section of pα.

We will complete the proof by showing that for every integer m, there exists an index α such that pα,m
admits a section. The proof proceeds by induction on m. Suppose first that m ≥ 1 and that we are given
a section sm as above. We claim that it is possible to choose β ≥ α such that the image of η(sm) vanishes
in Hm+2(X;Aβ). In fact, we claim that the direct limit lim−→β≥α Hm+2(X;Aβ) vanishes. Since X satisfies

condition (c) of Lemma 6, it will suffice to show that the direct limit lim−→β≥αAβ vanishes as a local system of

abelian groups on X. This follows immediately from the fact that X is a homotopy colimit of the diagram
{Eα}.

It remains to treat small values of m. Let us begin with the case m = 0, so that each τ≤mEα can be
regarded as a covering space of X. Let Sα denote the fiber over the base point x ∈ X, so that each Sα is a
set with an action of the group G. To choose a section of τ≤mEα, we must show that Sα contains an element
which is fixed by G. Because G is finitely generated, passage to G-invariants commutes with filtered direct
limits. It will therefore suffice to show that the direct limit lim−→Sα contains an element which is fixed by
G. This is clear, since lim−→Sα consists of a single point (it is π0 of the homotopy fiber of the identity map
X → X)

We conclude by treating the case m = 1. Let us assume that there exists an index α and that we have
chosen a section of the map τ≤0Eα → X. For each β ≥ α, let E′β denote the fiber product τ≤1Eβ ×τ≤0Eβ X.
The projection map qβ : E′β → X is a fibration whose fibers have the form K(Π; 1). Let Gβ denote the
fundamental group of E′β , so that we have lim−→Gβ ' G. Since G is finitely presented, it follows that the
natural map Gβ → G admits a section for β sufficiently large. We are therefore reduced to finding a section
of the induced map E′β ×BGβ BG→ X. This is a fibration whose fibers are of the form K(Π, 1) where Π is

abelian, and is therefore classified by an element of H2(X;Lβ) for some local system of abelian groups Lβ on
X. As before, we have lim−→β

Lβ = 0 so (by virtue of condition (c)) the direct limit lim−→β
H2(X;Lβ) vanishes,

and therefore the fibration is trivial for β sufficiently large.

Remark 23. Let G be a finitely presented group. Then every class η ∈ K̃0(Z[G]) arises as the Wall finiteness
obstruction of some finitely dominated space X with π1X = G. To see this, we first choose a connected
finite 2-dimensional CW complex X0 with π1X0 = G. Let η = [P ] where P is a finitely generated projective
Z[G]-module, so that P appears as a direct summand of some free Z[G]-module Z[G]r. Then P is the image
of an idempotent map e : Z[G]r → Z[G]r. Choose an even integer n ≥ 2 and let Y be the CW complex
obtained from X0 by adding r n-cells with trivial attaching maps. Using the relative Hurewicz theorem we
deduce that the relative homotopy group πn(Y,X0) is isomorphic to the free module Z[G]r. We can therefore
choose a map e : Y → Y which is the identity on X0 and which induces the idempotent endomorphism e of
Hn(Y,X0; Z[G]) ' Z[G]r. Using the fact that e is an idempotent in the homotopy category, one can show
that the homotopy colimit X of the diagram

Y
e→ Y

e→ Y
e→ · · ·

satisfies the conditions of Lemma 6 and is therefore a finitely dominated space of homotopy dimension ≤ n;
a simple calculation shows that the composite map X0 ↪→ Y → X is (n− 1)-connected and that the relative
homology Hn(X,X0; Z[G]) is isomorphic to P .
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Whitehead Torsion (Lecture 3)

September 10, 2014

Let X be a space with the homotopy type of a CW complex. In the previous lecture, we studied the
question of whether or not that CW could be chosen to be finite. More precisely, we saw that if a connected
space X is finitely dominated (meaning that it behaves cohomologically like a finite CW complex), then

there is an obstruction η ∈ K̃0(π1X) which vanishes if and only if X has the homotopy type of a finite CW
complex Y .

In this lecture, we will study the question of uniqueness. Suppose we are given two finite CW complexes
Y and Y ′ equipped with homotopy equivalences

f : Y → X g : X → Y ′.

Then g ◦ f is a homotopy equivalence from Y to Y ′. One can ask if this homotopy equivalence can be
“witnessed” entirely in the world of finite CW complexes.

In what follows, we use the term CW complex to refer to a space Y with a specified decomposition into
open cells. For each integer n ≥ −1, we let Y n denote the n-skeleton of Y . Recall that a map of CW
complexes f : X → Y is cellular if it carries each Xn into Y n.

Construction 1. Let Dn denote the closed unit ball of dimension n and let Sn−1 = ∂Dn denote its
boundary. We will regard Sn−1 as decomposed into hemispheres Sn−1− and Sn−1+ which meet along the

“equator” Sn−2 = Sn−1− ∩ Sn−1+ .

Let Y be a CW complex equipped with a map f : (Sn−1− , Sn−2) → (Y n−1, Y n−2). Then the pushout
Y qSn−1

−
Dn has the structure of a CW complex which is obtained from Y by adding two more cells: an

(n − 1)-cell given by the image of the interior of Sn−1+ (attached via the map f |Sn−2 : Sn−2 → Y n−2) and
an n-cell given by the image of the interior of Dn attached via the map

Sn−1 = Sn−1− qSn−2 Sn−1+ → Y n−1 qSn−2 Sn−1+ .

In this case, we will refer to the CW complex Y qSn−1
−

Dn as an elementary expansion of Y , and to the

inclusion map Y ↪→ Y qSn−1
−

Dn as an elementary expansion.

The hemisphere Sn−1− ⊆ Dn is a retract (even a deformation retract) of Dn. Composition with any
retraction induces a (cellular) c : Y qSn−1

−
Dn → Y , which we will refer to as an elementary collapse. Note

that the homotopy class of c does not depend on the choice of retraction Dn → Sn−1−

Definition 2. Let f : X → Y be a map of CW complexes. We will say that f is a simple homotopy
equivalence if it is homotopic to a finite composition

X = X0
f1→ X1

f2→ X2 → · · ·
fn→ Xn = Y,

where each fi is either an elementary expansion or an elementary collapse.
We say that two finite CW complexes are simple homotopy equivalent if there exists a simple homotopy

equivalence between them.
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Example 3. Let X and Y be finite CW complexes and let f : X → Y be a continuous map. We let
M(f) = (X × [0, 1])qX×{1} Y denote the mapping cylinder of f . If f is a cellular map, then we can regard
M(f) as a finite CW complex (taking the cells of M(f) to be the cells of Y together with cells of the form
e × {0} and e × (0, 1), where e is a cell of X). The inclusion Y ↪→ M(f) is always a simple homotopy
equivalence: in fact, it can be obtained by a finite sequence of elementary expansions which simultaneously
add pairs of cells e× {0} and e× (0, 1) (where we add cells in order of increasing dimension).

Note that the map f is homotopic to a composition

X ' X × {0} ι
↪→M(f)

r→ Y,

where r is the canonical retraction from M(f) onto Y (which is homotopy inverse to the inclusion Y ↪→M(f),
and can be obtained by composing a finite sequence elementary collapses). It follows that f is a simple
homotopy equivalence if and only if ι is a simple homotopy equivalence. Consequently, when we are studying
the question of whether or not some map f is a simple homotopy equivalence, there is no real loss of generality
in assuming that f is the inclusion of a subcomplex.

It is easy to see that any simple homotopy equivalence is a homotopy equivalence. One can ask whether
the converse holds:

Question 4. Let f : X → Y be a homotopy equivalence between finite CW complexes. Is f a simple
homotopy equivalence? If not, how can we tell?

To address Question 4, we will introduce an algebraic invariant (called the Whitehead torsion) which
vanishes for simple homotopy equivalences, but not for all homotopy equivalences. First, we need a brief
digression.

Definition 5. Let R be a ring (not necessarily commutative). For each integer n ≥ 0, we let GLn(R) denote
the group of automorphisms of Rn as a right R-module (equivalently, the group of invertible n-by-n matrices
with coefficients in R). Every automorphism α of Rn extends to an automorphism α ⊕ idR of Rn+1; this
construction yields inclusions

GL1(R) ↪→ GL2(R) ↪→ GL3(R) ↪→ · · ·

We let GL∞(R) denote the direct limit of this sequence, and we define K1(R) to be the abelianization of
GL∞(R).

Remark 6. Let R be a commutative ring. For every integer n, the determinant gives a group homomorphism

det : GLn(R)→ R×.

These maps are compatible as n varies and therefore determine a group homomorphism det : K1(R)→ R×.
This map is split surjective (split by the canonical map GL1(R) → GL∞(R) → K1(R)). This map can be
shown to be an isomorphism when R is a field or R = Z, but it is not an isomorphism in general.

By construction, for any ring R we have a canonical homomorphism GLn(R) → K1(R), which one can
think of as a kind of “universal determinant”.

Exercise 7. For every unit x ∈ R×, let [x] denote the image of x under the composite map GL1(R) →
GL∞(R)→ K1(R). Suppose that σ ∈ GLn(R) is a permutation matrix. Show that the image of σ in K1(R)
is given by [ε], where ε = ±1 is the sign of the permutation σ.

Exercise 8. Let g ∈ GLn(R). Let us say that g is potentially upper triangular if there exists a decomposition
of Rn as a direct sum P1 ⊕ P2 ⊕ · · · ⊕ Pm such that for each x ∈ Pi, we have

g(x) ∈ x+ P1 + · · ·+ Pi−1.

Show that if g is potentially upper triangular, then the image of g in K1(R) vanishes.
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Let R be a ring. A based chain complex over R is a bounded chain complex of R-modules

· · · → Fn
d→ Fn−1

d→ Fn−2 → · · ·

together with a choice of unordered basis for each Fm (so that each Fm is a free R-module). In this case, we
let χ(F∗) denote the sum

∑
(−1)mrm, where rm denotes the cardinality of the basis of Fm. We will refer to

χ(F∗) as the Euler characteristic of (F∗, d).

Warning 9. If R is a nonzero commutative ring, then the Euler characteristic χ(F∗) is independent of the
choice of basis of the modules F∗. For a general noncommutative ring R, this need not be the case.

Exercise 10. Let (F∗, d) be a finite based chain complex which is acyclic: that is, the homology of (F∗, d)
vanishes. Show that if R admits a nonzero homomorphism to a commutative ring, then χ(F∗, d) = 0.

Let (F∗, d) be a based chain complex over R which is acyclic. Since each Fm is a free R-module, it
then follows that the identity map id : F∗ → F∗ is chain homotopic to zero: that is, there exists a map
h : F∗ → F∗+1 satisfying dh+ hd = id. We let Feven =

⊕
n F2n and Fodd =

⊕
n F2n+1.

Lemma 11. In the situation above, the map d+ h : Feven → Fodd is an isomorphism.

Proof. We have (d + h)(d + h) = d2 + dh + hd + h2 = id +h2, which has an inverse given by the sum
1 − h2 + h4 − h6 + · · · (note that this sum is actually finite, since the chain complex F∗ is bounded and h
increases degrees).

The specification of a basis for each Fm determines isomorphisms

Feven ' Ra Fodd ' Rb

for some integers a, b ≥ 0, which are well-defined up to the action of permutation matrices.

Definition 12. Let K̃1(R) denote the quotient of K1(R) by the subgroup [±1]. If (F∗, d) is an acyclic based
complex with χ(F∗) = 0, we define the torsion of (F∗, d) to be the image of d+ h ∈ GLa(R) under the map

GLa(R) → GL∞(R) → K̃1(R); by virtue of Exercise 7, this does not depend on the ordering of the basis
elements of F∗. We will denote the torsion of (F∗, d) by τ(F∗).

Lemma 13. In the situation of Definition 12, the torsion τ(F∗) is well-defined: that is, it does not depend
on the choice of nullhomotopy h.

Proof. Any other nullhomotopy of (F∗, d) has the form h+e, where e : F∗ → F∗+1 is a map satisfying de+ed =
0. We have already seen that (d+ h)2 = 1 + h2, so that we have (d+ h)−1 = (d+ h)(1− h2 + h4− h6 + · · · ).
Multiplying by (d+ h+ e), we obtain

(d+ h+ e)(d+ h)−1 = 1 + e(d+ h)−1

= 1 + e(d+ h)(1− h2 + h4 + · · · )
= 1 + ed+ degree ¿ 0 .

Since (F∗, d) is a bounded acyclic chain complex of free modules, it is split exact: in particular, each Fn
contains the group Zn = ker(d : Fn → Fn−1) as a direct summand. Note that ed annihilates the group Zn,
and that ed = −de carries Fn into Zn. It follows that any map of the form 1+ed+ degree ¿ 0 is potentially
upper triangular when regarded as an automorphism of Feven, and therefore has vanishing image in K1(R)
(Exercise 8).

Exercise 14. Suppose we are given a short exact sequence of finite based chain complexes

0→ (F ′∗, d
′)→ (F∗, d)→ (F ′′∗ , d

′′)→ 0.

Assume that the chosen basis for each Fm consists of the images of the basis elements of F ′m together with
preimages of the basis elements of each F ′′m. Show that:
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(a) If (F ′∗, d
′) and (F ′′∗ , d

′′) are acyclic, then (F∗, d) is acyclic.

(b) If χ(F ′∗, d
′) = χ(F ′′∗ , d

′′) = 0, then χ(F∗, d) = 0.

(c) If conditions (a) and (b) hold, then τ(F∗, d) = τ(F ′∗, d
′)τ(F ′′∗ , d

′′) in K̃1(R).

Definition 15. Let f : X∗ → Y∗ be a map of chain complexes over a ring R. The mapping cone of f is
defined to be the chain complex

C(f)∗ = X∗−1 ⊕ Y∗
with differential d(x, y) = (−dx, f(x) + dy) Note that if X∗ and Y∗ are based complexes, then we can regard
C(f)∗ as a based complex (where we fix some convention for how our bases should be ordered; we will not
worry about this point).

Suppose that we have χ(X∗, d) = χ(Y∗, d) and that f is a quasi-isomorphism (that is, it induces an
isomorphism on homology). Then χ(C(f)∗, d) = 0 and C(f)∗ is acyclic. We define the torsion of f to be
the element τ(f) = τ(C(f)∗, d) ∈ K1(R).

Example 16. Let (F∗, d) be an acyclic based complex with χ(F∗) = 0, and let f be the identity map from
F∗ to itself. Then the mapping cone C(f)∗ has an explicit nullhomotopy given by (x, y) 7→ (y, 0). Let us
identify C(f)even and C(f)odd with F∗, so that d+ h is given by

(x, y) 7→ (y − dx, x+ dy).

This map is given by a permutation matrix modulo the filtration by degree, so we have τ(f) = 1 ∈ K̃1(R).

Let us now explain how to apply the preceding ideas. Suppose that X and Y are finite CW complexes
and that we are given a homotopy equivalence f : X → Y . For simplicity, we will assume that X and Y are
connected (otherwise, we can analyze each connected component separately). We fix a base point x ∈ X and

set G = π1(X,x) ' π1(Y, f(x)). Let Ỹ be a universal cover of Y and let X̃ = X ×Y Ỹ be the corresponding

universal cover of X, so that G acts on X̃ and Ỹ by deck transformations. Let us further assume that f is
a cellular map. Then f induces a map of cellular chain complexes

λ : C∗(X̃; Z)→ C∗(Ỹ ; Z).

Note that we can regard C∗(X̃; Z) and C∗(Ỹ ; Z) as chain complexes of free Z[G]-modules, with basis elements
in bijection with the cells of X and Y respectively. Since f is a homotopy equivalence, the map λ is a quasi-
isomorphism. We may therefore consider the torsion τ(λ) ∈ K̃1(Z[G]). However, it is not quite well-defined:

in order to extract an element of C∗(X̃; Z) from a cell e ⊆ X, we need to choose a cell of X̃ lying over e
(which is ambiguous up to the action of G) and an orientation of the cell e (which is ambiguous up to a
sign). This motivates the following:

Definition 17. Let G be a group. The Whitehead group Wh(G) of G is the quotient of K1(Z[G]) by elements
of the form [±g], where g ∈ G.

If f : X → Y is a cellular homotopy equivalence of connected finite CW complexes, we define the
Whitehead torsion τ(f) ∈Wh(G) to be the image in Wh(G) of the torsion of the induced map

λ : C∗(X̃; Z)→ C∗(Ỹ ; Z).

We will continue our discussion of the Whitehead torsion in the next lecture.
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Whitehead Torsion, Part II (Lecture 4)

September 9, 2014

In this lecture, we will continue our discussion of the Whitehead torsion of a homotopy equivalence
f : X → Y between finite CW complexes. In the previous lecture, we gave a definition in the special case
where f is cellular. To remove this hypothesis, we need the following:

Proposition 1. Let X and Y be connected finite CW complexes and suppose we are given cellular homotopy
equivalences f, g : X → Y . If f and g are homotopic, then τ(f) = τ(g) ∈Wh(π1X).

Lemma 2. Suppose we are given quasi-isomorphisms f : (X∗, d)→ (Y∗, d) and g : (Y∗, d)→ (Z∗, d) between
finite based complexes with χ(X∗, d) = χ(Y∗, d) = χ(Z∗, d). Then

τ(g ◦ f) = τ(g)τ(f)

in K̃1(R).

Proof. We define a based chain complex (W∗, d) by the formula

W∗ = X∗−1 ⊕ Y∗ ⊕ Y∗−1 ⊕ Z∗

d(x, y, y′, z) = (−dx, f(x) + dy + y′,−dy′, g(y′) + dz).

Then (W∗, d) contains (C(f)∗, d) as a based subcomplex with quotient (C(g)∗, d), so an Exercise from the
previous lecture gives τ(W∗, d) = τ(g)τ(f). We now choose a new basis for each W∗ by replacing each basis
element of y ∈ Y∗ by (0, y, 0, g(y)); this is an upper triangular change of coordinates and therefore does not
affect the torsion τ(W∗, d). Now the construction (y′, y) 7→ (0, y, y′, g(y)) identifies C(idY )∗ with a based
subcomplex of W∗ having quotient C(−g ◦ f)∗. Applying the same Exercise again we get

τ(W∗, d) = τ(idY )τ(−g ◦ f) = τ(g ◦ f).

Remark 3. Suppose that f : X → Y is the inclusion of X as a subcomplex of Y . Let λ : C∗(X̃;Z) →
C∗(Ỹ ;Z) be as above. Then the mapping cone C(λ)∗ contains the mapping cone C(idC∗(X̃;|Z|))∗ as a

based subcomplex, and the quotient is the relative cellular chain complex C∗(Ỹ , X̃;Z). It follows that the
Whitehead torsion of f can be computed as (the image in Wh(π1X) of the torsion of the acyclic complex

C∗(Ỹ , X̃;Z).

Proof of Proposition 1. Choose a homotopy h : X × [0, 1] → Y from f = h0 to g = h1. We may assume
without loss of generality that h is cellular. Then the Whitehead torsion τ(h) is well-defined; we will prove
that τ(f) = τ(h) = τ(g). Note that f is given by the composition

X × {0} i
↪→ X × [0, 1]

h→ Y.
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Then τ(f) = τ(h)τ(i) in Wh(π1X) (Lemma 2). It will therefore suffice to show that τ(i) vanishes. Using
Remark 3, we can identify τ(i) with the torsion of the relative cellular chain complex

C∗(X̃ × [0, 1], X̃ × {0};Z),

which vanishes (we saw this in the previous lecture).

If f : X → Y is any homotopy equivalence between connected finite CW complexes, we define τ(f) =
τ(f0) where f0 is a cellular map which is homotopic to f . By virtue of Proposition 1, this definition is
independent of the choice of f0.

Proposition 4. Let f : X → Y and g : Y → Z be homotopy equivalences between connected finite CW
complexes, all having fundamental group G. Then τ(gf) = τ(g)τ(f) in Wh(G).

Proof. This follows immediately from Lemma 2.

Corollary 5. Let f : X → Y be a simple homotopy equivalence between finite CW complexes. Then
τ(f) = 1.

Proof. Using Proposition 4, we can reduce to the case where f is an elementary expansion. In this case,
τ(f) is the torsion of the relative cellular chain complex C∗(Ỹ , X̃;Z[G]) which has the form

· · · → 0→ Z[G]
±g→ Z[G]→ 0.

Remark 6. Let X be a finite connected CW complex and set G = π1X. Then every element η ∈ Wh(G)
can be realized as the Whitehead torsion of a homotopy equivalence f : X → Y . To see this, choose any
matrix M ∈ GLn(Z[G]). Fix an integer k ≥ 2 and let X ′ be the CW complex obtained from X by attaching
n copies of Sk at some base point x ∈ X, so we have an evident retraction r : X ′ → X. Applying the
relative Hurewicz theorem to the map of universal covers X̃ ′ → X̃, we obtain a canonical isomorphism
πk+1(X,X ′) ' Z[G]n. Consequently, the matrix M provides the data for attaching n copies of Dk+1 to X ′

in such a way that that the retraction r extends over the resulting CW complex Y . The inclusion X ↪→ Y is
an isomorphism on fundemental groups, and the relative chain complex of the inclusion of universal covers
is given by

· · · → 0→ Z[G]n
M→ Z[G]n → 0→ · · · .

Since M is invertible, we conclude that the inclusion f : X → Y is a homotopy equivalence and that
τ(f) ∈Wh(G) is represented by the matrix M±1 (depending on the parity of k)

The Whitehead groups Wh(G) are generally nonzero:

Example 7. Let G be an abelian group. Then the determinant homomorphism K1(Z[G])→ Z[G]×, which
induces a surjective map

Wh(G)→ (Z[G]×)/{±g}g∈G.

The group on the right generally does not vanish. For example, if G = Z/5Z, then Z[G] ' Z[t]/(t5 − 1)
contains a unit 1− t2 − t3 (with inverse 1− t− t4) which is not of the form ±ti.

Combined with Remark 6, this supplies a negative answer to the question raised in the previous lec-
ture: there exist homotopy equivalences between finite CW complexes with nonvanishing torsion, and such
homotopy equivalences cannot be simple. However, it turns out that the Whitehead torsion is the only
obstruction:

Theorem 8 (Whitehead). Let f : X → Y be a homotopy equivalence between connected finite CW complexes
with τ(f) = 1 ∈Wh(G), where G = π1X. Then f is a simple homotopy equivalence.
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Example 9. One can show that the determinant map K1(Z)→ Z× = {±1} is an isomorphism, so that the
Whitehead group Wh(G) vanishes when G is the trivial group. Theorem 8 then implies that any homotopy
equivalence between simply connected finite CW complexes is a simple homotopy equivalence.

Example 10. A nontrivial theorem of Bass, Heller, and Swan asserts that the Whitehead group Wh(Zd) is
trivial for each integer d. Together with the s-cobordism theorem, this implies that every h-cobordism from
a torus T d to another manifold M is isomorphic to a product T d × [0, 1].

For use in the proof of Theorem 8, we include the following example of a simple homotopy equivalence:

Example 11. Let X be a finite CW complex, and suppose we are given a pair of maps

f, g : Sn−1 → Xn−1.

Let Y and Z be the CW complexes obtained from X by attaching n-cells along f and g, respectively. Then
Y and Z are simple homotopy equivalent. To see this, choose a homotopy h : Sn−1 × [0, 1] → Xn, and let
W be the cell complex obtained from Y qX Z by attaching an (n+ 1)-cell along the induced map

Dn qSn−1×{0} (Sn−1 × [0, 1])qSn−1×{1} D
n → Y qX Z.

Then the inclusions Y ↪→W ←↩ Z are both elementary expansions.

Let us conclude this lecture by sketching a proof of Theorem 8. Let f : X → Y be a homotopy
equivalence of finite CW complexes such that τ(f) = 1; we wish to show that f is a simple homotopy
equivalence. Without loss of generality we may assume f is cellular. Replacing Y by the mapping cylinder
M(f), we can assume that f is the inclusion of a subcomplex.

Fix a cell e of minimal possible dimension which belongs to Y but not to X; we will regard this cell
as the image of a map g from a hemisphere Sn

− into Y which carries the equator Sn−1 ⊆ Sn
− into Xn−1.

Since the inclusion f is a homotopy equivalence, the map g is homotopic to a map from the disk into X
via a homotopy which is fixed on Sn−1; we may regard this homotopy as defining a map g : Dn+1 → Y
carrying Sn

+ into X. Let us identify Dn+1 with the lower hemisphere Sn+1
− of an (n + 1)-sphere Sn+1, and

let Y ′ denote the elementary expansion of Y given by Y qSn+1
−

Dn+2; we will denote the interior of Dn+2 by

e′ ⊆ Y ′.
Let X ′ be the subcomplex of Y ′ given by the union of X and the upper hemisphere Sn+1

+ . Then X ′ is
an elementary expansion of X. The cells of Y ′ that do not belong to X ′ are almost exactly the same as the
cells of Y that do not belong to X: the only exception is that Y ′ has a new cell e′ of dimension n+ 2, and
that the cell e ⊆ Y now belongs to X ′. Replacing the inclusion X ↪→ Y by X ′ ↪→ Y ′, we have “traded up”
an n-cell for an (n + 2)-cell. Repeating this process finitely many times, we can reduce to the case where
Y is obtained from X by adding only cells of dimension n and n + 1 for some n ≥ 2. Let us denote the
cells of dimension n by e1, . . . , em and the cells of dimension (n+ 1) by e′1, . . . , e

′
m (note that the number of

(n+ 1)-cells is necessarily equal to the number of n-cells, since f is a homotopy equivalence).
Let Y0 be the subcomplex of Y obtained from X by attaching only the n-cells. We have a long exact

sequence

πn+1(Y,X)→ πn+1(Y, Y0)
M→ πn(Y0, X)→ πn(Y,X).

Since the inclusion X ↪→ Y is a homotopy equivalence, the groups πn(Y,X) and πn+1(Y,X) are trivial, so
that M is an isomorphism. Using the relative Hurewicz theorem, we see that πn(Y0, X) ' Hn(Y0, X;Z[G]) is
a free module Z[G]m. Moreover, it almost has a canonical basis: each of the cells ei determines a generator
of πn(Y0, X) which is ambiguous up to a sign (due to orientation issues) and to the action of G (due to base
point issues). Similarly, the cells e′i determine a basis for πn+1(Y, Y0) ' Z[G]m which is ambiguous up to
the action of ±G. Then M can be regarded as an element of GLm(Z[G]), and the image of M in Wh(G) is
given by τ(f)±1 (where the sign depends on the parity of n). Since τ(f) = 1, it is possible to choose bases
as above so that M belongs to the commutator subgroup of GLm(Z[G]).
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Let x ∈ X be a base point. Let Y + denote the elementary expansion

Y + = ((Y q{x} Dn+1)q{x} Dn+1)q · · ·

obtained from Y by attaching m copies of the disk Dn+1 at the base point of X; here we regard Y +

as obtained from Y by adding m cells of dimension n (the boundaries of the new disks) and m cells of
dimension (n+ 1) (the interiors of the new disks). Replacing Y by Y + has the effect of replacing m by 2m
and M by the matrix

M+ =

[
M 0
0 id

]
.

Since M belongs to the commutator subgroup of GLm(Z[G]), the matrix M+ can be written as a product
of matrices of the form [

id X
0 id

]
or

[
id 0
Y id

]
(see Remark 12 below). Replacing Y by Y +, m by 2m, and M by M+, we may reduce to the case where M
has the form

M1 · · ·Mk

where each Mi is either upper-triangular or lower-triangular.
To complete the proof, it will suffice to show that for a homotopy equivalence f : X → Y with associated

matrix M as above and any matrix U which is either upper (or lower) triangular, we can find another
homotopy equivalence f ′ : X → Y ′ with associated matrix MU for which the induced homotopy equivalence
Y ' Y ′ is simple. To see this, consider the filtration

Y0 ⊆ Y1 ⊆ · · · ⊆ Ym = Y

where Yi = Y0∪e′1∪· · ·∪e′i. Using Example 11, we see that the simple homotopy type of Yi is unchanged if we
modify the attaching map ∂ e′i → Y0 by an arbitrary homotopy within Yi−1; by means of such modifications
we can multiply M by any upper-triangular matrix that we like.

Remark 12 (Whitehead’s Lemma). Let R be any ring, and let H ⊆ GL2(R) be the subgroup generated by
matrices of the form [

1 x
0 1

]
or

[
1 0
y 1

]
.

For every invertible element g ∈ R, the calculation[
1 g
0 1

] [
1 0
−g−1 1

] [
1 g
0 1

]
=

[
0 g
−g−1 0

]

shows that

[
0 g
−g−1 0

]
∈ H.

If g and h are invertible elements of R, we have[
ghg−1h−1 0

0 1

]
=

[
0 g
−g−1 0

] [
0 h−1

−h 0

] [
0 (hg)−1

−hg 1

] [
0 1
−1 0

]
∈ H.

Replacing R by the ring of n-by-n matrices over R, we see that any element of the commutator subgroup
of GLn(R) can be written (in GL2n(R)) as a product of matrices of the form[

id X
0 id

]
and

[
id 0
Y id

]
.
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Cell-Like Maps (Lecture 5)

September 15, 2014

In the last two lectures, we discussed the notion of a simple homotopy equivalences between finite CW
complexes. A priori, the question of whether or not a map f : X → Y is a simple homotopy equivalence
depends on the specified cell decompositions of X and Y . This motivates the following:

Question 1. Let f : X → Y be a homeomorphism of finite CW complexes. Is f a simple homotopy
equivalence?

Chapman gave an affirmative action to Question 1 using techniques of infinite-dimensional topology. The
following special case is much easier:

Proposition 2. Let f : X → Y be a homeomorphism of finite CW complexes with the property that for
every cell e ⊆ Y , the inverse image f−1e is a union of cells. Then f is a simple homotopy equivalence.

We postpone the proof; we will discuss a stronger result at the end of this lecture. Let us instead discuss
some applications of Proposition 2.

Definition 3. Let X be a topological space. A simple homotopy structure on X is an equivalence class of
homotopy equivalences f : X → Y (where Y is a finite CW complex), where we regard f : X → Y and
f ′ : X → Y ′ as equivalent if the composition f ′ ◦ g is a simple homotopy equivalence, where g : Y → X
denotes a homotopy inverse to f .

If X and X ′ are topological spaces equipped with simple homotopy structures represented by homotopy
equivalences f : X → Y and f ′ : X ′ → Y ′, then we will say that a map h : X → X ′ is a simple homotopy
equivalence if the composition f ′ ◦ h ◦ g : Y → Y ′ is a simple homotopy equivalence, where g is a homotopy
inverse to f .

Example 4. Let X be a topological space. Any cell decomposition which exhibits X as a finite CW complex
determines a simple homotopy structure on X.

We now discuss some examples of topological spaces which can be endowed with simple homotopy struc-
tures in a natural way.

Definition 5. Let K be a subset of a Euclidean space Rn. We will say that K is a linear simplex if it can
be written as the convex hull of a finite subset {x1, . . . , xk} ⊂ Rn which are independent in the sense that if∑
cixi = 0 ∈ Rn and

∑
ci = 0 ∈ R, then each ci vanishes (equivalently, if the convex hull of {x1, . . . , xk}

has dimension exactly (k − 1)).
We will say that K is a polyhedron if, for every point x ∈ K, there exists a finite number of linear simplices

σi ⊆ K such that the union
⋃
i σi contains a neighborhood of X.

Remark 6. Any open subset of a polyhedron in Rn is again a polyhedron.

Remark 7. Every polyhedron K ⊆ Rn admits a PL triangulation: that is, we can find a collection of linear
simplices S = {σi ⊆ K} with the following properties:

(1) Any face of a simplex belonging to S also belongs to S.
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(2) Any nonempty intersection of any two simplices of S is a face of each.

(3) The union of the simplices σi is K.

Moreover, one can show that any two PL triangulations of K admit a common refinement.

Remark 8. Let X be a polyhedron. The following conditions are equivalent:

• As a topological space, X is compact.

• Every PL triangulation of X involves only finitely many simplices.

• There exists a PL triangulation of X involving only finitely many simplices.

If these conditions are satisfied, we will say that X is a finite polyhedron.

Example 9. Let X be a finite polyhedron. Then any PL triangulation of X determines a simple homotopy
structure on X. By virtue of Remark 7 and Proposition 2, this simple homotopy structure is independent
of the choice of PL triangulation.

Definition 10. Let K ⊆ Rn be a polyhedron. We will say that a map f : K → Rm is linear if it is the
restriction of an affine map from Rn to Rm. We will say that f is piecewise linear (PL) if there exists a
triangulation {σi ⊆ K} such that each of the restrictions f |σi is linear.

If K ⊆ Rn and L ⊆ Rm are polyhedra, we say that a map f : K → L is piecewise linear if the underlying
map f : K → Rm is piecewise linear.

Remark 11. Let f : K → L be a piecewise linear homeomorphism between polyhedra. Then the inverse map
f−1 : L → K is again piecewise linear. To see this, choose any triangulation of K such that the restriction
of f to each simplex of the triangulation is linear. Taking the image under f , we obtain a triangulation of
L such that the restriction of f−1 to each simplex is linear.

Remark 12. Any piecewise linear homeomorphism of polyhedra f : X → Y is a simple homotopy equiva-
lence (with respect to the simple homotopy structures of Example 9).

Remark 13. The collection of all polyhedra can be organized into a category, where the morphisms are
given by piecewise linear maps. This allows us to think about polyhedra abstractly, without reference to an
embedding into a Euclidean space: a pair of polyhedra K ⊆ Rn and L ⊆ Rm can be isomorphic even if
n 6= m.

Example 14. Let M be a compact smooth manifold. Then M admits a Whitehead triangulation: that
is, there is a finite simplicial complex K equipped with a homeomorphism K → M which is differentiable
(with injective differential) on each simplex of K. This determines a simple homotopy structure on M
which is independent of the choice of Whitehead triangulation (this follows from the fact that any pair of
Whitehead triangulations f : K →M and g : L→M , one can find arbitrarily close Whitehead triangulations
f ′ : K →M and g′ : L→M such that the homeomorphism g′

−1 ◦ f ′ : K → L is piecewise linear).

By virtue of Example 14, it makes sense to ask if a map between compact smooth manifolds is a simple
homotopy equivalence (as in the statement of the s-cobordism theorem). Let us now turn to Proposition 2
itself.

Proof of Proposition 2. Without loss of generality we may assume that Y is connected. The assumption that
f−1e is a union of cells for each open cell e ⊆ Y implies that the inverse homeomorphism f−1 : Y → X is
cellular. Let Ỹ be a universal cover of Y , and for every space Z with a map Z → Y we let Z̃ denote the fiber
product Z×Y Ỹ (this is a covering space of Z which may or may not be connected). Set G = π1Y so that G

acts on Ỹ by deck transformations. We will prove that f is a simple homotopy equivalence by showing that
f−1 induces a map of cellular chain complexes C∗(Ỹ ; Z)→ C∗(X̃; Z) with vanishing Whitehead torsion. We
will deduce this from the following more general assertion:
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(∗) For every subcomplex Y0 ⊆ Y with inverse image X0 ⊆ X, the torsion of the induced map of cellular

chain complexes C∗(Ỹ0; Z)→ C∗(X̃0; Z) vanishes in Wh(G).

We proceed by induction on the number of cells in Y0. Let us therefore assume that (∗) is known for
a subcomplex Y0 ⊆ Y , and see what happens when we add one more cell to obtain another subcomplex
Y1 ⊆ Y . As we saw in the previous lecture, Whitehead torsion is multiplicative in short exact sequences.
To carry out the inductive step, it will suffice to show that torsion of the map of relative cellular cochain
complexes

θ : C∗(Ỹ1 ,̃ 0; Z)→ C∗(X̃1, X̃0; Z)

vanishes in Wh(G). Let e ⊆ Y be the open cell of Y1 which does not belong to Y0. Then e is simply connected,
so the map ẽ→ e admits a section. A choice of section (and orientation of e) determines a one-element basis

for C∗(Ỹ1, Ỹ0; Z) as a Z[G]-module, and by choosing cells of X̃1−X̃0 which belong to the inverse image of the

section we obtain a basis for C∗(X̃1, X̃0; Z) as a Z[G]-module (ambiguous up to signs) with respect to which

the differential on C∗(X̃1, X̃0; Z) and the map θ can be represented by matrices with integral coefficients
(rather than coefficients in Z[G]). It follows that the image of τ(θ) in Wh(G) factors through the map

K̃1(Z) = Wh(∗)→Wh(G), and therefore vanishes because the group K̃1(Z) = K1(Z)/{[±1]} is trivial.

Our next goal is to prove an analogue of Proposition 2 where we weaken the hypothesis that f is a
homeomorphism. First, we need to introduce some terminology.

Definition 15. Let X be a topological space. We will say that X has trivial shape if X is nonempty and,
for every CW complex Y , every map f : X → Y is homotopic to a constant map.

Example 16. Any contractible topological space X has trivial shape. The converse holds if X has the
homotopy type of a CW complex.

Let us collect up some consequences of Definition 15:

Proposition 17. Let X be a paracompact topological space with trivial shape. Then:

(1) The space X is connected.

(2) Every locally constant sheaf (of sets) on X is constant.

(3) For every abelian group A, we have

H∗(X;A) '

{
A if∗ = 0

0 otherwise.

Here cohomology means sheaf cohomology with coefficients in the constant sheaf A on X (which does not
agree with singular cohomology in this generality).

Proof. If X is not connected, then there exists a map f : X → S0 which is not homotopic to a constant map.
This proves (1). To prove (2), suppose that F Is a locally constant sheaf of sets on X. Pick a point x ∈ X
and set S = Fx. Since X is connected, every stalk of F is (noncanonically) isomorphic to S. Let G denote
the permutation group of S (regarded as a discrete group) and let BG denote its classifying space. Since X
is paracompact, isomorphism classes of locally constant sheaves of sets on X with stalks isomorphic to S are
in bijection with homotopy classes of maps f : X → BG. Since any such map f : X → BG is homotopic to
a constant map, any such locally constant sheaf is actually constant.

To prove (3), we note that since X is paracompact, we can identify Hn(X;A) with the set of homotopy
classes of maps from X into the Eilenberg-MacLane space K(A,n). Since X has trivial shape, this can be

identified with the set of connected components π0K(A,n) '

{
A if∗ = 0

0 otherwise.
.
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Remark 18. Definition 15 is perhaps only appropriate when the topological space X is paracompact; for
many purposes, it is the conclusions of Proposition 17 which are important. For us, this will be irrelevant:
we will only be interested in the case where X is a compact Hausdorff space.

Definition 19. Let f : X → Y be a map of Hausdorff spaces. We will say that f is cell-like if it satisfies
the following conditions:

(1) The map f is closed.

(2) For each point y ∈ Y , the fiber Xy = f−1{y} is compact.

(3) For each point y ∈ Y , the fiber Xy has trivial shape.

Remark 20. Conditions (1) and (2) of Definition 19 say that the map f : X → Y is proper.

Warning 21. Definition 19 is generally only behaves well if we make some additional assumptions on the
spaces X and Y involved: for example, if we assume they are absolute neighborhood retracts or that they
are paracompact and finite-dimensional. See Remark ?? below.

Example 22. Any homeomorphism of Hausdorff spaces is a cell-like map.

Proposition 23. Let f be a cell-like map of CW complexes. Then f is a homotopy equivalence.

Proof. We first argue that f is an equivalence on fundamental groupoids. For this, it suffices to show that
the pullback functor f∗ induces an equivalence from the category of locally constant sheaves (of sets) on Y
to the category of locally constant sheaves (of sets) on X. This amounts to two assertions:

(a) For every locally constant sheaf F on Y , the unit map

F → f∗f
∗ F

is an isomorphism.

(b) For every locally constant sheaf G on X, the pushforward f∗ G is locally constant and the counit map
f∗f∗ G→ G is an isomorphism.

Note that if G is a locally constant sheaf on X. Fix a point x ∈ X, let S = Gx be the stalk of G at the
point x, and let y = f(x). Since the fiber Xy is connected, we can choose an open neighborhood V of Xy

such that the stalk Gx′ is (noncanonically) isomorphic to S for each x′ ∈ U . As in the proof of Proposition
17, this implies that G |U is classified by a map U → BG, where G is the group of permutations of S. This
map is nullhomotopic on the fiber Xy and therefore on some neighborhood of Xy. Since f is proper, we may
assume without loss of generality that such a neighborhood has the form f−1V for some open set V ⊆ Y
containing the point y. It follows that G |f−1(V ) is isomorphic to the constant sheaf S with the value S. Since
f is a proper map, the stalk of f∗ G at any point y′ ∈ V can be identified with the set of continuous maps
from Xy′ into S (where S has the discrete topology). Since each Xy′ s connected, it follows that (f∗ G)|V
can also be identified with the constant sheaf having the value S. This proves (b). Using the properness of
f , we see that assertion (a′) reduces to the following:

(a′) For every set S, the canonical map S → Hom(Xy, S) is a bijection.

This follows immediately from the connectedness of Xy.
To complete the proof that f is a homotopy equivalence, it will suffice to show that for every local system

of abelian groups A on Y , the canonical map

θ : H∗(Y ;A)→ H∗(X; f∗A)

is an isomorphism. Since X and Y are CW complexes, we can regard A as a locally constant sheaf on Y and
identify the domain and codomain of θ with sheaf cohomology. To prove this, it suffices to prove the stronger
local assertion that the unit map A → Rf∗f

∗A is an isomorphism in the derived category of sheaves on
Y . Since f is proper, the cohomologies of the stalks of Rf∗f

∗A are given by the sheaf cohomology groups
H∗(Xy;Ay), so that the desired result follows from Proposition 17.

4



Proposition 23 does not need the full strength of the assumption that X and Y are CW complexes: it is
enough to know that X and Y have the homotopy type of CW complexes (so that homotopy equivalences
are detected by Whitehead’s theorem), that local systems can be identified with locally constant sheaves,
and that singular cohomology agrees with sheaf cohomology. Consequently, it remains valid if we assume
only that X and Y are open subsets of CW complexes or absolute neighborhood retracts (ANRs).

Corollary 24. Let f : X → Y be a proper map of CW complexes (or ANRs). Then f is cell-like if and only
if, for every open set U ⊆ Y , the induced map f−1U → U is a homotopy equivalence.

Proof. The “only if” direction follows from Proposition 23. Conversely, suppose that for each U ⊆ Y the
map f−1U → U is a homotopy equivalence. Pick a point y ∈ Y , a CW complex Z, and a map g : Xy → Z;
we wish to prove that g is nullhomotopic. Then g factors through a finite subcomplex of Z; we may therefore
assume without loss of generality that Z is finite. We can extend g to a continuous map g : V → Z for
some open set V ⊆ X containing Xy (this follows from the fact that the finite CW complex Z is an absolute
neighborhood retract). Because f is proper, V contains a set of the form f−1(U) where U is a neighborhood
of y in Y . Using the local contractibility of Y , we may further assume that U is contractible. Then f−1(U)
is also contractible. The map g factors as a composition

Xy ↪→ f−1U
g→ Z,

and is therefore nullhomotopic.

We will prove the following result in the next lecture:

Proposition 25. Let f : X → Y be a map of finite CW complexes. Assume that f is cell-like, cellular,
and that for every cell e ⊆ Y , the inverse image f−1e is a union of cells. Then f is a simple homotopy
equivalence.

Remark 26. In the statement of Proposition 25, the second and third hypothesis on f are not necessary.
However, the proof requires infinite-dimensional methods.
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Concordance of Polyhedra (Lecture 6)

September 15, 2014

We begin by tying up a few loose ends from the previous lecture. We begin with a few remarks about
cell-like maps:

Example 1. Let f : X → Y be a proper map of Hausdorff spaces, and let M(f) = (X × [0, 1])qX×{1} Y be
its mapping cylinder. Then the canonical retraction r : M(f)→ Y (given on X × [0, 1] by (x, t) 7→ f(x)) is
a cell-like map: the inverse image of each point y ∈ Y homeomorphic to the cone on f−1{y}, and therefore
contractible.

Example 2. Let Y be a CW complex, and suppose we are given a cellular map f : Dn → Y . Then the
mapping cylinder M(f) = (Dn× [0, 1])qDn×{1} Y is an elementary expansion of Y , and the map M(f)→ Y
of Example 1 is the associated elementary collapse. It follows that any elementary collapse is a cell-like map.
Consequently, any simple homotopy equivalence of CW complexes can be obtained by composing cell-like
maps and their homotopy inverses.

Warning 3. In the previous lecture, we showed that a proper map f : X → Y of CW complexes is cell-like
if and only if, for each U ⊆ Y , the induced map f−1U → U is a homotopy equivalence. It follows that the
collection of cell-like maps between CW complexes is closed under composition. Beware that the collection
of cell-like maps is not closed under composition in general (one can avoid this problem by slightly modifying
the definition of cell-like map, but this will not be important for us in what follows).

We now recall the result promised in the previous lecture:

Proposition 4. Let f : X → Y be a map of finite CW complexes. Assume that f is cell-like, cellular,
and that for every cell e ⊆ Y , the inverse image f−1e is a union of cells. Then f is a simple homotopy
equivalence.

Example 5. Let f : X → Y be a piecewise linear map of polyhedra. Then one can always choose triangu-
lations τX and τY of X and Y respectively that are compatible with f in the following sense:

(1) The map f carries each vertex of the triangulation τX to a vertex of the triangulation τY .

(2) The map f is linear on each simplex of the triangulation τX (and therefore maps each simplex of τX
linearly onto a simplex of τY ).

The triangulations τX and τY determine CW structures on X and Y for which the induced map f : X → Y
is cellular, and for which the inverse image f−1e is a union of cells for each cell e ⊆ Y . Consequently,
any cell-like piecewise-linear map of polyhedra f : X → Y can be considered to satisfy the requirements of
Proposition 4.

Proof of Proposition 4. Without loss of generality we may assume that Y is connected. The map f is a
homotopy equivalence by Proposition ??. To show that it is a simple homotopy equivalence, it will suffice
to show that the Whitehead torsion τ(f) ∈Wh(π1Y ) vanishes.

Let Ỹ be a universal cover of Y , and for every space Z with a map Z → Y we let Z̃ denote the fiber
product Z ×Y Ỹ (this is a covering space of Z which may or may not be connected). Set G = π1Y so that
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G acts on Ỹ by deck transformations. We wish to show that the torsion of the quasi-isomorphism of cellular
chain complexes C∗(X̃; Z) → C∗(Ỹ ; Z) vanishes in Wh(G). We will deduce this from the following more
general assertion:

(∗) For every subcomplex Y0 ⊆ Y with inverse image X0 ⊆ X, the torsion of the induced map of cellular

chain complexes C∗(X̃0; Z)→ C∗(Ỹ0; Z) vanishes in Wh(G).

We proceed by induction on the number of cells in Y0. Let us therefore assume that (∗) is known for
a subcomplex Y0 ⊆ Y , and see what happens when we add one more cell to obtain another subcomplex
Y1 ⊆ Y . As we saw in the previous lecture, Whitehead torsion is multiplicative in short exact sequences.
To carry out the inductive step, it will suffice to show that torsion of the map of relative cellular cochain
complexes

θ : C∗(X̃1, X̃0; Z)→ C∗(Ỹ1, Ỹ0; Z)

vanishes in Wh(G). Let e ⊆ Y be the open cell of Y1 which does not belong to Y0. Then e is simply connected,
so the map ẽ→ e admits a section. A choice of section (and orientation of e) determines a one-element basis

for C∗(Ỹ1, Ỹ0; Z) as a Z[G]-module, and by choosing cells of X̃1−X̃0 which belong to the inverse image of the

section we obtain a basis for C∗(X̃1, X̃0; Z) as a Z[G]-module (ambiguous up to signs) with respect to which

the differential on C∗(X̃1, X̃0; Z) and the map θ can be represented by matrices with integral coefficients
(rather than coefficients in Z[G]). It follows that the image of τ(θ) in Wh(G) factors through the map

K̃1(Z) = Wh(∗)→Wh(G), and therefore vanishes because the group K̃1(Z) = K1(Z)/{[±1]} is trivial.

Recall that a map of topological spaces q : E → B is said to be a fibration if it has the homotopy lifting
property: that is, for any map f : X → E and any homotopy h from (q ◦ f) to another map g : X → B,
there exists a homotopy h : X × [0, 1]→ E with h|X×{0} = f and q ◦ h = h.

Let q : E → B be a fibration, and let p : [0, 1]→ B be a continuous path which begins at a point b = p(0)
and ends at a point b′ = p(1). The construction

(e, t) 7→ p(t)

determines a homotopy from the constant map Eb → {b} ⊆ B to the constant map Eb → {b′} ⊆ B.
Applying the homotopy lifting property, we deduce that there is a continuous map h : Eb × [0, 1]→ E such
that q(h(e, t)) = p(t). The restriction h|Eb×{1} is a continuous map from Eb to Eb′ . We will denote this map
by p! : Eb → Eb′ ; one can show that up to homotopy, it depends only on the homotopy class of the path p
(and not on the choice of map h). The map p! is always a homotopy equivalence: it has a homotopy inverse
given by p′!, where p′ : [0, 1]→ B is given by p′(t) = p(1− t).

In the special case where B = [0, 1] and we take p to be the identity map, we see that any fibration
q : E → [0, 1] determines a homotopy equivalence p! : E0 → E1. Our objective in this course is to study
what further constraints on p! are imposed by the condition that the total space E be “finite” in some sense.

Definition 6. Let X and Y be finite polyhedra. A concordance from X to Y is a (piecewise linear) fibration
of finite polyhedra q : E → [0, 1] together with PL homeomorphisms X ' q−1{0} and Y ' q−1{1}. We will
say that X and Y are concordant if there exists a concordance from X to Y .

Note that every concordance from X to Y determines a homotopy equivalence p! : X → Y , which is
well-defined up to homotopy. We can now state our next main result:

Theorem 7. Let X and Y be finite polyhedra and let f : X → Y be a homotopy equivalence. The following
conditions are equivalent:

(1) The map f is a simple homotopy equivalence.

(2) There exists a concordance q : E → [0, 1] from X to Y such that the induced homotopy equivalence
X ' q−1{0} → q−1{1} ' Y is homotopic to f .
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Corollary 8. Let X and Y be finite polyhedra. Then X and Y are simple homotopy equivalent if and only
if they are concordant.

We will prove the implication (2) ⇒ (1) in this lecture, saving the reverse implication for later. Let us
suppose that we have chosen triangulations τE and τB of E and B which are compatible in the sense of
Example ??. The triangulation τB is just a partition of B into subintervals. We may therefore reduce to the
case where the triangulation τB consists of only a single interval (and its endpoints 0 and 1).

For every simplex σ of τE which is not contained in either E0 or E1, we let σ0 = σ∩E0 and σ1 = σ∩E1.
Let E01 ⊆ E0 × E1 denote the subset given by those products σ0 × σ1, where σ ranges over those simplices
of τE which are contained in neither E0 nor E1. Then E01 is equipped with projection maps h0 : E01 → E0

and h1 : E01 → E1. By construction, for every point x ∈ E01, the line segment joining h0(x) to h1(x) is
contained in E. We can therefore define a “straight-line” homotopy h : E01 × [0, 1]→ E by the formula

h(x, t) = (1− t)h0(x) + th1(x).

Exercise 9. Show that the homotopy h above induces a homeomorphism of topological spaces

E0 qE01×{0} (E01 × [0, 1])qE01×{1} E1 → E.

In other words, if M(h0) and M(h1) denote the mapping cylinders of h0 and h1 respectively, then E is
homeomorphic to the pushout M(h0)qE01 M(h1).

Warning 10. The homotopy h is usually not piecewise-linear. The description of E as a pushout M(h0)qE01

M(h1) is valid only in the category of topological spaces, not in the category of polyhedra.

The above argument proves the following:

Proposition 11. Let E be a finite polyhedron equipped with a piecewise linear map E → [0, 1]. Then it
is possible to subdivide [0, 1] into finitely many subintervals such that the inverse image of each subinterval
[t, t′] is homeomorphic either to the mapping cylinder of a PL map Et → Et′ or to the (reversed) mapping
cylinder of a PL map Et′ → Et.

We will deduce the implication (2)⇒ (1) of Theorem 6 from Proposition 10 together with the following:

Proposition 12. Let f : X → Y be a continuous map of compact Hausdorff spaces and let M(f) =
(X × [0, 1]) qX×{1} Y denote the mapping cylinder of f . If the projection map q : M(f) → [0, 1] is a
fibration, then f is a cell-like map.

We will later see that the converse of Proposition 11 is true as well, provided that the spaces X and Y
are reasonably nice.

Proof of Proposition 11. Fix a point y ∈ Y . We wish to show that the fiber Xy = f−1{y} has trivial shape.
In other words, we wish to show that every map from Xy to a CW complex Z is nullhomotopic. Any such
map extends over a neighborhood U ⊆ X containing Xy; it will therefore suffice to show that the inclusion
Xy ↪→ U is nullhomotopic. Since f is a proper map, U contains an open set of the form f−1V where V is a
neighborhood of y in Y . We may therefore assume without loss of generality that U = f−1V .

Let C ⊆ M(f) denote the mapping cylinder of the projection Xy → {y} and let W ⊆ M(f) be the
mapping cylinder of the projection U → V . Since q is a fibration, we can choose a homotopy h : C× [0, 1]→
M(f) such that h(c, 0) = c and q(h(c, t)) = max{q(c), 1 − t}. Since h|C×{0} factors through W , it follows
that there exists ε > 0 such that h|C×[0,ε] factors through W . Let g : Xy → f−1(V ) be the map characterized
by

h(x, 1− ε, ε) = (g(x), 1− ε).
Restricting h to (Xy × {1 − ε}) × [0, ε], we see that g is homotopic to the inclusion Xy ↪→ f−1(V ). On the
other hand, by restricting h to ((Xy×[1−ε, 1])qXy×{1}{y})×{ε} ⊆ C×[0, 1], we see that g is nullhomotopic.
It follows that the inclusion Xy ↪→ f−1(V ) is nullhomotopic, as desired.
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Higher Simple Homotopy Theory (Lecture 7)

September 17, 2014

Recall that finite polyhedra X and Y are concordant if there is a piecewise-linear fibration q : E → [0, 1]
with X ' q−1{0} and Y ' q−1{1}. In the last lecture, we asserted that X and Y are simply homotopy
equivalent if and only if they are concordant, and proved the “if” direction. Our goal in this lecture is to use
this fact as a starting point for the study of “higher” simple homotopy theory, following ideas of Hatcher.

For any finite polyhedron B, we can contemplate piecewise-linear fibrations q : E → B (where E is also
a finite polyhedron). Our first goal is to construct a universal example of such a fibration, so that the base
B can be regarded as a classifying space for PL fibrations. It is not clear that such a classifying space exists
in the setting of finite polyhedra, but we can give an almost tautological construction of one in the setting
of simplicial sets.

Definition 1. For each integer n, let ∆n denote the topological simplex of dimension n and let Mn denote
the set of all finite polyhedra E ⊆ ∆n × R∞ for which the projection map E → ∆n is a fibration.

Note that for any linear map of simplices α : ∆m → ∆n, the construction E 7→ E×∆n ∆m defines a map
of sets α∗ : Mn → Mm. In particular, we can regard the construction [n] 7→ Mn as a simplicial set, which
we will denote by M.

Before we analyze the simplicial set M, we need a few general facts about the relationship between
polyhedra and simplicial sets.

Remark 2. Let K0, K1, and K01 be polyhedra, and suppose we are given piecewise linear embeddings

K0
i0←↩ K01

i1
↪→ K1.

Then the pushout K0qK01 K1 exists in the category of polyhedra: that is, we can regard endow K0qK01 K1

with the structure of a polyhedron, where a map K0 qK01
K1 → L is piecewise linear if and only if its

restriction to K0 and K1 is piecewise linear.
Beware that this need not be true if i0 is not an embedding, even if i1 is an embedding. This is often a

technical nuisance.

Example 3. Let X be a finite simplicial set. We say that X is nonsingular if every simplex σ : ∆n → X is
either degenerate (meaning that it factors through ∆m for m < n) or is a monomorphism of simplicial sets
(in particular, all the faces of σ are again nondegenerate).

For any nonsingular finite simplicial set X, the geometric realization |X| can be regarded as a finite
polyhedron. More precisely, there is a unique PL structure on |X| having the property that for every
nondegenerate n-simplex of X, the associated map ∆n → |X| is piecewise linear (this follows by invoking
Remark 2 repeatedly).

In what follows, we will often not distinguish between a (finite nonsingular) simplicial set X and the
polyhedron |X|. For example, we use the symbol ∆n to denote both the n-simplex as a simplicial set and
the topological n-simplex, and apply similar considerations to the boundary ∂∆n and the horns Λn

i ⊆ ∆n.

We will also need the following technical fact, whose proof we omit (see Lemma 2.7.12 of [1]):
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Proposition 4. Let q : E → B be a map of finite polyhedra. The following conditions are equivalent:

(1) The map q is a fibration.

(2) For every triangulation of B and every simplex σ of the triangulation, the induced map E ×B σ → σ
is a fibration.

(3) There exists a triangulation of B such that, for every simplex σ of the triangulation, the induced map
E ×B σ → σ is a fibration.

Corollary 5. Let B be a finite nonsingular simplicial set. Then Hom(B,M) can be identified with the set
of finite polyhedra E ⊆ |B| × R∞ for which the projection map E → |B| is a fibration.

Proof. The geometric realization |B| admits a triangulation for which each simplex is contained in the image
of some simplex of B (beware that the nondegenerate simplices of B do not generally themselves determine
a triangulation of |B|, unless one is liberal with the meaning of the word “triangulation”).

Corollary 6. The simplicial set M is a Kan complex.

Proof. Suppose we are given a map f0 : Λn
i → M, given by a polyhedron E ⊆ |Λn

i | × R∞ for which the
projection E → |Λn

i | is a fibration. Choose a piecewise linear retraction r : |∆n| → |Λn
i |, and define

E = E ×|Λn
i | |∆

n|. Then E can be identified with a map f : ∆n →M extending f0.

We next investigate the role of the Kan complex M as a “classifying space.”

Exercise 7. Let B be a finite polyhedron. Suppose we are given fibrations of finite polyhedra f : X → B,
g : Y → B. We will say that f and g are concordant if there exists a fibration of finite polyhedra h : Z →
B × [0, 1] for which the inverse image of B × {0} is isomorphic to X and the inverse image of B × {1} is
isomorphic to Y . Show that concordance is an equivalence relation.

Let B be a finite nonsingular simplicial set. Any map f : B → M determines a fibration of finite
polyhedra Ef → |B|, and any homotopy between maps f, g : |B| → M determines a concordance from Ef

to Eg. We therefore obtain a well-defined map from the set [B,M] of homotopy classes of maps from B into
M to the set of concordance classes of fibrations over |B|.

Proposition 8. This map is bijective.

Proof. To prove surjectivity, it suffices to note that for any map of finite polyhedra X → |B|, we can choose
a compatible PL embedding of X into |B| × R∞.

To prove injectivity, it suffices to show that if X ⊆ |B| × R∞ and Y ⊆ |B| × R∞ are polyhedra fibered
over |B| and we are given any concordance Z → |B×∆1| from X to Y , then we can choose a PL embedding
of Z into |B ×∆1| × R∞ which is compatible with the given embeddings on X and Y .
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Fibrations of Polyhedra (Lecture 8)

September 20, 2014

In the previous lecture, we introduced a simplicial set M which parametrizes fibrations in the piecewise-
linear category. To analyze M, we consider the following:

Question 1. Let q : E → B be a piecewise-linear map of finite polyhedra. When is q a fibration?

To address this question, let us choose compatible triangulations τE and τB of E and B respectively,
with vertex sets VE and VB . Then q maps each simplex of τE linearly onto a simplex of τB .

For each vertex b ∈ VB , we let Eb = q−1{b} denote the fiber over b, so that τE induces a triangulation
of Eb. More generally, suppose that σ is an n-simplex of τB with vertices {b0, . . . , bn}. For every simplex
σ ∈ τE with q(σ) = σ, let

σi = σ ∩ Ebi .

Let Eσ ⊆ Eb0 × · · · × Ebn denote the union ⋃
σ0 × · · · × σn

where the union is taken over all simplices σ of τE with q(σ) = σ. Note that for every such σ, there is a
canonical map

fσ : σ0 × · · · × σn ×∆n → σ ⊆ E

given by

(x0, . . . , xn, t0, . . . , tn) 7→
∑

tixi.

Note that if σ′ ⊆ σ in τB , then there is a canonical projection map Eσ → Eσ′ which fits into a commutative
diagram

Eσ × σ′

yy %%
Eσ′ × σ′

fσ′

&&

Eσ × σ

fσyy
E.

Exercise 2. The preceding maps can be assembled to a homeomorphism of topological spaces

lim−→
σ′⊆σ

Eσ × σ′ ' E.

In other words, the polyhedron E can be realized as the coend of the contravariant functor σ 7→ Eσ (from the
partially ordered set τB to topological spaces) against the covariant functor σ 7→ σ (from τB to topological
spaces).

Alternatively, this result can be interpreted as saying that the polyhedron E is the homotopy colimit of
the functor σ 7→ Eσ.
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Warning 3. The homeomorphism
lim−→
σ′⊆σ

Eσ × σ′ ' E.

is generally not piecewise-linear (in fact, the colimit on the right hand side generally does not exist in the cate-
gory of polyhedra). This is visible in the definition of the maps fσ: the construction (x0, . . . , xn, t0, . . . , tn) 7→∑
tixi is quadratic, not linear.

Remark 4. It follows from Exercise 2 that for every point b ∈ B, the fiber Eb = q−1{b} is homeomorphic
to Eσ where σ is the unique simplex of τB whose interior contains b.

It follows from Exercise 2 that E can be recovered (as a topological space) from the triangulation τB and
the contravariant functor σ 7→ Eσ. We can therefore address Question 1 as follows:

Theorem 5. Let q : E → B be as above. Then q is a fibration if and only if, for every inclusion σ′ ⊆ σ in
τB, the induced map Eσ → Eσ′ is a cell-like map.

The “only if” direction we have already proven: for each of the maps ρ : Eσ → Eσ′ , the mapping cylinder
M(ρ) can be realized as the fiber product [0, 1]×B E (where the path [0, 1]→ B is any straight line joining
a point in the interior of σ to a point in the interior of σ′), so that if q is a fibration then M(ρ) → [0, 1] is
also a fibration and therefore ρ is cell-like. Our goal in this lecture is to prove the converse, following the
argument given in [1].

Remark 6. In the previous lecture, we asserted without proof that a map of finite polyhedra q : E → B is a
fibration if and only if it is a fibration over each simplex of a triangulation τB of B. This follows immediately
from Theorem 5 (since we can always pass to a refinement of τB for which there is a compatible triangulation
of E).

The other direction Theorem 5 is an immediate consequence of the following slightly more general state-
ment:

Theorem 7. Let B be a finite polyhedron with a triangulation τB. Suppose we are given a contravariant
functor σ 7→ Eσ from τB to topological spaces. Assume that each Eσ is a compact ANR (for example, a finite
polyhedron) and that each inclusion σ′ ⊆ σ induces a cell-like map Eσ → Eσ′ . Then the canonical map

hocolimσ∈τB Eσ = lim−→
σ′⊆σ

Eσ × σ′ → B

is a fibration.

Our proof will proceed by induction on the dimension of the polyhedron B. Recall that the condition
that q be a fibration can be tested locally on B. Consequently, it will suffice to show that every point b ∈ B
has an open neighborhood U for which the induced map E×BU → U is a fibration. Passing to a subdivision
of τB , we can arrange that b is a vertex of B.

Recall that the closed star C of b is the union of those simplices of τB which contain the vertex b, and
the link L of b is the union of those simplices of τB which are contained in C but do not contain b. Then C
can be identified with the cone (L× [0, 1]) qL×{1} ∗, and the open star C − L ' (L× (0, 1]) qL×{1} ∗ is an
open neighborhood of b.

For each simplex σ of L, let σ+ ⊆ C denote the simplex spanned by σ and b, and set E′ = hocolimσ⊆LEσ+ .
Since the link L has dimension smaller than the dimension of B, it follows from the inductive hypothesis
that the canonical map E′ → L is a fibration. Moreover, the maps Eσ+ → Eb assemble to give a cell-like
map E′ → hocolimσ⊆LEb = L × Eb of spaces fibered over L. Unwinding the definitions, we see that the
fiber product (C − L)×B E is homeomorphic to

(E′ × (0, 1])qE′×{1} Eb.

It will therefore suffice to prove the following:
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Proposition 8. Let L be a finite polyhedron. Suppose we are given compact ANRs X and Y and a cell-like
map X → Y × L which induces a fibration X → L. Then the induced map

(X × [0, 1])qX×{1} Y → (L× [0, 1])qL×{1} {∗} = C(L)

is also a fibration.

The main ingredient we will need is the following lemma, which we will prove at the end of this lecture:

Lemma 9. In the situation of Proposition 8, let F : (X × [0, 1]) qX×{1} Y → Y × C(L) be the canonical
map. Then there exists a map G : Y × C(L)→ (X × [0, 1]) qX×{1} Y and a homotopy H from the identity
to G ◦ F which preserves fibers over C(L) and is the identity on Y .

Set Z = (X × [0, 1])qX×{1} Y . Proposition 8 asserts that every lifting problem of the form

A× {0}
p0 //

��

Z

φ

��
A× [0, 1]

p //

p

99

C(L)

has a solution. In this case, p0 determines a point x ∈ Z. There are two cases to consider.

Case (1) We have p(0) = ∗, so that x belongs to the fiber φ−1{∗} = Y . In this case, we can define p by the
formula p(t) = G(x, p(t)).

Case (2) We have p(0) 6= ∗. In this case, there is a real number 0 < θ ≤ 1 such that p carries the interval [0, θ]
into the open set C(L) − {∗}. We know φ restricts to a fibration X × [0, 1) → C(L) − {∗}, so that
p|[0,θ] can be lifted to a path p′ : [0, θ]→ X × [0, 1) ⊆ Z. We can then define p by the formula

p(t) =

{
H(p′(t), tθ ) if t ≤ θ
G(p(θ), p(t)) if t ≥ θ.

Let us now consider the case of a general parameter space A. We may assume without loss of generality
that A is a metric space (in fact, it suffices to treat the universal case where A = Z ×C(L) C(L)[0,1], which
is metrizable). Let A1 = {a ∈ A : p(a, 0) = ∗} and let A2 = A− A1. We would like to construct the map p
by applying the preceding recipes separately to A1 and A2. The main difference is that we will not regard θ
as a constant, but instead as a continuous function θ : A2 → (0, 1]. We will arrange that θ has the following
property:

(a) We have p(a, t) 6= ∗ for a ∈ A2 and t ≤ θ(a).

Assume that θ satisfies (a) and define Bθ = {(a, t) ∈ A2 × [0, 1] : t ≤ θ(a)}. Using the fact that the
map X × [0, 1)→ C(L)− {∗} is a fibration), we can extend p0 to a partially defined homotopy p′θ : Bθ ⊆ Z
extending p0|A2 and lying over p|Bθ . We can then define maps

φ1 : A1 × [0, 1]→ Z φ2 : A2 × [0, 1]→ Z

by the formulae
φ1(a, t) = G(p0(a), p(t))

φ2(a, t) =

{
H(p′θ(a, t),

t
θ(a) ) if t ≤ θ(a)

G(p′θ(a, t), p(a, t)) if t ≥ θ(a).

Let p : A × [0, 1] → Z be the map given on Ai × [0, 1] by φi. To complete the proof, it will suffice to show
that θ and p′θ can be chosen so that p is continuous.

Let us now assume:
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(b) The map θ extends to a continuous map θ : A→ [0, 1] with θ|A1
= 0.

Remark 10. To choose the map θ, let us equip the product A × [0, 1] with the taxi-cab metric, and set
K = p−1{∗} ⊆ A× [0, 1]. We can then define θ by the formula

θ(a) = min{1, 1

2
d((a, 0),K)}.

Let B
≤
θ = {(a, t) ∈ A × [0, 1] : t ≤ θ(a)}, let B

≥
θ = {(a, t) ∈ A × [0, 1] : t ≥ θ(a)}. Assume that p|B≤θ is

continuous. Then the map h : A → Z given by h(a) = p(a, θ(a)) is continuous. The restriction of p to B
≥
θ

is given by
p(a, t) = G(h(a), p(a, t)),

and is therefore continuous. It follows that p is continuous, as desired. We are therefore reduced to proving

that we can choose θ so that p|B≤θ is continuous.

Note the map (a, t) 7→ (a, θ(a)t) determines a proper surjection π : A × [0, 1] → B
≤
θ . Consequently, it

will suffice to show that p ◦ π : A× [0, 1]→ Z is continuous. Let r : A× [0, 1]→ Z be the map given by

r(a, t) =

{
p0(a) if a ∈ A1

p′(a, tθ(a)) if a ∈ A2.

Then (p◦π)(a, t) = H(rθ(a, t), t). It will therefore suffice to show that we can arrange that r is continuous. To
prove this, let us choose a metric dZ on the space Z and define K ′ = {(a, t) ∈ Bθ : dZ(p′θ(a, t), p0(a)) ≥ θ(a)}.
Let θ′ : A2 → [0, 1] be defined by the formula

θ′(a) = min{θ(t), d((a, 0),K ′)}.

Then θ′ ≤ θ, so θ′ also extends to a continuous map θ
′

: A→ [0, 1] satisfying θ
′|A1

= 0. Replacing θ by θ′ and
p′θ with p′θ|Bθ′ , we can assume that the function r satisfies dZ(r(a, t), r(a, 0)) ≤ θ(a) for a ∈ A2. It follows
that if we are given a sequence of points (ai, ti) in A2× [0, 1] which approach a limit (a, t) in A1× [0, 1], then
we have

lim r(ai, ti) = lim r(ai, 0) = r(a, 0) = r(a, t),

so that r is continuous as desired.
It remains to prove Lemma 9. The proof will require some careful estimates. From this point forward,

we will fix a metric d on Y . We will employ the following abuse of notation: given any space Y ′ with a map
π : Y ′ → Y and any pair of points a, b ∈ Y ′, we set d(a, b) = d(π(a), π(b)) (note that this is generally not
a metric on Y ′; for example, points belonging to the same fiber of π have distance zero from one another).
The cases of interest to are Y ′ = Y × L and Y ′ = X.

Given a map Y ′ → Y is as above, we will say that a path p : [0, 1] → Y ′ is ε-small if, for every pair
s, t ∈ [0, 1], the distance d(p(s), p(t)) is less than ε. More generally, given a topological space S and a
homotopy h : S × [0, 1]→ Y ′, we will say that h is ε-small if the paths h|{s}×[0,1] are ε-small for each s ∈ S.

Let f : X → Y × L denote the projection map. The main technical ingredient we will need is the
following:

Proposition 11. For each ε > 0, there exists a map gε : Y × L → X and an ε-small homotopy hε :
X × [0, 1]→ X from idX to gε ◦ f , where gε and hε are compatible with projection to L.

Let us assume Proposition 11 for the moment and show that it leads to a proof of Lemma 9.

Remark 12. In the situation of Proposition 11, it follows from the existence of the homotopy hε that we
have d(y, (f ◦ gε)(y)) < ε for each y ∈ Y × L. In other words, the maps gε are approximately sections to f .
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Remark 13. We have assumed that Y is a compact ANR, so there exists an embedding of Y into a Banach
space B and a retraction r : U → Y , where U is an open neighborhood of Y in B. Fix a real number ε > 0.
For sufficiently small δ, any pair of points y, y′ ∈ Y with d(y, y′) < δ have the property that the interval
joining y to y′ in B belongs entirely to U , so that the construction

py,y′ : [0, 1]→ Y

py,y′(t) = r((1− t)y + ty′)

determines a continuous path from y to y′ in Y . The path py,y′ depends continuously on y and y′. It
follows that the function (y, y′) 7→ sup{d(py,y′(s), py,y′(t))} is also a continuous function, which vanishes
when y = y′. Shrinking δ if necessary, we may assume that δ < ε and that if d(y, y′) < δ then the path py,y′

is ε-small. In this case, we will say that δ is small compared to ε and write δ � ε.

Remark 14. Suppose that δ � ε. It follows from Remark 12 that for each y ∈ Y × L, there is an ε-
small path joining y to (f ◦ gδ)(y), which depends continuously on y. These paths can be assembled to a
kδ,ε : Y × L× [0, 1]→ Y × L. which is compatible with the projection to L. In particular, we see that gδ is
a right homotopy inverse to f (it is also a left homotopy inverse, by virtue of the existence of the homotopy
hε.

Remark 15. Suppose that 2δ � ε. For every point x ∈ X, the constructions

t 7→ F (hδ(x, t)) t 7→ kδ,ε(f(x), t)

determine δ-small paths from f(x) to (f ◦ gδ ◦ f)(x). Using the triangle inequality, we see that the distance
between these paths is at most 2δ. It follows that there is an ε-small homotopy

vδ,ε : X × [0, 1]× [0, 1]→ Y × L

from F ◦ hδ to kδ,ε ◦ (F × id[0,1]).

We are now ready to construct the map G appearing in the statement of Lemma 9. Choose a sequence
of positive real numbers ε0, ε1, . . . with ε0 ≤ 1 and 2εn+1 � εn (from which it follows that εn ≤ 1

2n for all n).
We define a continuous map G◦ : Y × L× R≥0 → X by the formula

G◦(y, t) =

{
gεn(kεn+1,εn(y, 2(t− n))) if n ≤ t ≤ n+ 1

2

hεn(gεn+1
(y), 2(n+ 1− t)) if n+ 1

2 ≤ t ≤ n+ 1.
.

Let us identify R≥0 with the half-open interval [0, 1), so that the construction

(y, t) 7→ (G◦(y), t)

determines a continuous map Y ×L× [0, 1)→ X × [0, 1). We claim that map admits a continuous extension
G : Y × L × [0, 1] → Z whose restriction to Y × L × {1} is given by the projection onto the first factor.
To prove this, it suffices to show that for every sequence of points (yi, ti) in Y × L × [0,∞) where the yi
converge to some point y ∈ Y ×L and the ti converge to ∞, the sequence of points f(G◦(yi, ti)) converge to
y in Y × L. This is clear: note that if n ≤ t ≤ n+ 1

2 , then

d(y, f(G◦(y, t))) ≤ d(y, kεn+1,εn(y, 2(t− n))) + d(kεn+1,εn(y, 2(t− n))), (f ◦ gεn)(kεn+1,εn(y, 2(t− n)))

≤ 2εn,

while for n+ 1
2 ≤ t ≤ n+ 1 we have

d(y, f(G◦(y, t))) ≤ d(y, f(G◦(y, n+ 1))) + d(f(G◦(y, n+ 1)), f(G◦(y, t))

= d(y, fgεn+1(y)) + d(f(G◦(y, n+ 1)), f(G◦(y, t))

≤ εn+1 + εn.
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To construct the homotopy H, we begin by considering a map T : X × [0,∞)→ X given by the formula

T (x, t) =

{
gεn(f(hεn+1

(x, 2(t− n)))) if n ≤ t ≤ n+ 1
2

hεn(gεn+1
(f(x)), 2(n+ 1− t)) if n+ 1

2 ≤ t ≤ n+ 1.

There is a canonical homotopy from the projection map π : X × [0,∞) → X to T , which carries a pair
(x, t) ∈ X × [0,∞) to the path

s 7→

{
hεn(hεn+1

(x, 2(t− n)s), s) if n ≤ t ≤ n+ 1
2

hεn(hεn+1
(x, s), 2(n+ 1− t)s) if n+ 1

2 ≤ t ≤ n+ 1.

The maps vεn+1,εn of Remark 15 can be assembled to a homotopy from T to the map (x, t) 7→ G(f(x), t).
Concatenating these homotopies, we obtain a map

H◦ : X × [0,∞)× [0, 1]→ X × [0,∞).

We claim that (after identifying [0,∞) with [0, 1)) H◦ extends continuously to a homotopy H : Z×[0, 1]→ Z
from idZ to G which is trivial on the closed subset Y ⊆ Z. To prove this, we must show that if {xi} is
a sequence of points of X whose images in Y converge to a point y and {ti} is a sequence of positive real
numbers which converges to∞, then the paths (πY ◦f ◦H)|{(xi,ti)}×[0,1] converge to the constant path based
at the point y, which is a consequence of the following elementary lemma which we leave to the reader:

Lemma 16. Let {pi : [0, 1]→ Y }i≥0 be a sequence of continuous paths in Y . Assume that:

(a) For each ε > 0, the paths pi are ε-small for almost all i.

(b) The sequence of points {pi(0)}i≥0 converges to a point y ∈ Y .

Then the paths pi converge to the constant path [0, 1]→ {y} ↪→ Y .

We now turn to the proof of Proposition 11. In the case where L is a single point, we have the following:

Proposition 17. Let f : X → Y be a surjective map of compact ANRs. The following conditions are
equivalent:

(1) The map f is cell-like.

(2) For every ε > 0, there exists a map g : Y → X and an ε-small homotopy h : X × [0, 1] → X from the
identity map to g ◦ f (recall that all distances are measured with respect to some metric on Y ).

Let us assume Proposition 17 for a moment, and see how it leads to a proof of Proposition 11. Choose a
metric on L. Given a cell-like map f : X → Y × L and any ε > 0, Proposition 17 guarantees the existence
of a map g′ : Y × L → X and a homotopy h′ : X × [0, 1] → X from idX to g′ ◦ f such that the homotopy
f ◦ h′ is ε-small both in Y and in L. We wish to show that we can arrange that g′ and h′ commute with the
projection to L. We will deduce this from the following:

Lemma 18. Fix δ > 0. For each ε > 0, let U ⊆ X × L be the open set consisting of those points (x, v)
such that the distance from v to the image of x (measured with respect to the metric on L) is < ε. For ε
sufficiently small, there exists a map r : U → X satisfying the following conditions:

(1) The map r commutes with the projection to L.

(2) If x ∈ X and v is its image in L, then r(x, v) = x.

(3) For all (x, v) ∈ X, there is an δ-small path from r(x, v) to x.
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If ε is chosen small enough to satisfy the requirements of Lemma 18, then we can set

g(y) = r(g′(y), πLg
′(y)) h(x, t) = r(h′(x, t), πLh

′(x, t))

where πL : X → L is the projection map. It then follows from the triangle inequality that the homotopy h
is (ε+ 2δ)-small; Proposition 11 then follows choosing δ and ε sufficiently small.

Proof of Lemma 18. Since the map πL : X → L is a fibration, we can choose a path lifting function u :
X ×L L[0,1] → X [0,1]. Let us identify X with its image in X ×L L[0,1] (that is, the set of pairs (x, c) where
c : [0, 1] → L is the constant path based at πL(x)). Without loss of generality, we can assume that the
restriction u|X is the diagonal embedding X ↪→ X [0,1].

Applying the discussion of Remark 13 to the space L, we see that if ε is sufficiently small, then any two
points v, v′ ∈ L at distance < ε can be joined by a path pv,v′ which depends continuously on v and v′. We
can then define r : U → X by the formula

r(x, v) = u(x, pπL(x),v)(1).

It is easy to see that r satisfies conditions (1) and (2), and condition (3) can be ensured by shrinking ε if
necessary.

Proof of Proposition 17. We first show that (2) ⇒ (1) (we don’t actually need this implication, but it is a
pleasant characterization of the class of cell-like maps). We will show that each fiber Xy of f has trivial
shape. Since Xy is nonempty, it suffices to show that for any CW complex S, any map f0 : Xy → S is
nullhomotopic. The map f0 extends continuously to a map f : V → S, where V is some open neighborhood
of Xy in X. It will therefore suffice to show that the inclusion Xy ↪→ V is nullhomotopic. Choose ε small
enough that V ⊆ f−1Bε(y), where Bε(y) denotes a ball of radius ε about Y . Assumption (2) implies that
there exists a map g : Y → X and an ε-small homotopy from idX to g ◦ f . This restricts to a homotopy
from the inclusion map Xy ↪→ V to a constant map.

We now consider the interesting direction: the implication (1)⇒ (2). Since Y is compact, we can cover
Y by finitely many balls of radius ε; let us denote those balls by {Ui}i∈I . For every nonempty subset J ⊆ I,
set UJ =

⋂
i∈J Ui. For every chain J0 ⊆ · · · ⊆ Jm of nonempty subsets of I, we will construct a map

G ~J : ∆m × UJm → f−1UJ0

and a homotopy
H ~J : ∆m × f−1UJm → f−1UJ0

from the identity to G ~J ◦ f . Moreover, we will choose these maps to be compatible with one another in the

sense that if ~J ′ = (J ′0 ⊆ · · · ⊆ J ′m′) is another chain of nonempty subsets of I which is contained in ~J , then

H ~J and H ~J′ agree on ∆m′×f−1UJm (which implies that G ~J and G ~J′ agree on ∆m′×UJm). The construction

proceeds by induction on the size of ~J ; at each stage, we are forced to extend a map over the inclusion

i : (∂∆m ×M)q(∂∆m×f−1UJm ) (∆m × f−1UJm) ↪→ ∆m ×M

where M denotes the mapping cylinder of the projection f−1UJm → UJm . To show that this extension is
possible, it suffices to show that i admits a left inverse. This follows from the fact f−1UJm is a deformation
retract of M (since the projection f 1UJm → UJm is a homotopy equivalence by virtue of our assumption
that f is cell-like).

Let P denote the partially ordered set of nonempty subsets of I and let ∆ denote the nerve of P . Then
∆ is a topological simplex with vertices corresponding to the elements of I, and its presentation as the nerve
of P gives a triangulation of ∆ (given by barycentric subdivision) with one m-simplex σ ~J for every chain
~J = (J0 ⊆ · · · ⊆ Jm) as above.

Choose a partition of unity {λi}i∈I on Y having the property that for each index i, the closure of the
support of λi is contained in the open set Ui. We can regard the λi as defining a continuous map λ : Y → ∆.
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Moreover, for each y ∈ Y there exists a chain ~J = (J0 ⊆ · · · ⊆ Jm) such that λ(y) ∈ σ ~J ' ∆m and
y ∈ UJm . We define G : Y → X by the formula G(y) = G ~J(y, λ(y)). Similarly, for x ∈ X with f(x) = y,
we set H(x, t) = H ~J(x, λ(y), t). It is not difficult to see that G and H are well-defined and have the desired
properties.
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Fibrations of Simplicial Sets (Lecture 9)

September 22, 2014

In the previous lecture, we gave a concrete criterion for a PL map of finite polyhedra f : E → B to be a
fibration. Our goal in this lecture is to translate that criterion into a more combinatorial language.

Notation 1. Given a partially ordered set P , we let N(P ) denote the nerve of P (regarded as a simplicial
set): the n-simplices of N(P ) are chains a0 ≤ · · · ≤ an of elements of P .

Let X be a finite nonsingular simplicial set. We let Σ(X) denote the collection of all nondegenerate
simplices of X. We regard Σ(X) as a partially ordered set by identifying each simplex σ with the simplicial
subset of X given by the image of the map σ : ∆n → X. We let Sd(X) denote the nerve of the partially
ordered set Σ(X). We will refer to Sd(X) as the subdivision of X.

Remark 2. Every map of nonsingular simplicial sets f : X → Y induces a map Σ(X) → Σ(Y ), which
carries each simplex σ ⊆ X to its image in Y . We will denote this image by f(σ). Beware that there is
some potential for confusion here: if σ is an n-simplex of X, then f(σ) need not be the image of σ under
the induced map Xn → Yn (since the latter image might be degenerate in Y ).

Exercise 3. Let X be a finite nonsingular simplicial set. For each simplex σ ∈ Σ(X), let vσ be a point of
|X| which belongs to the interior of |σ|. Show that there is a unique homeomorphism αX : |Sd(X)| → |X|
which carries each vertex σ ∈ Σ(X) to the point vσ and carries each simplex of |Sd(X)| linearly to a simplex
of |X|.

Remark 4. Let f : X → Y be a map of nonsingular simplicial sets. Suppose that we have chosen a vertex
vσ ∈ |X| belonging to the interior of each simplex σ ∈ Σ(X), and similarly we have chosen a vertex wτ ∈ |Y |
in the interior of each simplex τ ∈ Σ(Y ). Suppose further that the vσ and wτ are compatible in the sense
that the map |f | carries each vσ to the point wf(σ) (note that it is always possible to arrange this: in fact,
if the points wτ have been chosen we can always choose vertices vσ which are compatible with them). Then
the diagram of spaces

|Sd(X)| αX //

| Sd(f)|
��

|X|

|f |
��

|Sd(Y )| αY // |Y |

commutes.

Warning 5. For any nonsingular simplicial set X, we can make a canonical choice of the points vσ by taking
each vσ to be the barycenter of |σ|. The homeomorphisms αX : |Sd(X)| → |X| obtained in this way are
functorial for embeddings of nonsingular simplicial sets, but not for general maps of nonsingular simplicial
sets.

Definition 6. Let f : X → Y be a map of finite simplicial sets. We will say that f is cell-like if the induced
map of topological spaces |f | : |X| → |Y | is cell-like.

Proposition 7. Let f : X → Y be a map of finite nonsingular simplicial sets. The following conditions are
equivalent:
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(1) The map f is cell-like.

(2) For every simplex σ ∈ Σ(Y ), the partially ordered set {τ ∈ Σ(X) : f(τ) = σ} has weakly contractible
nerve.

(3) The induced map of partially ordered set Σ(X)→ Σ(Y ) is left cofinal: in other words, for every simplex
σ ∈ Σ(Y ), the partially ordered set {τ ∈ Σ(X) : σ ⊆ f(τ)} has weakly contractible nerve.

Proof. Let σ be a nondegenerate simplex of Y , and fix a point v in the interior of |σ|. We can extend {v} to
a choice of one point in the interior of each simplex of Y , and then make compatible choices for X to obtain
a commutative diagram

|Sd(X)| αX //

| Sd(f)|
��

|X|

|f |
��

|Sd(Y )| αY // |Y |.

It follows that the inverse image |f |−1{v} is homeomorphic to the geometric realization of the nerve of the
partially ordered set {τ ∈ Σ(X) : f(τ) = σ}. Consequently, f is cell-like if and only if every such nerves
is weakly contractible, which proves that (1) and (2) are equivalent. The equivalence of (2) and (3) follows
from the fact that the inclusion of partially ordered sets

{τ ∈ Σ(X) : f(τ) = σ} ↪→ {τ ∈ Σ(X) : σ ⊆ f(τ)}

has a right adjoint (given by forming the intersection with f−1σ).

We next make Proposition 7 more explicit for the nerve of a map of partially ordered sets.

Definition 8. Let f : P → Q be a map of partially ordered sets. We will say that f is a Cartesian
fibration if, for every pair of elements q′ ≤ q in Q and every element p ∈ P with f(p) = q, the set
{a ∈ P : a ≤ p and f(a) ≤ q′} has a largest element p′ satisfying f(p′) = q′.

In this case, the construction p 7→ p′ determines a map of partially ordered sets Pq = f−1{q} → f−1{q′} =
Pq′ . These maps are transitive in the evident sense, so that we can regard q 7→ Pq as a (contravariant) functor
from Q to the category of partially ordered sets.

Conversely, suppose we are given a contravariant functor from Q to the category of partially ordered sets
which assigns to each q ∈ Q a partially ordered set Pq and to each q′ ≤ q a map αq′,q : Pq → Pq′ . We can
then regard P =

⋃
q∈Q Pq as a partially ordered set by declaring p′ ≤ p for p′ ∈ Pq′ and p ∈ Pq if and only

if q′ ≤ q and p′ ≤ αq′,qp. Then the evident map P → Q is a Cartesian fibration of partially ordered sets.

Exercise 9. Check that the constructions outlined in Definition 8 are mutually inverse, so that the data
of a partially ordered set P with a Cartesian fibration P → Q is equivalent to the data of a contravariant
functor from Q to the category of partially ordered sets.

Example 10. Let f : X → Y be a map of nonsingular simplicial sets. Then the induced map Σ(X)→ Σ(Y )
is a Cartesian fibrations of partially ordered sets: for every simplex σ ⊆ X and every facet τ ⊆ f(σ), the
collection of those simplices of X which are contained in σ and lie over τ has a maximal element, given by
τ ∩ f−1(σ).

If f : P → Q is a Cartesian fibration of simplicial sets, then the nerve N(P ) can be identified with the
homotopy colimit of the diagram q 7→ N(Pq). In particular, if each fiber N(Pq) is weakly contractible, then
the map N(P )→ N(Q) is a weak homotopy equivalence. In fact, we can be more precise:

Corollary 11. Let f : P → Q be a Cartesian fibration of partially ordered sets. The following conditions
are equivalent:

(1) For each q ∈ Q, the fiber Pq = f−1{q} has weakly contractible nerve.
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(2) The map of simplicial sets N(P )→ N(Q) is cell-like.

Proof. The implication (2) ⇒ (1) is obvious (and does not require f to be a Cartesian fibration). Let us
prove the converse. Let σ be a nondegenerate simplex of N(Q), given by a chain {q0 < · · · < qm}. We let Sσ
denote the collection of nondegenerate simplices of N(P ) which lie over σ: that is, the collection of chains
{p0 < · · · < pn} in P whose image in Q is σ. We wish to show that N(Sσ) is weakly contractible. Note that
if σ′ ⊆ σ, then the construction τ 7→ τ ∩ f−1σ′ determines a map of partially ordered sets Sσ → Sσ′ . This
map is a Cartesian fibration (exercise!)

Let us now fix a simplex σ = {q0 < · · · < qm}. For 0 ≤ i ≤ m, set σi = {qi < qi+1 < · · · < qm}, so that
we have a tower of Cartesian fibrations

Sσ = Sσ0 → · · · → Sσm .

The simplicial set N(Sσm) ' Sd(N(Pqm)) is weakly contractible by virtue of assumption (1). To complete
the proof, it will suffice to show that each of the maps θ : Sσi → Sσi+1 induces a weak homotopy equivalence
of nerves. To prove this, it suffices to show that each fiber of θ has weakly contractible nerve. Fix a
simplex τ = {p0 < . . . < pn} in P lying over σi+1. Unwinding the definitions, we see that θ−1{τ} is
the partially ordered set of nonempty chains in R = {p ∈ P : f(p) = qi and p ≤ p0}. That is, we have
N(θ−1{τ}) ' Sd N(R). It will therefore suffice to show that N(R) is weakly contractible. In fact, R has a
largest element by virtue of our assumption that f is a Cartesian fibration.

Remark 12. In the situation of Corollary 11, the assumption that f is a Cartesian fibration implies that
the inclusion maps f−1{q} ↪→ {p ∈ P : q ≤ f(p)} admits a right adjoint, and therefore induces a weak
homotopy equivalence. Consequently, the map N(P )→ N(Q) is cell-like if and only if f is left cofinal.

We now ask when a map f : X → Y of finite nonsingular simplicial sets induces a fibration |f | : |X| → |Y |.
For every simplex σ ∈ Σ(Y ), let Xσ be the nerve of the partially ordered set {τ ∈ Σ(X) : f(τ) = σ}. Using
a variation of the constructions sketched in the previous lecture, we see that |X| can be identified with the
homotopy colimit of the diagram σ 7→ |Xσ|: that is, it is obtained by gluing together the products |Xσ|× |σ|
(this is actually a slight generalization of the situation described in the previous lecture, because the simplices
of X need not determine a triangulation of |X|: the intersection of two simplices need not be a simplex).
Here the transition maps Xσ 7→ Xσ′ are induced by maps of partially ordered sets given by τ 7→ τ ∩f−1{σ′}.
Since these maps are Cartesian fibrations, we obtain the following:

Proposition 13. Let f : X → Y be a map of finite nonsingular simplicial sets. The following conditions
are equivalent:

(a) The map |f | : |X| → |Y | is a fibration.

(b) For every inclusion σ′ ⊆ σ in Σ(Y ) and every simplex τ ′ ∈ Σ(X) with f(τ ′) = σ′, the partially ordered
set {τ ∈ Σ(X) : f(τ) = σ and τ ′ = τ ∩ f−1σ′} has weakly contractible nerve.

Remark 14. Condition (b) of Proposition 13 can be regarded as a combinatorial version of the path lifting
property of fibrations for paths which begin in the interior of σ′ and then enter the interior of σ.
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Combinatorial Models for M (Lecture 10)

September 24, 2014

Let f : X → Y be a map of finite nonsingular simplicial sets. In the previous lecture, we showed that
the induced map |f | : |X| → |Y | is a fibration if and only if it satisfies the following combinatorial path
lifting condition: for every simplex σ0 ∈ Σ(X) with image τ0 = f(σ0) in Σ(Y ) and every simplex τ ∈ Σ(Y )
containing τ0, the partially ordered set {σ ∈ Σ(X) : f(σ) = τ and σ0 = σ ∩ f−1τ0} is weakly contractible.
Our first objective in this lecture is to apply this criterion in the special case where f arises from a map of
partially ordered sets.

Proposition 1. Let f : P → Q be a map of finite partially ordered sets. Assume that f is a Cartesian
fibration. The following conditions are equivalent:

(1) The induced map |N(P )| → |N(Q)| is a fibration.

(2) For every q′ ≤ q in Q, the induced map of fibers Pq → Pq′ is left cofinal.

Proof. Let Chain(P ) = Σ(N(P )) denote the partially ordered set of nonempty chains in P , and similarly for
Q. Fix a simplex σ0 ∈ Chain(P ) having image τ0 ∈ Chain(Q). For each chain τ in Chain(Q) containing τ0,
let

Sτ = {σ ∈ Chain(P )|f(σ) = τ and σ ∩ f−1τ0 = σ0}.
The criterion of the previous lecture shows that (1) holds if and only if each of the partially ordered sets Sτ
is weakly contractible.

Assume first that (1) is satisfied. Let q′ < q in Q; we wish to show that the map Pq → Pq′ is left cofinal.
For this, pick p′ ∈ Pq′ ; we need to show that T = {p ∈ Pq : p′ ≤ p} is weakly contractible. Taking σ0 = {p′},
τ0 = {q′}, and τ = {q′, q}, we see that the set Sτ above can be identified with Chain(T ). Condition (1)
implies that Sτ is weakly contractible, so that T is likewise weakly contractible (since N(Sτ ) ' Sd N(T )).

We now prove that (2)⇒ (1). Choose σ0 ∈ Chain(P ) and τ ∈ Chain(Q) as above; we wish to show that
Sτ is weakly contractible. If τ = τ0, then there is nothing to prove. Otherwise, choose an element q which
belongs to τ − τ0 and set τ ′ = τ − {q}. Note that if we are given a simplex τ ′ ∈ Chain(Q) with τ0 ⊆ τ ′ ⊆ τ ,
then the construction σ 7→ σ ∩ f−1τ ′ determines a Cartesian fibration Sτ → Sτ ′ . Proceeding inductively, we
may assume that Sτ ′ is weakly contractible; it then suffices to show that the fibers of the map Sτ → Sτ ′ are
weakly contractible. Replacing τ0 by τ ′ we may reduce to the case where τ is obtained from τ0 by adding a
single element q.

Then τ corresponds to a chain

{q−m < . . . < q−1 < q < q1 < · · · < qn}

where either m or n could be zero (but not both), and σ0 corresponds to a chain {p0 < . . . < pk} lying over
{q−m < . . . < q−1 < q1 < · · · < qn}. Let p− be the largest element of σ0 which lies over q−1 (if m 6= 0)
and let p+ be the largest element of σ0 which lies over q1 (if n 6= 0). Unwinding the definitions, we see that
N(Sτ ) can be identified with the subdivision of the nerve of the poset

{p ∈ Pq : p ≤ p+} if m = 0

{p ∈ Pq : p− ≤ p} if n = 0

{p ∈ Pq : p− ≤ p ≤ p+} if m,n 6= 0.
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Since f is a Cartesian fibration, the partially ordered sets of the first and third type have largest elements.
It will therefore suffice to consider the case where n = 0. Let α : Pq → Pq−1 be the map induced by the
inequality q−1 < q. Then the poset in question can be identified with {p ∈ Pq : α(p) ≥ p−}, which is weakly
contractible by virtue of our assumption that α is left cofinal.

Remark 2. It follows from Proposition 1 that if f : X → Y is a cell-like PL map of polyhedra, then X
and Y are concordant (set Q = {0 < 1} and apply Proposition 1 to the posets of simplices for compatible
triangulations of X and Y ). This almost proves that concordance of polyhedra is equivalent to simple
homotopy equivalence (it would supply a complete proof if we had worked in the category of polyhedra
at the outset, and considered only elementary expansions and elementary contractions in piecewise linear
setting).

Let us now put Proposition 1 to work.

Definition 3. Let Ccof denote the category whose objects are finite partially ordered sets and whose mor-
phisms are left cofinal maps of partially ordered sets.

Consider the simplicial set N(Cop
cof). By definition, an n-simplex σ of N(Cop

cof) is a diagram of left cofinal
maps

P0 ← P1 ← P2 ← · · · ← Pn

of finite partially ordered sets. In this case, the disjoint union P (σ) =
⋃

0≤i≤n Pi can be regarded as a
partially ordered set equipped with a Cartesian fibration P (σ) → [n] which satisfies the hypotheses of
Proposition 1. It follows that the induced map |N(P (σ))| → |N([n])| ' ∆n is a piecewise linear fibration.

Let Ñ(Cop
cof) be the simplicial set whose n-simplices consist of n-simplices σ of N(Cop

cof) together with a

PL embedding |N(P (σ))| ↪→ R∞. There is an evident projection map φ : Ñ(Cop
cof) → N(Cop

cof) given by
forgetting the embeddings into R∞, which is easily seen to be a trivial Kan fibration. We also have a map

ψ : ˜N(Cop
cof))→M which is given by forgetting the diagram

P0 ← P1 ← · · · ← Pn

and remembering only the image of the map |P (σ)| → ∆n×R∞. Composing ψ with a section of φ and using
the canonical isomorphism M 'Mop, we obtain a map of simplicial sets N(Ccof)→M which is well-defined
up to homotopy.

Variant 4. Let Setns
∆ denote the category whose objects are finite nonsingular simplicial sets and whose

morphisms are cell-like maps. The construction X 7→ Σ(X) determines a functor Setns
∆ → Ccof . Composing

with the construction of Definition 3, we obtain a map of simplicial sets N(Setns
∆ )→M.

Variant 5. Let Ccell denote the subcategory of Ccof whose objects are finite partially ordered sets and whose
morphisms are Cartesian fibrations with weakly contractible fibers (note that any such map is left cofinal).
Then the functor

Setns
∆ → Ccof

X 7→ Σ(X)

factors through Ccell.

We can now state the first main theorem of this course:

Theorem 6. The maps of simplicial sets

N(Setns
∆ )

α→ N(Ccell)
β→ N(Ccof)

γ→M

are all weak homotopy equivalences.
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Theorem 6 supplies several different “purely combinatorial” definitions of simple homotopy theory.
We begin by discussing the easy parts of Theorem 6.

Proposition 7. The map α : N(Setns
∆ )→ N(Ccell) is a weak homotopy equivalence.

Proof. In the previous lecture, we saw that a Cartesian fibration P → Q with weakly contractible fibers
induces a cell-lie map N(P ) → N(Q). Consequently, the construction P 7→ N(P ) can be regarded as a
functor from Ccell to Setns

∆ . This functor defines a map of simplicial sets α′ : N(Setns
∆ ) → N(Ccell). We will

show that α′ is homotopy inverse to α.
Consider first the composition α′ ◦ α, which is given by taking the nerve of the subdivision functor

Sd : Setns
∆ → Setns

∆ . For any nonsingular simplicial set X, there is a canonical map Sd(X) → X, which
carries a nondegenerate n-simplex of Sd(X) given by a chain

σ0 ⊆ · · · ⊆ σn

to the n-simplex of X given by the composite map

∆n f→ σn → X,

where f carries the ith vertex of ∆n to the last vertex of σi. We claim that this map is cell-like (so that it
determines a homotopy from α′ ◦ α to the identity). Invoking the criterion of the previous lecture, we are
reduced to showing that the map of posets Σ(Sd(X)) → Σ(X) has weakly contractible fibers. Unwinding
the definitions, we see that the inverse image of a simplex σ ∈ Σ(X) can be identified with the partially
ordered set S of chains

~τ = {τ0 ⊂ σ1 ⊂ · · · ⊂ τn}

in Σ(X) which have the property that σ ⊆ τn and the vertices of σ are precisely those vertices of τn which
occur as the final vertex of some τi.

Let d be the dimension of σ and for 0 ≤ i ≤ d let σi ⊆ σ be the facet spanned by the first (i+ 1)-vertices
of σ. Let Si ⊆ S be the subset consisting of those chains ~τ which satisfy τj = σj for j ≤ i, and let S′i ⊆ Si
be the further subset consisting of those chains ~τ where σi+1 ⊆ τi+1; by convention, we let S′−1 = S. Note
that each Si is a deformation retract of S′i−1 (by the construction ~τ 7→ ~τ ∪ {σi}) and that each S′i is a
deformation retract of Si (by the construction ~τ 7→ {τj : j ≤ i or σi+1 ⊆ τj}. It follows that S is weakly
homotopy equivalent to Sd and therefore weakly contractible (since Sd has a smallest element given by the
chain {σ0 ⊂ σ1 ⊂ · · · ⊂ σd}.

Let us now consider the other composition α ◦ α′, which is induced by the functor Ccell → Ccell given
by P 7→ Chain(P ). We claim that this induces a map N(Ccell) → N(Ccell) which is homotopic to the
identity. To see this, we assign to each finite partially ordered set P another finite partially ordered set
T (P ) = {(p, σ) ∈ P ×Chain(P ) : (∀p′ ∈ σ)p ≤ p′}. It is not difficult to see that T determines a functor from
Ccell to itself and that the projection maps

P ← T (P )→ Chain(P )

are Cartesian fibrations with weakly contractible fibers (those fibers are posets of the form {q ∈ P : q ≤ p}
and Chain({q ∈ P : q ≥ p}) for some p ∈ P , respectively).

Proposition 8. The map β : N(Ccell)→ N(Ccof) is a weak homotopy equivalence.

The proof of Proposition 8 is a bit more involved. First, we recall that the subdivision Sd(X) can be
defined for an arbitrary simplicial set by setting

Sd(X) = lim−→
∆n→X

Sd(∆n)

(this definition agrees with our earlier definition Sd(X) = N(Σ(X)) in the case where X is nonsingular). For
any X, there is a canonical map ρX : Sd(X)→ X which is given by the colimit of the maps Sd(∆n)→ ∆n
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which assign to each facet of ∆n its final vertex. We saw in the proof of Proposition 7 that this map is
a weak homotopy equivalence (in fact, even cell-like) when X is nonsingular. It follows formally (working
simplex-by-simplex) that ρX is always a weak homotopy equivalence.

We now define a map δ : Sd(N(Cop
cof)) → N(Cop

cell). To give such a map, we must associate to every
n-simplex e : ∆n → N(Cop

cof) a map Sd(∆n)→ N(Cop
cell), which we can identify with a functor v : Σ(∆n)op →

Ccell. The simplex e is given by a diagram

P0 ← P1 ← P2 ← · · · ← Pn

of finite partially ordered sets and left cofinal maps. Let P =
⋃
Pi be equipped with the partial ordering

described in Definition 3. Given a pair of chains σ, σ′ ∈ Chain(P ), we will write σ ≤ σ′ if p ≤ p′ for every
p ∈ σ and p′ ∈ σ′ (of course, it suffices to check this when p is the largest element of σ and p′ is the least
element of σ′).

Let τ be an m-dimensional facet of ∆n, corresponding to a set

{i0 < · · · < im} ⊆ {0 < 1 < · · · < n}.

We define v : Σ(∆n)op → Ccell by the formula

v(τ) = {(σ0, . . . , σm) ∈ Chain(Pi0)× · · · × Chain(Pim)|σ0 ≤ σ1 ≤ · · · ≤ σm.}

It is easy to see that every inclusion of facets τ ′ ⊆ τ induces a Cartesian fibration v(τ)→ v(τ ′), and we saw
in Proposition 1 that such maps have weakly contractible fibers. This completes the construction of the map
δ.

We claim that δ supplies a homotopy inverse to β. More precisely, we claim that the composite maps

Sd(N(Cop
cell))

Sd(β)→ Sd(N(Cop
cof))

δ→ N(Cop
cell)

and

Sd(N(Cop
cof))

δ→ N(Cop
cell)

β→ N(Cop
cof)

are homotopic to the natural maps

ρN(Cop
cell)

: Sd(N(Cop
cell))→ N(Cop

cell)

ρN(Cop
cof )

: Sd(N(Cop
cof))→ N(Cop

cof).

To prove the second of these statements, we will construct a homotopy

h : Sd(N(Cop
cof)×∆1)→ N(Cop

cof).

To define h, we need to supply for each n-simplex e : ∆n → Sd(N(Cop
cell) a functor v : Σ(∆n ×∆1)op → Ccell.

Let us regard e as given by a diagram
P0 ← · · · ← Pn

of left cofinal maps, and let P =
⋃
Pi be defined as above. For p ∈ P and σ ∈ Chain(p), we will write p ≤ σ

if p ≤ q for each q ∈ σ. For p ∈ Pi and q ∈ Pj , we will write p← q if i ≤ j and p is the image of q under the
map Pj → Pi (note that this implies that p ≤ q).

Let τ be a simplex of ∆n ×∆1, which we can identify with a chain

{(i1, 0) < · · · < (im, 0) < (j1, 1) < · · · < (jm′ , 1)} ⊆ [n]× [1].

We then define

v(τ) = {(p1, . . . , pm, σ1, . . . , σ
′
m) ∈ Pi1×· · ·×Pim×Chain(Pj1)×· · ·×Chain(Pjm′ )|p1 ← p2 ← · · · ← pm ≤ σ1 ≤ · · · ≤ σm′}.
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Every inclusion τ ′ ⊆ τ induces a map of partially ordered sets θ : v(τ)→ v(τ ′). We claim that each of these
maps is left cofinal. To prove this, we may assume without loss of generality that τ ′ is obtained from τ by
omitting a single vertex. If this vertex has the form (ia, 0) for a < m, then θ is an isomorphism and there is
nothing to prove. If the vertex has the form (jb, 1), then θ is a Cartesian fibration whose fibers are of the
type analyzed in the proof of Proposition 1, and therefore weakly contractible. it therefore suffices to treat
the case where τ ′ is obtained from τ by omitting the vertex (im, 0) (in which case we must have m > 0).
If m = 1, then θ is a Cartesian fibration whose fibers have the form {p ∈ Pim : p ≤ p′} for some p′ ∈ Pim ,
and is therefore a weak homotopy equivalence. Let us therefore assume that m > 1. Fix an element of v(τ ′)
given by a sequence (p1, . . . , pm−1, σ1, . . . , σm); we wish to show that the partially ordered set

S = {(p′1, . . . , p′m, σ′1, . . . , σ′m) ∈ v(τ)|pm−1 ≤ p′m−1 and σj ⊆ σ′j}

Let S′ be the subset of S consisting of those tuples where σ′j = σj for all j. The inclusion S′ ↪→ S admits
a right adjoint and is therefore a weak homotopy equivalence. It will therefore suffice to show that S′ is
weakly contractible. Unwinding the definitions, we see that S′ either has the form

{p′m ∈ Pim : pm−1 ≤ p′m ≤ σ′1} or {p′m ∈ Pim : pm−1 ≤ p′m}

depending on whether or not m′ = 0. In the former case, S′ has a largest element; in the latter, it is weakly
contractible by virtue of the left cofinality of Pim → Pim−1 .

The above analysis shows that the homotopy h is a well-defined map of simplicial sets. It follows from
unwinding the definitions that the restriction of h to Sd(N(Cop

cof)×{0}) is given by ρN(Cop
cof )

and the restriction

of h to Sd(N(Cop
cof)× {0}) agrees with β ◦ δ.

To construct the other homotopy, it suffices to observe that if the maps

P0 ← P1 ← · · · ← Pn

are Cartesian fibrations with contractible fibers, then each of the maps v(τ)→ v(τ ′) has the same property
(arguing as above, this reduces easily to the case where τ ′ is obtained from τ by omitting the vertex (im, 0)
and where m > 1, in which case the desired result can be deduced from the assumption that the map
Pim → Pim−1 is a Cartesian fibration). Consequently, the restriction of h to Sd(N(Cop

cell) × ∆1) factors
through N(Cop

cell), and determines a homotopy from ρN(Cop
cell)

to δ ◦ Sd(β).
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Equivalence of the Combinatorial Definition (Lecture 11)

September 26, 2014

Our goal in this lecture is to complete the proof of our first main theorem by proving the following:

Theorem 1. The map of simplicial sets
γ : N(Cop

cof)→M

constructed in the previous lecture is a weak homotopy equivalence.

Here Ccof denotes the category of finite partially ordered sets and left cofinal maps.
Recall that the simplicial set M is characterized by the following property: for any finite nonsingular

simplicial set X, maps from X into M can be identified with finite polyhedra E ⊆ |X| × R∞ for which the
projection map E → |X| is a fibration. In what follows, we will abuse notation by ignoring the embeddings
into R∞ and simply identifying maps X →M with the corresponding PL fibration E → |X|.

The first observation is that γ is surjective on connected components. To prove this, it suffices to observe
that every finite polyhedron X is PL homeomorphic to the nerve of a finite partially ordered set P . In fact,
we can take P to be the set Σ(X) of simplices taken with respect to some chosen triangulation τ of X (so that
the canonical triangulation of N(P ) can be identified with the barycentric subdivision of the triangulation
τ).

The preceding observation can be carried out in families. Let us first introduce a bit of terminology.

Definition 2. Let us say that a Cartesian fibration of partially ordered sets f : P → Q is good if, for every
inequality q ≤ q′ in Q, the induced map Pq′ → Pq is left cofinal.

Remark 3. Let f : P → Q be a Cartesian fibration finite partially ordered sets. The following conditions
are equivalent:

(i) The map f is good.

(ii) For every p ∈ P and every q ≥ f(p) in Q, the poset {a ∈ P : f(a) = q and a ≥ p} is weakly contractible.

(iii) The induced map of topological spaces |N(P )| → |N(Q)| is a fibration.

Remark 4. Let f : P → Q be a good Cartesian fibration of finite partially ordered sets. Then the
construction (q ∈ Q) 7→ Pq determines a functor Q → C

op
cof , hence a map of simplicial sets χf : N(Q) →

N(Cop
cof). The composite map

N(Q)
χf→ N(Cop

cof)
γ→M

classifies the PL fibration |N(P )| → |N(Q)|.

Construction 5. Let q : E → B be a PL fibration of polyhedra. Suppose that we have chosen compatible
triangulations of E and B, and let Σ(E) and Σ(B) denote the posets of simplices of E and B, respectively.
Since q is a fibration, the map Σ(E) → Σ(B) is good; we therefore obtain a map χq : N(Σ(B)) → N(Cop

cof),
whose composition with γ classifies the PL fibration |N(Σ(E))| → |N(Σ(B))| which is isomorphic (in the
category of polyhedra) to our original fibration q.
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Note that the map χq of Construction 5 depends not only on q, but also on our chosen triangulations
of E and B. In fact, even the domain of the map χq depends on the choice of triangulation. However, we
would like to argue that this dependence is not essential. For this, we introduce the following definition:

Definition 6. Let X be a simplicial set and suppose that we are given a pair of maps f : A → X,
f ′ : A′ → X. We will say that f and f ′ are homotopic if there exists another map f : A → X and trivial
cofibrations equivalences i : A→ A and i′ : A′ → A such that f = f ◦ i and f ′ = f ◦ i′. (In this case, we will
refer to f ′ as a homotopy from f to f ′).

The proof of Theorem 1 rests on the following three propositions. First, we claim that Construction 5 is
not very sensitive to our chosen triangulations:

Proposition 7. Given diagram of triangulated polyhedra

E′

q′

��

// E

q

��
B′ // B

where the vertical maps are fibrations which are compatible with our triangulations and the horizontal maps
are PL homeomorphisms, the maps χq : N(Σ(B)) → N(Cop

cof) and χq′ : N(Σ(B′)) → N(Cop
cof) are homotopic

to one another.

We next claim that Construction 5 is homotopy inverse to γ:

Proposition 8. Let P → Q be a good Cartesian fibration of finite partially ordered sets, classified by a map
e : N(Q)→ N(Cop

cof) so that γ(e) classifies the PL fibration q : |N(P )| → |N(Q)|. Applying Construction 5 to
the standard triangulations of N(P ) and N(Q), we obtain a map χq : N(Σ(N(Q))) = N(Chain(Q))→ N(Cop

cof).
Then e and χq are homotopic.

To state our next result, we need a bit of notation. For every finite polyhedron X, we let [X] denote
the associated vertex of M. We will be a bit sloppy and identify [X] with [Y ] when we are given a PL
homeomorphism from X to Y (recall that to fully specify a vertex of M, we need to supply an embedding
of the corresponding polyhedron into R∞, but we are suppressing this). Similarly, if P is a finite partially
ordered set, we let [P ] denote the corresponding vertex of N(Cop

cof), so that γ([P ]) = [N(P )].
If E is a finite polyhedron equipped with a triangulation, then Construction ?? (applied in the case B = ∗)

determines a map ∗ → N(Cop
cof) which is given by the vertex [Σ(E)]. If we are given another triangulation

of the same polyhedron (which we will denote by E′ to avoid confusion), then Proposition 7 determines a
path p from [Σ(E)] to [Σ(E′)] in the simplicial set N(Cop

cof). The image of this path under γ is a loop based
at [E] = [E′].

Proposition 9. In the situation above, the homotopy of Proposition 7 can be chosen so that γ(p) is homotopic
to the constant loop in M.

Let us now show that Propositions 7, 8, and 9 imply Theorem 1.

Proof of Theorem 1. Fix a finite polyhedron X and a triangulation of X. We will prove the following for
each n ≥ 0:

(a) If η ∈ πn(|N(Cop
cof)|, [Σ(X)]) has the property that γ(η) vanishes in πn(|M |, [X]), then e vanishes.

(b) Every element of πn(|M |, [X]) has the form γ(η) for some η ∈ πn(|N(Cop
cof)|, [Σ(X)]).
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Note that when n = 0, condition (a) asserts that the connected component of [Σ(X)] in |N(Cop
cof)| is the

unique connected component which lies over the connected component of [X] in |M |. Allowing X to vary,
it follows that the map π0|N(Cop

cof)| → π0|M | is bijective. For n > 0, condition (a) implies that the map of
homotopy groups

πn(|N(Cop
cof)|, [Σ(X)])→ πn(|M |, [X])

is injective and condition (b) implies that it is surjective. Theorem 1 will then follow from Whitehead’s
theorem.

Let us begin with the proof of (a). Suppose we are given a homotopy class η ∈ πn(|N(Cop
cof)|, [Σ(X)])

such that γ(η) vanishes. The simplicial set N(Cop
cof) is not a Kan complex, so the class η cannot necessarily

be represented by a map of simplicial sets from ∂∆n+1 into N(Cop
cof). However, it can always be represented

by a map of simplicial sets after subdividing ∂∆n+1 sufficiently many times. We may therefore assume that
η is represented by a map

f : N(Q)→ N(Cop
cof),

where Q is some finite partially ordered set such that |N(Q)| is homeomorphic to Sn. The data of the map
f is equivalent to the data of a functor Q→ C

op
cof , which determines a PL fibration q : |N(P )| → |N(Q)|.

Since γ(η) vanishes, we can extend q to a PL fibration q : E → B where B ' Dn+1 is contractible. Let
us choose compatible triangulations of E and B, so that we have partially ordered sets of simplices Σ(E)
and Σ(B). Refining these triangulations if necessary, we may assume that the images of |N(P )| and |N(Q)|
are subcomplexes E′ ⊆ E and B′ ⊆ B, and that the triangulations on E′ and B′ refine the triangulations of
N(P ) and N(Q), respectively. Construction 5 then yields a map of simplicial sets χq : N(Σ(B)) → N(Cop

cof).
It follows from Propositions 7 and 8 that the restriction of χq to N(Σ(B0)) is homotopic to our original map
f . Consequently, χq determines a homotopy from f to a constant map; this proves (a).

Let us now prove (b). Suppose we are given an element η ∈ πn(|M |, [X]), represented by a map f : B =
∂∆n+1 →M. This map classifies a PL fibration q : E → |B|, whose fiber over some fixed base point b ∈ |B|
coincides with X. Choosing compatible triangulations of E and |B| (and arranging that our triangulation
of |B| contains b as a vertex) and applying Construction 5, we obtain a map χq : N(Σ(|B|))→ N(Cop

cof). It is
not hard to see that γ(χq) is homotopic to our original map f . This almost proves (b): it shows that every
map from an n-sphere into |M | is freely homotopic to a map which factors through |N(Cop

cof)|. However, this
only tells us that η is conjugate under the action of π1(|M |, [X]) to an element which lies in the image of
the map

πn(|N(Cop
cof)|, [Σ(X)])→ πn(|M |, [X]).

The problem is that the map χq need not be pointed: it carries the base point b to the partially ordered
set Σ(Eb) of simplices for the triangulation of Eb determined by our chosen triangulation of E, which might
well differ from our original triangulation of X. However, Proposition 9 implies that there is a path from
[Σ(Eb)] to [Σ(X)] whose image in M is homotopic to the identity, so that we can our free homotopy can be
replaced by a based homotopy.

We now turn to the proofs of Propositions 7, 8, and 9. We will need a device for producing some
homotopies.

Definition 10. Let f : P → Q be a Cartesian fibration of partially ordered sets. We will say that a pair
(p, p′) ∈ P × P is Cartesian if p is a largest element of {a ∈ P : a ≤ p′ and f(a) ≤ f(p)}.

Construction 11. Let f : P → P ′ be a map of partially ordered sets. We let P ′ qf P denote the disjoint
union of P and P ′, partially ordered so that there is a Cartesian fibration g : P ′ qf P → {0 < 1} with
P ′ = g−1{0}, P = g−1{0}, and f the induced map from P to P ′. In other words, the ordering on P ′ qf P
is defined so that p′ ≤ p if and only if p′ ≤ f(p) for p ∈ P and p′ ∈ P ′.
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Exercise 12. Suppose we are given a commutative diagram of partially ordered sets

P

��

f // P ′

��
Q

g // Q′.

Show that the induced map P ′qf P → Q′qgQ is a Cartesian fibration if and only if the following conditions
are satisfied:

(i) The map f is a Cartesian fibration.

(ii) The map g is a Cartesian fibration.

(iii) The map f carries Cartesian pairs in P to Cartesian pairs in P ′.

Exercise 13. In the situation of Exercise 12, show that the map P ′ qf P → Q′ qg Q is good if and only if
the following conditions are satisfied:

(i) The map f is good.

(ii) The map g is good.

(iii) For each q ∈ Q, the induced map Pq → P ′g(q) is left cofinal.

Remark 14. Let u : P → Q be a good Cartesian fibration of finite partially ordered sets. Then the
construction q 7→ Pq determines a functor Q→ C

op
cof , hence a map of simplicial sets χu : N(Q)→ N(Cop

cof).
Suppose we are given a commutative diagram

P

u

��

f // P ′

u′

��
Q

g // Q′.

which satisfies the hypotheses described in Example 12 and 13. We note that N(Q′) is a deformation retract
of N(Q′ qg Q). Moreover, the inclusion N(Q) ↪→ N(Q′ qg Q) is a weak homotopy equivalence if and only if
g is a weak homotopy equivalence. In this case, the Cartesian fibration P ′ qf P → Q′ qg Q is classified by
a map N(Q′ qg Q)→ N(Cop

cof) which determines a homotopy from χu to χu′ .

Proof of Proposition 8. For every partially ordered set P , let T (P ) = {(p, σ) ∈ P × Chain(P )|p ≤ min(σ)}.
Note that if u : P → Q is a Cartesian fibration, then the induced map T (P ) → T (Q) is also a Cartesian
fibration, where a pair ((p, σ), (p′, σ′)) is Cartesian if and only if the pairs (p, p′) and (σ, σ′) are individually
Cartesian. Moreover, if u is good then the map T (P ) → T (Q) is good. For each pair (q, σ) ∈ T (Q), the
projection maps

Chain(P )σ ← T (P )(q,σ) → Pq

are Cartesian fibrations with weakly contractible fibers, hence left cofinal. It follows that the diagrams

Chain(P )

��

T (P )oo //

��

P

��
Chain(Q) T (Q)oo // Q

satisfy the hypotheses of Remark 14, so that the maps χu : N(Q)→ N(Cop
cof) and χChain(u) : N(Chain(Q))→

N(Cop
cof) are homotopic (since both are homotopic to χT (u)).
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Proof of Proposition 7. Let q : E → B be a PL fibration of polyhedra, and choose compatible triangulations
of E and B; we will denote the simplices of these triangulations by Σ(E) and Σ(B), respectively. Suppose
we are given PL homeomorphisms E′ ' E and B′ ' B, where E′ and B′ are equipped with triangulations
which refine the given triangulations on E and B (we can always arrange to be in this case, since any pair
of (compatibly chosen) triangulations admits a common refinement). Set

P = {(σ′, σ) ∈ Σ(E′)× Σ(E) : σ′ ⊆ σ}

Q = {(τ ′, τ) ∈ Σ(B′)× Σ(B) : τ ′ ⊆ τ}.
The evident map P → Q is a Cartesian fibration. We claim that it is good: that is, for each (σ′0, σ0) ∈ P
and each (τ ′, τ) ∈ Q containing (q(σ′0), q(σ0)), the partially ordered set

S = {(σ′, σ) ∈ P |q(σ′) = τ ′, q(σ) = τ, σ′0 ⊆ σ′, σ0 ⊆ σ}

is weakly contractible. Note that since the map Σ(E)→ Σ(B) is good, the partially ordered set S′ = {σ ∈
Σ(E)|q(σ) = τ, σ0 ⊆ σ} is weakly contractible. The projection map Sop → S′ op is Cartesian fibration, so it
will suffice to show that it has weakly contractible fibers. The fiber over an element σ ∈ S has the form

T = {σ′ ∈ Σ(E′)|σ′ ⊆ σ, q(σ′) = τ ′, σ′0 ⊆ σ′}.

This follows from the criterion of Lecture 9, since the projection map σ → τ (a surjective map of simplices)
is a fibration.

It is easy to see that the diagrams

Σ(E)

��

Poo //

��

Σ(E′)

��
Σ(B) Qoo // Σ(B′)

satisfy the criterion of Exercise 12. We claim that they also satisfy the criterion of Example 13. This amounts
to two assertions:

• For every pair (τ ′, τ) ∈ Q, the natural map P(τ ′,τ) → Σ(E)τ is left cofinal. For this, we must show
that if σ0 ∈ Σ(E) satisfies q(σ0) = τ , then the partially ordered set

S = {(σ′, σ) ∈ P : q(σ′) = τ ′, q(σ) = τ, σ0 ⊆ σ}

is weakly contractible. Let S′ = {σ ∈ Σ(E) : q(σ) = τ, σ0 ⊆ σ}. Then S′ is weakly contractible (it
has a smallest element) and the map Sop → S′ op is a Cartesian fibration. It will therefore suffice to
show that the fibers of S → S′ are weakly contractible. That is, we must show that if σ ∈ S′, then the
partially ordered set {σ′ ∈ Σ(E′) : σ′ ⊆ σ, f(σ′) = τ ′} is weakly contractible. Again, this follows by
applying our combinatorial criterion for fibrations to the map σ → τ .

• For every pair (τ ′, τ) ∈ Q, the natural map P(τ ′,τ) → Σ(E′)τ ′ is left cofinal. This map is a Cartesian
fibration; it will therefore suffice to show that it has weakly contractible fibers. In other words, we
must show that for σ′ ∈ Σ(E′) with q(σ′) = τ ′, the partially ordered set S = {σ ∈ Σ(E) : q(σ) =
τ, σ′ ⊆ σ} is weakly contractible. Let σ0 be the smallest simplex of E which contains σ′, so we can
write S = {σ ∈ Σ(E) : q(σ) = τ, σ0 ⊆ σ}. The weak contractibility of this partially ordered set follows
from the fact that the map E → B is a fibration.

Applying Remark 14, we deduce that the good Cartesian fibrations

Σ(E)→ Σ(B) Σ(E′)→ Σ(B′)

determine homotopic maps N(Σ(B))→ N(Cop
cof), N(Σ(B′))→ N(Cop

cof).
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Proof of Proposition 9. We will show that the homotopy constructed in the proof of Proposition 7 has the
desired property. Suppose we are given a PL homeomorphism of triangulated polyhedra E′ → E; as before,
we may assume without loss of generality that the triangulation of E′ refines the triangulation of E. Let
P = {(σ′, σ) ∈ Σ(E′) × Σ(E) : σ′ ⊆ σ} be defined as in the proof of Proposition 7 (in the special case
B = B′ = ∗). Let ρ1 : P → Σ(E′) and ρ2 : P → Σ(E) be the projections onto the first and second factor,
respectively. Then the partially ordered sets Q = Σ(E) qρ1 P and Q′ = Σ(E′) qρ2 P determine paths from
[Σ(E)] to [P ] and [Σ(E′)] to [P ] in |N(Cop

cof)|; we wish to prove that the images of these paths in M (which
go from [E] to [|N(P )|] are homotopic to one another. Let us denote these images by α and α′, respectively.

We now construct some auxiliary partially ordered sets Q and Q
′

enlarging Q and Q′, respectively. Let
Σ′(E) denote another copy of the partially ordered set Σ(E) (given a different name to avoid confusion) and
set

Q
′

= Q′ q Σ′(X) = Σ(E′)q P q Σ′(E),

equipped with the partial ordering where q ≤ q′ if only if one of the following conditions holds:

• q and q′ belong to Σ(E′) and q ⊆ q′.

• q and q′ belong to P and q ≤ q′ in P .

• q and q′ belong to Σ′(E) and q ⊆ q′.

• q ∈ Σ(E′), q′ = (σ′, σ) ∈ P , and q ≤ σ′.

• q ∈ Σ(E′), q′ ∈ Σ′(X), and q ⊆ q′.

• q = (σ′, σ) ∈ P , q′ ∈ Σ′(E), and σ ⊆ q′.

Let Q = Q q Σ′(E) = Σ(E) q P q Σ′(E), which we regard as a partially ordered set in an analogous way.
Note that we have evident maps of partially ordered sets

Q→ {0 < 1 < 2} ← Q
′

Claim 15. The PL maps

|N(Q)| u→ ∆2 v← |N(Q
′
)|

are fibrations.

For i, j ∈ {0, 1, 2}, let ∆{i,j} denote the edge of ∆2 containing i and j. It follows from Claim 15
that u and v are classified by maps α, α′ : ∆2 → M whose restrictions to ∆{0,1} are the paths α and α′,
respectively. By construction, the inverse images u−1∆{1,2} and v−1∆{1,2} are canonically isomorphic and
therefore determine the same path in M. Consequently, to show that α and α′ are homotopic, it suffices
to show that the restrictions of α and α′ to ∆{0,2} are homotopic. Note that the inverse image u−1∆{0,2}

is canonically isomorphic to E × [0, 1], so that the restriction of α to ∆{0,2} is constant. To complete the
proof, it suffices to show that the restriction of α′ to ∆{0,2} is a nullhomotopic path from [E′] to [E] (which
we identify with each other). This can be established by showing that the the PL homeomorphism E′ → E
extends to a PL homoemorphism

v−1∆{0,2} = N(Σ(E′)q Σ(E))→ E × [0, 1]

which restricts to the identity over the point 1 ∈ [0, 1] (the relevant homeomorphism can be constructed by
defining it on vertices and extending linearly).

Proof of Claim 15. We will prove that the map v is a fibration; the proof for u is similar (and slightly easier).

Let g : Q
′ → {0, 1, 2} be the projection map. For each nonempty subset I ⊆ {0, 1, 2}, we let ChainI(Q

′
)

denote the partially ordered set of chains in Q
′

whose image in {0, 1, 2} is I. Recall that to show that v

is a fibration, it will suffice to show that for I ⊆ J the restriction map θ : ChainJ(Q
′
) → ChainI(Q

′
) has
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weakly contractible fibers. Moreover, we may assume without loss of generality that I is obtained from J by
removing a single element. If J = {0, 1}, the desired result was established in Proposition 8. If J = {0, 2}
or J = {1, 2}, then the map g−1J → J is the opposite of a Cartesian fibration; it will therefore suffice to
show (by the opposite of our previous results) that the induced maps Σ(E′) → Σ′(E) and P → Σ′(E) are
right cofinal. The first statement is equivalent to the assertion that for σ ∈ Σ′(E), the partially ordered
set {σ′ ∈ Σ(E′) : σ′ ⊆ σ} is weakly contractible: this is clear, since the geometric realization of this poset
is homeomorphic to σ. For the second statement, we observe that P op → Σ′(E)op is a Cartesian fibration;
we are therefore reduced to proving that it has constructible fibers, and those fibers are again of the form
{σ′ ∈ Σ(E) : σ′ ⊆ σ}.

It remains to treat the case where J = {0, 1, 2} and I = J − {i} for some i ∈ {0, 1, 2}. In the case i = 0
each fiber of θ has the form Chain(S) where S has a largest element, and in the case i = 2 each fiber of θ has
the form Chain(S) where S has a smallest element. In the case i = 1, each fiber of θ has the form Chain(S)
where S has the form

{(σ′, σ) ∈ Σ(E′)× Σ(E) : σ′0 ⊆ σ′ ⊆ σ ⊆ σ0}

for some fixed pair of simplices σ′0 ∈ Σ(E′), σ0 ∈ Σ(E) with σ′0 ⊆ σ0. Let S′ be the subset of S consisting
of those pairs (σ′, σ) where σ′ = σ0. The inclusion S′ ↪→ S admits a right adjoint and is therefore a weak
homotopy equivalence. It therefore suffices to show that S′ is weakly contractible, which follows from the
observation that S′ has a largest element.
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Some Loose Ends (Lecture 12)

September 29, 2014

Earlier in this course, we stated the following result:

Theorem 1. Let X and Y be finite polyhedra and let f : X → Y be a homotopy equivalence. The following
conditions are equivalent:

(1) The map f is a simple homotopy equivalence.

(2) There exists a concordance q : E → [0, 1] from X to Y such that the induced homotopy equivalence
X ' q−1{0} → q−1{1} ' Y is homotopic to f .

The implication (2) ⇒ (1) was proved in Lecture 6. We are now almost in a position to prove the
converse. Let us begin by introducing a bit of (nonstandard) terminology.

Definition 2. Let X be a polyhedron and let Dn be the standard n-disk (regarded as a finite polyhedron).
Given a PL embedding e : Dn ↪→ X, the mapping cylinder M(e) = X qDn (Dn × [0, 1]) has the structure of
a polyhedron and is equipped with a cell-like PL map π : M(e)→ X.

We will say that a PL map of finite polyhedra Y → X is a polyhedral elementary contraction if it has
the form π : M(e) → X for some PL embedding e : Dn ↪→ X, and a polyhedral elementary expansion if
it is isomorphic to the canonical inclusion X ↪→ M(e) for some PL embedding e : Dn ↪→ X. We say that
f is a polyhedral simple homotopy equivalence if it is homotopic to a composition of polyhedral elementary
expansions and polyhedral elementary contractions.

Claim 3. Let f : X → Y be a map of finite polyhedra. Then f is a simple homotopy equivalence if and only
if it is a polyhedral simple homotopy equivalence.

To prove Claim 3, it suffices to show that f is a polyhedral simple homotopy equivalence if and only
if it has vanishing Whitehead torsion τ(f) ∈ Wh(π1X) (in the case where X is connected). This can be
established by carrying out the argument sketched in Lecture 4 entirely in the setting of polyhedra.

Assuming Claim 3, we can prove the implication (1) ⇒ (2) of Theorem 1. For this, it suffices to show
that any polyhedral elementary contraction f : X → Y is a homotopy equivalence which arises from a
concordance between X and Y . This is a special case of the following:

Proposition 4. Let X and Y be finite polyhedra and let f : X → Y be a cell-like PL map. Then there
exists a concordance q : E → [0, 1] from X to Y such that the induced homotopy equivalence X ' q−1{0} →
q−1{1} ' Y is homotopic to f .

Proof. Choose triangulations of X and Y that are compatible with f , so that f induces a Cartesian fibration
q : Σ(X) → Σ(Y ). Since f is cell-like, the fibers of q are weakly contractible. We complete the proof by
setting E = N(Σ(Y )qq Σ(X)) (which we proved to be a concordance in Lecture 10).

Remark 5. In the second part of this course, we will give an alternative approach Theorem 1, which does
not require revisiting Lecture 4 in the polyhedral setting.
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In Lectures 10 and 11, we constructed a weak homotopy equivalence ρ : N(Setns
∆ )op → M, where Setns

∆

is the category whose objects are finite nonsingular simplicial sets and whose morphisms are cell-like maps.
We next show that the condition of nonsingularity is not essential.

Definition 6. Let f : X → Y be a map of finite simplicial sets (not necessarily nonsingular). We will say
that f is cell-like if the induced map of topological spaces |X| → |Y | is cell-like (which is equivalent to the
assertion that the fibers of |f | are contractible).

We let Setcl
∆ denote the category whose objects are finite simplicial sets and whose morphisms are cell-like

maps.

Remark 7. Suppose we are given a pullback diagram of finite simplicial sets

X ′ //

f ′

��

X

f

��
Y ′

g // Y.

Then the associated diagram of geometric realizations is also a pullback diagram. It follows that f ′ is cell-like
if f is; the converse holds if g is surjective.

Definition 8. Let X be a finite simplicial set. A desingularization of X is a finite nonsingular simplicial
set Y equipped with a cell-like map π : Y → X. We let D(X) denote the category whose objects are
desingularizations π : Y → X, and whose morphisms are commutative diagrams of cell-like maps

Y

π

  

// Y ′

π′

}}
X.

We will prove the following:

Proposition 9. For every finite simplicial set X, the category D(X) is weakly contractible.

Corollary 10. The inclusion functor Setns
∆ ↪→ Setcl

∆ induces a homotopy equivalence |N(Setns
∆ )| ↪→ |N(Setcl

∆)|.

Proof. Combine Proposition 8 with Quillen’s Theorem A.

Proposition 8 is an easy consequence of the following special case:

Lemma 11. Let X be a finite simplicial set. Then there exists a desingularization of X.

Proof of Proposition 8. Fix a desingularization π : Y0 → X. We define a functor T : D(X)→ D(X) by the
formula T (Y ) = Y ×X Y0; note that T (Y ) is nonsingular since it is contained in the nonsingular simplicial set
Y ×Y0, and Remark 6 implies that T (Y ) is again a desingularization of X. The evident maps Y ← T (Y )→ Y0

show that the identity map id : |N(D)| → |N(D)| is homotopic to the constant map taking the value Y0.

Proof of Lemma 10. We proceed by induction on the number of nondegenerate simplices of X. If X is
empty, there is nothing to prove; otherwise, we can write X as a pushout X ′ q∂∆n ∆n. The inductive
hypothesis the implies that there exists a desingularization Y ′ → X ′. Set K = Y ′ ×X′ ∂∆n; note that K is
nonsingular since it is contained in the product Y ′ × ∂∆n. Choose an embedding K ↪→ C(K), where C(K)
is nonsingular and weakly contractible (for example, we can take C(K) to be the join K ?∆0). The diagonal
map K → ∆n × C(K) is then an embedding so that the mapping cylinder

M = K ×∆1 qK×{1} ∆n × C(K)

2



is nonsingular. We have a commutative diagram of simplicial sets

Y ′ × C(K)

α

��

K

β

��

oo // M

γ

��
X ′ ∂∆noo // ∆n.

Note that the upper horizontal maps are injective so that the pushout Y = (Y ′×C(K))qKM is a nonsingular
simplicial set. We claim that the canonical map π : Y → X is cell-like. To prove this, choose any point
x ∈ |X|; we claim that the inverse image π−1{x} ⊆ |Y | is contractible. If x does not belong to |X ′|, then we
have π−1{x} ' γ−1{x}, which is contractible, since γ is the composition of cell-like maps

M → ∆n × C(K)→ ∆n.

If x belongs to |X ′|, let Z ⊆ | ∂∆n| be the inverse image of x; then π−1{x} is given by the pushout

α−1{x} qβ−1Z γ
−1Z.

The map α is a composition of cell-like maps

Y ′ × C(K)→ Y ′ → X ′,

so that α−1{x} is contractible. It will therefore suffice to show that the inclusion β−1Z ↪→ γ−1Z is a
homotopy equivalence. This is clear, since γ−1Z is homeomorphic to the mapping cylinder of β−1Z →
Z × C(K) which is a homotopy equivalence since β is cell-like.

Since M is a Kan complex, it follows from Corollary 9 that the map ρ : N(Setns
∆ )op → M admits an

extension ρ : N(Setcl
∆)op →M. It is not obvious how to construct such an extension explicitly because there

there is no functorial way to endow the geometric realization |X| with the structure of a polyhedron for an
arbitrary finite simplicial set X. However, if we do not insist on working with polyhedra, then this problem
goes away:

Definition 12. Let Q =
∏
n≥0[0, 1] be the Hilbert cube (or any other “sufficiently large” contractible space).

We define a simplicial set M+ as follows: the n-simplices of M+ are subsets E ⊆ ∆n ×Q with the following
properties:

• As a topological space, E is a compact absolute neighborhood retract.

• The projection E → ∆n is a fibration.

Any choice of embedding R∞ ↪→ Q determines a map of simplicial sets M ↪→M+; roughly speaking, this
map is given by “forgetting” PL structures.

Example 13. Suppose we are given maps of topological spaces

X0 ← X1 ← · · · ← Xn.

The mapping simplex of the sequence {Xi} is defined to be the iterated pushout

X0 qX1 (X1 ×∆1)qX2×∆1 (X2 ×∆2)q · · · q (Xn ×∆n).

We will denote this mapping simplex by M(X0 ← · · · ← Xn). There is an evident map

π : M(X0 ← · · · ← Xn)→ ∆n.

If each Xi is a compact ANR, one can show that M(X0 ← · · · ← Xn) is a compact ANR. If, in addition,
each of the maps Xi → Xi−1 is cell-like, then the map π is a fibration: this follows from the main result of
Lecture 8.
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Construction 14. Suppose we are given an n-simplex σ of N(Setcl
∆), given by a sequence of cell-like maps

X0 ← X1 ← · · · ← Xn.

Choosing an embedding of each |Xi| into Q, we can regard the mapping simplex M(|X0| ← · · · ← |Xn|) as
a subset of ∆n ×Q which defines an n-simplex of M+. This determines for us a map of simplicial sets

ρ′ : N(Setcl
∆)op →M+ .

The maps ρ and ρ′ are closely related:

Proposition 15. The diagram of simplicial sets

N(Setns
∆ )op ρ //

��

M

��
N(Setcl

∆)op ρ′ // M+

commutes up to homotopy.

Remark 16. In the final portion of this course, if we get there, we will show that the inclusion M ↪→ M+

is a homotopy equivalence (so that the diagram of Proposition 14 consists of homotopy equivalences).

Let us sketch the proof of Proposition 14. Suppose we are given an n-simplex σ of N(Setns
∆ )op, given by

a sequence of cell-like maps
X0 ← X1 ← · · · ← Xn

of nonsingular simplicial sets. We will abuse notation by identifying σ with its image in N(Setcl
∆)op and ρ(σ)

with its image in M+. We wish to relate ρ(σ) to ρ′(σ). Both can be identified with spaces which are fibered
over the topological n-simplex ∆n, given by the geometric realizations of certain finite simplicial sets: in the
former case, we use the simplicial set

Y = N(Σ(X0)q Σ(X1)q · · · q Σ(Xn)),

and in the latter case we use the mapping simplex

Z = M(X0 ← X1 ← X2 ← · · · ← Xn)

(given by carrying out the construction of Example 12 in the category of simplicial sets rather than the
category of topological spaces). Let W denote the simplicial set

M(Sd(X0)← Sd(X1)← Sd(X2)← · · · ← Sd(Xn)).

Amalgamating the maps Sd(Xi) → Xi, we obtain a map W → Z. There is also a canonical map W → Y ,
given by amalgamating maps

Sd(Xi)×∆i = N(Σ(Xi)× {0, . . . i})
θi→ N(Σ(X0)q · · ·Σ(Xn)),

where θi is given by natural map of posets carrying Σ(Xi)× {j} to Σ(Xj) for 0 ≤ j ≤ i.

Claim 17. In the situation above, the maps Y ←W → Z are cell-like.

Proof. The fact that the map W → Z is cell-like follows from the fact that each of the maps Sd(Xi) → Xi

is cell-like. To prove that the map W → Y is cell-like, we must show that for each point y ∈ |Y | the fiber
F = |W | ×|Y | {y} is cell-like. Without loss of generality we may assume that the image of y in ∆n does not
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belong to ∆n−1 (otherwise, we can simply truncate our sequence of simplicial sets {Xi} ). In this case, the
space F is also the fiber of the map

θn : N(Σ(Xn)× [n])→ N(Σ(X0)q · · · q Σ(Xn)).

Since the underlying map of posets is a Cartesian fibration, it suffices to check that the fibers of θn are
weakly contractible: this follows from the fact that each of the maps Σ(Xn)→ Σ(Xi) has weakly contractible
fibers.

Consider now the 2-sided mapping cylinder

Y qW×{0} (W ×∆1)qW×{1} Z.

This is a simplicial set whose geometric realization is equipped with a canonical map to ∆n × ∆1; using
Claim 16 and the results of Lecture 8, one can show that this map is a fibration. Choosing an embedding
into the big contractible space Q, we obtain a map ∆n×∆1 →M+ which is a homotopy from ρ(σ) to ρ′(σ).
It is easy to see that these homotopies can be chosen to be compatible as σ varies and therefore supply a
proof of Proposition 14.

5



Homotopy Types and Simple Homotopy Types (Lecture 13)

September 30, 2014

In the first part of this course, we introduced a simplicial set M whose n-simplices are finite polyhedra
E ⊆ ∆n × R∞ for which the projection map E → ∆n is a fibration. We can think of M as a “moduli space
of simple homotopy types”: we have seen that two polyhedra belong to the same path component of M if
and only if they are simple homotopy equivalent.

Let us now consider a variant of the simplicial set M where all finiteness conditions are replaced by
homotopy-theoretic finiteness conditions.

Definition 1. Let Q be the Hilbert cube (or some other suitably enormous contractible space). We let Mh

be the simplicial set whose n-simplices are subspaces E ⊆ ∆n ×Q for which the projection map E → ∆n is
a fibration whose fibers are finitely dominated.

Remark 2. The simplicial set Mh is a Kan complex. For any simplicial set B, the set of homotopy classes
of maps from B to Mh can be identified with the set of homotopy equivalence classes of fibrations E → B
(in the category of simplicial sets) or E → |B| (in the category of topological spaces) whose fibers are finitely
dominated.

Remark 3. The simplicial set Mh is homotopy equivalent to the disjoint union
∐

X BAut(X), where X
ranges over all homotopy equivalence classes of finitely dominated spaces and Aut(X) denotes the simplicial
monoid of homotopy equivalences of X with itself.

A choice of inclusion R∞ ↪→ Q induces a map of simplicial sets M→Mh, which we think of as assigning
to each simple homotopy type its underlying homotopy type.

The second part of this course is devoted to the following question:

Question 4. What can one say about the homotopy fibers of the map M→Mh?

For every finitely dominated space X, let S(X) denote the homotopy fiber product M×Mh{X}. We can
identify the connected components of S(X) with equivalence classes of homotopy equivalences f : X → P
where P is a finite polyhedron, where we declare f : X → P to be equivalent to f ′ : X → P ′ if the induced
homotopy equivalence of P with P ′ is simple. If X is connected with fundamental group G, then the first
few lectures yield the following information:

• The space S(X) is nonempty if and only if the Wall finiteness obstruction of X vanishes (as an element

of K̃0(Z[G]).

• If S(X) is nonempty, then it is a torsor for the Whitehead group Wh(G) = K̃1(Z[G])/ Im(G).

In particular, if X is a finite polyhedron to begin with (so that S(X) has a canonical base point), then
we obtain an abelian group structure on the set π0 S(X). We next observe that this is no accident.

Let X be a finite polyhedron. We can identify S(X) with the simplicial set whose n-simplices are pairs
(E, φ), where E ⊆ ∆n × R∞ is a finite polyhedron for which the projection E → ∆n is a fibration, and
φ : X ×∆n → E is a PL homotopy equivalence which commutes with the projection to ∆n. As usual, we
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will generally abuse terminology by ignoring the data of the embedding E ↪→ ∆n×R∞ when describing our
constructions.

Let S′(X) denote the simplicial subset of S(X) consisting of those pairs (E, φ) where φ is an embedding.
It is not hard to see that S′(X) is a deformation retract of S(X): we can always replace a map φ : X×∆n →
E with the diagonal map (φ, j) : X×∆n → E×C(X), where C(X) is some contractible polyhedron equipped
with an embedding j : X → C(X).

There is a natural “addition” map on the Kan complex S′(X): on n-simplices, it carries a pair of
embeddings

φ : X ×∆n ↪→ E φ′ : X ×∆n ↪→ E′

to the induced map X ×∆n → E qX×∆n E′. This addition is commutative and associative up to coherent
homotopy, and therefore endows S′(X) ' S(X) with the structure of an E∞-space.

At the level of vertices, we note that if we are given embeddings φ : X → E and φ′ : X → E′,
then the Whitehead torsion of the induced map X ↪→ E qX E′ is the sum τ(φ) + τ(φ′). In other words,
the commutative monoid structure on π0 S(X) determined by the E∞-structure on S(X) agrees with the
abelian group structure arising from the identification π0 S(X) 'Wh(G). Consequently, the E∞-structure
on S(X) is group-like, and therefore exhibits S(X) as the zeroth space of some spectrum. Our goal in the
second part of this course will be to give a more explicit description of this spectrum.

Recall that if X is any space for which the homology H∗(X; Q) is finite-dimensional as a rational vec-
tor space (for example, any finitely dominated space), then the Euler characteristic of X is given by the
alternating sum

χ(X) =
∑
i≥0

(−1)i dim Hi(X; Q).

This is manifestly a homotopy invariant quantity. However, it can be described in other ways which are not
so obviously invariant:

Example 5. Let X be a finite CW complex. Then we have Euler’s formula

χ(X) =
∑
d≥0

(−1)dsd,

where sd denotes the number of d-cells of X.

Example 6. If X be a compact Riemannian manifold of even dimension 2n. Then the Chern-Gauss-Bonnet
formula gives

χ(X) =
1

(2π)n

∫
X

Ω

where Ω denotes the Pfaffian of the curvature of X.

In both of these examples, we took advantage of some additional structure on X (a CW structure or
a Riemannian structure) to write the homotopy invariant quantity χ(X) as a “sum” of local contributions
which depend on that additional structure. In either case, the additional structure on X that we needed
equips X with a preferred simple homotopy type. The next main theorem of this course will be a sort of
converse: we will show that if X is a finitely dominated space, then having a “local formula” for the Euler
characteristic of X (in a suitably generalized setting) is equivalent to equipping X with a preferred simple
homotopy type.

Let us now be a bit more precise. A fundamental property of the Euler characteristic is that it is additive
for homotopy pushout squares: that is, given a homotopy pushout square of finitely dominated spaces

X //

��

X ′

��
Y // Y ′
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where the horizontal maps are inclusions of subcomplexes, we have χ(Y ′) + χ(X) = χ(X ′) + χ(Y ).
Suppose, more generally, that we are given some “target space” Z. Let T (Z) denote the free abelian

group generated by symbols [X], where X is a finitely dominated space with a map to Z, modulo the relations
given by

[∅] = 0

[Y ′] + [X] = [X ′] + [Y ]

for every homotopy pushout diagram of CW complexes over Z, as above. For every finitely dominated space
X with a map X → Z, we can regard [X] as a kind of “generalized Euler characteristic” of X, which is not
an integer but an element of the abelian group T (Z).

In the next few lectures, we will see that the abelian group T (Z) can be identified with π0 of a spectrum
A(Z), called the Waldhausen A-theory spectrum of Z.

Warning 7. Our definition of A(Z) will differ slightly from the definition more common in the literature,
in that we will allow finitely generated projective modules rather than only finitely generated free modules;
this has the effect of slightly enlarging the group π0 and not changing the higher homotopy groups.

The construction Z 7→ A(Z) is functorial. Consequently, any point z ∈ Z determines a map A(∗)→ A(Z).
This map depends continuously on Z, and we therefore obtain an assembly map

ρ : A(∗) ∧ Z+ → A(Z).

Now suppose that the space Z itself is finitely dominated, so that [Z] can be regarded as element of the
abelian group π0A(Z) (which we will identify with a point of Ω∞A(Z). This point can be regarded as a
“universal” version of the Euler characteristic of Z, and the homotopy fiber of the map

Ω∞(A(∗) ∧ Z+)→ Ω∞A(Z)

can be thought of as the “space of all local formulas for the Euler characteristic of Z.” We can now state
more precisely the theorem we are after:

Theorem 8. Let Z be a finitely dominated space. Then there is a canonical homotopy pullback square

S(Z) //

��

Ω∞(A(∗) ∧ Z+)

��
∗

[Z] // Ω∞A(Z).

Theorem 8 motivates the following:

Definition 9. Let Z be a space. The Whitehead spectrum of Z is the cofiber of the assembly map A(∗)∧Z+ →
A(Z). We will denote the Whitehead spectrum of Z by Wh(Z).

Theorem 8 implies that if Z is a finitely dominated space, then we can associate to Z an obstruction
η ∈ π0Wh(Z) which vanishes if and only if S(Z) is nonempty. If η = 0, then S(Z) is homotopy equivalent
to the space Ω∞+1Wh(Z).

We will see that if Z is connected with fundamental group G, then there are canonical isomorphisms

π0Wh(Z) ' K̃0(Z[G])

π1Wh(Z) 'Wh(G).

Consequently, Theorem 8 will subsume the theory of the Wall finiteness obstruction and the theory of the
Whitehead torsion.

Warning 10. The groups π0Wh(Z) and π1Wh(Z) depend only on the fundamental group of Z (if Z
is connected), but this is not true in general: the Whitehead spectrum Wh(Z) is sensitive to the entire
homotopy type of the space Z.

3



(Lower) K-theory of ∞-categories (Lecture 14)

October 2, 2014

We begin by reviewing the definition of an ∞-category.

Notation 1. For every pair of integers 0 ≤ i ≤ n, we let Λn
i denote the simplicial subset of ∆n given by

the union of all those faces except the one opposite to the ith vertex. We will refer to a simplicial set of the
form Λn

i as a horn. We will say that it is an inner horn if 0 < i < n, and otherwise an outer horn.

Definition 2. Let X be a simplicial set. We will say that X is an ∞-category if every map f0 : Λn
i → X

can be extended to an n-simplex f : ∆n → X provided that 0 < i < n. (In other words, every inner horn in
X can be filled.)

Remark 3. Simplicial sets satisfying the requirements of Definition 2 are also referred to as quasi-categories
or weak Kan complexes.

Example 4. Any Kan complex is an ∞-category (recall that a simplicial set X is a Kan complex if any
horn f0 : Λn

i → X can be extended to an n-simplex of X).

Example 5. For any category C, the nerve N(C) is an ∞-category.

In fact, one has the following stronger assertion:

Exercise 6. Let X be a simplicial set. Show that X is isomorphic to the nerve of a category if and only if
every inner horn f0 : Λn

i → X can be extended uniquely to an n-simplex f : ∆n → X.

In what follows, we will often abuse notation by identifying a category C with the∞-category N(C). This
does not lose any information:

Exercise 7. Let C and D be categories. Show that there is a bijective correspondence between the set of
functors F : C → D and the set of maps of simplicial sets N(C) → N(D). In other words, the formation of
nerves induces a fully faithful embedding from the category of (small) categories to the category of simplicial
sets.

The formation of nerves admits a left adjoint, which sends each simplicial set X to a category which
we will denote by hX. Concretely, the category hX admits the following presentation by generators and
relations:

• The objects of hX are the vertices of X.

• For each edge e of X joining a vertex x to a vertex y, there is a corresponding morphism [e] from x to
y in hX.

• If the edge e is degenerate (so that x = y), then [e] = idx.

1



• For every 2-simplex of X given pictorially by the diagram

y
g

��
x

f
??

h // z,

we have [h] = [g] ◦ [f ] in hX.

We will refer to hX as the homotopy category of X.
In the special case where X is an ∞-category, the homotopy category hX admits a more concrete

description: all morphisms in hX have the form [e] for some edge e, and two edges e and e′ (with the same
initial and final vertices) satisfy [e] = [e′] if and only if they are homotopic (meaning that there exists a
2-simplex

y

��
x

e

??

e′ // y

whose 0th face (joining y to y) is degenerate).
Most of the basic concepts of category theory (commutative diagrams, limits and colimits, initial and

final objects, functors, adjunctions) can be generalized to the setting of ∞-categories. We will henceforth
make use of those generalizations, and refer the reader to [1] for more details.

In what follows, we will use the notation C to denote an∞-category (emphasizing the idea that C is some
sort of generalized category rather than a simplicial set). We refer to the vertices of C as its objects and to
the edges of C as its morphisms.

Definition 8. Let C be an ∞-category. A zero object of C is an object ∗ which is both initial and final. We
will say that C is pointed if it has a zero object. If C is pointed, then for every pair of objects X and Y there
is a canonical morphism from X to Y given by the composition X → ∗ → Y , which we refer to as the zero
morphism.

Notation 9. Let C be a pointed∞-category with zero object ∗. Suppose that C admits pushouts. For every
morphism f : X → Y in C, we let cofib(f) denote the pushout Y qX ∗. We refer to f as the cofiber of f . In
the special case where Y = ∗, we refer to cofib(f) as the suspension of X and denote it by ΣX. Note that
we have a diagram

X
f→ Y → cofib(f)

where the composition is zero; we refer to such diagrams as cofiber sequences.

Definition 10. Let C be a pointed ∞-category which admits pushouts. We let K0(C) denote the free
abelian group on generators [X], where X is an object of C, modulo the relations given by [X ′] + [X ′′] = [X]
whenever there is a cofiber sequence

X ′ → X → X ′′

in C.

Remark 11. Using the cofiber sequence
∗ → ∗ → ∗

we deduce that [∗] = 0 ∈ K0(C). Using the cofiber sequence

X → ∗ → Σ(X)

we conclude that [Σ(X)] = −[X] in K0(C).
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Warning 12. Definition 10 is not interesting for “large” ∞-categories. For example, if C admits infinite
coproducts, then any object X fits into a cofiber sequence∐

n≥1

X →
∐
n≥0

X → X

where the first two terms are equivalent to one another, so that [X] = 0 ∈ K0(C); since X was arbitrary, we
have K0(C) ' 0.

Example 13. Let C be the ∞-category of finite pointed spaces. Then K0(C) is isomorphic to Z, the
isomorphism being given by the “reduced” Euler characteristic

[X] 7→ χhyp(X) = χ(X)− 1.

Example 14. Let R be a ring. A perfect complex over R is a bounded chain complex

· · · → P2 → P1 → P0 → P−1 → P−2 → · · ·

where each Pi is a finitely generated projective R-module. The collection of perfect chain complexes over R
can be organized into an ∞-category Modperf

R . There is a natural map K0(R)→ K0(Modperf
R ) which carries

each finitely generated projective R-module P to the chain complex consisting of P in degree zero. One can
show that this map is an isomorphism: it has an inverse which carries a chain complex [P∗] to the alternating
sum

∑
n(−1)n[Pn].

Remark 15. Let C and D be pointed∞-categories which admit pushouts and suppose we are given a functor
F : C→ D which preserves finite colimits. Then F induces a group homomorphism K0(C)→ K0(D), given
by [X] 7→ [F (X)].

Example 16. Let C be a pointed∞-category which admits pushouts. Then the suspension functor Σ : C→ C

satisfies the hypotheses of Remark 15, and induces the map K0(C)→ K0(C) given by multiplication by −1.

Definition 17. We say that an ∞-category C is stable if it is pointed, admits pushouts, and the suspension
functor Σ : C→ C is an equivalence of ∞-categories.

Remark 18. Let C be a pointed ∞-category which admits pushouts. We define the Spanier-Whitehead
category SW (C) to be the direct limit

C
Σ→ C

Σ→ C→ · · · .

Then SW (C) is stable, and is universal among stable ∞-category which receive a functor from C which
preserves finite colimits. Moreover, K0(SW (C)) can be identified with the direct limit of the sequence

K0(C)
−1→ K0(C)

−1→ K0(C)→ · · · ,

and is therefore isomorphic to K0(C).
In other words, for studying K0, there is no real loss of generality in assuming that we are working with

stable ∞-categories.

In the next lecture, we will need the following result:

Proposition 19. Let C be a stable ∞-category and let C0 ⊆ C be a full (stable) subcategory. Assume that
every object of C is a direct summand of an object that belongs to C0. Then:

(a) The canonical map α : K0(C0)→ K0(C) is injective.

(b) An object C ∈ C belongs to C0 if and only if [C] belongs to the image of α.

To prove Proposition 19, it will be convenient to introduce a variant of Definition 10.
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Definition 20. Let C be a stable ∞-category. We let Kadd(C) denote the free abelian group generated by
symbols [X] where X ∈ C, modulo the relations

[X] = [X ′] + [X ′′]

if X is equivalent to a direct sum X ′ ⊕X ′′.

Remark 21. In the situation of Definition 20, it is easy to see that we have [X] = [Y ] in Kadd(C) if and
only if X and Y are stably equivalent: that is, if and only if there exists an object Z ∈ C such that X ⊕Z is
equivalent to Y ⊕ Z.

We have an evident surjective map Kadd(C)→ K0(C); let us denote the kernel of this map by I(C).

Lemma 22. In the situation of Proposition 19, the canonical map I(C0)→ I(C) is surjective.

Proof. Note that I(C) is generated by expressions of the form η = [X]− [X ′]− [X ′′], where

X ′ → X → X ′′

is a cofiber sequence in C. For any such cofiber sequence, we can choose objects Y ′, Y ′′ in C such that X ′⊕Y ′
and X ′′ ⊕ Y ′′ belong to C0. We then have a cofiber sequence

X ′ ⊕ Y ′ → X ⊕ Y ′ ⊕ Y ′′ → X ′′ ⊕ Y ′′

where the outer terms belong to C0, so that the middle term does as well. It follows that η = [X ⊕ Y ′ ⊕
Y ′′]− [X ′ ⊕ Y ′]− [X ′′ ⊕ Y ′′] belongs to the image of the map I(C0)→ I(C).

Proof of Proposition 19. It follows immediately from Remark 21 that the map Kadd(C0) → Kadd(C) is
injective. Assertion (a) now follows by applying the snake lemma to the diagram

0 // I(C0) //

��

Kadd(C0) //

��

K0(C0) //

��

0

0 // I(C) // Kadd(C) // K0(C) // 0.

To prove (b), we note that the snake lemma implies that the natural map

Kadd(C)/ Im(Kadd(C0))→ K0(C)/ ImK0(C0)

is an isomorphism of abelian groups. Consequently, if X ∈ C has the property that [X] belongs to the image
of K0(C0), then [X] belongs to the image of Kadd(C0). It follows that there exists objects Y, Y ′ ∈ C0 such
that X ⊕ Y ' Y ′, so that X is equivalent to the cofiber of a map Y → Y ′ and therefore belongs to C0 as
desired.

References
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The Wall Finiteness Obstruction Revisited (Lecture 15)

October 6, 2014

Let C be a (small)∞-category which admits finite colimits. There is a formal procedure for enlarging C to
admit all colimits: namely, one can replace C by the∞-category Ind(C) of Ind-objects of C. This enlargement
can be characterized as follows:

(a) There is a fully faithful embedding j : C→ Ind(C) (we will henceforth abuse notation by identifying C

with its image in Ind(C)).

(b) The ∞-category Ind(C) admits filtered colimits (in fact, it admits all small colimits, and the functor j
preserves finite colimits).

(c) Every object of Ind(C) can be written as a filtered colimit lim−→Cα, where each Cα belongs to C (identified
with its image in Ind(C) via j).

(d) Every object C ∈ C is compact as an object of Ind(C): that is, the construction D 7→ MapC(C,D)
commutes with filtered colimits.

At an informal level, we can see that these properties characterize Ind(C) as follows. For each filtered
diagram {Cα} in the ∞-category C, let “ lim−→C ′′α denote the colimit of the diagram {Cα} in Ind(C). Assump-
tion (b) ensures that this colimit is well defined and assumption (c) implies that every object of Ind(C) has
this form. Morphism spaces in Ind(C) are then given by

MapInd(C)(“ lim−→C ′′α, “ lim−→D′′β) ' lim←−
α

MapInd(C)(Cα, “ lim−→D′′β)

' lim←−
α

lim−→
β

MapInd(C)(Cα, Dβ)

' lim←−
α

lim−→
β

MapC(Cα, Dβ)

where the last two equivalences are obtained from (d) and (a), respectively.

Remark 1. Working more formally, one can define Ind(C) to be the ∞-category of functors from Cop to
spaces which preserve finite limits, from which one can derive properties (a), (b), (c), and (d).

Example 2. Let C be the category of finitely presented groups. Then Ind(C) can be identified with the
category of all groups. The same conclusion holds if we replace “groups” by any other type of algebraic
structure (abelian groups, rings, commutative rings, etcetera).

Example 3. Let C be the ∞-category of finite CW complexes. Then Ind(C) can be identified with the
∞-category of spaces.

Example 4. Let R be a ring spectrum (or ordinary ring), and let C be the∞-category of perfect (complexes
of) R-modules. Then Ind(C) can be identified with the ∞-category of all (complexes of) R-modules.
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It is natural to ask if the converse to (d) is true: does every compact object of Ind(C) belong to (the
essential image of) C? To address, suppose we are given an object X = “ lim−→C ′′α ∈ Ind(C) which is compact.
Then the identity map idX : X → “ lim−→C ′′α must factor through some Cα. It follows that X is a retract of Cα
in the ∞-category Ind(C). Conversely, it is not hard to see that the collection of compact objects of Ind(C)
is closed under retracts, and therefore contains all retracts of objects of C.

Remark 5. Suppose that X ∈ Ind(C) is a retract of an object C ∈ C, so that we have a commutative
diagram

X

α

  

idX // X

C

β
>>

in C. Let r = α ◦ β; we think of r as the “retraction” from C onto X. Then X can be recovered as the
filtered colimit

C
r→ C

r→ C
r→ C → · · ·

Conversely, if we start with a map r : C → C and define X to be the colimit of the above sequence, then
one can show that X is a retract of C provided that there exists a homotopy h of r2 with r for which the
diagram

r3 h×id //

id×h
��

r2

h

��
r2 h // r

commutes up to homotopy. Beware that the commutativity of this diagram is a necessary condition: in
general, not every idempotent in the homotopy category of C can be lifted to a “homotopy coherent”
idempotent in C.

Example 6. Let C be an ordinary category which admits finite colimits. If X ∈ Ind(C) is a retract of an
object C ∈ C, then X can be recovered as the coequalizer of the maps r, id : C → C. It follows that every
compact object of Ind(C) belongs to (the essential image of ) C.

Example 7. Let C be the ∞-category of finite CW complexes, so that Ind(C) can be identified with the
∞-category of spaces. An object X ∈ Ind(C) is compact if and only if it is finitely dominated (in the sense
of Lecture 2). Consequently, not all compact objects of Ind(C) come from C.

Remark 8. Let C be a small ∞-category which admits finite colimits. We let C denote the full subcategory
of Ind(C) spanned by the compact objects. Then C is the idempotent completion of C: that is, it can be
obtained by formally enlarging C adding “images” of all coherently idempotent morphisms in C.

Example 9. Let C be a stable ∞-category. Then the idempotent completion C is also stable. Moreover,
every object of C can be obtained as a direct summand of an object of C.

Example 10. Let C be a pointed ∞-category which admits finite colimits. The formation of idempotent
completions commutes with filtered colimits. Applying this observation to the diagram

C
Σ→ C

Σ→ · · · ,

we conclude that the Spanier-Whitehead ∞-category SW (C) can be identified with the idempotent comple-
tion of SW (C). In particular, every object of SW (C) can be written as a direct summand of an object of
SW (C).
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In Lecture 2, we saw that not every finitely dominated space X is homotopy equivalent to a finite CW
complex. However, the possible failure of X to be homotopy equivalent to a finite complex was under good
control: namely, we could associate to X a certain algebraic invariant wX (its Wall finiteness obstruction)
which vanished if and only if X was homotopy equivalent to a finite CW complex. We would now like to do
something like this for a general ∞-category C. First, we need to introduce a bit of terminology.

Definition 11. Let C be an∞-category which admits finite colimits. We will say that a morphism f : X → Y
in Ind(C) is C-finite if it can be written as a composition

X = X0 → X1 → · · · → Xn = Y

where each of the maps Xi−1 → Xi fits into a pushout diagram

C //

��

D

��
Xi−1

// Xi

for C,D ∈ C.

Example 12. Let C be the∞-category of finite CW complexes. Then a map of spaces f : X → Y is C-finite
if and only if Y is homotopy equivalent to a space which is obtained from X by attaching finitely many cells.

Remark 13. The collection of C-finite morphisms contains all equivalences and is closed under composition.

Remark 14. Let ∅ denote the initial object of C. Then an object X ∈ Ind(C) belongs to C if and only if
the map ∅ → X is C-finite.

Remark 15. Suppose we are given a pushout diagram

X ′

f ′

��

// X

f

��
Y ′ // Y

in Ind(C). If f ′ is C-finite, then so is f .

We will also need the following less obvious observation:

Proposition 16. Suppose we are given morphisms

X
f→ Y

g→ Z

in Ind(C). If f and g ◦ f are C-finite, then g is C-finite.

Proof. Factoring f as a composition, we can reduce to the case where Y has the form X qC D for some
C,D ∈ C. Then g factors as a composition

X qC D → Z qC D
α→ Z

where the first map is a pushout of g ◦ f , and is therefore C-finite. It will therefore suffice to show that α is
C-finite. This follows from the observation that α is a pushout of the “fold map” D qC D → D.
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Suppose now that X is an object of Ind(C). We let Ind(C)X//X denote the ∞-category of objects of
Ind(C) lying over and under X: that is, the ∞-category whose objects are commutative diagrams

Y
β

  
X

α

>>

id // X.

Let C[X] denote the full subcategory of Ind(C)X//X spanned by those diagrams where α is C-finite. It is not
hard to see that the objects of C[X] form compact generators for Ind(C)X//X : that is, we have an equivalence
of ∞-categories Ind(C[X]) ' Ind(C)X//X . In particular, we can identify the idempotent completion of C[X]
with the∞-category of compact objects of Ind(C)X//X (which can be characterized as those diagrams above
for which α exhibits Y as a compact object of Ind(C)X/).

Note that C[X] and its idempotent completion C[X] are pointed∞-categories which admit finite colimits,
so that we can consider the K-groups

K0(C[X]) K0(C[X])

introduced in the previous lecture. Note that if Y is a compact object of Ind(C) equipped with a map
f : Y → X, then the diagram

X q Y
(id,f)

##
X

;;

id // X

belongs to C[X] and therefore determines an element of K0(C[X]) which we will denote by [Y/X]. If Y
belongs to C, then the natural map X → X q Y is C-finite and we can therefore lift [Y/X] to K0(C[X]). We
are going to prove the following converse:

Theorem 17 (Generalized Wall Finiteness Obstruction). Let C be a small ∞-category which admits finite
colimits and let X ∈ Ind(C). Then:

(a) The natural map α : K0(C[X])→ K0(C[X]) is a monomorphism of abelian groups.

(b) Suppose that X ∈ Ind(C) is compact. Then X belongs to (the essential image of) C if and only if the
class [X/X] ∈ K0(C[X]) belongs to the image of α.

Example 18. Suppose that C is the ∞-category of finite CW complexes and that X is a connected finitely

dominated space. We will later show that the quotient K0(C̃[X])/K0(C[X]) can be identified with the reduced

K-group K̃0(Z[π1X]) and that this identification carries [X/X] to the Wall obstruction wX . Consequently,
assertion (b) of Theorem 17 can be regarded as a generalization of the main result of Lecture 2.

Proof of Theorem 17. Using Example 10, we can identify α with the canonical map from K0(SW (C[X]))
to K0(SW (C[X])), which we proved to be injective in the previous lecture. This proves (a). The “only if”
direction of (b) is obvious. We now prove the converse.

First, without loss of generality we can assume that X is the final object of Ind(C) (we can achieve this
by replacing C by the ∞-category C×Ind(C) Ind(C)/X). Let us denote this final object by ∗. Let C denote

the idempotent completion of C, so that C contains ∗ as a final object. Then C[X] can be identified with the
∞-category C∗ of pointed objects of C, and C[X] can be identified with the full subcategory of C∗ spanned
by those pointed objects e : ∗ → C where e is a C-finite map.

To prove (b), we must show that if [∗q ∗] ∈ K0(C∗) belongs to the image of α, then the object ∗ belongs
to C. By assumption, we know that ∗ belongs to the idempotent completion of C. In particular, there exists
an object C ∈ C and a map ∗ → C. We then have a cofiber sequence

∗ q ∗ → ∗ q C → C
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in the ∞-category C∗, where the middle term belongs to C[X]. It follows that [C] ∈ K0(C̃∗) belongs to
the image of α. Invoking the main result from the previous lecture, we conclude that the image of C in
the Spanier-Whitehead category SW (C̃∗) belongs to the Spanier-Whitehead category SW (C[X]). In other
words, there exists an integer n ≥ 0 such that Σn(C) belongs to C[X], meaning that the base point inclusion
∗ → Σn(C) is C-finite. Applying Proposition 16, we conclude that the projection map Σn(C)→ ∗ is C-finite.
If n = 0, this tells us that the map C → ∗ is C-finite so that ∗ ∈ C, as desired. We will complete the proof
by verifying the following:

(∗) If n ≥ 0 and there exists an object C ∈ C with a base point ∗ → C for which the canonical map
Σn+1C → ∗ is C-finite, then there is another object D ∈ C with a base point ∗ → D for which the
canonical map ΣnD → ∗ is also C-finite.

(In fact, the proof will show that we can take D to be any other object of C[X], for example we can take
D = C; however, it will be less confusing if we do not identify D with C.) To prove (∗), we first note that
because the ∞-category C admits finite colimits it is naturally tensored over the ∞-category Sfin of finite
CW complexes. We will denote the action of Sfin on C by

⊗ : Sfin×C→ C.

Concretely, the tensor product K ⊗ C is characterized by the universal property MapC(K ⊗ C,D) =
MapC(C,D)K . We will also abuse notation by identifying each finite CW complex K with the tensor

product K ⊗ ∗ ∈ C.
The proof of (∗) is based on the observation that the suspension ΣnC can be computed in two different

ways:

(a) For any n ≥ 0, we can identify ΣnC (for a pointed object C) with the pushout (Sn ⊗ C)qSn ∗.

(b) If n > 0, then the definition of ΣnC does not require a base point in C: the “unreduced suspension”
can be realized as the pushout C qSn−1⊗C S

n−1

Let us now suppose that C ∈ C is as in (∗) and use (b) to describe the suspension Σn+1C. Let D be any
object of C equipped with a base point ∗ → D (we know that such an object exists; for example we can take
D = C). We then have a pushout diagram

C qSn⊗C S
n

��

// C qSn⊗C (Sn ⊗D)

��
∗ // ∗ ⊗Sn (Sn ⊗D).

Since the left vertical map is C-finite, so is the right vertical map. Since the upper right hand corner belongs
to C, we obtain ∗ ⊗Sn (Sn ⊗ D) ∈ C. Using description (a) of the suspension ΣnD, we obtain a pushout
diagram

D //

��

∗ qSn (Sn ⊗D)

��
∗ // ΣnD.

The upper horizontal map in this diagram is a morphism between objects of C and is therefore C-finite.
It follows that the lower horizontal map is C-finite again. Applying Proposition 16, we deduce that the
projection map ΣnD → ∗ is C-finite as desired.

References
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Higher K-Theory of ∞-Categories (Lecture 16)

October 7, 2014

Let C be a pointed ∞-category which admits finite colimits; we will denote the coproduct on C by
(C,D) 7→ C ∨D (to emphasize the analogy with pointed spaces). Recall that we defined the K-group K0(C)
to be the free abelian group on symbols [X] for X ∈ C, modulo the relations [X] = [X ′] + [X ′′] for every
cofiber sequence

X ′ → X → X ′′

in C. Note that it is not necessary to demand in advance that this group be abelian: for any pair of objects
X,Y ∈ C, we have cofiber sequences

X → X ∨ Y → Y

Y → X ∨ Y → X

which give the relation [X] + [Y ] = [X ∨ Y ] = [Y ] + [X].
Our goal in this lecture is to discuss higher K-groups of an∞-category C, following ideas of Waldhausen.

Our basic plan is to construct a space W whose fundamental group is K0(C); we will then define the higher
K-groups of C to be the higher homotopy groups of W . Let’s have a look at what such a space should look
like:

(a) The space W needs to have a base point (so that it makes sense to extract the homotopy groups of
W ).

(b) Every object X ∈ C needs to determine a path pX in W which begins and ends in the base point,
which we take be a representative of the homotopy class [X] ∈ K0(C) ' π1W .

(c) For every cofiber sequence
X ′ → X → X ′′

in the ∞-category C, we will need a 2-simplex of W with boundary given by

∗
pX′

��
∗

pX′′
??

pX // ∗,

which “witnesses” the relation [X] = [X ′] + [X ′′] in the fundamental group of W .

In what follows, it will be convenient to denote the cofiber of a map f : X → Y by Y/X; our basic
relation in K0(C) can then be rewritten as [Y ] = [X] + [Y/X]. From this, we can deduce analogous identities
for “longer” filtrations. For example, suppose we are given a pair of morphisms

X
f→ Y

g→ Z.

Then [Z] = [X] + [Y/X] + [Z/Y ]. In fact, we can prove this in two different ways: first, we can use the
cofiber sequences

X → Z → Z/X
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Y/X → Z/X → Z/Y

to deduce [Z] = [X] + [Z/X] = [X] + ([Y/X] + [Z/Y ]). Alternatively, we could use the cofiber sequences

Y → Z → Z/Y

X → Y → Y/X

to deduce [Z] = [Y ] + [Z/Y ] = ([X] + [Y/X]) + [Z/Y ]. If W is a space satisfying (a), (b), and (c), then these
two proofs give two a priori different homotopies between the path pZ and the concatenation of the paths
pX , pY/X , and pZ/Y , which determines a map from a 2-sphere into W . Concretely, this two sphere is given
by a map ∂∆3 → W , whose restriction to each fact of ∂∆3 is the 2-simplex associated by assumption (c)
to one of the cofiber sequences above. It is natural to demand the following “three-dimensional” analogue
of (b) and (c):

(d) For every diagram
X → Y → Z

in C, we should have a 3-simplex in W which we depict as

∗
pY

''

pY/X // ∗
pX

��
∗

pZ/Y

??
pZ/X

77

pZ // ∗

whose faces are the 2-simplices given by (c).

Moreover, we want to make an analogous “n-dimensional” demand for every n-step filtration

X1 → X2 → · · · → Xn

in the ∞-category C. In order to say this properly, we need to get organized.

Definition 1. Let P be a partially ordered set, and let P (2) = {(i, j) ∈ P × P : i ≤ j}. Let C be a pointed
∞-category which admits finite colimits. We define a P -gapped object of C to be a functor X : N(P (2))→ C

with the following properties:

(i) For every i ∈ P , the object X(i, i) is a zero object of C.

(ii) For every i ≤ j ≤ k in C, the diagram

X(i, j) //

��

X(i, k)

��
X(j, j) // X(j, k)

is a pushout square; by virtue of (i), this means that we have a cofiber sequence

X(i, j)→ X(i, k)→ X(j, k).

Note that if f : P → Q is a map of partially ordered sets, then f induces a map of simplicial sets
N(P (2))→ N(Q(2)). Composition with this map carries Q-gapped objects of C to P -gapped objects of C.

For every integer n ≥ 0, we let [n] denote the linearly ordered set {0 < 1 < . . . < n}. The collection of [n]-
gapped objects of C form an∞-category which we will denote by Gap[n](C). Let Sn(C) denote the underlying
Kan complex of Gap[n](C): that is, the simplicial set obtained from Gap[n](C) by removing all those edges
which correspond to noninvertible morphisms in Gap[n](C) (along with all simplices which contain such
edges). Any monotone map [m] → [n] induces a map of Kan complexes Sn(C) → Sm(C); we may therefore
regard S•(C) as a simplicial Kan complex. We will refer to S•(C) as the Waldhausen construction on C.
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Remark 2. By definition, an object of Gap[n](C) is a diagram

X(0, 0) // X(0, 1)

��

// · · · //

��

X(0, n)

��
X(1, 1) // · · ·

��

// X(1, n)

��
· · · // · · ·

��
X(n, n)

where every square is a pushout and the objects along the diagonal are zero.

Example 3. When n = 0, Gap[n](C) is the full subcategory of C spanned by the zero objects. Since C is
pointed, this is a contractible Kan complex.

Example 4. When n = 1, Gap[n](C) is the ∞-category whose objects are diagrams

∗ // X

��
∗′

where X ∈ C is arbitrary and ∗ and ∗′ are zero objects of C. This ∞-category is equivalent to C.

Example 5. When n = 2, Gap[n](C) is the ∞-category of diagrams

∗ // X ′

��

// X

��
∗′ // X ′′

��
∗′′

where ∗, ∗′, and ∗′′ are zero objects and square is a pushout. We can think of the data of such a diagram as
determined by a pair of maps

X ′
f→ X

g→ X ′′

together with a nullhomotopy of g ◦f , which exhibits X ′′ as a cofiber of f . More informally: Gap[2](C) is the

∞-category whose objects are cofiber sequences in C. This is equivalent to the∞-category Fun(∆1,C) = C∆1

of morphisms in C, since a cofiber sequence is determined up to equivalence by the morphism f : X ′ → X.
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Remark 6. More generally, for any n ≥ 0, an [n]-gapped object

X(0, 0) // X(0, 1)

��

// · · · //

��

X(0, n)

��
X(1, 1) // · · ·

��

// X(1, n)

��
· · · // · · ·

��
X(n, n)

is determined by the sequence of maps

X(0, 1)→ X(0, 2)→ · · · → X(0, n) :

the rest of the diagram can be functorially recovered by forming cofibers (note that X(i, j) is the cofiber of
the map X(0, i) → X(0, j)). More precisely, evaluation on the pairs (0, i) for i > 0 induces an equivalence
of ∞-categories

Gap[n](C)→ Fun(∆n−1,C).

Remark 7. Using Remark 6, we can describe the Waldhausen construction more informally as follows: for
each n ≥ 0, the Kan complex Sn(C) is a classifying space for diagrams

X1 → X2 → · · · → Xn

in C. However, the description of S•(C) as a simplicial Kan complex is not completely apparent from this
description. Most of the face maps Sn(C) → Sn−1(C) correspond to simply “forgetting” one of the objects
Xi in the diagram, but the 0th face map instead produces the diagram of cofibers

X2/X1 → X3/X1 → · · · → Xn/X1

(which are only well-defined up to contractible ambiguity; this ambiguity is resolved in the definition of
Gap[n](C) by specifying all of the relevant cofibers ahead of time).

Remark 8. From S•(C) we can produce a new simplicial space X•, given by Xn = Sn+1(C); passage from
S•(C) to X• has the effect of “forgetting” the 0th face map in S•(C). This simplicial space is equivalent to
the one which assigns to each [n] the underlying Kan complex of Fun(∆n,C). The simplicial space X• is an
example of a complete Segal space. One can show that the homotopy theory of ∞-categories is equivalent
to the homotopy theory of complete Segal spaces, with the equivalence implemented by the construction
C 7→ X•. In particular, C is determined by X• up to equivalence. Consequently, the Waldhausen construction
C 7→ S•(C) does not lose any information about the underlying ∞-category C.

Definition 9 (Waldhausen K-theory of ∞-Categories). Let C be a pointed ∞-category which admits finite
colimits. We let |S•(C)| denote the geometric realization of the Waldhausen construction on C (here we can
work in the setting of topological spaces or simplicial sets; in the latter case, the geometric realization is given
by the diagonal [n] 7→ Sn(C)n). The space |S•(C)| has a canonical base point (up to contractible ambiguity),
given by the map S0(C)→ |S•(C)|; we let K(C) denote the loop space of |S•(C)|. For each integer n ≥ 0, we
let Kn(C) denote the group πnK(C) ' πn+1|S•(C)|.

Remark 10. Since the space S0(C) is contractible, the geometric realization |S•(C)| is connected.
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Remark 11. The space |S•(C)| can be written as a direct limit of partial geometric realizations

sk0 |S•(C)| → sk1 |S•(C)| → sk2 |S•(C)| → · · ·

Here the 0-skeleton sk0 |S•(C)| = S0(C) is contractible and the 1-skeleton sk1 |S•(C)| is the suspension of
S1(C) (which is equivalent to the underlying Kan complex of C). Since the inclusion sk1 |S•(C)| → |S•(C)| is
1-connected, we have a surjection of fundamental groups

π1ΣS1(C)→ π1|S•(C)|,

where the left hand side is the free group generated by one symbol [X] for each connected component of
S1(C) (which we can identify with an equivalence class of objects of C) modulo the single relation [∗] = 1.
The inclusion sk2 |S•(C)| → |S•(C)| is 2-connected, so all the relations in π1|S•(C)| come from connected
components of S2(C) (which we can identify with cofiber sequences in C). These relations say exactly that
[X] = [X ′] + [X ′′] whenever we have a cofiber sequence

X ′ → X → X ′′

in C. Consequently, the definition of K0(C) given in Definition 9 agrees with the definition given in Lecture
14.

It follows from the above discussion that the group π1|S•(C)| ' K0(C) is abelian. In fact, this is no
accident: the space K(C) is an infinite loop space.

Remark 12. Let C and D be pointed ∞-categories which admit finite colimits and let f : C → D be a
functor which preserves finite colimits. Then f induces a map of simplicial spaces S•(C) → S•(D), hence
also a map of K-theory spaces K(C)→ K(D).

If C and D are pointed ∞-categories which admit finite colimits, then the projection functors

C← C×D→ D

preserve finite colimits and therefore induce maps

K(C)← K(C×D)→ K(D).

These maps induce a homotopy equivalence (even an isomorphism, if we’re sufficiently careful with our
definitions) K(C×D) ' K(C)×K(D).

Note that the coproduct functor ∨ : C×C→ C preserves finite colimits, and therefore induces a map

m : K(C)×K(C) ' K(C×C)→ K(C).

Since the coproduct on C is coherently commutative and associative, the multiplication m is also coherently
commutative and associative: that is, it is part of an E∞-structure on the space K(C).

The E∞-structure on K(C) determines a commutative monoid structure on the set K0(C) = π0K(C).
This coincides with the abelian group structure considered earlier (since [X ∨ Y ] = [X] + [Y ] in K0(C)). It
follows that K(C) is a grouplike E∞-space: that is, it is the 0th space of a connective spectrum. We will
generally abuse notation and denote this spectrum also by K(C).

Remark 13. One can obtain an explicit delooping of the space K(C) by iterating the Waldhausen construc-
tion; we refer the reader to [2] for details.
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The Additivity Theorem (Lecture 17)

October 10, 2014

Let C be a pointed ∞-category which admits finite colimits. In the previous lecture, we introduced an
infinite loop space K(C), the Waldhausen K-theory space of C. Note that the ∞-category Fun(∆1,C) of
arrows in C satisfies the same hypotheses as C, so we can also consider the K-theory space K(Fun(∆1,C)).
Our goal in this lecture is to prove the following fundamental result:

Theorem 1 (Additivity Theorem). The functor

F : Fun(∆1,C)→ C×C

F (α : C → D) = (C, cofib(α))

induces a homotopy equivalence

K(Fun(∆1,C))→ K(C×C) ' K(C)×K(C).

Before giving the proof of Theorem 1, let us describe some of its consequences. We first note that the
functor F : Fun(∆1,C)→ C×C admits a right homotopy inverse, given by the construction

(C,D) 7→ (C → C ∨D).

We therefore obtain:

Corollary 2. The functor (C,D) 7→ (C → C ∨D) induces a homotopy equivalence

K(C×C)→ K(Fun(∆1,C)).

To state the next Corollary, we will need a bit of notation. Suppose that C and D are pointed∞-categories
which admit finite colimits, and that G : C → D is a functor which preserves finite colimits. We let G∗
denote the associated map (of infinite loop spaces) from K0(C) to K0(D).

Corollary 3. Let G′, G,G′′ : Fun(∆1,C)→ C be the functors given by

G′(C → D) = C G(C → D) = D G′′(C → D) = D/C.

Then we have G∗ = G′∗ + G′′∗ (in the abelian group of homotopy classes of maps from K0(Fun(∆1,C)) to
K0(C)).

Proof. By virtue of Corollary 2, it will suffice to show that the corresponding equality holds in the space of
maps from K(C×C) to K(C), which follows immediately from the definition of the addition law on K(C).

Corollary 4. Let C and D be pointed ∞-categories which admit finite colimits, and suppose we are given a
cofiber sequence

F ′
α→ F → F ′′

of functors from D to C which preserve finite colimits. Then F∗ = F ′∗ + F ′′∗ .
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Proof. The natural transformation α determines a functor H : D → Fun(∆1,C) which preserves finite
colimits. Unwinding the definitions, we have

F ′∗ = G′∗H∗ F∗ = G∗H∗ F ′′∗ = G′′∗H∗

where G′, G,G′′ : Fun(∆1,C) → C are defined as in Corollary 3. The desired result now follows from the
equality G∗ = G′∗ +G′′∗ .

Corollary 5. Let C be a pointed ∞-category which admits finite colimits. Then the suspension functor
Σ : C→ C induces the map K(C)→ K(C) given by multiplication by −1.

Proof. Apply Corollary 4 to the cofiber sequence of functors

id→ ∗ → Σ.

Corollary 6. Let C be a pointed ∞-category which admits finite colimits. Then the canonical map C →
SW (C) induces a homotopy equivalence K(C)→ K(SW (C))

Proof. The K-theory space of SW (C) can be identified with the direct limit of the sequence

K(C)
Σ∗→ K(C)

Σ∗→ K(C)→ · · ·

It follows from Corollary 6 that as far as Waldhausen K-theory is concerned, we might as well always be
working with stable ∞-categories (which will be the focus of our attention in the next several lectures).

Let us now turn to the proof of Theorem 1. We have an evident evaluation functor

e : Fun(∆1,C)→ C

e(C → D) = C.

Fix a zero object ∗ ∈ C. The fiber of e over ∗ can be identified with the ∞-category C∗ of pointed objects of
C (that is, objects D ∈ C equipped with a map ∗ → D). Since C is pointed, this ∞-category is equivalent to
C itself. We therefore have a fiber sequence of ∞-categories,

C→ Fun(∆1,C)
e→ C .

which gives a diagram of K-theory spaces

K(C)→ K(Fun(∆1,C))
e∗→ K(C).

Theorem 1 is equivalent to the assertion that this diagram is again a fiber sequence.
It follows immediately from the definitions that for every integer n ≥ 0, we have a fiber sequence of

∞-categories
Gap[n](C)→ Gap[n](Fun(∆1,C))→ Gap[n](C).

Passing to underlying Kan complexes and allowing n to vary, we obtain a fiber sequence of simplicial spaces

S•(C)→ S•(Fun(∆1,C))→ S•(C).

We would like to show that the induced diagram of geometric realizations remains a fiber sequence. This is
not obvious: in general, a fiber sequence of simplicial pointed spaces

X• → Y• → Z•

need not yield a fiber sequence |X•| → |Y•| → |Z•|. One can show that this holds whenever each of the
spaces Zn is connected, but this hypothesis is far too strong for our situation (remember that the connected
components of S1(C) can be identified with the equivalence classes of objects in C; in particular, S1(C) is
never connected unless C is trivial). We will instead use the following criterion:
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Proposition 7. Let S denote the ∞-category of spaces and let J be a small category (or ∞-category).
Suppose we are given a natural transformation X → Y of functors from J to S which satisfies the following
condition:

(∗) For every morphism I → J in J, the associated map

lim−→
J→K

X(K)×Y (K) Y (I)→ lim−→
I→K

X(K)×Y (K) Y (I)

is a homotopy equivalence.

Suppose we have a pullback diagram of functors

X ′ //

��

X

��
Y ′ // Y.

Then:

(a) The map X ′ → Y ′ also satisfies (∗).

(b) The diagram

lim−→X ′ //

��

lim−→X

��
lim−→Y ′ // lim−→Y

is also a pullback square.

Proof. We first prove (a). Fix a morphism I → J in J. We have a commutative diagram

lim−→J→K X
′(K)×Y ′(K) Y

′(I) //

��

lim−→I→K X
′(K)×Y ′(K) Y

′(I)

��
lim−→J→K X

′(K)×Y ′(K) Y (I) //

��

lim−→I→K X
′(K)×Y ′(K) Y (I)

��
lim−→J→K X(K)×Y (K) Y (I) // lim−→I→K X(K)×Y (K) Y (I)

where each square is a pullback. Since the lower horizontal map is a homotopy equivalence, so is the upper
horizontal map.

For every morphism I → J in J, let F (I → J) denote the colimit lim−→J→K X(K) ×Y (K) Y (I). A priori,

the functor F is covariant in I and contravariant in J . However, condition (∗) implies that F is actually
independent of J . More precisely, we can write F (I → J) = F0(I) for some functor F0 : J→ S. Abstractly,
we can describe F0 as the left Kan extension of F along the forgetful functor (I → J) 7→ I (from the twisted
arrow category of J to J). Concretely, we can write F0(I) = F (I → I) = lim−→I→K X(K) ×Y (K) Y (I). Note

that we have an evident projection map F0(I)→ Y (I), and condition (∗) implies that for every map I → J ,
the associated map

F0(I) //

��

F0(J)

��
Y (I) // Y (J)
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is a pullback square. It follows that for each I ∈ I, the diagram

F0(I) //

��

lim−→F0

��
Y (I) // lim−→Y

is a pullback square.
Using (a), we can apply the same reasoning to the natural transformation X ′ → Y ′ to obtain a functor

F ′0 : J→ S. The proof of (a) shows that for each I ∈ I, the diagram

F ′0(I) //

��

F0(I)

��
Y ′(I) // Y (I)

is a pullback square. It follows that we also have a pullback square

F ′0(I) //

��

lim−→F0

��
Y ′(I) // lim−→Y.

Passing to the colimit over I (and using the fact that colimits in S commute with base change), we obtain a
pullback square

lim−→F ′0 //

��

lim−→F0

��
lim−→Y ′ // lim−→Y.

We conclude by observing that there are canonical equivalences

lim−→F0 ' lim−→F

' lim−→
I→J

lim−→
J→K

X(K)×Y (K) Y (I)

' lim−→
K

X(K)×Y (K) lim−→
I→J→K

Y (I)

' lim−→
K

X(K)×Y (K) Y (K)

' lim−→X,

and similarly lim−→F ′0 ' lim−→X ′.

Exercise 8. Let X → Y be a natural transformation of functors J → S. Let us say that a morphism
f : I → J in J is good if the natural map

lim−→
J→K

X(K)×Y (K) Y (I)→ lim−→
I→K

X(K)×Y (K) Y (I)

is a homotopy equivalence. Show that if we are given a pair of morphisms

I
f→ J

g→ K

in J such that g is good, then f is good if and only if the composition g ◦ f is good.
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In order to prove Theorem 1, it will suffice to show that the evaluation map e induces a map of simplicial
spaces S•(Fun(∆1,C)) → S•(C) which satisfies the requirements of Proposition 7 (where we take J = ∆op

to be the opposite of the category of nonempty finite linearly ordered sets). Fix a map of linearly ordered
sets α : [n′]→ [n]; we wish to show that the induced map

lim−→
β:[m]→[n′]

Sm(Fun(∆1,C))×Sm(C) Sn(C)→ lim−→
β:[m]→[n]

Sm(Fun(∆1,C))×Sm(C) Sn(C)

is a homotopy equivalence. Using Exercise 8, we may reduce to the case where n′ = 0.
Let us fix a point of Sn(C), corresponding to an [n]-gapped object X ′ ∈ C. Passing to the homotopy

fibers over X ′, we are reduced to proving that the map

θ : lim−→
β:[m]→[0]

Sm(Fun(∆1,C))×Sm(C) {X ′} → lim−→
β:[m]→[n]

Sm(Fun(∆1,C))×Sm(C) {X ′}

is a homotopy equivalence. Let cofib : Fun(∆1,C) → C be the functor given by (f : C → D) 7→ cofib(f),
so that cofib induces maps Sm(Fun(∆1,C)) → Sm(C). It follows immediately from the definitions that the
composite map

lim−→
β:[m]→[0]

Sm(Fun(∆1,C))×Sm(C) {X ′}
θ→ lim−→
β:[m]→[n]

Sm(Fun(∆1,C))×Sm(C) {X ′}
θ′→ lim−→

[m]∈∆op

Sm(C)

is a homotopy equivalence, so that θ is a homotopy equivalence if and only if θ′ is a homotopy equivalence.
In particular, we see that the condition that θ is a homotopy equivalence is independent of the choice of map
α : [0]→ [n]. We may therefore assume without loss of generality that α(0) = n.

For every map β : [m]→ [n], let X ′β denote the image of X ′ in Gap[m](C). Unwinding the definitions, we

can identify Sm(Fun(∆1,C))×Sm(C) {X ′} with the Kan complex

Zβ = Gap[m](C)'X′β/
,

whose vertices are maps X ′β → X in the ∞-category of [m]-gapped objects of C. Note that if β ≤ β′, then
there is a canonical map τβ,β′ : Zβ → Zβ′ given by X 7→ X ′β′ qX′β X.

Let us regard [n] as fixed, and let I denote the category whose objects are nonempty finite linearly ordered
sets [m] and monotone maps β : [m] → [n]. Let I0 ⊆ I be the full subcategory consisting of those maps
β : [m]→ [n] which take the constant value n (so that I0 is equivalent to the category ∆). The construction
β 7→ Zβ determines a functor Iop → S, and we wish to show that the canonical map

lim−→
β∈Iop0

Zβ → lim−→
β∈Iop

Zβ

is a homotopy equivalence.
The key observation is that the construction β 7→ Zβ has a little bit of extra functoriality. Let us define

an enlargement I+ of I as follows:

• The objects of I+ are nonempty finite linearly ordered sets [m] equipped with monotone maps β :
[m]→ [n].

• A morphism from β : [m] → [n] to β′ : [m′] → [n] in I+ consists of a monotone map γ : [m] → [m′]
such that β(i) ≥ β′(γ(i)) for 0 ≤ i ≤ m (this is an enlargement of the collection of morphisms in I,
where we would require the stronger condition β = β′ ◦ γ).

Any morphism γ in I+ determines a map Zβ′ → Zβ , which carries a map of [m′]-gapped objects X ′β′ → X
to the map of [m]-gapped objects X ′β → Y where

Y (i, j) = X(γ(i), γ(j))qX′(β′(γ(i)),β′(γ(j))) X
′(β(i), β(j).
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We therefore obtain a commutative diagram

lim−→β∈Iop0
Zβ //

&&

lim−→β∈Iop Zβ

xx
lim−→β∈Iop+

Zβ .

To prove that the upper horizontal map is a homotopy equivalence, it will suffice to show that the lower
horizontal maps are homotopy equivalences. This follows from the following combinatorial observation:

Lemma 9. The inclusion maps I0 ↪→ I+ and I ↪→ I+ are right cofinal.

Proof. The right cofinality of I0 ↪→ I+ follows from the fact that it admits a right adjoint (which carries an
arbitrary map β : [m]→ [n] to the constant map [m]→ {n}). To prove the right cofinality of the inclusion
I ↪→ I+, we must work a little bit harder. Fix an object of I+ given by a map β : [m] → [n]. Unwinding
the definitions, we see that the overcategory J = I×I+(I+)/β can be identified with the category whose
objects are nonempty finite linearly ordered sets [k] equipped with a monotone map γ : [k] → P , where
P = {(i, j) ∈ [m] × [n] : β(i) ≤ j}. This category contains as a deformation retract the full subcategory
spanned by the injective maps, whose geometric realization is homeomorphic to |N(P )|. It will therefore
suffice to show that the partially ordered set P is weakly contractible, which is clear because P has a smallest
element.
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Additive K-Theory (Lecture 18)

October 15, 2014

Let C be a pointed ∞-category ∞-category which admits finite colimits, let C0 ⊆ C be a full subcategory
which is closed under finite colimits, and assume that every object of C can be obtained as a retract of an
object of C0. In Lectures 14 and 15, we saw that there can be a big difference between K0(C) and K0(C0):
in the stable case, an object C ∈ C belongs to (the essential image) of C0 if and only if the class [C] ∈ K0(C)
belongs to the image of the map K0(C0) ↪→ K0(C). Our first goal in this lecture is to show that the difference
between C and C0 disappears when we look at higher K-groups. More precisely, we have the following result:

Proposition 1. Let C and C0 be as above. Then the canonical map Kn(C0) → Kn(C) is an isomorphism
for n > 0. In other words, the diagram of spaces

K(C0) //

��

K(C)

��
K0(C0) // K0(C)

is a homotopy pullback square.

To prove Proposition 1, we may assume without loss of generality that C and C0 are stable (since the
construction C 7→ SW (C) has no effect on K-theory). For every group G, let B•(G) denote the simplicial set
which models the classifying space of G, so that the set Bn(G) of n-simplices of B•(G) can be identified with
Gn. Let us describe this in a way that makes the simplicial structure of B•G more apparent. Using additive
notation for the group structure on G (we will ultimately be interested in the case where G is abelian), we
can identify BnG with the set of maps

f : [n](2) = {(i, j) ∈ [n]× [n] : i ≤ j} → G

which have the property that f(i, i) = 0 and f(i, j) + f(j, k) = f(i, k) for i ≤ j ≤ k.
If C is a pointed ∞-category which admits finite colimits, then every [n]-gapped object X : [n](2) → C

determines a map f : [n](2) → K0(C), given by f(i, j) = [X(i, j)], and f will satisfy the condition above.
This construction is functorial in [n] and therefore gives rise to a map of simplicial spaces

S•(C)→ B•(K0(C)).

The natural map K(C) → K0(C) can then be obtained by passing to classifying spaces and then applying
Ω. We may therefore rephrase Proposition 1 as follows:

Proposition 2. Let C be a stable ∞-category and let C0 be a full stable subcategory such that every object
of C is a direct summand of an object of C0. Then the diagram

|S•(C0)| //

��

|S•(C)|

��
|B•K0(C0)| // |B•K0(C)|

is a homotopy pullback square.
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Because the map K0(C0) → K0(C) is injective and an object C ∈ C belongs to C0 if and only if its
K-theory class [C] lifts to K0(C0), the diagram of simplicial spaces

S•(C0) //

��

S•(C)

��
B•K0(C0) // B•K0(C)

is a homotopy pullback square. As in the previous lecture, we need to show that this remains true after
geometric realization. Once again, this conclusion is not purely formal, because the spaces BnK0(C) are
not connected (in fact, they are discrete). Our proof will proceed by taking advantage of some additional
structure available in this situation: in this case, the coherently associative addition law on the spaces
involved (given by the formation of coproducts in C).

Notation 3. Let S denote the ∞-category of spaces and let Sp denote the ∞-category of spectra. The
formation of 0th spaces determines a functor Ω∞ : Sp → S. The ∞-category Sp is stable, so that products
and coproducts coincide. Consequently, every object E ∈ Sp can be regarded as a commutative monoid
object of Sp in an essentially unique way. It follows that Ω∞ determines a map Sp → CAlg(S), where
CAlg(S) denotes the∞-category of commutative monoid objects of S: that is, the∞-category of E∞-spaces.

It follows from abstract nonsense that the functor Ω∞ : Sp → CAlg(S) admits a left adjoint, which we
will denote by X 7→ Xgp. We will refer to Xgp as the group completion of X. Tautologically, any E∞-space
X is equipped with an E∞-map X → Ω∞Xgp. Nontautologically, one can show that this map is a homotopy
equivalence if and only if X is grouplike: that is, π0X is a group.

Let C be an ∞-category which admits finite coproducts. Then the formation of coproducts endows the
underlying Kan complex C' with the structure of an E∞-space. We will refer to the group completion
(C')gp as the additive K-theory spectrum of C and denote it by Kadd(C) (note that this conflicts with the
notation of Lecture 14, where we used the same notation for the abelian group π0Kadd(C)).

If C is a pointed ∞-category which admits finite colimits, then each Gap[n](C) has the same property.
It follows that each Sn(C) is an E∞-space which has a group completion Sn(C)gp. Since the geometric
realization |S• C | is grouplike (it is connected, we have

|S•(C)| ' Ω∞(|S•(C)gp)

' Ω∞(|S•(C)gp|).

It follows that the diagram of Proposition 2 is obtained by applying Ω∞ to a diagram of spectra

|S•(C0)gp| //

��

|S•(C)gp|

��
|HB•K0(C0)| // |HB•K0(C)|.

The functor Ω∞ preserves pullback squares, and the formation of geometric realizations of spectra commutes
with pullbacks (since the∞-category Sp is stable). It will therefore suffice to show that each of the diagrams

Sn(C0)gp //

��

Sn(C)gp

��
HBnK0(C0) // HBnK0(C)

is a pullback square. Replacing C by Gap[n](C), we can reduce to the case n = 1. Proposition 2 is now
reduced to the following “additive” version:
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Proposition 4. Let C be a stable ∞-category and let C0 be a full stable subcategory such that every object
of C is a direct summand of an object of C0. Then the diagram

Kadd(C0) //

��

Kadd(C)

��
HK0(C0) // HK0(C)

is a homotopy pullback square.

Proof. This is a version of the group completion theorem. Let us indicate a proof. The spectra involved are
connective, and the vertical maps are surjective on π0. Consequently, it will suffice to show that the diagram
of 0th spaces

Ω∞Kadd(C0) //

��

Ω∞Kadd(C)

��
K0(C0) // K0(C)

is a pullback square. Let Z denote the inverse image of K0(C0) in Ω∞Kadd(C); we wish to show that the
canonical map θ : Ω∞Kadd(C0)→ Z is a homotopy equivalence. Since Ω∞Kadd(C0) and X are simple (they
are infinite loop spaces), it will suffice to check that θ induces an isomorphism in homology.

Consider the singular chain complexes

A0 = C∗(Ω
∞Kadd(C0); Z) A = C∗(Ω

∞Kadd(C); Z).

Using the E∞-structures on the spaces involved, we can regard A0 and A as E∞-algebras over Z. Similarly,
we have E∞-algebras

B0 = C∗(C
'
0 ; Z) B = C∗(C

'; Z).

Note that B contains B0 as a direct summand, and in fact we have a natural grading B =
⊕
Bα where α

ranges over the cosets of K0(C0) in K0(C).
Using the universal property of the group completion, we see that A0 can be obtained from B0 by

inverting all elements of the form [X] ∈ Z[K0(C0)] ' H0(A0) for X ∈ C0, and that A can be obtained from
B by inverting all elements [X] for X ∈ C. However, since every object of C is a direct summand of an
object in C0, we only need to invert the classes [X] for X ∈ C0. We therefore have a canonical equivalence
A ' A0 ⊗B0 B. This equivalence determines a direct sum decomposition

A '
⊕
α

A0 ⊗B0
Bα,

where the chain complex C∗(X; Z) can be identified with the summand corresponding to α = 0. From this
description, it is clear that A0 ' C∗(X; Z).

Sometimes there is not much difference between K-theory and additive K-theory. Roughly speaking, we
would expect this behavior in a situation where every cofiber sequence

X ′ → X → X ′′

splits. However, this hypothesis is unreasonably strong in the context we have been discussing so far: for a
cofiber sequence

X → ∗ → Σ(X)

to split, we must have X ' ∗. It will therefore be useful to consider a slightly more general setup:
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Definition 5. An ∞-category with cofibrations is a pointed ∞-category C with a distinguished class of
morphisms, which we will call cofibrations, which satisfy the following axioms:

• All equivalences are cofibrations and the collection of cofibrations is closed under composition.

• For every object X in C, the canonical map ∗ → X is a cofibration.

• For a cofibration f : X → X ′ and an arbitrary map X → Y , there exists a pushout square

X
f //

��

X ′

��
Y

g // Y ′

and the map g is also a cofibration.

Warning 6. We are using the term “cofibration” in order to follow the language of Waldhausen’s paper, but
the notion of cofibration considered above does not a priori have any relationship to the notion of cofibration
in the language of model categories.

Example 7. Let C be a pointed ∞-category. One way to try to satisfy the axiomatics of Definition 5 is
to have as many cofibrations as possible. We can make C into an ∞-category with cofibrations where all
morphisms are cofibrations if and only if C has finite colimits.

Example 8. Let C be a pointed ∞-category. Another way to try to satisfy the axiomatics of Definition 5
is to have as few cofibrations as possible. Note that if for any pair of objects X and Y , the natural map
∗ → X is a cofibration and therefore there exists a pushout square

∗ //

��

X

��
Y // X ∨ Y

where the lower horizontal map is a cofibration. Consequently, if C is an ∞-category with cofibrations, then
C must have coproducts and every map of the form Y → X ∨ Y must be a cofibration.

Conversely, suppose that C is a pointed∞-category which admits finite coproducts. Then C can be made
into an ∞-category with cofibrations by declaring that a morphism f is a cofibration if and only if it is
equivalent to a morphism of the form Y → X ∨ Y ; we will refer to such a morphism as a split cofibration.

Let C be an∞-category with cofibrations. For each integer n, we let Gap[n](C) denote the full subcategory
of Fun(N{(i, j) ∈ [n]× [n] : i ≤ j},C) spanned by those functors X satisfying the following three conditions:

• For each i ≤ j ≤ k, the natural map X(i, j)→ X(i, k) is a cofibration.

• For each i, the object X(i, i) is zero.

• For each i ≤ j ≤ k, the diagram

X(i, j) //

��

X(i, k)

��
∗ // X(j, k)

is a pushout square.
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Arguing as in Lecture 16, we see that an object X of Gap[n](C) is determined by the diagram

X(0, 1)→ X(0, 2)→ · · · → X(0, n).

The only difference is that this time, we consider only those diagrams where each map is a cofibration.

Definition 9. Let C be an ∞-category with cofibrations. We let S•(C) denote the simplicial space given by
the formula Sn(C) = Gap[n](C)', where Gap[n](C) is defined as above. We let K(C) denote the space given
by Ω|S•(C)|.

The simplicial space S•(C) and K(C) depend not only on the ∞-category C, but also on the class
of cofibrations chosen. For example, if C admits finite colimits and we declare that all morphisms are
cofibrations (Example 7), then we recover the definitions of Lecture 16. If C admits finite coproducts and
we use only the split cofibrations (Example 8), then we often recover additive K-theory Kadd(C):

Theorem 10. Let C be an ∞-category which admits finite products and finite coproducts, and assume that
the homotopy category of C is additive (so that finite products and finite coproducts in C coincide). For
example, we can take any stable ∞-category, or any subcategory of a stable ∞-category which is closed under
direct sums. Regard C as an ∞-category with cofibrations as in Example 8 (allowing only split cofibrations).
Then there is a canonical homotopy equivalence Kadd(C) → K(C) (where we abuse notation by identifying
Kadd(C) with its 0th space).

We can identify the 0th space of Kadd(C) with the Ω|Y•|, where Y• is the simplicial space given by
Yn = (C')n (made into a simplicial space using the coproduct on C'). The map Kadd(C) → K(C) is then
obtained from a map of simplicial spaces

Y• → S•(C);

in degree n this map is given by the construction

(C1, . . . , Cn) 7→ (C1 → C1 ⊕ C2 → · · · → C1 ⊕ · · · ⊕ Cn).

We wish to show that the induced map of geometric realizations |Y•| → |S•(C)| is a homotopy equivalence.
All of the spaces in sight admit E∞-structures coming from the formation of coproducts in C. Arguing as
before, we obtain homotopy equivalences

|Y•| ' Ω∞|Y•|gp

' Ω∞|Y gp
• |.

|S•(C)| ' Ω∞|S•(C)|gp

' Ω∞|S•(C)gp|.

It will therefore suffice to show that for each n ≥ 0, the map Yn → Sn(C) induces a homotopy equivalence
of spectra Y gp

n → Sn(C)gp.
For simplicity, let us consider the case n = 2 (the general case is only notationally more difficult). The

space S2(C) classifies morphisms f : X → X ′ which are split cofibrations in C. Let e : S2(C) → C' be
the map given by e(X → X ′) = X, let π : C'×C' → C' be projection onto the first factor, and let
ι : C' → C'×C' be given by X 7→ (∗, X). We then have a commutative diagram of E∞-spaces

C'
ι //

��

C'×C'

π

��

// S2(C)

e

��
∗ // C'

id // C' .

We wish to show that the upper left horizontal map becomes an equivalence after group completion. In other
words, we wish to show that the square on the right becomes a pullback square after group completion. Since
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the ∞-category of spectra is stable, this is equivalent to the assertion that the square on the right becomes
a pushout square after group completion. The left square is clearly a pushout after group completion; it will
therefore suffice to show that the outer square is a pushout after group completion. In fact, we claim that
the left square is a pushout before group completion. In other words, we claim that C' can be obtained as a
one-sided bar construction S2(C)⊗C' ∗ in the∞-category of spaces, where the∞-category C' acts on S2(C)
via the construction

a : C'×S2(C)→ S2(C)

(C,X → X ′) 7→ (X → X ′ ⊕ C).

This is an assertion which can be tested fiberwise over C'. In other words, we are reduced to proving the
following:

Proposition 11. In the situation of Theorem 10, fix an object X ∈ C, and let D denote the full subcategory
of CX/ spanned by the split cofibrations X → X ′. Let C' act on the space D' as above. Then the homotopy
quotient

D' /C' := D'⊗C'∗

is contractible.

Proof. Note that the ∞-category D admits finite coproducts (given by pushouts over X), so that D' is an
E∞-space. We can regard the quotient D' /C' as the cofiber of the natural map

f : C' → D'

C 7→ (X → X ⊕ C)

in the∞-category of E∞-spaces. By construction, the map f is surjective on π0 so that the quotient D' /C'

is connected. In particular, D' /C' is grouplike, so it can be identified with (the 0th space of) its group
completion. It will therefore suffice to show that the map f induces an equivalence of group completions.

Define q : D' → C' by the formula q(X → X ′) = X ′/X. The map q is obviously a left homotopy
inverse to f . To complete the proof, it will suffice to show that it is also a right homotopy inverse after group
completion. In other words, we wish to show that the composite map

(f ◦ q) : D' → D'

(X → X ′) 7→ (X → X ⊕ (X ′/X)

is homotopic to the identity map after group completion. In fact, we claim that (f ◦ q) is homotopic to the
identity map id after adding a single copy of the identity map: that is, to any split cofibration X → X ′, we
can functorially identify the split cofibrations

X → X ′ qX X ′

X → X ′ ⊕ (X ′/X).

This identification follows from the additivity assumption on C (the “fold map” X ′ qX X ′ → X is split by
the inclusion of either factor).
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Algebraic K-Theory of Ring Spectra (Lecture 19)

October 17, 2014

Let R be an associative ring spectrum (here by associative we mean A∞ or associative up to coherent
homotopy; homotopy associativity is not sufficient for the considerations which follow). Then we can consider
the∞-category ModR whose objects are (right) R-module spectra. We say that an R-module M is perfect if

it is a compact object of ModR. We let Modperf
R denote the full subcategory of ModR spanned by the perfect

R-modules.

Remark 1. The full subcategory Modperf
R can be characterized as the smallest full subcategory of ModR

which contains R and is closed under finite colimits, desuspensions, and passage to direct summands.

Example 2. Every associative ring R can be regarded as an associative ring spectrum (by identifying R
with its Eilenberg-MacLane spectrum HR). In this case, the ∞-category ModR has a concrete algebraic
description: its objects can be identified with chain complexes of (ordinary) R-modules, and the objects of

Modperf
R can be identified with bounded chain complexes of finitely generated projective R-modules.

The ∞-categories ModR and Modperf
R are stable. In particular, Modperf

R is a pointed ∞-category which
admits finite colimits, so we can consider its K-theory.

Definition 3. Let R be an associative ring spectrum. We set K(R) = K(Modperf
R ). We will refer to K(R)

as the algebraic K-theory space of R.

Remark 4. It may appear that Definition 3 is a very special case of the construction described in Lecture
16. However, this is not really the case: the K-theory of an arbitrary pointed ∞-category C which admits
finite colimits can be described in terms of the K-theory of ring spectra. This can be seen as follows:

(a) Since the K-theory of C is the same as the K-theory of its Spanier-Whitehead ∞-category SW (C), we
might as well assume that C is stable.

(b) In the previous lecture, we showed that replacing C by its idempotent completion has little effect on
the space K(C) (it only changes the set of connected components). We therefore might as well assume
that C is idempotent complete.

(c) We will say that an object C ∈ C is a generator if the smallest stable subcategory of C which contains
C and is idempotent complete is C itself. In general, there need not exist a generator for C: however,
we can always write C as a filtered union

⋃
Cα, where each Cα is a stable subcategory which has a

generator. Then K(C) ' lim−→K(Cα). We therefore might as well assume that C has a generator.

(d) For any object C ∈ C, the sequence of spaces {MapC(C,ΣnC)}n≥0 determine a spectrum which we will
denote by End(C). One can show that End(C) is a ring spectrum, and that there is a fully faithful
embedding

Modperf
End(C) ↪→ C

M 7→M ∧End(C) C

which is an equivalence if and only if C is a generator. If this condition is satisfied, we then have
K(C) ' K(End(C)).
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Let R be an associative ring spectrum and let M be an R-module. We will say that M is finitely generated
and projective if it can be realized as a direct summand of Rn for some n. We let Modproj

R denote the full
subcategory of ModR spanned by the finitely generated projective R-modules. Note that this subcategory is
contained in Modperf

R . The∞-category Modproj
R has finite coproducts (though it does not have finite colimits

in general), so we can define its additive K-theory Kadd(Modproj
R ) as in the previous lecture (here we will

think of Kadd(Modproj
R ) as a space, rather than a spectrum). Our goal in this lecture is to prove the following

result:

Theorem 5. Let R be a connective ring spectrum (meaning that πnR ' 0 for n < 0). Then the inclusion

Modproj
R ↪→ Modperf

R induces a homotopy equivalence of K-theory spaces

Kadd(Modproj
R )→ K(Modperf

R ) = K(R).

Theorem 5 will allow us to get a concrete handle on K(R) (and describe some of its homotopy groups)
in the case where R is connective; we will return to this point in the next lecture.

To prove Theorem 5, we will need to introduce a family of intermediate objects which interpolate between
Modproj

R and Modperf
R .

Definition 6. Let M be an R-module and let n be an integer. We say that M is n-connective if πmM ' 0
for m < n. We say that M has projective amplitude ≤ n if, for every (n+ 1)-connective R-module N , every
morphism f : M → N is nullhomotopic.

The hypotheses of n-connectivity and projective amplitude ≤ m are of a complementary nature: as m and
n grow, the first condition gets stronger and the last condition gets weaker. Note that if M is n-connective
and of projective amplitude < n, then the identity map id : M →M is nullhomotopic and therefore M ' 0.

Lemma 7. Let M ∈ Modperf
R . The following conditions are equivalent:

(1) The R-module M is finitely generated and projective.

(2) The R-module M is 0-connective and of projective amplitude ≤ 0.

Proof. The implication (1)⇒ (2) is easy. The converse depends on a few basic facts about perfect modules.
For every ordinary module N over the ring π0R, we can regard the Eilenberg-MacLane spectrum HN as
a module over R. If M is 0-connective, then the space MapModR

(M,HN) is homotopy equivalent to the
discrete set Homπ0R(π0M,N) of module homomorphisms from π0M into N . If M is perfect, then the
construction N 7→ Homπ0R(π0M,N) commutes with filtered colimits and therefore π0M is finitely presented
as a module over π0R. In particular, we can choose a map e : Rn → M which is surjective on π0. Form a
cofiber sequence

Rn
e→M

f→ N.

The assumption that e is surjective on π0 ensures that N is 1-connective. If M has projective amplitude
≤ 0, then the map f must be nullhomotopic; a choice of nullhomotopy supplies a section of e which exhibits
M as a direct summand of Rn.

For each integer n ≥ 0, let Mod
(n)
R denote the full subcategory of Modperf

R spanned by those perfect

R-modules M which are 0-connective and of projective amplitude ≤ n; we let Mod
(∞)
R =

⋃
n≥0 Mod

(n)
R . We

will say that a morphism f : M ′ →M in Mod
(n)
R is a cofibration if the cofiber of f (formed in the∞-category

ModR) also belongs to Mod
(n)
R .

Exercise 8. (a) Let n be an integer, and suppose we are given a cofiber sequence

M ′ →M →M ′′

in ModR. Show that if M ′ and M ′′ are n-connective (of projective amplitude ≤ n), then M is also
n-connective (of projective amplitude ≤ n).
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(b) Show that an R-module M is n-connective (of projective amplitude ≤ n) if and only if the suspension
Σ(M) is (n+ 1)-connective (of projective amplitude ≤ n).

By “rotating” cofiber sequences, we can deduce several formal consequences of (a) and (b):

(c) Suppose we are given a cofiber sequence

M ′ →M →M ′′.

Show that if M is n-connective and M ′ is (n− 1)-connective, then M ′′ is n-connective. On the other
hand, if M is n-connective and M ′′ is (n+ 1)-connective, then M ′ is n-connective. Similar statements
hold if we replace “n-connective” with “of projective amplitude ≤ n”.

Exercise 9. Show that the notion of cofibration defined above endows Mod
(n)
R with the structure of an

∞-category with cofibrations in the sense of Lecture 18.

It follows from Exercise 8 that if f : M ′ → M is a morphism in Mod
(n)
R , then cofib(f) is automatically

connective and has projective amplitude at most ≤ n+ 1.

Exercise 10. It is somewhat easier to think about cofibration sequences in Mod
(n)
R rather than individual

cofibrations. The data of a cofibration f : M ′ → M in Mod
(n)
R is equivalent to the data of a cofibration

sequence
M ′ →M →M ′′

in ModR where M ′,M,M ′′ ∈ Mod
(n)
R . Note that if M and M ′′ belong to Mod

(n)
R , then M ′ automatically

has projective amplitude ≤ n; it is connective if and only if the map π0M → π0M
′′ is a surjection.

Example 11. When n = 0, we are considering cofibration sequences

M ′ →M →M ′′

where M ′, M , and M ′′ are finitely generated projective R-modules (Lemma 7). It follows that Mod
(0)
R has

only split cofibrations.

Example 12. When n =∞, every map in Mod
(n)
R is a cofibration.

We now turn to the proof of Theorem 5. We are interested in studying the composite map

Kadd(Modperf
R )→ K(Mod

(0)
R )→ K(Mod

(1)
R )→ · · · → K(Mod

(∞)
R )→ K(Modperf

R ).

We make the following observations:

(a) The map Kadd(Modperf
R ) → K(Mod

(0)
R ) is a homotopy equivalence. This follows from the result we

proved in Lecture 18, since every cofibration sequence in Mod
(0)
R splits.

(b) The ∞-category Modperf
R can be identified with the Spanier-Whitehead ∞-category of Mod

(∞)
R (this

follows from the observation that any perfect R-module M is (−n)-connective for n � 0). It follows

from our work in Lecture 17 that the map K(Mod
(∞)
R )→ K(Modperf

R ) is a homotopy equivalence.

It will therefore suffice to prove the following:

Proposition 13. For each integer n > 0, the canonical map K(Mod
(n−1)
R ) → K(Mod

(n)
R ) is a homotopy

equivalence.
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To prove Proposition 13, we will need to introduce an auxiliary construction. Let C be the ∞-category
whose objects are cofiber sequences

M ′ →M →M ′′,

where M ′ ∈ Mod
(n−1)
R , M ∈ Modproj

R , and M ′′ ∈ Mod
(n)
R . We regard C as an ∞-category with cofibrations,

where a cofibration in C is a map of cofiber sequences whose cofiber (formed in the ∞-category of all cofiber
sequences in ModR) also belongs to C.

There are evident evaluation maps

e′ : C→ Mod
(n−1)
R e : C→ Modproj

R e′′ : C→ Mod
(n)
R .

These evaluation maps induce maps of K-theory spaces, which we will denote by e′∗, e∗, and e′′∗ . We first
prove the following:

Lemma 14. The maps e′∗ and e∗ induce a homotopy equivalence

K(C)→ K(Mod
(n−1)
R )×K(Modproj

R ).

Proof. We define functors i : Mod
(n−1)
R → C and j : Modproj

R → C by the formulae

i(M ′) = (M ′ → 0→ Σ(M ′))

j(M) = (0→M →M).

It is clear that e′∗i∗ and e′′∗j∗ are homotopic to the identity maps on K(Mod
(n−1)
R ) and K(Modproj

R ), respec-
tively. To complete the proof, it will suffice to show that the sum i∗e

′
∗ + j∗e

′′
∗ is homotopic to the identity

map on K(C). This follows by applying the additivity theorem to the natural cofiber sequence

0 //

��

M //

��

M

��
M ′ //

��

M //

��

M ′′

��
M ′ // 0 // Σ(M ′)

(actually we need a slightly more general form of the additivity theorem than the one we proved in Lecture
17, which applies to the K-theory ∞-categories with cofibrations; however, this more general statement can
be proven by the same argument).

Let k : Modproj
R → C be the functor given by

k(M) = (M →M → 0).

The composite map

K(Mod
(n−1)
R )×K(Modproj

R )
i∗,k∗−→ K(C)

e′∗,e∗−→ K(Mod
(n−1)
R )×K(Modproj

R )

is upper triangular and therefore a homotopy equivalence. It follows that i∗ induces a homotopy equivalence

K(Mod
(n−1)
R ) → cofib(k∗), where the cofiber is formed in the ∞-category of grouplike E∞-spaces. Since

e′′ ◦ k is nullhomotopic, we obtain a map

θ : cofib(k∗)→ K(Mod
(n)
R ).
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The composite map

K(Mod
(n−1)
R ) ' cofib(k∗)

θ→ K(Mod
(n)
R )

is given concretely by the construction

Mod
(n−1)
R → Mod

(n)
R

M ′ → Σ(M ′),

and therefore agrees up to a sign with the map appearing in Proposition 13. It will therefore suffice to show
that θ is a homotopy equivalence.

Unwinding the definitions, we see that θ is given by a map

Ω(|S• C |/|S•Modproj
R |)→ Ω|S•Mod

(n)
R |,

where the quotient means we are forming a bar construction. Since the formation of bar constructions
commutes with geometric realization, θ is obtained by looping the geometric realization of a map of simplicial
spaces

θ• : S• C /S•Modproj
R → S•Mod

(n)
R .

It will therefore suffice to show that this map is a homotopy equivalence of simplicial spaces. We will take
this up in the next lecture.

References
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Lower K-Groups of Ring Spectra (Lecture 20)

October 19, 2014

We begin by finishing the proof from the previous lecture. Recall that R is a connective associative

ring spectrum, that Mod
(n)
R denotes the ∞-category of connective perfect R-modules which have projective

amplitude ≤ n, and that C is the ∞-category of cofiber sequences

M ′ →M →M ′′

where M ′ ∈ Mod
(n−1)
R , M ∈ Mod

(0)
R = Modproj

R , and M ′′ ∈ Mod
(n)
R . We regard S•Modproj

R as a simplicial
E∞-space (with E∞-structure given by the formation of direct sums), which acts on S• C via the construction

(P,M ′ →M →M ′′) 7→ (M ′ ⊕ P →M ⊕ P →M ′′).

We wish to prove the following:

Proposition 1. The canonical map S• C /S•Modproj
R → S•Mod

(n)
R is a homotopy equivalence of simplicial

spaces.

Proposition 1 is a levelwise statement: it asserts that for each integer m, the bar construction

Sm C /Sm Modproj
R

is homotopy equivalent to Sm Mod
(n)
R . To simplify the exposition, we will consider only the case m = 1 (the

general case follows by essentially the same argument). In this case, we wish to prove that the natural map

θ : C' /(Modproj
R )' → (Mod

(n)
R )'

is a homotopy equivalence. Fix an object M ∈ Mod
(n)
R ; we wish to show that the homotopy fiber θ−1{M} is

contractible. Set CM = C×
Mod

(n)
R

{M}, so that we can identify CM with the ∞-category whose objects are

finitely projective R-modules P equipped with a map P →M which is surjective on π0. Then θ−1{M} can

be identified with the bar construction C'M /(Modproj
R )', where Modproj

R acts on C'M by the construction

(Q,λ : P →M) 7→ ((λ⊕ 0) : P ⊕Q→M).

We wish to show that this space is contractible.
Let us first consider the special case where M is projective. In this case, any map λ : P → M which is

surjective on π0 is automatically split, so that we can write P as a direct sum M ⊕P0 where λ is the identity
on M and vanishes on P0. Here P0 is a direct summand of P and therefore also projective.

If P →M and Q→M are both surjective on π0, we deduce that P ×MQ has a direct sum decomposition
M⊕P0⊕Q0, where P0 and Q0 are direct summands of P and Q. Consequently, if P and Q are both projective,
then so is P ×M Q. It follows that the ∞-category CM admits finite products, so that C'M has the structure
of an E∞-space. We can now proceed as in Lecture 18. The action of (Modproj

R )' on C'M is via an E∞-map

P 7→ (P ⊕M →M)

1



which is surjective on connected components. It follows that the quotient (C'M )/(Modproj
R )' is connected

and in particular grouplike. Consequently, to show that it is contractible, it will suffice to show that the
group completion (C'M )/(Modproj

R )')grp is contractible. Equivalently, we must show that the map

f : (Modproj
R )' → C'M

induces a homotopy equivalence after group completion. Note that f has a left homotopy inverse q, given
by

(λ : P →M) 7→ fib(λ).

To complete the proof, it will suffice to show that q is also a right homotopy inverse after group completion.
The composition f ◦ q is given by

(λ : P →M)→ (fib(λ)⊕M →M).

This is not homotopic to the identity functor from C'M to itself. However, we claim that (f ◦ q) + id is
homotopic to id⊕ id: that is, for each object (λ : P →M), there is a canonical equivalence

P ×M P ' P ⊕ fib(λ)

(which is compatible with the projection to M). This follows from the fact that either projection map
P ×M P → P has a canonical section, given by the diagonal map δ : P → P ×M P . This completes the proof
in the case where M is projective.

We now consider the general case. Let D ⊆ Fun(∆1,CM ) be the subcategory whose objects are diagrams

P
α→ Q

β→M

where Q is projective and the maps α and β are surjective on π0, and whose morphisms are commutative
diagrams

P //

γ

��

Q //

δ

��

M

id

��
P ′ // Q′ // M

where γ is an equivalence and δ is surjective on π0. There is an obvious forgetful functor D → C'M given
by “forgetting” the middle term. This functor is a fibration whose fibers are weakly contractible (they have
initial objects, given by taking Q = P ), and therefore a weak homotopy equivalence. Note that the action

of (Modproj
R )' on C'M extends to an action of (Modproj

R )' on D, given by

(P ′, P → Q→M) 7→ (P ⊕ P ′ → Q→M).

It will therefore suffice to show that the quotient D /(Modproj
R )' is weakly contractible.

Let Csurj
M denote the subcategory of CM containing all objects, whose morphisms are given by commutative

diagrams

Q //

��

Q′

~~
M

where the morphisms are surjective on π0. There is an evident forgetful functor D → C
surj
M (given by

forgetting P ) which is equivariant with respect to the action of (Modproj
R )' (where we regard (Modproj

R )' as

acting trivially on C
surj
M ), and therefore induces a map

ψ : D /(Modproj
R )' → C

surj
M .
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This map is a left fibration whose fiber over an object (Q→M) can be identified with the bar construction

C'Q /Modproj
R , which we have already proved to be contractible. It follows that ψ is an equivalence of ∞-

categories, and therefore a weak homotopy equivalence. We are now reduced to proving the following:

Lemma 2. The ∞-category C
surj
M is weakly contractible.

Proof. Note that C
surj
M is equipped with a multiplication, given by

((λ : Q→M), (λ′ : Q′ →M))→ (λ⊕ λ′ : Q⊕Q′ →M).

Let X denote the topological space |Csurj
M |, so that we obtain a multiplication map m : X ×X → X. The

composite map
X → X ×X m→ X

is canonically homotopic to the identity; this follows from the existence of a canonical commutative diagram

Q⊕Q λ⊕λ //

��

M

id

��
Q

λ // M

where the left vertical map is given by the fold. In particular, for any x ∈ X we obtain a canonical path hx
from m(x, x) to x. Let ψ denote the induced map

πn(X,x)× πn(X,x)
m→ πn(X,m(x, x))

hx→ πn(X,x).

Then ψ is a group homomorphism, hence given by

ψ(a, b) = φ1(a)φ2(b)

for some commuting group homomorphisms φ1, φ2 : πn(X,x) → πn(X,x). By symmetry we must have
φ1 = φ2; let us denote them both by φ. Using the fact that h extends to a homotopy of the composite map

X → X ×X m→ X

to the identity, we see that a = ψ(a, a) = φ(a)2 = φ(a2) for all a ∈ πn(X,x). In particular, the map φ
is surjective. Using the associativity of the direct sum (and its compatibility with the construction of the
homotopy h), we also deduce the identity

ψ(a, ψ(b, c)) = ψ(ψ(a, b), c)

φ(a)φ(φ(b))φ(φ(c)) = φ(φ(a))φ(φ(b))φ(c)

Taking c to be the identity and cancelling, we obtain φ(a) = φ(φ(a)): that is, φ is the identity when restricted
to Im(φ). Since φ is surjective, we conclude that φ = id. Thus a = a2 for all a ∈ πn(X,x), which shows that
the connected component of x in X is contractible.

To complete the proof, it will suffice to show that X is connected. This follows from the observation that
for any maps λ : Q→ X and λ′ : Q′ → X which are surjective on π0, we can find a commutative diagram

P //

��

Q

λ

��
Q′

λ // X

where P is finitely generated and projective and all maps are surjective on π0. To see this, we note that the
fiber product Q ×X Q′ is connective and perfect and therefore there exists map Rn → Q ×X Q′ which is
surjective on π0.
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This completes the proof that for a connective associative ring spectrum R, we have a homotopy equiv-
alence K(R) ' Kadd(Modproj

R ).

Corollary 3. Let R be a connective associative ring spectrum. Then there is a canonical isomorphism
π0K(R) ' K0(π0R), where K0 is defined as in Lecture 2 (so that K0(A) denotes the Grothendieck group of
finitely generated projective A-modules).

Proof. We have π0K(R) = π0Kadd(R) = π0(Modproj
R )grp, so that π0K(R) can be identified with the

Grothendieck group of the commutative monoid of equivalence classes of finitely generated projective R-
modules. To complete the proof, it will suffice to establish the following:

(∗) Let R be a connective associative ring spectrum. Then the construction P 7→ π0P induces an equiva-
lence from the homotopy category of (finitely generated) projective R-modules to the ordinary category
of (finitely generated) projective π0R-modules.

Note that if P is projective, then we have a canonical isomorphism

π0 MapModR
(P,M) ' Homπ0R(π0P, π0M)

for every R-module spectrum M (observe that that the collection of all R-modules P for which this map is
bijective is closed under retracts, direct sums, and contains R). This proves that the functor described in (∗)
is fully faithful. To prove essential surjectivity, let P0 be a finitely generated projective module over π0R, so
that P0 is the image of some idempotent map e0 : (π0R)n → (π0R)n. Using the full faithfulness, we can lift
e0 to a map e : Rn → Rn. Let P be the direct limit

Rn
e→ Rn

e→ · · ·

and let Q be the direct limit

Rn
1−e→ Rn

1−e→ · · · .

By computing homotopy groups, we see that the natural maps Rn → P and Rn → Q exhibit Rn as a product
of P with Q. In particular, P is a finitely generated projective R-module, and we clearly have π0P = P0.

Corollary 4. Let R be a connective associative ring spectrum. Then there is a canonical isomorphism
π1K(R) ' K1(π0R), where K1 is defined as in Lecture 3 (that is, we have π1K(R) ' GL∞(π0R)ab).

Proof. Let X = (Modproj
R )', so that K(R) can be identified with (the 0th space of) the group completion

of X. In other words, K(R) is universal among E∞-spaces which receive a map X → K(R) having the
property that every element of π0X becomes invertible in π0K(R). We can identify the elements of π0X
with the equivalence classes of finitely generated projective R-modules. Each of these appears as a direct
summand of Rn; consequently, K(R) is universal among E∞-spaces which receive a map from X for which
the image of the point {R} becomes invertible in π0K(R). At the level of singular chain complexes, it follows
that C∗(K(R);Z) is universal among E∞-algebras over Z which receive an E∞-map C∗(X;Z) for which the
point [R] ∈ H0(X;Z) becomes invertible in H0(K(R);Z): that is, it can be identified with the E∞-algebra
obtained from C∗(X;Z) by inverting [R]. In particular, we can identify H1(K(R);Z) with the direct limit
of the sequence

H1(X;Z)
[R]→ H1(X;Z)

[R]→ H1(X;Z)→ · · · .

Restricting our attention to the identity component K(R)◦ ⊆ K(R), we can identify H1(K(R)◦;Z) with the
direct limit

H1(X(0);Z)→ H1(X(1);Z)→ H1(X(2);Z)→ · · · ,

where each X(n) is the connected component of X which classifies R-modules which are equivalent to Rn

(and the transition maps are given by forming the direct sum with a copy of R). In particular, each X(n)
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is a classifying space for the group Aut(Rn) of automorphisms of Rn (in the ∞-category ModR). We then
have π1X(n) = π0 Aut(Rn) ' GLn(π0R), so that

π1K(R) ' H1(K(R)◦;Z) ' lim−→H1(X(n);Z) ' lim−→(π1X(n))ab ' lim−→GLn(π0R)ab ' GL∞(π0R)ab.

Warning 5. Corollaries 3 and 4 show that the groups K0(R) and K1(R) of a connective ring spectrum R
depend only on the associative ring π0R. This is not true for the higher K-groups: in general, Kn+1(R) is
sensitive to the first n homotopy groups of R. The difference between the higher K-theory of ring spectra
(in other words, Waldhausen K-theory) and the higher K-theory of ordinary rings (introduced by Quillen)
will become important when studying the “higher” versions of the Whitehead torsion, which is our next
objective.

For each n ≥ 0, let GLn(R) denote the space Aut(Rn) of automorphisms of Rn as an object of the ∞-
category ModR, let BGLn(R) denote its classifying space, and let BGL∞(R) be the direct limit lim−→BGLn(R).
The proof of Corollary 4 shows that there is a canonical map

BGL∞(R)→ K(R)◦,

and that this map is an isomorphism on the first homology group. In fact, something stronger is true: we
can identify K(R)◦ with the space obtained from BGL∞(R) by performing the “plus construction” with
respect to the commutator subgroup of π1 BGL∞(R) = GL∞(π0R). To prove this, it suffices to establish
the following:

Proposition 6. Let M be an abelian group with an action of π1K(R)◦, which we view as a local system on
both K(R)◦ and on BGL∞(R). Then the canonical map

H∗(BGL∞(R);M)→ H∗(K(R)◦;M)

is an isomorphism.

Remark 7. Proposition 6 shows that, in the case of a discrete ring R, Waldhausen K-theory (defined via
the procedure we have been discussing) agrees with Quillen K-theory (defined via the plus construction).

Proof of Proposition 6. The element 1 = [R] ∈ K0(R) determines a map of infinite loop spaces QS0 → K(R),
which induces a map

Z/2Z ' π1QS0 → π1K(R) = K1(R).

Let ε ∈ K1(R) denote the image under this map of the nontrivial element of Z/2Z (under the isomorphism
K1(R) ' GL∞(π0R)ab of Corollary 4, this corresponds to the class represented by an odd permutation of
coordinates; equivalently, it is the class represented by −1 ∈ GL1(R), by an exercise from Lecture 3). Then
ε is an element of K1(R) having order 2, and therefore induces an involution of the abelian group M .

Let us say that an abelian group M with an action of K(R)◦ is good if the conclusion of Proposition 6
holds for M . It follows immediately that if we are given an exact sequence of representations

0→M ′ →M →M ′′ → 0

where two of the terms are good, then so is the third. We may therefore assume without loss of generality
that the involution of M determined by ε is either idM or − idM .

Let us first treat the case where the action of ε on M is by the identity, since this is a bit easier. Set
G = K1(R)/ε, and regard M as a module over the group ring Z[G]. Then we can regard the direct sum
Z[G]⊕M as a square-zero extension of Z[G]. We have an exact sequence of multiplicative groups

0→M → (Z[G]⊕M)× → Z[G]× → 0.

Consequently, to prove that M is good, it will suffice to show that (Z[G]⊕M)× and Z[G]× are good. Both
of these are special cases of the following assertion:
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(∗) Let A be a commutative ring and suppose we are given a map ψ : K1(R) → A× which annihilates ε.
Then A is good (with respect to the action of K1(R) via multiplication).

Let K ′(R) denote the fiber product Z×K0(R)K(R), so that K ′(R) is an infinite loop space with π0K
′(R) = Z

whose connected components are homotopy equivalent to K(R)◦. Note that ψ can be identified with a map of
infinite loop spaces K(R)◦ → K(A×, 1), and the condition that ψ annihilates ε is equivalent to the statement
that this map extends to an infinite loop map

K ′(R)→ K(A×, 1).

We can regard this infinite loop map as giving a local system L of A-modules on K ′(R) which is multiplicative
with respect to the E∞-structure on K ′(R), so that C∗(K

′(R);L) can be identified with an E∞-algebra over
Z. Note that we have a canonical map of E∞-spaces

θ : qn≥0 BGLn(R)→ K ′(R)

which induces a map of E∞-algebras

C∗(qn≥0 BGLnR; θ∗ L)→ C∗(K
′(R);L).

Arguing as in the proof of Corollary 4, we see that this map exhibits the right hand side as obtained
from the left hand side by inverting a single element [X] ∈ H0(BGL1(R); θ∗ L), from which it follows that
H∗(K(R)◦;A) is given by the direct limit of the sequence

H∗(BGL0(R);A)→ H∗(BGL1(R);A)→ · · ·

This completes the proof in the case where ε acts by the identity on M .
In the case where ε acts by − idM , we can use essentially the same strategy, but we need a few mod-

ifications. First, we should replace the group algebra Z[G] by the “twisted group algebra” obtained from
Z[K1(R)] by setting ε equal to −1. We then reduce to proving the following analogue of (∗):

(∗′) Let A be a commutative ring and suppose we are given a map ψ : K1(R)→ A× which carries ε to −1.
Then A is good (with respect to the action of K1(R) via multiplication).

Let Y be the classifying space for invertible graded A-modules, so that Y ' Z ×K(A×, 1). We regard
Y as an infinite loop space using the usual commutativity constraint for tensor products of graded modules.
Then multiplication by η ∈ π1QS0 carries the generator 1 ∈ Z to −1 ∈ A×. It follows that the infinite loop
map K(R)◦ ×K(A×, 1) determined by ψ fits into a commutative diagram of E∞-maps

K(R)◦

ψ

��

// K ′(R)

ψ

��

// Z

��
K(A×, 1) // Y // Z.

As before, we can identify the map ψ with a mutiplicative local system L on K ′(R): the only difference is
that L is now a graded local system (on the connected component {n} × K(R)◦, we regard L as lying in
degree n). We again obtain a map of E∞-algebras

C∗(qn≥0 BGLnR; θ∗ L)→ C∗(K
′(R);L).

which exhibits the right hand side as a localization of the left hand side, this time by inverting a class
[X] ∈ H1(BGL1(R); θ∗ L). Identifying the restriction of L to each component with a shift of the local system
A, we again obtain the desired isomorphism

H∗(K(R)◦;A) ' lim−→H∗(BGLn(R);A).
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The Algebraic K-Theory of Spaces (Lecture 21)

October 22, 2014

Let X be a topological space. Then the singular simplicial set Sing•(X) is a Kan complex, and in
particular an ∞-category. If C is another ∞-category, we define a local system on X with values in C to be
a map of simplicial sets

Sing•(X)→ C .

The collection of all local systems onX with values in C can be organized into an∞-category Fun(Sing•(X),C),
which we will denote by CX .

Example 1. If C is an ordinary category, then every local system on X with values in C factors through the
homotopy category of Sing•(X), which is the fundamental groupoid of X. If X is connected and we choose
a base point x ∈ X, then we can identify CX with the category consisting of objects C ∈ C with an action
of the fundamental group π1(X,x).

Variant 2. We will generally use the term “space” to refer either to a topological space or to a Kan complex
(or to an object of some other type which could be used as a model for homotopy theory). In the latter case,
the notion of local system takes a simpler form: it is just a map from X into C.

In what follows, we will confine our attention to the case where C is the∞-category Sp of spectra. In this
case, we will refer to objects of SpX as local systems of spectra on X or spectra parametrized by X. However,
many of the notions we introduce make sense for more general ∞-categories C.

Notation 3. Let X be a space and let L be a local system of spectra on X. Then each point x ∈ X
determines a spectrum Lx, which we will refer to as the value of L at x.

Remark 4. The ∞-category Sp admits small limits and colimits. Consequently, given a local system L of
spectra on a space X, we can take its limit or colimit to obtain a spectrum. We will denote the limit by
C∗(X;L) and the colimit by C∗(X;L). In the special case where the local system L is constant with value
E, these can be identified with the function spectrum EX and the smash product E ∧X+, respectively.

Remark 5 (Functoriality). Let f : X → Y be a map of spaces. Then composition with f determines a
pullback functor f∗ : SpY → SpX . We will sometimes denote the pullback of a local system L ∈ SpX by
L |Y .

It follows from abstract nonsense that the functor f∗ admits both a left adjoint f! and a right adjoint
f∗ (given by left and right Kan extension). If f is a fibration (which we can always arrange), then these
functors are given by the formula

(f! F)y = C∗(Xy;L |Xy
) (f∗ F)y = C∗(Xy;L |Xy

)

where Xy denotes the fiber of f over the point y.

Proposition 6. Let X be a space. Then the∞-category SpX is compactly generated. That is, it is equivalent
to Ind(C), where C ⊆ SpX is the full subcategory spanned by the compact objects.
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Proof. It follows from general nonsense that the inclusion C ↪→ SpX extends to a fully faithful embedding
F : Ind(C) ↪→ SpX , and that F admits a right adjoint G. To show that F is an equivalence of ∞-categories,
it suffices to show that G is conservative. In other words, it will suffice to show that if α : L → L′ is a
morphism of local systems and that G(α) is an equivalence, then α is an equivalence. Pick a point x ∈ X,
and let i : {x} ↪→ X denote the inclusion map. The functor i∗ preserves filtered colimits, so its left adjoint
i! preserves compact objects. If G(α) is an equivalence, we conclude that it induces a homotopy equivalence

Map(i!E,L)→ Map(i!E,L
′)

for every finite spectrum E (viewed as a local system on {x}). It follows that the map Map(E,Lx) →
Map(E,L′x) is a homotopy equivalence for every finite spectrum E, from which we conclude that Lx ' L′x.
Since x is arbitrary, it follows that α is an equivalence.

The proof of Proposition 6 shows something a bit stronger: the ∞-category SpX is generated (under
colimits and desuspensions) by compact objects of the form i!S, where S is the sphere spectrum and i
ranges over the inclusions of all pointsx ∈ X. It follows that the collection of compact objects of SpX is
generated (under finite colimits, desuspensions, and retracts) by objects of the form i!S. Moreover, it suffices
to consider one point x lying in each connected component of X. Consequently, if X is connected, then
SpX is generated by a single compact object i!S, and is therefore equivalent to the ∞-category ModR where
R = End(i!S) is the ring spectrum of endomorphisms of i!S. Note that we can identify R with the spectrum
of maps from S to i∗i!S: that is, with the value of i!S at the point x. Converting i into a fibration and using
Remark 5, we see that R can be identified with the spectrum

C∗(Ω(X);S) ' Σ∞+ Ω(X).

Note that R is connective ring spectrum and that π0R is isomorphic to the group algebra Z[π1X] (specializing
to the case of discrete R-modules, we recover a more familiar fact: the category of local systems of abelian
groups on X is equivalent to the category of Z[π1X]-modules).

Definition 7. Let X be a space and let C ⊆ SpX be the full subcategory spanned by the compact objects.
Then K(C) is a grouplike E∞-space, and is therefore the 0th space of a connective spectrum. We will denote
this spectrum by A(X) and refer to it as the A-theory spectrum of X.

In what follows, we will generally abuse notation and not distinguish between grouplike E∞-spaces and
the corresponding spectra.

Example 8. Let X be a connected space with base point x ∈ X. Then we have A(X) ' K(R), where
R = Σ∞+ ΩX is the ring spectrum described above. Since R is connective, we can identify A(X) with the

group completion of the E∞-space (Modproj
R )' of finitely generated projective R-modules.

Warning 9. Our definition of A(X) is not standard. The usual convention in the literature is to use A(X)
to refer to the group completion of the E∞-space of finitely generated free R-modules. However, we have
seen that it does not make a very big difference: the only thing that changes is the group π0A(X).

Remark 10. Let X be a connected space and let G be its fundamental group. Applying the results of the
previous lecture, we obtain isomorphisms

π0A(X) = K0(Z[G]) π1A(X) = K1(Z[G]) = GL∞(Z[G])ab.

However, the higher homotopy groups of A(X) do not have “classical” names: they depend on the entire
homotopy type of X (rather than just its fundamental group) and on the fact that we are working over the
sphere spectrum (rather than the ring Z of integers).

Example 11. Let X be a simply connected space. Then we have

π0A(X) ' Z π1A(X) ' Z/2Z.
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Let f : X → Y be a map of spaces. Since the pullback functor f∗ preserves filtered colimits, its
left adjoint f! preserves compact objects and therefore induces a map of K-theory spectra A(X) → A(Y ).
Consequently, we can view the construction X 7→ A(X) as a covariant functor from the∞-category of spaces
to the ∞-category of spectra.

Let us now consider some other types of local system:

Example 12. Let S denote the ∞-category of spaces. For every space X, we can identify the ∞-category
SX of local systems on X with the ∞-category S/X of spaces Y with a map Y → X; the identification
associates to each map f : Y → X the local system x 7→ Yx where Yx denotes the homotopy fiber of f over
the point x ∈ X. The proof of Proposition 6 shows that SX is compactly generated. Under the equivalence
SX ' S/X , the compact objects correspond to those maps Y → X where Y is a finitely dominated space
(note that the finiteness condition here is placed on the space Y itself, not on the homotopy fibers of the
map Y → X).

Example 13. Let S∗ denote the∞-category of pointed spaces. Then the identification SX ' S/X of Example

12 induces an identification SX∗ ' SX//X , where SX//X denotes the ∞-category of diagrams

Y

  
X

id //

>>

X

which exhibit X as a retract of Y . The proof of Proposition 6 shows that this ∞-category is generated by
compact objects. Examples of compact objects include any diagram as above where Y can be obtained from
X by attaching finitely many cells. Conversely, any compact object is a retract (in the homotopy category)
of such a relative cell complex.

There are evident maps
SX → SX∗ → SpX ,

given pointwise by “adding a disjoint basepoint” and “taking the suspension spectrum.” These constructions
preserve compact objects (since they are left adjoint to functors which preserve filtered colimits). In partic-
ular, if Y is a finitely dominated space over X, then the construction x 7→ Σ∞+ (Yx) determines a compact

object of SpX , which determines a point of the space Ω∞A(X) which we will denote by [Y ].

Example 14 (Wall Finiteness Obstruction). Suppose that the space X itself is finitely dominated. Then
the above construction determines a point [X] ∈ Ω∞A(X), which is represented by the constant local system
S which takes each point of x to the sphere spectrum S. We let wX ∈ π0A(X) denote the class represented
by this point.

Suppose that X is connected with fundamental group G. We claim that under the isomorphism π0A(X) '
K0(Z[G]) of Remark 10, the class wX is a lifting of the Wall finiteness obstruction wX ∈ K̃0(Z[G]) introduced
in Lecture 2. Recall that to define wX , we chose a finite complex X ′ with a map X ′ → X such that the
relative homology H∗(X,X

′; Z[G]) was a projective module P concentrated in a single degree n, and defined
wX = (−1)n[P ]. Choose a base point x ∈ X and set R = Σ∞+ Ω(X), so that every map of spaces Y → X
determines an R-module spectrum Σ∞+ Yx. We then have a cofiber sequence of R-modules

Σ∞+ X
′
x → Σ∞+ Xx → ΣnP ,

where P is a projective R-module with π0P = P . Since X ′ admits a finite cell decomposition, the R-module
spectrum Σ∞+ X

′
x admits a finite filtration whose successive quotients are suspensions of R and therefore

represents a class in K(R) given by some integer m. We then have

wX = m+ (−1)n[P ]
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in π0A(X) ' K0(R) ' K0(Z[G]).
The abstract version of the Wall finiteness criterion given in Lecture 15 asserts that a finitely dominated

space X is homotopy equivalent to a finite cell complex if and only if wX belongs to the image of the
canonical map K0(Sfin

X//X)→ π0A(X), where Sfin
X//X is the full subcategory of SX//X spanned by the finite

relative cell complexes. It is not hard to see (and we have already invoked above) that the the image of this
map is precisely the subgroup Z ⊆ K0(Z[G]) corresponding to projective Z[G]-modules which are free. We
therefore obtain an alternative proof of the main result of lecture 2: the space X is finitely dominated if and
only if wX vanishes in K0(Z[G]).

Remark 15 (Assembly Maps). Let S denote the∞-category of spaces and let C ⊆ S be the full subcategory
consisting only of the 1-point space ∗. For any functor F : S→ Sp, we can identify the restriction F |C with
a single spectrum F (∗). Let F+ be the left Kan extension of F |C along the inclusion C ↪→ S: this is the
functor given by

F+(X) = lim−→
C→X

F (C)

where C ranges over all objects of C equipped with a f : C → X. By definition, we must have C = ∗ and
we can identify f with a point x ∈ X, so that F+(X) can be identified with the spectrum C∗(X;F (∗)) =
X+ ∧ F (∗).

The universal property of the left Kan extension F+ guarantees that there is a natural transformation
of functors F+ → F , determined uniquely (up to homotopy) by the requirement that it is the identity map
when evaluated at a point. In other words, for any space X we have a canonical map

C∗(X;F (∗))→ F (X).

We will refer to this map as the assembly map associated to F . It is an equivalence if and only if the functor
F commutes with small colimits (in which case F is determined by the spectrum F (∗)).

Specializing Remark 15 to the case where F is the A-theory functor X 7→ A(X), we obtain the A-theory
assembly map

C∗(X;A(∗))→ A(X).

This map is not an equivalence in general, and we will see that its failure to be an equivalence measures the
difference between simple homotopy theory and ordinary homotopy theory.

Definition 16. For every space X, we let Wh(X) denote the cofiber of the assembly map C∗(X;A(∗)) →
A(X). We will refer to Wh(X) as the (piecewise linear) Whitehead spectrum of X.

Remark 17. Let X be a connected space with fundamental group G. Using the isomorphisms π0A(∗) ' Z
and π1A(∗) ' Z/2Z, the Atiyah-Hirzebruch spectral sequence supplies an isomorphism

H0(X;A(∗)) ' H0(X; Z) ' Z

and an exact sequence of low-degree terms

H0(X;π1A(∗))→ H1(X;A(∗))→ H1(X; Z)→ 0.

This sequence is exact on the left and canonically split (we can see this by considering the projection map
from X to a point), so we obtain an isomorphism

H1(X;A(∗)) ' (Z/2Z)⊕Gab.

The cofiber sequence of spectra

C∗(X;A(∗))→ A(X)→Wh(X)

4



now supplies a long exact sequence of abelian groups

(Z/2Z)⊕Gab β→ K1(Z[G])→ π1 Wh(X)→ Z
α→ K0(Z[G])→ π0 Wh(X)→ 0.

The map α is split injective (via the ring homomorphism Z[G] → Z which annihilates G, say). We can

therefore identify π0 Wh(X) with the reduced K-group K̃0(Z[G]) and π1 Wh(X) with the cokernel of β,
which is the Whitehead group of X as defined in Lecture 4.

For our applications, it will be convenient to have a geometric understanding of the assembly map: that
is, we would like to understand it not as arising from the general categorical construction of Remark 15, but
instead have an interpretation of the domain C∗(X;A(∗)) as related to some sorts of kind of sheaf theory on
X, just as A(X) is related to local systems on X. We will take this up in the next lecture.
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Constructible Sheaves (Lecture 22)

October 29, 2014

For any topological space, one can consider the A-theory assembly map

X+ ∧A(∗)→ A(X)

defined in the previous lecture. Our goal over the next few lectures is to provide a “geometric” description of
the left hand side, analogous to our description of A(X) as the K-theory of an ∞-category of local systems.
In what follows, we will confine our attention to the case where X is a finite polyhedron.

Suppose we are given a PL triangulation of X, which we will identify with a finite partially ordered set
Σ(X) of simplices in X. In this case, X is homeomorphic to the nerve of the poset Σ(X). Consequently,
the singular complex Sing•X is weakly homotopy equivalent to N(Σ(X)). Thinking of both Sing•X and
N(Σ(X)) as ∞-categories, this means that the Kan complex Sing•X is obtained from the ∞-category
N(Σ(X)) by formally inverting all morphisms. In other words, for any ∞-category C, there is a fully faithful
embedding

CX = Fun(Sing•X,C)→ Fun(Σ(X),C),

whose essential image consists of those functors F : Σ(X)→ C which carry each inclusion of simplices σ0 ⊆ σ
to an equivalence F(σ0)→ F(σ). This motivates the following definition:

Definition 1. Let X be a polyhedron equipped with a triangulation Σ(X), and let C be an ∞-category.
A C-valued sheaf on X which is constructible with respect to Σ(X) is a functor N(Σ(X)) → C. We let
ShvΣ(X)(X;C) denote the ∞-category Fun(N(Σ(X)),C) of C-valued sheaves which are constructible with
respect to Σ(X).

Example 2. The above analysis shows that we can identify CX with a full subcategory of ShvΣ(X)(X;C).

Remark 3. There is another notion of sheaf which is less combinatorial in flavor: namely, one can define a
C-valued sheaf on X (for X any topological space) to be a contravariant functor F from open subsets of X to
C, which satisfies the following descent condition: for any collection of open sets {Uα}, if we set U =

⋃
Uα,

then F(U) ' lim←−V F(V ), where the limit is taken over all open subsets V ⊆ X which are contained in some
Uα.

If Σ(X) is a triangulation of X, one can say that such a sheaf F is constructible with respect to Σ(X) if
its restriction to the interior of each simplex of Σ(X) is a constant sheaf. One can show that if C admits
small limits, then this definition is equivalent to Definition 1. However, since we will only be interested in
constructible sheaves, we will be content to work with Definition 1.

Exercise 4. Let Sp denote the ∞-category of spectra. Show that an object F ∈ ShvΣ(X)(X; Sp) is compact
if and only if each F(σ) is a finite spectrum.

Suppose that we are given another triangulation Σ′(X) which refines a triangulation Σ(X) (meaning that
each simplex of Σ′(X) maps linearly into a simplex of Σ(X)). Then for each simplex σ′ ∈ Σ′(X), there is a
smallest simplex σ ∈ Σ(X) which contains it. The construction σ′ 7→ σ defines a map of partially ordered
sets f : Σ′(X)→ Σ(X). Composition with f induces a map ι : ShvΣ(X)(X;C)→ ShvΣ′(X)(X;C).

1



Proposition 5. In the above situation, the functor ι : ShvΣ(X)(X;C)→ ShvΣ′(X)(X;C) is fully faithful.

Remark 6. Proposition 5 is an immediate consequence of the topological picture described in Remark 3.

Proof. We may assume without loss of generality that C admits finite limits. The functor ι has a left adjoint
ι+ : ShvΣ′(X)(X;C)→ ShvΣ(X)(X;C), given by left Kan extension along f . Concretely, this functor can be
described by the formula

(ι+ F)(σ) = lim−→
σ′∈Σ′(X),σ′⊆σ

F(σ′),

where F ∈ ShvΣ′(X)(X;C). To prove Proposition 5, we must show that for every G ∈ ShvΣ(X)(X;C), the
counit map ι+ι

∗ G→ G is an equivalence. Evaluating at a simplex σ ∈ Σ(X), we are required to prove that
G(σ) is given by the colimit lim−→σ′∈Σ′(X),σ′⊆σ G(f(σ′)). In other words, we wish to show that the canonical
map

θ : lim−→
σ′∈Σ′(X),σ′⊆σ

G(f(σ))→ lim−→
σ′∈Σ′(X),σ′⊆σ

G(σ)

is an equivalence (the right hand side is given by G(σ), since the diagram is indexed by a contractible
partially ordered set: in fact, the geometric realization of this partially ordered set is homeomorphic to σ).
Let P0 = {σ′ ∈ Σ′(X) : σ′ ⊆ σ} and let P1 = {σ′ ∈ P : f(σ′) = σ}. The map θ is determined by a natural
transformation between diagrams S0 → C, and this natural transformation is invertible when restricted to
S1. To prove that θ is invertible, it suffices to show that S1 is left cofinal in S0. This is a special case of the
following more general assertion (applied in the case M = σ):

Lemma 7. Let M be a piecewise linear n-manifold with boundary, equipped with a triangulation Σ(M). Let
Q be the collection of simplices of S which are not contained in ∂M . Then the inclusion Q ↪→ Σ(M) is left
cofinal.

Remark 8. Lemma 7 can be regarded as an analogue of the assertion that a manifold with boundary is
always homotopy equivalent to its interior.

Proof. To prove Lemma 7, we work by induction on n. Fix a simplex σ ∈ Σ(X); we wish to show that the
set Q = {σ′ ∈ P : σ ⊆ σ′} has weakly contractible nerve. If σ ∈ P this is obvious (since the subset above
contains σ as a smallest element). Let us therefore assume that σ is a simplex of the boundary ∂M . Let
V = {τ ∈ Σ(X) : σ ( τ}. Then V can be identified with the partially ordered set of simplices of lk(σ), which
(since M is a PL manifold with boundary) is PL isomorphic to a disk Dm for m < n. We can identify Q with
the subset of V consisting of simplices which are not contained in ∂ Dm. Using the inductive hypothesis, we
deduce that the inclusion Q ↪→ V is left cofinal. Since V has weakly contractible nerve, so does Q.

Emboldened by Proposition 5, let us abuse notation by identifying ShvΣ(X)(X;C) with its essential image
in ShvΣ′(X)(X;C) whenever Σ′(X) is a refinement of Σ(X). This motivates the following:

Definition 9. Let ShvPL(X;C) denote the filtered direct limit ShvΣ(X)(X;C), where Σ(X) ranges over all
PL triangulations of X. We will refer to ShvPL(X;C) as the ∞-category of constructible C-valued sheaves
on X.

Remark 10 (Functoriality). Let f : X → Y be a PL map of finite polyhedra, and suppose we are given
compatible triangulations Σ(X) and Σ(Y ). Then f induces a map of posets r : Σ(X) → Σ(Y ), which
determines a pullback functor

f∗ : ShvΣ(Y )(Y ;C)→ ShvΣ(X)(X;C).

If C admits finite limits, then f∗ admits a right adjoint f∗, given by right Kan extension along r. Since r is
a Cartesian fibration, this right Kan extension can be described concretely by the formula

(f∗ F)(τ) = lim←−
f(σ)=τ

F(σ).
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Suppose that we are given refinements Σ′(X) and Σ′(Y ) of the triangulations Σ(X) and Σ(Y ), which
are compatible with the map f . It is easy to see that the definition of f∗ is compatible with the fully
faithful embeddings of Proposition 5. We claim that the same is true of f∗. In other words, we claim that if
F ∈ ShvΣ(X)(X;C) and τ ′ ∈ Σ′(Y ), then the canonical map

lim←−
f(σ)=τ ′+

F(σ)→ lim←−
f(σ′)=τ ′

F((σ′)+)

is an equivalence, where τ ′
+

Is the smallest simplex of Σ(Y ) containing τ ′ and the notation (σ′)+ is defined
similarly. To prove this, it suffices to show that construction σ′ 7→ (σ′)+ defines a right cofinal map of posets

{σ′ ∈ Σ′(X) : f(σ′) = τ ′} → {σ ∈ Σ(X) : f(σ) = (τ ′)+}.

Fix a simplex σ ∈ Σ(X) with f(σ) = (τ ′+); we wish to prove that the poset {σ′ ∈ Σ′(X) : σ′ ⊆ σ, f(σ′) = τ ′}
is weakly contractible. This follows by applying our criterion for cell-like maps to the map of simplices
σ → (τ ′)+ (equipped with the triangulations induced by Σ′(X) and Σ′(Y ), respectively).

Passing to the limit over all triangulations, we obtain a pair of adjoint functors

ShvPL(Y ;C)
f∗ //ShvPL(X;C).
f∗

oo

If C admits finite colimits, then the functor f∗ also admits a left adjoint

ShvΣ(X)(X;C)→ ShvΣ(Y )(Y ;C).

This functor is not compatible with refinement of triangulation, and will therefore be of little use to us.
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Universal Local Acyclicity (Lecture 23)

October 27, 2014

Let C be an ∞-category, which will remain fixed for most of this lecture In the previous lecture, we
introduced the notion of a constructible C-valued sheaf on a finite polyhedron X. Suppose we are given
a map of finite polyhedra f : X → S. In this Then a constructible sheaf F on X determines a family of
constructible sheaves Fs on Xs, as s ranges over the points of S. In this lecture, we will study a condition
which guarantees that the sheaves Fs behave nicely as s varies.

Let us henceforth assume that C admits finite limits.

Definition 1. Let f : X → S be a PL map of polyhedra. Choose triangulations Σ(X) and Σ(S) of X and
S which are compatible with the map f . We will say that a sheaf F ∈ ShvΣ(X)(X;C) is universally locally
acyclic with respect to f (ULA) at a simplex σ0 ∈ Σ(X) if the following condition is satisfied:

(∗) For any simplex τ ∈ Σ(S) which contains τ0 = f(σ0), the canonical map

F(σ0)→ lim←−
σ0⊆σ,f(σ)=τ

F(σ)

is an equivalence in C.

We will say that F is ULA at a point x ∈ X if it is ULA at every simplex which contains x. We will say that
F is ULA if it is ULA at every simplex.

Warning 2. The condition that F be ULA depends not only on the sheaf F and the polyhedron X, but
also on the map f . When it is important to emphasize this dependence, we will instead use the phrase “F
is ULA over S.”

Remark 3. It follows tautologically from the definition that the set of points x ∈ X at which F is ULA is
open: its complement is a subcomplex of X.

Remark 4. In condition (∗), we can replace the poset {σ0 ⊆ σ, f(σ) = τ} with {σ0 = σ ∩ f−1τ0, f(σ) = τ}:
the latter is right cofinal in the former.

Example 5. Let F ∈ ShvΣ(X)(X;C). Then F is ULA over X if and only if F is locally constant.

Example 6. Let F ∈ ShvΣ(X)(X;C) and f : X → S be as in Definition 1. If σ ∈ Σ(X) has the property
that f(σ) is a maximal simplex of S (not contained as a facet of any larger simplex), then F is automatically
ULA at σ. In particular, F is automatically ULA on the open subset of X given by the inverse images of
the interiors of the maximal simplices of S.

Proposition 7. The notion of universal local acyclicity is independent of the choice of triangulation. That
is, if F ∈ ShvΣ(X)(X;C) and we choose finer triangulations Σ′(X) and Σ′(S) (still compatible with the map
f) and we let F′ ∈ ShvΣ′(X)(X;C) denote the image of F, then F is ULA at a point x ∈ X if and only if F′

is ULA at x.
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Proof. Let g : Σ′(X)→ Σ(X) be the map that takes each simplex of Σ′(X) to the smallest simplex of Σ(X)
which contains it. Then it will suffice to show that F′ is ULA at a simplex σ′0 if and only if F is ULA at
σ0 = g(σ′0). Suppose first that F is ULA at σ0, and consider a simplex τ ′ ∈ Σ′(S) which contains τ ′0 = f(σ′0).

Let τ0 and τ be the smallest simplices of Σ(S) which contain τ ′0 and τ ′, respectively. We have a commu-
tative diagram

F(σ0) //

��

lim←−σ0⊆σ,f(σ)=τ
F(σ)

��
F′(σ′0) // lim←−σ′

0⊆σ′,f(σ′)=τ ′ F
′(σ′).

By hypothesis, the upper horizontal map is an equivalence, and we wish to prove that the same is true of
the lower horizontal map. Since the left vertical map is an equivalence, we are reduced to proving the same
is true of the lower vertical map. Invoking the definition of F′, we are reduced to proving that g induces a
right cofinal map of posets

{σ′ ∈ Σ′(X) : σ′0 ⊆ σ′, f(σ′) = τ ′} → {σ ∈ Σ(X) : σ0 ⊆ σ, f(σ) = τ}.

Fix a simplex σ in the latter poset; we wish to prove that the poset

{σ′ ∈ Σ′(X) : σ′0 ⊆ σ′ ⊆ σ, f(σ′) = τ ′}

is weakly contractible. This follows from the criterion of Lecture 9, applied to the map σ → τ (with
the triangulations induced by Σ′(X) and Σ′(S)); note that this is a linear map of simplices and therefore
automatically a fibration.

Now suppose that F′ is ULA at σ′0; we wish to show that F is ULA at σ0. Let τ be any simplex of Σ(S)
which contains f(σ0). Then we can choose a simplex τ ′ of Σ′(S) which contains f(σ′0) whose interior is
contained in the interior of τ . The desired result now follows by applying the above reasoning to the simplex
τ ′.

It follows from Proposition 7 that universal local acyclicity makes sense for objects of ShvPL(X;C).
Moreover, it is a condition which is generically satisfied; Example 6 immediately yields the following:

Proposition 8 (“Sard’s Theorem”). Let f : X → S be a map of finite polyhedra. For each F ∈ ShvPL(X;C),
there is a dense open subset U ⊆ S (complementary to a subcomplex of S) such that F is ULA at every point
of f−1(U).

Example 9. Every sheaf F ∈ ShvPL(X;C) is ULA with respect to the map X → ∗.

Proposition 10. The condition of universal local acyclicity is stable under base change. That is, suppose
we are given a pullback square of finite polyhedra

X ′
f //

g′

��

X

g

��
S′

h // S

and a constructible sheaf F on X. For each point x′ ∈ X ′, if F is ULA at f(x′), then f∗ F is ULA at x′.

Proof. We repeat the proof of Proposition 7. Choose compatible triangulations Σ(X) and Σ(S) of X and S
so that F is constructible with respect to Σ(X). Similarly, we can choose compatible triangulations of Σ(X ′)
and Σ(S′) such that each simplex of X ′ maps into a simplex of X (not necessarily by a map which preserves
vertices) and similarly for S′ → S.

2



Let σ′0 be a simplex of Σ(X ′) which contains x′, let τ ′0 be its image in S′, and let τ ′ be a simplex of Σ(S′)
which contains τ ′0. We wish to show that the canonical map

(f∗ F)(σ′0)→ lim←−
σ′
0⊆σ′,g′(σ′)=τ ′

F(σ′)

is an equivalence. Let σ′0
+

denote the smallest element of Σ(X) which contains the image of σ′0, and define
τ ′0

+
and τ ′

+
similarly. Then σ′0

+
contains f(x′), so our hypothesis gives an equivalence

(f∗ F)(σ′0) = F(σ′0
+

) = lim←−
f(σ′

0)⊆σ,g(σ)=τ ′+

F(σ).

It will therefore suffice to show that the construction σ′ 7→ σ′
+

determines a right cofinal map of posets

P = {σ′ ∈ Σ(X ′) : σ′0 ⊆ σ′, g′(σ′) = τ ′} → Q = {σ ∈ Σ(X) : f(σ′0) ⊆ σ, g(σ) = τ ′
+}.

Fix a simplex σ ∈ Q, we wish to show that the poset

P/σ = {σ′ ∈ Σ(X ′) : σ′0 ⊆ σ′ ⊆ f−1(σ), g′(σ′) = τ ′}

is weakly contractible. Using the criterion from Lecture 9, we are reduced to showing that the projection
map f−1σ → h−1τ ′+ is a fibration. Since the diagram in question is a pullback, this reduces to the statement
that σ → τ ′

+
is a fibration, which is clear since it is a linear map of simplices.

Example 11. Let f : X → S be a map of finite polyhedra. Then the following conditions are equivalent:

(1) The map f is a fibration.

(2) For every ∞-category C which admits finite limits and every locally constant sheaf F with values in C,
F is ULA with respect to f .

To prove that (1)⇒ (2), choose compatible triangulations Σ(X) and Σ(S); we wish to verify that a locally
constant sheaf F satisfies condition (∗) of Definition 1. That is, we wish to show that certain maps of the
form

F(σ0)→ lim←−
σ0⊆σ,f(σ)=τ

F(σ)

are equivalences in C. Since F is locally constant, we can identify each F(σ) with a fixed object C = F(σ0) ∈ C.
The result then follows from the contractibility of the poset {σ|σ0 ⊆ σ, f(σ) = τ} (which follows from the
combinatorial criterion for f to be a fibration; see Lecture 9).

Conversely, suppose that (2) is satisfied. Taking C = Sop and F to be the constant sheaf taking the value
∗, condition (∗) of Definition 1 asserts that posets of the form {σ|σ0 ⊆ σ, f(σ) = τ} are weakly contractible,
which is equivalent to the requirement that f is a fibration (again by the result of Lecture 9).

Warning 12. We will be primarily interested in the case where C = Spfin is the∞-category of finite spectra.
In this case, the condition that every locally constant sheaf F on X be ULA with respect to a map f : X → S
is slightly weaker than the condition that f is a fibration: it implies only that the partially ordered sets
{σ|σ0 ⊆ σ, f(σ) = τ} appearing in our fibration criterion are acyclic, not that they are weakly contractible.

Remark 13 (Vanishing Cycles). Let C be an ∞-category which admits small limits, let f : X → S be an
arbitrary map of topological spaces, and let us consider C-valued sheaves in the sense of Remark ??.

Suppose we are given a continuous path p : [0, 1] → S with p(0) = s ∈ S. Let F be a C-valued sheaf on
X, Fp denote the restriction of F to the fiber product X ×S [0, 1], and let F◦p denote the restriction of Fp to
X ×S (0, 1]. Let

j : X ×S (0, 1]→ X ×S [0, 1]

3



be the inclusion map; we can then push F◦p forward to obtain a sheaf j∗ F
◦
p on X ×S [0, 1]. Let G denote the

restriction of j∗ F
◦
p to the fiber X ×S {0} = Xs. We will refer to G as the nearby cycles sheaf of F at the

point s in the direction p. Note that there is a canonical map θ : F |Xs → G. If C is stable, we will refer the
fiber of θ as the vanishing cycles sheaf of F at the point s in the direction p.

In the special case where X and S are finite polyhedra, f is piecewise linear, F is constructible, then we
can choose compatible triangulations Σ(X) and Σ(S) such that F is constructible with respect to Σ(X). If
p : [0, 1] → S is piecewise linear, then there exist simplices τ0 ⊆ τ of Σ(S) such that s = p(0) lies in the
interior of τ0 and p(t) belongs to the interior of τ for sufficiently small nonzero values of t. In this case, there
is an identification of the fiber Xs with the nerve of the poset {σ0 ∈ Σ(S) : f(σ0) = τ0} which exhibits F |Xs

and G as constructible sheaves on Xs, which correspond to the functors

σ0 7→ F(σ0) σ0 7→ lim←−
σ0⊆σ,f(σ)=τ

F(σ),

respectively. We may therefore reformulate Definition 1 heuristically as follows: a constructible sheaf F on
X is ULA with respect to S if it has no vanishing cycles with respect to any point s ∈ S and any direction
p : [0, 1]→ S with p(0) = s.

Example 11 shows that if f : X → S is a fibration, then any locally constant sheaf is universally locally
acyclic. However, if we are willing to depart from the world of locally constant sheaves, then the condition
of universal local acyclicity has nothing at all to do with the ambient space X:

Proposition 14. Suppose we are given a commutative diagram of finite polyhedra

X

h

��

f // Y

g
��

S

Let F ∈ ShvPL(X;C) be ULA over S. Then f∗ F ∈ ShvPL(Y ) is ULA over S. The converse holds if f is a
closed embedding.

Proof. Choose compatible triangulations Σ(X), Σ(Y ), and Σ(S) such that F is constructible with respect
to Σ(X). Fix a simplex σ0 ∈ Σ(Y ), let τ0 = g(σ0), and let τ ∈ Σ(S) be a simplex containing τ0. We wish to
show that the canonical map

(f∗ F)(σ0)→ lim←−
σ0⊆σ,g(σ)=τ

(f∗ F)(σ)

is an equivalence. Invoking the definition of f∗, we can write this map as

lim←−
f(θ0)=σ0

F(θ0)→ lim←−
σ0⊆f(θ),h(θ)=τ

F(θ).

Let P = {θ0 ∈ Σ(X) : f(θ0) = σ0} and let Q = {θ ∈ Σ(X) : h(θ) = τ and f(θ) ⊇ σ0}. Intersection with
f−1σ0 induces a map of posets from Q to P ; to complete the proof, it will suffice to show that F |P is a
right Kan extension of F |Q along this map. In other words, it will suffice to show that for each θ0 ∈ P , the
canonical map

F(θ0)→ lim←−
θ∈Q,θ0⊆θ

F(θ)

is an equivalence. This follows immediately from our assumption that F is ULA over S.
Now suppose that f is a closed embedding and that f∗ F is ULA over S. To prove that F is ULA over

S, we must show that for each θ0 ∈ Σ(X), if τ0 = h(θ0) and τ ∈ Σ(S) contains τ0, then the canonical map

F(θ0)→ lim←−
θ0⊆θ,h(θ)=τ

F(θ)
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is an equivalence. Let us identify X with its image in Y via f , and let us identify F with the restriction of
f∗ F to simplices of X. Then we can write our map as a compsition

(g∗ F)(θ0)→ lim←−
θ0⊆σ∈Σ(Y ),g(σ)=τ

(g∗ F)(σ)→ lim←−
θ0⊆σ∈Σ(X),g(σ)=τ

(g∗ F)(σ).

The first map is an equivalence by virtue of our assumption that g∗ F is ULA over S, and the second map
is an equivalence because the restriction of g∗ F to {σ ∈ Σ(Y ) : θ0 ⊆ σ, g(σ) = τ} is a right Kan extension
of the restriction of F to {σ ∈ Σ(X) : θ0 ⊆ σ, g(σ) = τ}.

Remark 15. The proof of Proposition 14 shows something a bit stronger: to verify that f∗ F is ULA over
S at a point y ∈ Y , it suffices to know that F is ULA over S at every point x ∈ X such that f(x) = y.
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The Assembly Map (Lecture 24)

October 29, 2014

We begin this lecture by proving one more basic property of universal local acyclicity:

Proposition 1. Suppose we are given a commutative diagram of finite polyhedra

X

h

��

f // Y

g
��

S

Suppose that g is a fibration and let F ∈ ShvPL(X;C). Then F is ULA over Y if and only if the following
conditions are satisfied:

(1) The sheaf F is ULA over S.

(2) For each point s ∈ S, the restriction Fs = F |Xs is ULA over Ys.

Example 2. When X = Y , Proposition 1 asserts that F is locally constant if and only if it is ULA over S
and locally constant along each fiber Xs. In particular, if F is locally constant then it is ULA over S, as we
saw in the previous lecture.

Proof of Proposition 1. Since the property of being ULA is stable under base change, condition (2) is clearly
necessary. Let us therefore assume that F satisfies (2) and show that F is ULA over Y if and only if it is
ULA over Z.

Fix compatible triangulations Σ(X), Σ(Y ), and Σ(S) of X, Y , and S such that F is constructible with
respect to Σ(X). Consider a simplex θ0 ∈ Σ(X), and let σ0 ∈ Σ(Y ) and τ0 ∈ Σ(S) be its images in Y and
S, respectively. Let τ ∈ Σ(S) be a simplex containing τ0, let P = {θ ∈ Σ(X) : θ0 ⊆ θ, h(θ) = τ} and let
Q = {σ ∈ Σ(Y ) : σ0 ⊆ σ, g(σ) = τ}. The map f determines a map of posets P → Q. For each σ ∈ Q, let Pσ
denote the inverse image of σ in P . We claim the following:

(∗) The right Kan extension of F |P along the map P → Q is a locally constant functor (that is, it sends
inequalities in Q to equivalences in C).

Assuming (∗), we can complete the proof as follows. Let G be the right Kan extension of F |P along the map
P → Q. Since g is a fibration, the partially ordered set Q is weakly contractible. It follows from (∗) that for
any element σ ∈ Q, the canonical map lim←−G → G(σ) is an equivalence in C. Rewriting this in terms of F,
we conclude that the canonical map

lim←−
θ∈P

F(θ)→ lim←−
θ∈Pσ

F(θ)

is an equivalence. It follows that the natural maps

α : F(θ0)→ lim←−
θ∈P

F(θ)
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β : F(θ0)→ lim←−
θ∈Pσ

F(θ)

can be identified with one another. But the condition that F is ULA over S is equivalent to the requirement
that α is an equivalence (for any θ0 and any τ), while the condition that F is ULA over X is equivalent to
the requirement that β is an equivalence (for any θ0 and any σ).

To prove (∗), suppose we are given an inclusion of simplices σ ⊆ σ′ which belong to Q; we wish to show
that the canonical map G(σ)→ G(σ′) is an equivalence. Note that the construction θ 7→ θ ∩ f−1σ induces a
map of posets λ : Pσ′ → Pσ. Condition (∗) will follow if we can show that F |Pσ is a right Kan extension of
F |Pσ′ along λ. Unwinding the definitions, this amounts to the assertion that for θ ∈ Pσ, the canonical map

F(θ)→ lim←−
θ′⊇θ,f(θ′)=σ′

F(θ′)

is an equivalence. This follows from condition (2), applied to any point s ∈ S which belongs to the interior
of the simplex τ .

Exercise 3. Let f : X → S be a map of finite polyhedra. Let F ∈ ShvPL(X; Sp) and let G be a local system
of spectra on X. Show that if F is ULA over S, then so is the constructible sheaf F∧G given by

(F∧G)(σ) = F(σ) ∧ G(σ).

We now use the theory of ULA sheaves to build a variant of the construction X 7→ A(X).

Definition 4. Let X be a finite polyhedron. For every finite polyhedron S, we let ShvSPL(X × S) denote
the full subcategory of ShvPL(X × S,Spfin) spanned by those sheaves which are ULA over S. Here Spfin

denotes the ∞-category of finite spectra.
Note that the construction S 7→ ShvSPL(X × S) is contravariant in S (since the condition of being ULA

is stable under base change in S). In particular, the construction

[n] 7→ Shv∆n

PL(X ×∆n)

determines a simplicial object in the∞-category of stable∞-categories. Applying the Waldhausen construc-
tion pointwise, we obtain a simplicial space

K(Shv∆n

PL(X ×∆n)).

We will denote the geometric realization of this simplicial space by K∆(X).

Remark 5. Recall that each K(Shv∆n

PL(X ×∆n)) is the 0th space of a connective spectrum. In the above
definition, it does not matter if we take the geometric realization at the level of spaces or at the level of
spectra (if we do the latter, we obtain a connective spectrum having K∆(X) as its 0th space).

Our next goal is to relate K∆(X) to the A-theory of X. First, we need a bit of a digression.

Definition 6. Let C be a stable ∞-category which admits small colimits. We let C∨ denote the full
subcategory of Fun(C,Sp) spanned by those functors which preserve small colimits. We will refer to C∨ as
the dual of C.

Example 7. Let R be an associative ring spectrum and let C be the ∞-category of left R-modules. Then
C∨ can be identified with the∞-category of right R-modules; every right R-module M can be identified with
the colimit-preserving functor

C→ Sp

N 7→M ⊗R N.
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Example 8. More generally, let C be a compactly generated stable ∞-category, so that C = Ind(C0) where
C0 ⊆ C is the full subcategory spanned by the compact objects. For every object C ∈ C0, the functor

D 7→ Map(C,D)

is a colimit-preserving functor from C to spectra (if we let Map(C,D) denote the spectrum of maps from C to
D), which we can identify with an element hC ∈ C∨. The construction C 7→ hC determines a contravariant
functor from C0 to C∨, and one can show that this functor induces an equivalence Ind(Cop

0 ) ' C∨. In
particular, the ∞-category C∨ is also compactly generated and its ∞-category of compact objects C∨0 is
opposite to the ∞-category C0. We therefore have a canonical homotopy equivalence of K-theory spaces

K(C∨0 ) ' K(C0).

Construction 9. Let X be a finite polyhedron and let SpX denote the ∞-category of local systems of
spectra on X. Let S be another finite polyhedron and let φ : X × S → X ψ : X × S → S be the
projection maps. Let F ∈ ShvSPL(X × S) and G ∈ SpX . Then F∧φ∗ G is a constructible sheaf of spectra on
X × S which is ULA over S (Exercise 3), and therefore ψ∗(F∧φ∗ G) is a local system of spectra on S. This
construction yields a map

θS : S → Fun(ShvSPL(X × S)× SpX ,Sp).

Note that the construction G 7→ ψ∗(F∧φ∗ G) preserves colimits in G; we may therefore identify θS with a
map

S → Fun(ShvSPL(X × S), (SpX)∨).

Note that θS depends functorially on S.

Let (SpX)∨0 denote the full subcategory of (SpX)∨ spanned by the compact objects (by virtue of Example
8 this is the opposite of the ∞-category of compact objects of SpX). We claim that θS factors through a
map

S → Fun(ShvSPL(X × S), (SpX)∨0 ).

To prove this, it suffices (by functoriality) to treat the case where S is a point; in this case, we are considering
a single functor

λ : ShvPL(X)→ (SpX)∨

which is characterized by the formula
λ(F)(G) = ψ∗(F∧G).

The collection of those objects F for which λ(F) ∈ (SpX)∨0 is a stable subcategory of ShvPL(X). To show
that it is all of ShvPL(X), it will suffice to show that it contains the direct image of any constant sheaf S
(with value the sphere spectrum) along an inclusion i : ∆k → X. If F = i∗S, we have

λ(F)(G) = ψ∗(i∗S ∧ G) ' Gx

for any point x ∈ X which belongs to the image of i; it follows that the functor λ(F) is corepresentable by
the (compact) local system ix!S, where ix : {x} → X is the inclusion map.

Passing to K-theory, we see that θS induces a map

K(θS) → Fun(K(ShvSPL(X × S)),K((SpX)∨0 ))

' Fun(K(ShvSPL(X × S)),K((SpX0 )op))

' Fun(K(ShvSPL(X × S)),K(SpX0 ))

' Fun(K(ShvSPL(X × S)),Ω∞A(X)).

These maps depend functorially on S. Specializing to the case where S is a simplex, we obtain a map from
the simplicial space K(Shv∆•

PL(X ×∆•)) to the constant simplicial space with the value Ω∞A(X). Passing
to geometric realizations, we obtain a map of infinite loop spaces

K∆(X)→ Ω∞A(X).

Our goal over the next several lectures is to prove the following:
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Theorem 10. The map K∆(X) → Ω∞A(X) is a model for the assembly map in A-theory. In particular,
there is a canonical homotopy equivalence K∆(X) ' Ω∞(X+ ∧A(∗)).
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The Assembly Map, Part II (Lecture 25)

November 3, 2014

Let X be a finite polyhedron. In the previous lecture, we introduced an infinite loop space K∆(X), which
is given by the geometric realization of the simplicial space

[n] 7→ K(Shv∆n

PL(X ×∆n)).

Moreover, we constructed a map of connective spectra

Ω−∞K∆(X)→ A(X).

Our goal in this lecture and the next is to prove the following:

Theorem 1. The map K∆(X) → Ω∞A(X) is a model for the assembly map in A-theory. In particular,
there is a canonical homotopy equivalence K∆(X) ' Ω∞(X+ ∧A(∗)).

As a first step, we consider functoriality in X. Recall that for any map of finite polyhedra f : X → Y ,
the pushforward map

(f × id)∗ : Shv(X × S)→ Shv(Y × S)

preserves the property of being ULA over S. It follows that we obtain a map of simplicial ∞-categories

Shv∆•

PL(X ×∆•)→ Shv∆•

PL(Y ×∆•).

Taking K-theory and passing to geometric realizations, we obtain a map of infinite loop spaces K∆(X) →
K∆(Y ). In other words, we can regard K∆ as a functor from the ordinary category Poly of finite polyhedra
(with morphisms given by PL maps) to the ∞-category of spaces (or even of E∞-spaces).

The category Poly has a canonical simplicial enrichment: to every pair of finite polyhedra X and Y , we
can associate a Kan complex Map(X,Y ) whose n-simplices are given by piecewise linear maps from X ×∆n

into Y . As a simplicially enriched category, Poly is weakly equivalent to the simplicially enriched category
of finite CW complexes. This follows from two observations:

• Every finite CW complex is homotopy equivalent to a finite polyhedron.

• For every pair of finite polyhedra X and Y , the Kan complex Map(X,Y ) is homotopy equivalent to
the singular simplicial set of the topological space Y X of all continuous maps from X into Y (more
informally: there are no obstructions to approximating arbitrary continuous maps between polyhedra
by piecewise-linear maps).

Using this fact, it is not difficult to show that the ∞-category Sfin of finite spaces can be obtained from
the ordinary category Poly by formally inverting all maps of the form X ×∆n → X. In fact, it suffices to
consider the case n = 1 (since the n-simplex ∆n is a retract of a product of copies of ∆1). In other words,
we have the following:
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Claim 2. Let C be an ∞-category. Then composition with the canonical map Poly → Sfin induces a fully
faithful embedding

Fun(Sfin,C)→ Fun(Poly,C),

whose essential image is spanned by the collection of those functors F : Poly→ C with the property that for
any finite polyhedron X, the induced map F (X ×∆1)→ F (X) is an equivalence in C.

We would like to apply Claim 2 to the functor X 7→ K∆(X).

Proposition 3. For any finite polyhedron X, the canonical map K∆(X × ∆1) → K∆(X) is a homotopy
equivalence.

The map of Proposition 3 has a right homotopy inverse, induced by the inclusion X × {0} ↪→ X ×∆1.
To check that this map is a left homotopy inverse, it will suffice to establish the following:

Lemma 4. Let f, g : X → Y be homotopic maps of finite polyhedra. Then f and g induce homotopic maps
f∗g∗ : K∆(X)→ K∆(Y ).

Proof. It suffices to prove Lemma 4 in the “universal” case where Y = X × ∆1 and f and g are the two
inclusions X ×{i} ↪→ X ×∆1. Let J denote the slice category ∆/[1] of nonempty finite linearly ordered sets
[n] equipped with a map [n]→ [1]. Then J contains full subcategories J0, J1 ⊆ J, spanned by those objects
of the form [n] → {0} ⊆ [1] and [n] → {1} ⊆ [1], respectively. Each of these subcategories is equivalent to
∆. To each object [n]→ [1] in J, we can associate a map of finite polyhedra

X ×∆n → X ×∆1 ×∆n,

which induces a pushforward functor

Shv∆n

PL(X ×∆n)→ Shv∆n

PL(X ×∆1 ×∆n).

Taking K-theory and passing to the colimit, we obtain a map

lim−→
[n]∈J

K(Shv∆n

PL(X ×∆n))→ K∆(X ×∆1).

Note that the composition of this map with the natural maps

lim−→
[n]∈J0

K(Shv∆n

PL(X ×∆n))→ lim−→
[n]∈J

K(Shv∆n

PL(X ×∆n))

lim−→
[n]∈J1

K(Shv∆n

PL(X ×∆n))→ lim−→
[n]∈J

K(Shv∆n

PL(X ×∆n))

coincide with f∗ and g∗, respectively. It will therefore suffice to show that these latter maps are homotopy
equivalences. Both have left homotopy inverses induced by the map

lim−→
[n]∈J

K(Shv∆n

PL(X ×∆n))→ K∆(X)

determined by the forgetful functor π : J → ∆. To show that this map is a homotopy equivalence, it will
suffice to show that π is right cofinal. In other words, it will suffice to show that for each object [n] ∈ ∆,
the category

J×∆ ∆/[n] = ∆/[1]×∆ ∆/[n]

is weakly contractible. This is clear, since it is the category of simplices of the weakly contractible simplicial
set ∆1 ×∆n.
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It follows from Proposition 3 and Claim 2 that we can regard the construction X 7→ K∆(X) as a functor
from the ∞-category Sfin of finite spaces to the ∞-category of E∞ spaces. Moreover, since the map

Ω−∞K∆(X)→ A(X)

constructed in the previous lecture was functorial for maps of finite polyhedra, it can be regarded as a natural
transformation between functors from Sfin to spectra. We next make a simple observation:

Proposition 5. The map Ω−∞K∆(X)→ A(X) is an equivalence when X is a point.

Proof. When X is a point, a constructible sheaf F on X × ∆n is ULA over ∆n if and only if it is locally
constant. Consequently, we can identify Shv∆•

PL(X ×∆•) with the constant simplicial ∞-category taking the
value Spfin. It follows that K∆(X) can be identified with K(Spfin) ' Ω∞A(X).

It follows from Proposition 5 that the colimit-preserving approximations to the functors Ω−∞K∆(X) and
A(X) are the same. In other words, for any finite space X we have a commutative diagram

X+ ∧A(∗)

θXww %%
Ω−∞K∆(X) // A(X).

We can now formulate a more precise version of Theorem 1: the map θX is a homotopy equivalence of
spectra. To prove this, we note that the collection of those spaces X for which θX is a homotopy equivalence
contains the one-point space (by Proposition 5) and the empty space (since the domain and codomain of θX
both vanish in this case). Consequently, to show that it contains all finite spaces, it will suffice to show that
it is closed under (homotopy) pushouts. Since the functor X 7→ X+ ∧ A(∗) preserves pushout squares, we
are reduced to the following:

Proposition 6. Suppose we are given a pushout diagram

X01
//

��

X0

��
X1

// X

in the ∞-category of finite spaces. Then the diagram of spectra

Ω−∞K∆(X01) //

��

Ω−∞K∆(X0)

��
Ω−∞K∆(X1) // Ω−∞K(X)

is also a homotopy pushout square.

In the statement of Proposition 6, we may assume without loss of generality that X01, X0, and X1 are
represented by finite polyhedra, and that the maps X01 → X0 and X01 → X1 are given by embeddings of
finite polyhedra. We will assume that X is given by the homotopy pushout

X0 qX01×{0} (X01 × [0, 1])qX01×{1} X1.

For each real number t with 0 < t < 1, let Xt denote the subcomplex of X given by X01 × {t}. We
will say that a sheaf F ∈ ShvSPL(X × S) is transverse to Xt if the restriction F |Xt×S is ULA over S. Let

ShvS,tPL(X × S) denote the full subcategory of ShvSPL(X × S) spanned by those sheaves which are transverse
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to t. As S ranges over all simplices, we obtain a simplicial ∞-category Shv∆•

PL(X ×∆•). Let Kt
∆(X) denote

the geometric realization of the simplicial space

K(Shv∆•,t
PL (X ×∆•)).

Let us compute Kt
∆(X).

Let S be a finite polyhedron, and let CS− and CS+ denote the full subcategories of ShvPL(X≤t × S) and
ShvPL(X≥t × S) spanned by those sheaves which are ULA over S and which vanish when restricted to Xt.
Note that X≤t and X≥t contain X0 and X1 as deformation retracts. Using a slight variant of the proof of
Lemma 4, one can show that the canonical maps

K∆(X0)→ |C∆•

− |

K∆(X1)→ |C∆•

+ |

are homotopy equivalences.
Note that if F ∈ ShvS,TPL (X × S), then we have a canonical fiber sequence

F′ → F → i∗i
∗ F .

Since F and i∗ F are ULA over S, it follows that i∗i
∗ F and F′ are ULA over S. Because F′ |Xt vanishes, we

can write F′ as a direct sum F′−⊕F′+, where F′− ∈ CS− and F′+ ∈ CS+. The construction F 7→ (F′−,F
′
+, i
∗ F)

determines an exact functor

ShvS,TPL (X × S)→ CS−×CS+×ShvSPL(Xt × S).

This map has a right homotopy inverse (given by pushing forward to X × S and forming the direct sum).
It follows from the additivity theorem that this right homotopy inverse is actually a two-sided homotopy
inverse after passing to K-theory. In particular, we obtain a homotopy equivalence

K(ShvS,tPL(X × S)) ' K(CS−)×K(CS+)×K(ShvSPL(Xt × S)).

Taking S to range over simplices and passing to geometric realizations, we obtain an equivalence

Kt
∆(X) ' K∆(X0)×K∆(X1)×K∆(Xt).

We will elaborate more on this in the next lecture.
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The Assembly Map, Part III (Lecture 26)

November 4, 2014

Our goal in this lecture is to complete the proof of the following result:

Proposition 1. Suppose we are given a pushout diagram

X01
//

��

X0

��
X1

// X

in the ∞-category of finite spaces. Then the diagram

K∆(X01) //

��

K∆(X0)

��
K∆(X1) // K∆(X)

is also a pushout square of E∞-spaces.

To prove Proposition 1, it will be convenient to consider instead the diagram of connected deloopings

Ω−1K∆(X01) //

��

Ω−1K∆(X0)

��
Ω−1K∆(X1) // Ω−1K∆(X).

We wish to compare Ω−1K∆(X) with the homotopy pushout of the rest of the diagram, which is computed
as the geometric realization of a simplicial space

Bar•(Ω
−1K∆(X0),Ω−1K∆(X01),Ω−1K∆(X1))

given by

Barn(Ω−1K∆(X0),Ω−1K∆(X01),Ω−1K∆(X1)) = (Ω−1K∆(X0))× (Ω−1K∆(X01)n)× (Ω−1K∆(X1)).

As in the previous lecture, let us assume that X0 and X1 are finite polyhedra, that X01 is a subpolyhedron
of each, and that X is given by the two-sided mapping cylinder

X0 q{0}×X01
([0, 1]×X01)q{1}×X01

X1.

For each t ∈ (0, 1), let Xt denote the subpolyhedron {t}×X01 ⊆ X. Recall that a sheaf F ∈ ShvSPL(X×S) is
transverse to t if F |Xt×S is ULA over S. More generally, if T is a finite subset of the open interval (0, 1), we
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will say that F ∈ ShvSPL(X × S) is transverse to T if it is transverse to t for each t ∈ T . Let ShvS,TPL (X × S)

denote the full subcategory of ShvSPL(X × S) spanned by those sheaves which are transverse to T , and let
KT

∆(X) denote the geometric realization of the simplicial space given by

K(Shv∆•,T
PL (X ×∆•).

We proved in the last lecture that if T has a single element, then KT
∆(X) can be identified with the product

K∆(X0)×K∆(X01)×K∆(X1).

One can carry out a similar argument for larger finite sets T = {t1, . . . , tn}: every object of ShvS,TPL (X × S)
has a canonical filtration whose subquotients are sheaves which are supported either on Xti×S for 1 ≤ i ≤ n,
on X<t1 × S (which contains X0 × S as a deformation retract), on X>tn × S (which contains X1 × S as a
deformation retract), or on X01× (ti, ti+1)×S for 1 ≤ i < n. This analysis supplies a homotopy equivalence

KT
∆(X) ' K∆(X0)×K∆(X01)2n−1 ×K∆(X1).

We can be more precise: the construction T 7→ KT
∆(X) is contravariantly functorial in T , and there is a

functorial identification

Ω−1KT
∆(X) ' Barα(T )(Ω

−1K∆(X0),Ω−1K∆(X01),Ω−1K∆(X1))

where α(T ) is the finite linearly ordered set given by T ×{0, 1}, equipped with the lexicographical ordering.

Lemma 2. Let P be the poset of nonempty finite subsets of (0, 1) and let ∆ be the category of finite nonempty
linearly ordered sets. Then the construction

T 7→ T × {0, 1}

determines a right cofinal functor
α : P → ∆.

Proof. Fix an object [n] = {0 < 1 < · · · < n} ∈ ∆; we wish to show that the category (in fact, poset)
Q = P ×∆ ∆/[n] is weakly contractible. For each ε > 0, let Pε ⊆ P denote the collection of all nonempty
finite subsets of (ε, 1), and let Qε denote the inverse image in Q of Pε. Then Q can be written as a directed
union of the posets Qε. Consequently, to show that Q is weakly contractible, it will suffice to show that each
of the inclusion maps Qε ↪→ Q is nullhomotopic. We can identify the elements of Q with pairs (T, f) where
T ⊆ (0, 1) is a nonempty finite set and f : T ×{0, 1} → [n] is a monotone map. If (T, f) ∈ Qε, then we have
natural maps

(T, f) ↪→ (T ∪ {ε}, f+)←↩ ({ε}, g),

where g : {ε} × {0, 1} → [n] is the constant map taking the value 0 and f+ is the amalgamation of the
maps f and g. These maps determine a homotopy from the inclusion Qε ↪→ Q to the constant map
Qε → {({ε}, g)} ⊆ Q.

It follows from Lemma 2 that the pushout

Ω−1K∆(X0)qΩ−1K∆(X01) Ω−1K∆(X1)

(formed in the ∞-category of E∞-spaces) can also be written as

lim−→
T⊆(0,1)

Ω−1KT
∆(X)

(formed in the ∞-category of spaces). We may therefore rewrite Proposition 1 as follows:
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Proposition 3. The canonical map

lim−→
T⊆(0,1)

Ω−1KT
∆(X)→ Ω−1K∆(X)

is a homotopy equivalence of spaces.

Note that the map of Proposition 3 can be obtained as the geometric realization of a map of bisimplicial
spaces which is given (in bidegree (m,n)) by

θm : lim−→
T⊆(0,1)

Sn Shv∆m,T
PL (X ×∆m)→ Sn Shv∆m

PL (X ×∆m).

Let us regard n as fixed for the remainder of this lecture. We will prove Proposition 3 by showing that the
map of geometric realizations

| lim−→
T⊆(0,1)

Sn Shv∆•,T
PL (X ×∆•)| → |Sn Shv∆•

PL(X ×∆•)|.

is a homotopy equivalence. Note that for fixed m and T ⊆ (0, 1), the map

Sn Shv∆m,T
PL (X ×∆m)→ Sn Shv∆m

PL (X ×∆m)

is the inclusion of a summand: the target space classifies diagrams

F1 → · · · → Fn

in Shv∆m

PL (X ×∆m), and the domain classifies diagrams which have the additional property that each Fi is
transverse to each t ∈ T . If the diagram F1 → · · · → Fn is fixed, then the collection of those t ∈ (0, 1) such
that each Fi is transverse to T comprise a subset U ⊆ (0, 1), and the homotopy fiber of the map θm over the
point corresponding to F1 → · · · → Fn can be identified with the nerve of the category of nonempty finite
subsets of U . This category is either empty (if U = ∅) or contractible (if U 6= ∅). It follows that each of

the maps θm exhibits lim−→T⊆(0,1)
Sn Shv∆m,T

PL (X ×∆m) as a summand of Sn Shv∆m

PL (X ×∆m): namely, the

summand consisting of those diagrams F1 → · · · → Fn which are all transverse to some t ∈ (0, 1).

Construction 4. Let Z• be a simplicial space. For every simplicial set K, we let Z•(K) denote the homotopy
inverse limit lim←−∆p→K Zp.

We define a new simplicial space Ex(Z•) by the formula

Ex(Z•)q = Z•(Sd ∆q).

Note that the “last vertex maps” Sd ∆q → ∆q are compatible as q varies and give rise to a map of
simplicial spaces ρZ• : Z• → Ex(Z•).

Lemma 5. For any simplicial space Z•, the map ρZ• : Z• → Ex(Z•) induces a homotopy equivalence of
geometric realizations

|Z•| → |Ex(Z•)|.

Sketch. If Z• is a simplicial set (meaning that each Zn is discrete), then this is classical. The general case can
be reduced to this: the ∞-category of simplicial spaces is the underlying ∞-category of the model category
of bisimplicial sets, equipped with the Reedy model structure. Moreover, if Z•• is a bisimplicial set which
is Reedy fibrant, then the Ex of Construction 4 can be computed by levelwise application of the usual Ex
functor on simplicial sets.
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Let us now specialize to the case where Z• is the simplicial space Sn Shv∆•

PL(X ×∆•). In this case, we

can identify Ex(Z•) with the simplicial space whose m-simplices are given by Sn Shv
| Sd ∆m|
PL (X × | Sd ∆m|).

Recall that there is a canonical piecewise linear homeomorphism of |Sd ∆m| with |∆m|, which is functorial
for injective maps between simplices. These homeomorphisms determine an equivalence θZ• between the
underlying semisimplicial spaces of Z• and Ex(Z•), which we will denote by Zs• and Ex(Z•)

s.

Let Y• denote the simplicial subspace of Z• given by lim−→T⊆(0,1)
Sn Shv∆•,T

PL (X × ∆•). The map θZ•

restricts to a morphism of underlying semisimplicial spaces

θY• : Y s• → Ex(Y•)
s

(which is now not a levelwise homotopy equivalence). This is not identical to the map of semisimplicial
spaces ρY• appearing in Lemma 5. However, they differ by a simplicial homotopy and therefore induce the
same map after passing to geometric realizations. It follows from Lemma 5 that θY• induces a homotopy
equivalence

|Y s• | → |Ex(Y•)
s|.

We wish to show that the inclusion i• : Y• ↪→ Z• induces a homotopy equivalence of geometric realizations.
For each integer p ≥ 0, let Exp(Y•) denote the result of p-fold application of the functor Ex to the simplicial
space Y•, and define Exp(Z•) similarly. Using the above arguments we can identify |i•| with the induced of
geometric realizations

| lim−→Exp(Y•)
s| → | lim−→Exp(Z•)

s|.
It will therefore suffice to prove the following:

Proposition 6. For each integer m, the canonical map lim−→Exp(Y•)m → lim−→Exp(Z•)m is a homotopy
equivalence.

Unwinding the definitions, Proposition 6 asserts that for every diagram F1 → · · · → Fn in Shv∆m

PL (X ×
∆m), there exists an integer p ≥ 0 such that on each simplex σ of the p-fold barycentric subdivision of ∆m,
there exists a real number tσ which is transverse to each Fi |X×σ.

Choose compatible triangulations Σ of X01× [0, 1]×∆m, Σ′ of [0, 1]×∆m, and Σ′′ of ∆m, such that each
Gi is constructible with respect to Σ. Let V ⊆ [0, 1] × ∆m be the union of the interiors of those simplices
σ ∈ Σ′ for which the map σ → ∆m is not injective. It is easy to see that V ⊆ (0, 1) × ∆m and that the
projection map V → ∆m is surjective. Since V is open, there exists an open cover Uα of ∆m and a collection
of real numbers tα ∈ (0, 1) such that each product {tα} × Uα is contained in V . Choose p� 0 so that each
simplex σ of the p-fold barycentric subdivision of ∆m is contained in some Uα. We claim that p satisfies
our requirements: more precisely, each restriction Fi |X×σ is transverse to tα. To prove this, it will suffice
to show that Fi |X01×[0,1]×∆m is ULA over [0, 1]×∆m over the open set V .

Let
f : X01 × [0, 1]×∆m → [0, 1]×∆m

and
g : [0, 1]×∆m → ∆m

be the projection maps, let θ0 ∈ Σ, let σ0 = f(θ0) ∈ Σ′, and let σ ∈ Σ′ be a simplex containing σ0. Set
τ0 = g(σ0) ∈ Σ′′ and τ = g(σ) ∈ Σ′′. We wish to show that if the interior of σ0 is contained in V , then the
canonical map

Fi(θ0)→ lim←−
θ0⊆θ,f(θ)=σ

Fi(θ)

is an equivalence. Our assumption that the interior of σ0 is contained in V guarantees that σ is the unique
simplex of Σ′ which contains σ0 and whose image is τ , so we can rewrite our map as

Fi(θ0)→ lim←−
θ0⊆θ,(g◦f)(θ)=τ

Fi(θ).

This map is an equivalence by virtue of our assumption that Fi is ULA over ∆m.
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Higher Torsion (Lecture 27)

November 5, 2014

Let Poly denote the ordinary category of finite polyhedra, and let S denote the ∞-category of spaces.
Over the last few lectures, we have studied the functor

K∆ : Poly→ S .

given by
K∆(X) = |K(Shv∆•

PL(X ×∆•))|.
Since every finite polyhedron has an underlying topological space, there is a forgetful functor ι : Poly → S.
Let us (temporarily) use the notation ι!K∆ to denote the left Kan extension of K∆ along ι. This left Kan
extension can be computed in two steps:

• First, we can form the left Kan extension of ι along the forgetful functor Poly→ Sfin, where Sfin is the
∞-category of finite spaces. Since K∆ is homotopy invariant, this is equivalent to lifting K∆ along the
fully faithful embedding

Fun(Sfin, S)→ Fun(Poly, S).

• We then form the left Kan extension along the fully faithful embedding Sfin → S. This is the process
of formally extending a functor Sfin → S to a functor S→ S so that it commutes with filtered colimits.

It follows from this analysis that the restriction of i!K∆ to Poly agrees with the original functor K∆. We
will henceforth abuse notation by denoting the functor i!K∆ also by K∆, so that we view K∆ as a functor
from spaces to spaces. The main theorem of the previous lectures gives us an explicit description of this
functor: it is the domain of the assembly map in Waldhausen A-theory. That is, we have

K∆(X) ' Ω∞(X+ ∧A(∗)).

We can use this identification to produce some A(∗)-homology classes. Let X be a space, and suppose
we are given a finite polyhedron Y , a map f : Y → X, and a constructible sheaf F on Y (with values in
the ∞-category of finite spectra). Then F is an object of ShvPL(Y ) and therefore determines a point of
K(ShvPL(Y )), and therefore also of K∆(Y ). Using the map f , we obtain a point of K∆(X) which we will
denote by 〈Y,F〉. In the special case where F is the constant sheaf on Y (with value the sphere spectrum),
we will denote this point simply by 〈Y 〉.

We have an assembly map K∆(X) → Ω∞A(X). Unwinding the definitions, we see that this assembly
map carries 〈Y,F〉 to [F′], where F′ is the local system of spectra on X which corepresents the functor

SpX → Sp

G 7→ Γ(Y,F∧f∗ G)

(here Γ denotes the global sections functor). In the special case where F is the constant sheaf, this functor
is given by

Γ(Y, f∗ G) = MapSpY (SY , f
∗ G) = MapSpX (f!SY , f

∗ G).

It follows that F′ ' f!SY (where f! denotes the left adjoint to pullback on local systems), so that [F′] can
be identified with the point [Y ] ∈ Ω∞A(X) studied in Lecture 21. This analysis proves the following:
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Proposition 1. Let X be any space. For any finite polyhedron Y and any map f : Y → X, the assembly
map K∆(X)→ Ω∞A(X) carries 〈Y 〉 ∈ K∆(X) to [Y ] ∈ Ω∞A(X).

All of the preceding considerations can be generalized to “allow parameters”. Let us be more precise.
Fix a topological space X. We define Kan complexes MX and Mh

X as follows:

• The n-simplices of MX are finite polyhedra Y ⊆ ∆n×R∞ equipped with a map f : Y → X, for which
the projection Y → ∆n is a PL fibration.

• The n-simplices of Mh
X are subspaces Y ⊆ ∆n × R∞ equipped with a map f : Y → X for which the

projection Y → ∆n is a fibration with finitely dominated fibers.

The construction (Y → X) 7→ [Y ] can be naturally refined to a map of Kan complexes Mh
X → Ω∞A(X),

and the construction (Y → X) 7→ 〈Y 〉 can be naturally refined to a map of Kan complexes MX → K∆(X).
Repeating the analysis that preceded Proposition 1, we obtain the following refinement:

Proposition 2. Let X be any space. Then the diagram

MX
//

��

K∆(X)

��
Mh
X

// Ω∞A(X)

commutes (up to canonical homotopy).

Let us now suppose that the space X itself is finitely dominated. In this case, the Kan complex Mh
X

contains a contractible path component whose vertices are homotopy equivalences Y → X. Let us denote
this path component by Mh◦

X . We have a diagram of homotopy pullback squares

MX ×Mh
X
Mh◦
X

//

��

MX
//

��

M

��
Mh◦
X

// Mh
X

// Mh .

In other words, the homotopy fiber of the map M → Mh over X can be identified with MX ×Mh
X
Mh◦
X .

Applying Proposition 2, we obtain a map

M×Mh{X} ' MX ×Mh
X
Mh◦
X

→ K∆(X)×Ω∞A(X) M
h◦
X

→ K∆(X)×Ω∞A(X) {[X]}.

We can now give a more precise formulation of the main result of the second part of this course:

Theorem 3. Let X be a finitely dominated space. Then the map

M×Mh{X} → K∆(X)×Ω∞A(X) {[X]}

is a homotopy equivalence.

Example 4. Theorem 3 implies that the homotopy fiber M×Mh{X} is either empty (in case X has non-
vanishing Wall obstruction) or a torsor for the infinite loop space

fib(K∆(X)→ Ω∞A(X)) ' Ω∞+1 Wh(X),
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where Wh(X) denotes the (piecewise-linear) Whitehead spectrum of X.
If X itself is given as a finite polyhedron, then the space M×Mh{X} has a canonical base point. In this

case, we obtain a canonical homotopy equivalence

τ : M×Mh{X} ' Ω∞+1 Wh(X).

Note that the points of M×Mh{X} can be identified with pairs (Y, f), where Y is a finite polyhedron and
f : Y → X is a homotopy equivalence. If X itself is a finite polyhedron, then the “identity component” of
M×Mh{X} consists of those pairs (Y, f) where f is a simple homotopy equivalence. It follows from Theorem
3 that f is a simple homotopy equivalence if and only if a certain element τ(Y, f) ∈ π1 Wh(X) vanishes. If
X is connected with fundamental group G, we have seen that there is a canonical isomorphism of π1 Wh(X)
with the Whitehead group Wh(G) of G, so we can identify τ(Y, f) with an element of Wh(G).

Proposition 5. In the situation above, the element τ(Y, f) ∈Wh(G) coincides with the Whitehead torsion
of the homotopy equivalence f (as defined in Lectures 3 and 4).

Combining Proposition 5 with Theorem 3, we obtain another proof of the main result from Lecture 4:
the homotopy equivalence f : Y → X is simple if and only if its Whitehead torsion vanishes. In other words,
Proposition 5 allows us to regard Theorem 3 as a generalization of the main result of Lecture 4 (and, as we
have already noted, Theorem 3 also generalizes the theory of the Wall obstruction).

Let us informally sketch a proof of Proposition 5. Without loss of generality, we may assume that Y and
X have been equipped with triangulations that are compatible with the map f . Assume that X is connected
with fundamental group G. We have a pair of points

〈X〉, 〈Y 〉 ∈ K∆(X),

having images [X], [Y ] ∈ Ω∞A(X). Our assumption that f is a homotopy equivalence supplies an equivalence
of local systems f!SY ' SX , which gives a path p joining [X] and [Y ] in Ω∞A(X). This path gives a lift of
〈X〉 − 〈Y 〉 to the homotopy fiber

Ω∞+1 Wh(X) ' fib(K∆(X)→ Ω∞A(X),

and τ(Y, f) is the path component of this lift. Note that the map π0K∆(X)→ π0A(X) is injective, so that
〈X〉 and 〈Y 〉 belong to the same path component of Ω∞A(X). If we choose a path q from 〈X〉 to 〈Y 〉, then
we can combine p with the image of q to form a closed loop in the space Ω∞A(X). This loop determines an
element η ∈ π1A(X) ' K1(Z[G]), which is preimage of τ(Y, f) under the connecting homomorphism

π1A(X)→ π0(fibK∆(X)→ Ω∞A(X)).

Note that the element η depends on the choice of path q.
Let Σ(X) and Σ(Y ) denote the set of simplices of X and Y , respectively. Let SX and SY denote the

constant sheaves (with value the sphere spectrum) on X and Y , respectively. For each simplex σ of X (or
Y ), let Sσ denote the constructible sheaf on X (or Y ) taking the value S on σ and 0 elsewhere (in other
words, the sheaf which is “extended by zero” from the interior of σ) and let Snσ denote the nth suspension
of Sσ. Note that

f∗Sσ ' S
dim f(σ)−dim(σ)
f(σ) .

For each σ ∈ Σ(X) ∪ Σ(Y ), consider the point eσ ∈ K∆(X) given by

eσ =

{
[Sσ] if Σ ∈ Σ(X)

−[S
dim f(σ)−dim(σ)
f(σ) ] if Σ ∈ Σ(Y )

Using the additivity theorem, we can choose a path from the difference 〈X〉−〈Y 〉 to the sum
∑
σ∈Σ(X)∪Σ(Y ) eσ.

Let E denote the union of the set of even-dimensional simplices of X and odd-dimensional simplices of Y ,
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and let E′ denote the union of the set of odd-dimensional simplices of X and even-dimensional simplices of
Y . Note that π0K∆(X) ' Z, and eσ belongs to the path component 1 if σ ∈ E and the path component −1
if σ ∈ E′. Since f is a homotopy equivalence, X and Y have the same Euler characteristic and therefore E
and E′ have the same size. We may therefore choose a bijection β : E ' E′. For each σ ∈ E, we can choose
a path qσ in K∆(X) from eσ +eβ(σ) to the base point; note that these paths are ambiguous up to an element
of π1K∆(X) ' G⊕ Z/2Z. The sum of these paths determines a path q from 〈X〉 − 〈Y 〉 to the base point.

Unwinding the definitions, we see that the image of [X] − [Y ] in K(Z[G]) can be represented by the
relative cellular chain complex C∗(X,Y ;Z[G]). The given triangulations of X and Y determine a basis for
C∗(X,Y ;Z[G]) as a Z[G]-module, where the basis elements are ambiguous up to ±G. We have two paths
from [C∗(X,Y ;Z[G])] to the base point of K(Z[G]), given as follows:

(a) The image of p determines a path from [C∗(X,Y ;Z[G])] to the base point of K(Z[G]) which arises
from the observation that C∗(X,Y ;Z[G]) is an acyclic complex (because f is a homotopy equivalence),
and therefore represents a zero object of the ∞-category RepZ[G].

(b) The image of the path q determines a path from [C∗(X,Y ;Z[G])] to the base point of K(Z[G]). After
possibly modifying our choice of basis, we can arrange that this path is obtained by first invoking the
additivity theorem to construct a path from [C∗(X,Y ;Z[G])] to the point represented by the sum⊕

σ∈Σ(X)

[Σdim(σ)Z[G]] +
⊕

σ∈Σ(Y )

[Σdim(σ)+1Z[G]],

and then connecting this latter sum to the base point by matching factors using the bijection β.

We are therefore reduced to the following statement, which we leave as a (tedious) exercise:

Exercise 6. Let R be a ring and let F∗ be a bounded acyclic chain complex of free R-modules, where
χ(F∗) = 0 (the latter condition is automatic if R has the form Z[G]). Suppose we have chosen a basis
{ei, e′i} for F∗, where each ei is homogeneous of even degree di, and each e′i is homogeneous of odd degree d′i.
Then the torsion τ(F∗) ∈ K1(R) ' π1K(R) (as defined in Lecture 3) can be represented as the “difference”
between two paths from [F∗] to the base point of the space K(R):

(a) The path obtained from the observation that the chain complex F∗ represents the zero object of ModR
(since F∗ is acyclic).

(b) The path obtained by first using the additivity theorem to construct a path from [F∗] to the sum∑
i[Σ

diR]⊕ [Σd
′
iR], then connecting each [ΣdiR] + [Σd

′
iR] to the base point using the fact that di and

d′i have different parities.
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Another Model of the Assembly Map (Lecture 28)

November 7, 2014

Our goal over the next few lectures is to prove the following result:

Theorem 1. Let X be a finitely dominated space. Then the map

M×Mh{X} → K∆(X)×Ω∞A(X) {[X]}

is a homotopy equivalence.

The proof will follow [1]. Our first goal is to construct another model for the domain of the assembly
map. This will require us to consider a slightly more general version of Waldhausen’s construction.

Definition 2. Let C be an ∞-category with cofibrations. A collection of morphisms w in C is a class of
weak equivalences if it satisfies the following conditions:

(1) The collection of morphisms w contains all equivalences and is closed under composition.

(2) If we are given a diagram

X

��

Yoo f //

��

Z

��
X ′ Y ′oo f ′ // Z ′

where the vertical maps belong to w and both f and f ′ are cofibrations, then the induced map
X qY Z → X ′ qY ′ Z

′ also belongs to w.

For each n ≥ 0, we let wSn C denote the subcategory of Gap([n],C) containing all objects, whose mor-
phisms are maps of [n]-gapped objects X → Y with the property that each of the maps X(i, j) → Y (i, j)
belongs to w. Then wS• C is a simplicial ∞-category. We let K(C, w) denote the loop space Ω|wS• C |.

When w is the collection of all equivalences in C, Definition 2 reduces to our previous notion of K-theory
for an ∞-category with cofibrations. We will be primarily interested in the case where C is an ordinary
category.

Example 3. Let X be a simplicial set. Let Set∆ denote the ordinary category of simplicial sets, and let
(Set∆)X//X denote the category of simplicial sets over and under X (so that the objects of (Set∆)X//X are
triples (Y, i, r) where Y is a simplicial set, i : X → Y is a morphism of simplicial sets, and r : Y → X is a
morphism satisfying r ◦ i = idX). We let CX denote the full subcategory of (Set∆)X//X spanned by those
objects where Y is obtained from X by adding finitely many simplices.

We will regard CX as an ∞-category with cofibrations, where the cofibrations are given by monomor-
phisms of simplicial sets. We will say that a morphism f : Y → Y ′ in CX is cell-like if the induced map
|Y | → |Y ′| has contractible fibers (this is a slight variant on our earlier definition of cell-like, since the sim-
plicial sets Y and Y ′ may not be finite; note however that the inverse image of any simplex in Y ′ is a finite
simpicial set). It is not difficult to see that this collection of maps satisfies the requirements of Definition 2.
We will denote this collection of morphisms by s.

For every simplicial set X, let F (X) denote the connective spectrum Ω−∞K(CX , s).
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Remark 4 (Functoriality). If f : X → X ′ is a map of simplicial sets, then the construction Y 7→ Y qX X ′

induces a functor from CX to CX′ which preserves cofibrations and cell-like maps. It follows that f induces
a map of spectra F (X)→ F (X ′). In other words, we can regard F as a functor from the ordinary category
of simplicial sets to the ∞-category Sp of spectra.

Exercise 5. Let f : X → X ′ be a map of finite simplicial sets. Show that the construction Y ′ 7→ X ×X′ Y
′

determines a functor CX′ → CX which preserves cofibrations and weak equivalences, and therefore induces
a map f∗ : F (X ′) → F (X). If f is cell-like, show that the map f∗ is homotopy inverse to the map
F (X)→ F (X ′) of Remark 4. (Argue that for Y ∈ CX and Y ′ ∈ CX′ , the unit and counit maps

Y → X ×X′ (Y qX X ′)

(X ×X′ Y
′)qX X ′ → Y ′

are cell-like).

Corollary 6. The functor F : Set∆ → Sp is a left Kan extension of its restriction to finite nonsingular
simplicial sets.

Proof. It is easy to see that F commutes with filtered colimits and is therefore a left Kan extension of its
restriction to finite simplicial sets. To complete the proof, it will suffice to show that for every finite simplicial
set X, the canonical map lim−→F (X ′) → F (X) is a homotopy equivalence, where the colimit is taken over
the category E of all nonsingular finite simplicial sets X ′ with a map f : X ′ → X. Choose a cell-like map
X̃ → X, where X is nonsingular. Using Exercise 5, we can reduce to showing that the map

θ : lim−→
X′∈E

F (X ′ ×X X̃)→ F (X̃)

is an equivalence. Let E′ denote the category of finite nonsingular simplicial sets with a map to X̃, so that
the construction X ′ 7→ X ′ ×X X̃ induces a functor E → E′. This functor has a left adjoint and is therefore
left cofinal. We may therefore identify θ with the natural map lim−→X̃′∈E′ F (X̃ ′)→ F (X̃), which is clearly an

equivalence because E′ contains X̃ as a final object.

Remark 7. For every finite nonsingular simplicial set Y , let SY denote the constant sheaf on the polyhedron
|Y | taking the value S.

Let X be a finite nonsingular simplicial set. For each object Y ∈ CX , let λ(Y ) denote the fiber of the
canonical map

SX → lim←−
i:∆n→Y

(r ◦ i)∗S∆n ,

where r : Y → X denotes the structural retraction. Then λ determines a functor from the ordinary category
CX to the ∞-category ShvPL(|X|)op, which preserves pushouts by cofibrations and carries cell-like maps to
equivalences. Passing to K-theory, we obtain a map

F (X)→ Ω−∞K(ShvPL(|X|)op).

Let us abuse notation by regarding Ω−∞K∆ as a functor from the ordinary category of simplicial sets to
the ∞-category of spectra, so that the above construction gives a map

F (X)→ Ω−∞K∆(X).

Using Corollary 6, we see that this construction formally extends (in an essentially unique way) to the case
where the simplicial set X is arbitrary.

The map F (X) → Ω−∞K∆(X) is generally not an equivalence: the left hand side is not homotopy
invariant, but the right hand side is. However, we can attempt to correct that as follows:

2



Definition 8. Let G be a functor from the category of simplicial sets to the ∞-category of spectra. For
every simplicial set X, the construction [n] 7→ X∆n

determines a simplicial object of Set∆. We define

Ĝ : Set∆ → Sp by the formula
Ĝ(X) = |G(X∆•)|.

Note that we have an evident natural transformation G→ Ĝ.

Exercise 9. Let G be as in Definition ??. Show that if a map of simplicial sets X → X ′ is a simplicial
homotopy equivalence, then the induced map Ĝ(X)→ Ĝ(X ′) is an equivalence of spectra.

Warning 10. It is not generally true that the functor Ĝ carries weak homotopy equivalences of simplicial
sets to equivalences in Sp. However, it will be true for the functors we are interested in.

Remark 11. In the situation of Definition 8, suppose that G carries simplicial homotopy equivalences to
homotopy equivalences of spectra. Then the simplicial object G(X∆•) is essentially constant, so the natural

transformation G→ Ĝ is an equivalence.

The natural transformation F (X)→ Ω−∞K∆(X) constructed above yields a natural map

F̂ (X)→ ̂Ω−∞K∆(X) ' Ω−∞K∆(X),

where the second equivalence follows from Remark 11. We will soon show that this map is an equivalence.
The main step will be the verify the following:

Proposition 12. The functor F̂ is a homology theory. In other words:

(a) The functor F̂ carries weak homotopy equivalences of simplicial sets to equivalences in S.

(b) The functor F̂ commutes with filtered colimits.

(c) The spectrum F̂ (∅) vanishes

(d) Given a pushout diagram of simplicial sets

X01
//

��

X0

��
X1

// X,

where the horizontal maps are monomorphisms, the diagram of spectra

F̂ (X01) //

��

F̂ (X0)

��
F̂ (X1) // F̂ (X)

is a pushout square.

Remark 13. Part (a) of Proposition 12 implies that F̂ factors through a functor S → Sp, and parts (b),
(c), and (d) assert that this functor preserves colimits.

Remark 14. Assuming Proposition 12, the assertion that the natural map F̂ (X) → Ω−∞K∆(X) is an
equivalence can be reduced to the case where X has a single point.

The proof of Proposition 12 can be broken into two parts, one of which is entirely formal and the other
of which depends on the details of our situation:
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Lemma 15. The functor F satisfies conditions (b), (c), and (d) of Proposition 12.

Lemma 16. Let G : Set∆ → Sp be a functor which satisfies conditions (b), (c), and (d) of Proposition 12.

Then Ĝ satisfies conditions (a), (b), (c), and (d) of Proposition 12.

Proof of Lemma 15. Assertions (b) and (c) are trivial. Let us focus on (d). Suppose we are given a pushout
diagram of simplicial sets σ :

X01
//

��

X0

��
X1

// X,

where the horizontal maps are monomorphisms. Let CX0,X01 denote the full subcategory of CX0 spanned by
those objects Y for which the projection map Y ×X0 X01 is an isomorphism. Then any object Y ∈ CX0 sits
in a canonical cofiber sequence

X01 ×X0
Y → Y → Y ′

where Y ′ ∈ CX0,X01
. Using a variant of the additivity theorem proved in Lecture 17, we obtain a homotopy

equivalence
K(CX0 , s) ' K(CX01 , s)×K(CX0,X01 , s).

Similarly, we have a homotopy equivalence

K(CX , s) ' K(CX1
, s)×K(CX,X1

, s).

We conclude by observing that because σ is a pushout square, the map X0 → X induces an equivalence of
categories CX0,X01

→ CX,X1
.

Proof of Lemma 16. Let ∆ denote the category of simplices, which we regard as a full subcategory of the
category Set∆ of simplicial sets and also the larger ∞-category Fun(∆op, S) of simplicial spaces. Let G0 =
G|∆ and let G0 : Fun(∆op, S) → Sp be a left Kan extension of G0. Then G0 preserves small colimits.
Consequently, the functor G0|Set∆

satisfies conditions (b), (c), and (d) of Proposition 12. The universal
property of G0 supplies a natural transformation

α : G0|Set∆ → G.

By construction, α is an equivalence when evaluated on simplices. Since the domain and codomain of α both
satisfy (c) and (d), it follows by a simple induction that α is an equivalence when evaluated on any finite
simplicial set. Since the domain and codomain of α both satisfy (b), we can conclude that α is an equivalence
when evaluated on any simplicial set: that is, the functor G is a left Kan extension of its restriction to ∆.
We now compute

Ĝ(X) ' lim−→
[m]∈∆op

G(X∆m

)

' lim−→
[m]∈∆op

lim−→
∆n→X∆m

G(∆n)

' lim−→
[n]∈∆

lim−→
∆m→X∆n

G(∆n).

Since the diagonal map X → X∆n

is a simplicial homotopy equivalence, we can rewrite the latter colimit as

lim−→
[n]∈∆

lim−→
∆m→X

G(∆n) ' lim−→
∆m→X

lim−→
[n]∈∆

G(∆n)

' lim−→
∆m→X

G(∆0)

' G(∆0) ∧X+.
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Another Model of the Assembly Map II (Lecture 29)

November 12, 2014

Let X be a simplicial set. In the previous lecture, we introduced the category CX whose objects are
simplicial sets Y over and under X, which are obtained from X by adding finitely many simplices. We can
regard CX as a category with cofibrations and weak equivalences (where the latter is given by the collection
s of cell-like maps), and we proved that the construction

F (X) = Ω−∞K(CX , s)

has the property that F̂ (X) = |F (X∆•) is a homology theory (that is, it induces a colimit-preserving functor

from spaces to spectra). There is a natural map F̂ (X) → A(X); when X is finite and nonsingular, this
comes from a composite map

F (X)→ Ω−∞K(ShvPL(X)op)→ Ω−∞K∆(X)→ A(X)

where the first map is obtained from a functor

λ : CX → ShvPL(|X|)op

which assigns to each retraction diagram

Y

r

  
X

>>

id // X

the constructible sheaf given by the cofiber of the unit map SX → r∗SY . To verify that this construction
yields a well-defined map on K-theory, we observe that if Y, Y ′ ∈ CX are related by a cell-like map Y → Y ′,
then the constant sheaf SY ′ can be identified with the direct image of the constant sheaf SY , so that the
induced map λ(Y ′)→ λ(Y ) is an equivalence in ShvPL(|X|).

Consider the functor µ : ShvPL(|X|)op → (SpX)c (here (SpX)c denotes the ∞-category of compact
objects of SpX) characterized by the formula

MapSpX (µ(F),G) = Γ(|X|,F∧G).

Unwinding the definitions, we see that µ ◦ λ : CX → (SpX)c is given by the formula Y 7→ r!SY , where
r! : SpY → SpX is the homological pushforward on local systems. Here we have a bit more flexibility: in
order to ensure that a map Y → Y ′ in CX induces an equivalence (µ ◦ λ)(Y ) → (µ ◦ λ)(Y ′) in SpX , it is
sufficient to assume that Y → Y ′ is a weak homotopy equivalence.

Exercise 1. Let h be the collection of all weak homotopy equivalences in CX . Show that (CX , h) satisfies
the axioms for a category with cofibrations and weak equivalences (where the cofibrations, as before, are
given by the monomorphisms).
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The above analysis supplies a diagram of infinite loop spaces

K(CX , s) //

��

K(CX , h)

θ

��
K∆(X) // Ω∞A(X)

which commutes up to canonical homotopy and depends functorially on X. Our goal in this lecture is to
show that the right vertical map is close to being a homotopy equivalence. To this end, recall that (SpX)c

can be identified with the Spanier-Whitehead ∞-category of the ∞-category (SX∗ )c ' ScX/ /X , where SX//X
denotes the ∞-category of spaces over and under X and ScX/ /X is the full subcategory of SX//X spanned

by the compact objects. Let Sfin
X//X ⊆ ScX/ /X denote the full subcategory spanned by those objects Y which

can be obtained from X by attaching finitely many cells. Then θ is the map on K-theory induces by the
composition

CX → Sfin
X//X ⊆ ScX/ /X → (SpX)c.

We have seen that the map K(ScX/ /X) → K((SpX)c) ' Ω∞A(X) is a homotopy equivalence, and that the

map K(Sfin
X//X)→ K(ScX/ /X) exhibits the domain as a union of connected components of the target.

Notation 2. Let X be a space. We let Afree(X) denote the spectrum given by Ω−∞K(Sfin
X//X). Then

Afree(X) is a connective spectrum whose homotopy groups are given by

πiA
free(X) =

{
πiA(X) if i > 0

H0(X;Z) if i = 0.

(note: this is the definition of A(X) that appears in Waldhausen’s paper).

Our next goal is to prove:

Proposition 3. Let X be a simplicial set. Then the natural map CX → Sfin
X//X induces homotopy equiva-

lences
K(CX , h)→ K(Sfin

X//X)

Ω−∞K(CX , h)→ Afree(X).

Note that the domain and codomain of the map appearing in the statement of Proposition 3 can be
identified with the geometric realization of simplicial spaces obtained from Waldhausen’s construction. It
will therefore suffice to show that that the map CX → Sfin

X//X induces an equivalence in each simplicial
degree. In other words, Proposition 3 is a consequence of the following more precise assertion:

Proposition 4. Let X be a simplicial set and let n ≥ 0 be an integer. Then the natural map

hSn CX → Sn S
fin
X//X

is a weak homotopy equivalence (here we regard the left hand side as the nerve of a category and the right
hand side as a Kan complex).

The proof of Proposition 4 will proceed by induction on n. The case n = 0 is trivial (since both sides are
contractible), so let us assume n > 0. Let us identify the objects of hSn CX with chains of cofibrations

Y1 ↪→ Y2 ↪→ · · · ↪→ Yn

2



of simplicial sets over and under X. There is a canonical map τ : hSn CX → hSn−1 CX obtained by
“forgetting” Yn (one of the face maps appearing in the simplicial category hS• CX). Similarly, we have a
forgetful map Sn S

fin
X//X → Sn−1 S

fin
X//X which is a Kan fibration. These maps fit into a commutative diagram

hSn CX //

τ

��

Sn S
fin
X//X

��
hSn−1 CX // Sn−1 S

fin
X//X .

The inductive hypothesis implies that the lower horizontal map is a weak homotopy equivalence. Conse-
quently, to prove Proposition 4, it will suffice to show that the diagram induces a weak homotopy equivalence
after taking homotopy fibers in the vertical direction. Fix an object ~Y = (Y1 → · · · → Yn−1) in hSn−1 CX .
We will show that the category

(hSn CX)×(hSn−1 CX) {~Y }

is weakly homotopy equivalent to the Kan complex

Sn S
fin
X//X ×Sn−1 Sfin

X//X
{~Y }.

It will then follow that every map ~Y → ~Y ′ in hSn−1 CX induces a weak homotopy equivalence

(hSn CX)×(hSn−1 CX) {~Y } → (hSn CX)×(hSn−1 CX) {~Y ′}.

Applying Quillen’s Theorem B (and the observation that τ is a coCartesian fibration), it follows that

(hSn CX) ×(hSn−1 CX) {~Y } can be identified with the homotopy fiber of τ over ~Y , thereby completing the
proof of the inductive step. We are therefore reduced to proving the following lemma (applied in the case
Z = Yn−1):

Lemma 5. Let f : Z → X be a map of simplicial sets. Let Cf denote the category whose objects are diagrams
of simplicial sets

Y

  
Z

f //

j
??

X

where j is a cofibration and Y is obtained from Z by adding only finitely many simplices, and whose mor-
phisms are weak homotopy equivalences. Let Sfin

Z/ /X denote the ∞-category given by the full subcategory of
SZ/ /X spanned by those objects Y which can be obtained from Z by attaching finitely many cells. Then the
canonical map

ν : Cf → (Sfin
Z/ /X)'

is a weak homotopy equivalence of simplicial sets.

Proof. Let us compute the homotopy fiber of ν over a point η ∈ (Sfin
Z/ /X)'. Let us represent η by a diagram

of simplicial sets
W

q

  
Z

f //

j
>>

X

where j is a cofibration and q is a Kan fibration. Then the homotopy fiber ν−1{η} can be identified with
the homotopy colimit

lim−→
Y ∈Cf

Hom(Y,W ),
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where Hom(Y,W ) denotes the Kan complex parametrizing maps from Y to W in (Set∆)Z/ /X which are
weak homotopy equivalences. It follows that ν−1{η} can be identified with the geometric realization of a
simplicial space which is given in degree m by the homotopy colimit

lim−→
Y ∈Cf

Hom(Y,W )m.

It will therefore suffice to show that this homotopy colimit is contractible for each m. Replacing W by
W∆m ×X∆m X, we can reduce to the case where m = 0. In this case, the homotopy colimit can be identified
with the nerve of the category D whose objects are commutative diagrams

Y
f

  
Z //

??

W

where Y is obtained from Z by adjoining finitely many simplices and the map f is a homotopy equivalence.
It will therefore suffice to show that D is weakly contractible. In fact, we claim that D is filtered. Note that
D is a full subcategory of a filtered category D+, where we drop the requirement that the map f be a weak
homotopy equivalence. To prove that D is also filtered, it will suffice to verify that for every object Y ∈ D+

there exists a morphism Y → Y ′ where Y ′ ∈ D. We are therefore reduced to proving the following general
assertion about simplicial sets:

Lemma 6. Let g : Y →W be a map of simplicial sets. Suppose that |W | is homotopy equivalent to a space
obtained from |Y | by attaching finitely many cells. Then g factors as a composition

Y → Y ′
f→W

where f is a weak homotopy equivalence and Y ′ is obtained from Y by adding finitely many simplices.

Proof. For simplicity, let us assume that |W | is homotopy equivalent to a space obtained from |Y | by attaching
a single n-cell (the proof in the general case is similar). This n-cell is attached via a map Sn−1 → |Y |, which
can be obtained as the geometric realization of a map of simplicial sets A→ Y where A is some subdivision
∂∆n. The map |Y | qSn−1 Dn → |Z| determines a nullhomotopy h of the composite map

A→ Y → Z

after geometric realization. Replacing A by a subdivision if necessary, we may assume that the nullhomotopy
h arises from a nullhomotopy in the category of simplicial sets. For n � 0, we may assume that h arises
from a simplicial nullhomotopy of the composite map

A→ Y → Z → Exn Z.

We can then take
Y ′ = Y qSdn A Sdn(A×∆1)qSdn A ∆0.
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The Whitehead Space (Lecture 30)

November 19, 2014

Recall that our goal is to prove the following result:

Theorem 1. Let X be a finitely dominated space. Then the map

M×Mh{X} → K∆(X)×Ω∞A(X) {[X]}

is a homotopy equivalence.

In the last two lectures, we introduced explicit combinatorial models for the spaces K∆(X) and Ω∞A(X).
Our goal in this lecture is to do the same for M×Mh{X}.

Definition 2. Let X be a simplicial set. We let DX denote the subcategory of (Set∆)X/ whose objects are
monomorphisms i : X ↪→ Y such that Y is obtained from X by adding finitely many simplices and i is a
weak homotopy equivalence; the morphisms in DX are diagrams

X

~~   
Y

f // Y ′

where f is cell-like. We let W (X) denote the nerve of the category DX . We will soon see that W (X) is
equivalent to the 1st space of the Whitehead spectrum Wh(X). We will generally abuse notation by not
distinguishing between W (X) and its image in the ∞-category of spaces (obtained by choosing a fibrant
replacement for W (X)).

Recall that M can be identified with the nerve of the category of finite simplicial sets and cell-like maps.
Consequently, the next result should not be so surprising:

Theorem 3. Let X be a finite simplicial set. Then there is a homotopy equivalence

M×Mh{|X|} 'W (X),

which is natural with cell-like maps.

Corollary 4. The construction X 7→W (X) preserves weak homotopy equivalences.

We will discuss Theorem 3 and Corollary 4 in the next lecture.
Note that W (X) is a covariant functor of X, and that this functor commutes with filtered colimits.

Consequently, W (X) is formally determined by its restriction to finite simplicial sets.
The formation of pushouts over X determines a symmetric monoidal structure on the category DX , so

that W (X) inherits the structure of an E∞-space. When X is finite, this E∞-structure is compatible with
the homotopy equialence of Theorem 3 (where we regard M×Mh{|X|} as an E∞-space as in Lecture 13).
It follows that E∞-structure on W (X) is grouplike (when X is connected, we have π0W (X) = Wh(π1X)).
Since the functor X 7→ W (X) commutes with filtered colimits, this result extends formally to arbitrary
simplicial sets:
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Corollary 5. For every simplicial set X, the E∞-structure on W (X) is grouplike.

Let CX denote the category studied in the previous two lectures: the objects of CX are diagrams

Y

  
X

i

>>

id // X

where Y is obtained from X by adding finitely many simplices. We let ChX denote the full subcategory of
CX spanned by those objects where the map i is a weak homotopy equivalence.

Exercise 6. Show that we can regard ChX as a category with cofibrations and weak equivalences in two
ways:

• We can take cofibrations in ChX to be monomorphisms and weak equivalences to be cell-like maps (we
will denote this class of weak equivalences by s).

• We can take cofibrations in ChX to be monomorphisms and weak equivalences to be weak homotopy
equivalences (we will denote this class of weak equivalences by h; note that it is the collection of all
morphisms in ChX).

We can apply Waldhausen’s construction in either of these cases to obtain K-theory spaces K(ChX , h)
and K(ChX , s). Note that each level of the simplicial category hS• C

h
X has an initial object, so that K(ChX , h)

is contractible. The inclusion ChX ↪→ CX induces maps on K-theory, giving us a commutative diagram

K(ChX , s)

��

// K(CX , s)

��
K(ChX , h) // K(CX , h).

We will deduce Theorem ?? from the following result, which we defer to a future lecture:

Theorem 7. For every simplicial set X, the preceding diagram is a homotopy pullback square. In other
words, we have a fiber sequence of spaces

K(ChX , s)→ K(CX , s)→ K(CX , h).

Corollary 8. Let X = ∆0. Then the canonical map K(CX , s)→ K(CX , h) is a homotopy equivalence.

Proof. By virtue of Theorem 7 (and the evident surjectivity on π0), it will suffice to show that K(ChX , s) is
contractible. In fact, every level of the Waldhausen construction sS• C

h
X is weakly contractible: each of the

categories sSn C
h
X has a final object.

We have seen that there is a canonical homotopy equivalence K(CX , h) ' Ω∞Afree(X), and that the
functor X 7→ |K(CX∆• , s)| is a homology theory. Corollary 8 implies that this is the homology theory
associated to Afree(∗) ' A(∗):

Corollary 9. For every simplicial set X, there is a canonical homotopy equivalence

|K(CX∆• , s)| ' Ω∞(A(∗) ∧X+) ' K∆(X).
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Note that since the assembly map

(A(∗) ∧X+)→ Afree(X)

is surjective on π0, Theorem 7 implies that we have a fiber sequence of spectra

Ω−∞K(ChX , s)→ Ω−∞K(CX , s)→ Ω−∞K(CX , h).

Replacing X by X∆• and passing to the geometric realization, we obtain the following:

Corollary 10. For every simplicial set X, there is a canonical fiber sequence of spectra

|Ω−∞K(ChX∆• , s)| → A(∗) ∧X+ → Afree(X).

Passing to 0th spaces (and noting that Ω∞Afree(X) is a union of path components of Ω∞A(X)), we
obtain:

Corollary 11. For every simplicial set X, there is a canonical fiber sequence of spaces

|K(ChX∆• , s)| → Ω∞(A(∗) ∧X+)→ Ω∞A(X).

To understand the relationship between Corollary 11 and Theorem ??, let us investigate the relationship
between K(ChX , s) and the space W (X). Let sChX denote the subcategory of ChX whose morphisms are cell-
like maps (that is, the first stage of the Waldhausen construction on (ChX , s)). We have an evident forgetful
functor sChX → Dx, which induces a diagram

K(ChX , s)← N(sChX)→W (X).

Replacing X by X∆• and passing to geometric realizations, we obtain a diagram

|K(ChX∆• , s)| ← |sChX∆• | →W (X).

Proposition 12. If X is a Kan complex, then the above maps are homotopy equivalences. Consequently,
we obtain a preferred homotopy equivalence

W (X) ' |K(ChX∆• , s)|,

so that Corollary 11 yields a fiber sequence

W (X)→ Ω∞(A(∗) ∧X+)→ Ω∞A(X).

Remark 13. It follows from Corollary 11 that the construction

X 7→ |K(ChX∆• , s)|

preserves weak homotopy equivalences in X. Consequently, the identification W (X) ' |K(ChX∆• , s)| of
Proposition 12 persists even if we do not assume that X is a Kan complex.

Proposition 12 is really two separate statements (Proposition 14 and Proposition 15 below):

Proposition 14. Let X be a Kan complex. Then the canonical map of simplicial spaces

θ : N(sChX∆• )→ S(X∆•)

induces a homotopy equivalence after geometric realization.
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Proof. For every simplicial set X, let EX,• denote the simplicial category whose objects (in simplicial degree
m) are diagrams

Y

""
X

i

??

δ // X∆m

where i is a trivial cofibration of simplicial sets which exhibits Y as obtained from X by adding finitely
many simplices, and whose morphisms are cell-like maps. Then EX,0 ' sChX , and we have a canonical map
EX,• → DX (where we identify DX with a constant simplicial category). It follows that θ factors as a
composition

N(sChX)
θ′→ |N(EX,•)|

θ′′→ N(DX).

We first claim that θ′′ is a homotopy equivalence: this follows from the observation that for each object
Y ∈ DX , the Kan complex of retractions from Y to X (which are the identity on X) is contractible, since
X is a Kan complex and Y is weakly equivalent to X. It will therefore suffice to show that θ′ induces a
homotopy equivalence

|N(sChX∆• )| → ||N(EhX∆• ,•)||.

Let E• denote the simplicial category given by [n] 7→ EX∆n ,n: the objects of En are given by commutative
diagrams

Y
f

$$
X∆n //

i

==

X∆n×∆n

where i is a trivial cofibration which exhibits Y as obtained from X∆n

by adding finitely many simplices
and f classifies a map of simplicial sets F : Y ×∆n ×∆n → X whose restriction to X∆n ⊆ Y is obtained
by ignoring the second factor of ∆n and using the evaluation map on the first. Let us abuse notation by
identifying the objects of En with the pairs (Y, F ).

Let E′• be the full simplicial subcategory of E• given in simplicial degree n by those objects (Y, F ) where
the map F : Y ×∆n ×∆n → X does not depend on the second factor of ∆n. Unwinding the definitions, we
we wish to show that the inclusion E′• ↪→ E• induces a weak homotopy equivalence |NE′• | ↪→ |NE• |.

For each n ≥ 0, let r+
n : ∆n ×∆n → ∆n ×∆n denote the map given on vertices by

r+
n (i, j) =

{
(i, j) if i ≤ j
(i, i) otherwise,

and let r−n denote the map given by

r−n (i, j) =

{
(i, j) if j ≤ i
(i, i) otherwise,

Then r−n and r+
n induce idempotent maps R−n and R+

n from Y ×∆n×∆n to itself. We let E+
n and E−n denote

the full subcategories of En spanned by those pairs (Y, F ) where F factors through R−n and R+
n , respectively.

Then E−• ,E
+
• are simplicial subcategories of E• whose intersection is E′•. It will therefore suffice to show that

the inclusions

|NE′• |
φ
↪→ |NE+

• |
ψ
↪→ |NE• |

are weak homotopy equivalences. We will show that ψ is a weak homotopy equivalence by demonstrating that
R+
• is a deformation retraction: that is, there is a simplicial homotopy the identity map to R+

• which is fixed
on E+

• . A dual construction will show that R−• is a deformation retraction from E• to E−• ; we will leave as
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an exercise to the reader to verify that this deformation retraction carries E+
• to itself and therefore exhibits

E′• = E+
• ∩E

−
• as a deformation retract of E+

• (which will prove that φ is a weak homotopy equivalence).
To construct the desired simplicial homotopy, we must exhibit for each map of finite linearly ordered sets

α : [n]→ [1] a functor
ρα : En → En

which is the identity when α has the constant value 0 and agrees with R+
n when α has the constant value 1.

We define ρα by the formula
ρα(Y, F ) = (Y, F ◦ (idY ×rα)),

where rα : ∆n ×∆n → ∆n ×∆n is the map given on vertices by the formula

rα(i, j) =

{
(i, j) if i ≤ j or α(j) = 0.

(i, i) otherwise.

The other half of Proposition 12 is contained in the following:

Proposition 15. Let X be a Kan complex. Then the canonical map

ρ : |sChX∆• | → |K(ChX∆• , s)|

is a homotopy equivalence.

Proof. Let Bar•(sC
h
X) denote the simplicial space obtained by applying the bar construction (with respect

to the E∞-structure given by pushouts over X). It follows from Proposition 14 that |sChX∆• | is equivalent to
W (X) and is therefore equivalent to its own group completion (with respect to the natural E∞-structure),
so we can identify |sChX∆• | with the loop space of |Bar•(sC

h
X∆• )|. Under this identification, ρ arises from a

map of bisimplicial categories
Bar•(sC

h
X∆• )→ sS• C

h
X∆• .

To show that this map is a homotopy equivalence, it will suffice to show that for each n ≥ 0, the map of
simplicial categories

ρn : Barn(sChX∆• )→ sSn(ChX∆• )

induces a homotopy equivalence (after passing to nerves and taking geometric realizations). Let us identify
the objects of sSn(ChX∆m ) with finite sequences of cofibrations

Y1 ↪→ · · · ↪→ Yn

of simplicial sets over and under X∆m

, which are weak homotopy equivalent to X∆m

and obtained from
X∆m

by adding finitely many simplices. The map ρn has a left homotopy inverse, given by a functor

ψn : sSn(ChX∆• )→ (sChX∆• )n

(Y1 ↪→ · · · ↪→ Yn) 7→ (Y1, Y2/Y1, . . . , Yn/Yn−1).

It will therefore suffice to show that ψn induces a homotopy equivalence (after taking nerves and passing to
the geometric realizaiton). The proof proceeds by induction on n, the case n ≤ 1 being trivial. To carry out
the inductive step, it will suffice (by virtue of the inductive hypothesis and Propoistion 14) to show that the
functor

φ : sSn(ChX∆• )→ sSn−1(ChX∆• )×DX∆•

(Y1 ↪→ · · · ↪→ Yn) 7→ ((Y1 ↪→ · · ·Yn−1), Yn/Yn−1)

induces a homotopy equivalence (after taking nerves and passing to the geometric realization).
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Let E• denote the simplicial category whose objects in degree m are diagrams

X∆m

→ Y1 → · · · → Yn−1 → Yn ×X∆m

where each Yi is obtained from Yi−1 by adding finitely many simplices and is weakly homotopy equivalent to
Yi−1 (with the convention that Y0 = X∆m

), and the composite map induces the identity from X∆m

to itself,
and whose morphisms are degreewise cell-like maps. More informally: E• is defined just like the simplicial
category sSn(ChX•), except that we do not require that the simplicial set Yn is equipped with a retraction
back onto X∆• . The map φ factors as a composition

sSn(ChX∆• )
φ′→ E•

φ′′→ sSn−1(ChX∆• )×DX∆•

Note that when n = 1, the map φ′ coincides with the map studied in Proposition 14, and is therefore a
homotopy equivalence (after taking nerves and passing to the geometric realization). Moreover, the proof
of Proposition 14 can be adapted (with minor changes of notation) to prove that this assertion holds for all
n. We are therefore reduced to proving that the map φ′′ induces a homotopy equivalence. In fact, we claim
that this holds even before passage to geometric realization: that is, for each m, the functor

φ′′m : Em → sSn−1(ChX∆m )×DX∆m

induces a weak homotopy equivalence of nerves. Replacing X by X∆m

, we may assume that m = 0. We
have a commutative diagram

E0

$$

// sSn−1(ChX)×DX

vv
sSn−1(ChX)

where the vertical maps are coCartesian fibrations. Consequently, to prove that the horizontal map is a weak
homotopy equivalence, it will suffice to show that it induces a weak homotopy equivalence after taking the
fiber over any object

(Y1 ↪→ · · · ↪→ Yn−1) ∈ sSn−1(ChX).

Unwinding the definitions, this amounts to the assertion that the retraction Yn−1 → X induces a weak
homotopy equivalence

DYn−1 → DX ,

which follows from Corollary 4.

References

[1] Waldhausen, F. The Algebraic K-Theory of Spaces.
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The Whitehead Space II (Lecture 31)

November 19, 2014

Let X be a simplicial set. As in the previous lecture, we let DX denote the subcategory of (Set∆)X/

spanned by those objects i : X ↪→ Y which are trivial cofibrations of simplicial sets obtained by adding
finitely many simplices to X, and whose morphisms are cell-like maps. We let W (X) denote the nerve of
DX . Our goal in this lecture is to show that if X is finite, then W (X) can be identified with the homotopy
fiber product M×Mh{X}. Our first step is to establish the following result (already used without proof in
the previous lecture):

Proposition 1. The functor X 7→W (X) preserves weak homotopy equivalences.

We will deduce Proposition 1 from two special cases:

Lemma 2. Let X be a finite simplicial set. Then the “last vertex” map Sd(X) → X induces a weak
homotopy equivalence W (Sd(X))→W (X).

Lemma 3. Let X be a finite simplicial set. Then the projection map X×∆1 → X induces a weak homotopy
equivalence W (X ×∆1)→W (X).

Proof of Proposition 1. We first show that if f : X → Y is a weak homotopy equivalence of finite simplicial
sets, then the induced map W (X)→W (Y ) is a weak homotopy equivalence. Since X is not a Kan complex,
the map f need not be a homotopy equivalence. However, there exists a homotopy inverse to f after fibrant
replacement: that is, a map g : Y → Ex∞X such that the unit map X → Ex∞X is homotopic to g ◦ f , and
Ex∞(f) ◦ g is homotopic to the unit map Y → Ex∞ Y . Since X and Y are finite, we can replace Ex∞ by
Exn for n� 0. In this case, we can identify g with a map G : Sdn(Y )→ X, and we have homotopies

h : Sdn(X ×∆1)→ X

h′ : Sdn(Y ×∆1)→ Y.

To show that these maps yield homotopies after applying W , it suffices to show that the maps

W (Sdn(X ×∆1))→W (X)

W (Sdn(X))→W (X)

are weak homotopy equivalences, and similarly for Y ; these assertions are immediate consequences of Lemmas
2 and 3.

It follows from the above argument that when restricted to finite simplicial sets, the functor W : Set∆ → S

preserves weak homotopy equivalences, and therefore induces a functor of ∞-categories u : Sfin → S. The
functor u admits an essentially extension U : S → S which commutes with filtered colimits. Since W
commutes with filtered colimits, it follows that it is given by the composition

Set∆ → S
U→ S .
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Proof of Lemma 3. Pushout along the projection map X ×∆1 → X induces a functor f : DX×∆1 → DX .
Consider the functor g : DX → DX×∆1 given by Y 7→ Y ×∆1. We claim that, after passing to nerves, these
maps are mutually inverse homotopy equivalences relating W (X×∆1) and W (X). Note that f◦g : DX → DX

is the functor given by
Y 7→ X qX×∆1 (Y ×∆1).

At the level of nerves, this is homotopic to the identity map, since the projection Y × ∆1 → Y induces a
cell-like map

X qX×∆1 (Y ×∆1)→ Y.

The functor g ◦ f : DX×∆1 → DX×∆1 is given by

Y 7→ (Y qX×∆1 X)×∆1.

In this case, we have a two-step homotopy to the identity, given by the diagram

(Y qX×∆1 X)×∆1 ← Y ×∆1 → Y.

Proof of Lemma 2. We wish to show that the functor

f : DSd(X) → DX

Y 7→ Y qSd(X) X

induces a weak homotopy equivalence on nerves. We will show that the construction

g : DX → DSd(X)

Y 7→ Sd(Y )

provides a homotopy inverse. Note that the composite map f ◦ g : DX → DX is related to the identity
functor by a cell-like natural transformation

Sd(Y )qSd(X) X → Y.

The other direction is a bit trickier: the composite functor g ◦ f : DSd(X) → DSd(X) carries an object
Y ∈ DSd(X) to the object Sd(Y qSd(X) X) = Sd(Y ) qSd2(X) Sd(X). In other words, we can identify
(g ◦ f)(Y ) with the image of Sd(Y ) ∈ DSd2(X) under the functor DSd2(X) → DSd(X) which is obtained from

the map Sd(e) : Sd2(X) → Sd(X), where e : Sd(X) → X is the “last vertex map”. Note that e does not
coincide with the “last vertex” map Sd2(X) → Sd(X), but it is simplicially homotopic to it, and therefore
(by virtue of Lemma 3) induces a homotopic map from W (Sd2(X)) to W (Sd(X)). We are therefore reduced
to proving that the functor Y 7→ Sd(Y )qSd2(X) Sd(X) is homotopic to the identity, where Sd2(X) maps to
Sd(X) via the “last vertex” map. This follows from the first part of the proof (applied to Sd(X) rather than
X).

It will be useful for us to consider a slight variant of the category DX . From this point forward, let us
assume that the simplicial set X is finite. Let D+

X denote the subcategory of (Set∆)X/ whose objects are
weak homotopy equivalences X → Y of finite simplicial sets, and whose morphisms are cell-like maps. Then
D+

X contains DX as a full subcategory: the only difference is that we no longer require the structure map
X → Y to be a cofibration.

Proposition 4. For every finite simplicial set X, the inclusion DX ↪→ D+
X induces a weak homotopy

equivalence of nerves.
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Proof. For each morphism f : X → Y , let M(f) = (X ×∆1) qX×{1} Y denote the mapping cylinder of f .
Then the construction

(f : X → Y ) 7→ (X × {0} ↪→M(f))

determines a functor from D+
X into DX . Using the natural cell-like map M(f)→ Y , we see that this functor

determines a deformation retraction of N(D+
X) into N(DX).

Note that the enlargement DX 7→ D+
X comes at a price: if X → X ′ is a map of finite simplicial sets, the

construction
Y 7→ Y qX X ′

generally does not preserve cell-like maps (or weak homotopy equivalences), and therefore does not induce a
functor from D+

X to D+
X′ . However, we get a different sort of functoriality as compensation: if f : X → X ′

is a weak homotopy equivalence, then composition with f induces a map D+
X′ → D+

X . We will need the
following variant of Proposition 1:

Proposition 5. Let f : X → X ′ be a weak homotopy equivalence of finite simplicial sets. Then composition
with f induces a weak homotopy equivalence D+

X′ → D+
X .

Proof. Arguing as in the proof of Proposition 1, it suffices to treat the case of the maps

Sd(X)→ X X ×∆1 → X.

Using Propositions 1 and 4, we are reduced to proving the the composite functor

DX → DX′ ↪→ D+
X′ → D+

X

Y 7→ Y qX X ′

is a weak homotopy equivalence. Since f is cell-like, this functor is related to the inclusion DX ↪→ D+
X by a

natural transformation Y → Y qX X ′; the desired result now follows from Proposition 4.

Fix a finite simplicial set X. For each n ≥ 0, the construction [m] 7→ Sdn(X × ∆m) determines a
cosimplicial object of C. We therefore obtain a simplicial category

D+
Sdn(X×∆•) .

After taking nerves, we obtain a simplicial space which is equivalent to the constant simplicial space with
the value

N(D+
Sdn(X)) ' N(D+

X) ' N(DX) 'W (X).

We may therefore identify W (X) with the geometric realization

| lim−→
n

ND+
Sdn(X×∆•) |.

Let E denote the category whose objects are finite simplicial sets Y and whose morphisms are cell-like
maps. Then each of the categories D+

Sdn(X×∆m) is cofibered in sets over E, and can therefore be identified
with the Grothendieck construction on the functor

fn,m : E→ Set

which assigns to each object Y ∈ E the set of all weak homotopy equivalences

Sdn(X ×∆m)→ Y.
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It follows that the nerve of D+
Sdn(X×∆m) can be identified with the homotopy colimit of the diagram fn,m.

It follows that
lim−→
n

ND+
Sdn(X×∆•)

can be identified with the homotopy colimit of the functor

fm : E→ Set

fm(Y ) = Hom′(X ×∆m,Ex∞ Y ).

where Hom′(X ×∆m,Ex∞ Y ) is the subset of Hom(X ×∆m,Ex∞ Y ) consisting of weak homotopy equiv-
alences. Passing to the geometric realization, we can identify W (X) with the homotopy colimit of the
diagram

E→ Set∆

Y 7→ H(X,Ex∞ Y )

where H(X,Ex∞ Y ) is the simplicial set parametrizing homotopy equivalences from X to Ex∞ Y . We saw
in Lecture 12 that we can identify M with the nerve of E; this identification induces an equivalence

W (X) ' lim−→
Y ∈E

H(X,Ex∞ Y ) ' N(E)×Mh {X} 'M×Mh{X}.

We conclude by discussing the extent to which the homotopy equivalence W (X) ' M×Mh{X} can be
made functorial in X. By virtue of the above discussion, this amounts to the question of how functorially
we can identify the spaces N(DX) with N(D+

X). It follows from Propositions 1 and 5 that the constructions

X 7→ N(DX) X 7→ N(D+
X)

define functors
u : E→ S' v : Eop → S' .

We will prove the following:

Proposition 6. The functor u and v are homotopic to one another (after identifying S' with its opposite).

Warning 7. We can extend u and v to functors defined on the larger category whose objects are finite
simplicial sets and whose morphisms are weak homotopy equivalences. However, these enlargements are not
equivalent to one another (note that if they were, then the fibration M → Mh would be classified by the
functor X 7→W (X), and would therefore admit a section).

To prove Proposition 6, we begin by applying the Grothendieck construction to the assignments

X 7→ DX X 7→ D+
X

to produce coCartesian fibrations
D→ E D+ → Eop :

the objects of D are trivial cofibrations i : X → Y of finite simplicial sets, and the objects of D+ are weak
homotopy equivalences i : X → Y of finite simplicial sets. Morphisms in D are given by commutative
diagrams

X //

��

Y

��
X ′ // Y ′
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where the vertical maps are cell-like and the horizontal maps are trivial cofibrations, and morphisms in D+

are given by commutative diagrams
X // Y

��
X ′ //

OO

Y ′

where the vertical maps are cell-like and the horizontal maps are weak homotopy equivalences.

Remark 8. There is a bit of work hidden in this description of D. A priori, the morphisms in the relevant
Grothendieck construction are given by commutative diagrams

X //

f

��

Y

g

��
X ′ // Y ′

where the horizontal maps are trivial cofibrations, f is cell-like, and the induced map g′ : Y qX X ′ → Y ′

is cell-like. But the assumption that f is cell-like guarantees that the map Y → Y qX X ′ is cell-like, from
which it follows that g is cell-like if and only if g′ is cell-like.

These coCartesian fibrations induce maps of spaces

U : N(D)→ N(E) V : N(D+)→ N(Eop).

Using Propositions 1 and 5 and Quillen’s Theorem B, we see that the homotopy fibers of these maps (over
an object X ∈ E) can be identified with N(DX) and N(D+

X), respectively. Consequently, Proposition 6 can
be reformulated as follows: the natural homotopy equivalence N(E) ' N(Eop) can be lifted to an equivalence
between U and V (regarded as objects in the ∞-category Fun(∆1, S) of morphisms in the ∞-category of
spaces).

To prove this, let TwArr(E) denote the “twisted arrow category” of E: that is, the category whose objects
are weak homotopy equivalences f : X0 → X1 of finite simplicial sets, where a morphism from f : X0 → X1

to f ′ : X ′0 → X ′1 is a commutative diagram

X0
f // X1

��
X ′0

OO

f ′ // X ′1.

(f : X0 → X1)→ (X0, X1) determines a coCartesian fibration

TwArr(E)→ Eop×E .

In particular, we have coCartesian fibrations

Eop e0← TwArr(E)
e1→ E

The fibers of these coCartesian fibrations are weakly contractible (since they have initial objects), so Quillen’s
Theorem B implies that e0 and e1 are weak homotopy equivalences; the diagram of spaces

N(Eop)← N(TwArr(E))→ N(E)

supplies a concrete combinatorial description of the natural equivalence between N(Eop) and N(E) (in the∞-
category of spaces). We may therefore reformulate Proposition 6 as follows: the spaces N(D+×Eop TwArr(E))
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and N(D×E TwArr(E)) are equivalent (in the ∞-category of spaces over TwArr(E)). Note that we can

identify the objects of D×E TwArr(E) with diagrams of finite simplicial sets X0
f→ X1

g
↪→ Y where f is a

weak homotopy equivalence and g is a trivial cofibration, and we can identify the objects of D+×E TwArr(E)
with diagrams

Y
h← X0

f→ X1

where f and h are weak homotopy equivalences. The construction (f, g) 7→ (f, g ◦ f) determines a functor

D×E TwArr(E)→ D+×Eop TwArr(E)

compatible with the projection to TwArr(E).
It will therefore suffice to show that this functor is a weak homotopy equivalence. To prove this, it suffices

to show that it induces an equivalence on homotopy fibers taken over any point (f : X0 → X1) ∈ TwArr(E).
Unwinding the definitions, we wish to show that composition with f induces a weak homotopy equivalence

DX1
→ D+

X0
;

this follows from Propositions 5 and 4.
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A PullBack Square (Lecture 32)

November 24, 2014

Let X be a simplicial set. As before, we let CX denote the category whose objects are diagrams

Y

  
X

>>

id // X

where Y is obtained from X by adding finitely many simplices. Let s denote the collection of cell-like maps in
CX , let h denote the collection of weak homotopy equivalences in CX , and let Ch

X denote the full subcategory
of CX spanned by those objects where the map X → Y is a weak homotopy equivalence. Our goal in this
lecture (and the next) is to complete the second part of this course by establishing the following result:

Proposition 1. The diagram

K(Ch
X , s) //

��

K(Ch
X , h)

��
K(CX , s) // K(CX , h)

is a homotopy pullback square.

We will prove Proposition 1 by analyzing the K-theory space K(CX , h) (which we know to be homotopy
equivalent to Ω∞Afree(X)) and eventually showing that it can be identified with the homotopy quotient of
K(CX , s) by the action of K(Ch

X , s).
As a first step, it will be convenient to replace CX by something slightly closer to Ch

X .

Definition 2. For each integer n, let C
(n)
X denote the full subcategory of CX spanned by those objects for

which the map X → Y is n-connected.

Lemma 3. For each integer n, the inclusion C
(n)
X ↪→ CX induces homotopy equivalences

K(C
(n)
X , s)→ K(CX , s) K(C

(n)
X , h)→ K(CX , h).

Proof. We will give the proof of the second assertion; the proof of the first is similar. When n = −1, there
is nothing to prove. Proceeding by induction on n, we are reduced to proving that each of the inclusions

C
(n+1)
X ↪→ C

(n)
X inducse a homotopy equivalence K(C

(n+1)
X , h)→ K(C

(n)
X , h). Let Y be an object of CX , given

by a diagram
Y

r

  
X

>>

id // X.
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Let M(r) = (Y × ∆1) qY×{1} X denote the mapping cylinder of r and let F (Y ) = X qY M(r) denote
the two-sided mapping cylinder of r. The construction Y 7→ F (Y ) induces a functor from CX to itself

which carries C
(n)
X into C

(n+1)
X ; in particular, it carries both C

(n)
X and C

(n+1)
X to themselves. Note that F

preserves cofibrations, pushouts, weak homotopy equivalences, and cell-like maps. It therefore induces maps
on K-theory. Applying the two-out-of-six property to the diagram of spaces

K(C
(n+1)
X , h)→ K(C

(n)
X , h)

F→ K(C
(n+1)
X , h)→ K(C

(n)
X , h),

we are reduced to showing that F induces homotopy equivalences from K(C
(n)
X , h) and K(C

(n+1)
X , h) to

themselves. In fact, we claim that on both K-theory spaces F acts by (−1): this follows by applying the
additivity theorem to the natural cofiber sequence

Y →M(r)→ F (Y ),

since the functor Y 7→ M(r) is related by a cell-like natural transformation to the constrant functor Y 7→
X.

By virtue of Lemma 3, it will suffice to show that the diagram

K(Ch
X , s) //

��

K(Ch
X , h)

��
K(C

(1)
X , s) // K(C

(1)
X , h)

is a homotopy pullback square.

Note that K(C
(1)
X , h) can be obtained as the geometric realization of the simplicial object of Set∆ given

by

[n] 7→ N(hSn C
(1)
X ).

Let us fix n for the moment, and consider the category hSn C
(1)
X : the objects of this category can be identified

with diagrams
X ↪→ Y1 ↪→ Y2 ↪→ · · · ↪→ Yn → X

where all but the last map are 1-connected cofibrations (each adding finitely many simplices) and the
composition is the identity, and the morphisms are levelwise weak homotopy equivalences. Let us denote

such an object simply by ~Y . We would like to analyze hSn C
(1)
X in terms of the subcategory where the

morphisms are levelwise cell-like maps. To this end, let us consider a bisimplicial set N′(hSn C
(1)
X )•,• whose

(p, q)-simplices are diagrams

~Y0,0
//

��

· · · //

��

~Y0,q

��
· · ·

��

// · · · //

��

· · ·

��
~Yp,0 // · · · // ~Yp,q

where the horizontal maps are levelwise weak homotopy equivalences and the vertical maps are levelwise
cell-like.

Lemma 4 (Swallowing Lemma). In the situation above, the canonical map

N(hSn C
(1)
X )• ' N′(hSn C

(1)
X )0,• → N′(hSn C

(1)
X )•,•

is a homotopy equivalence (after geometric realization).
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Proof. It will suffice to show that for each p ≥ 0, the natural map N′(hSn C
(1)
X )0,• → N′(hSn C

(1)
X )p,• is a

weak homotopy equivalence of simplicial sets. Note that the target can be identified with the nerve of the
category E whose objects are diagrams

~Y0 → ~Y1 → · · · → ~Yp

of (levelwise) cell-like maps in hSn C
(1)
X . The diagonal map hSn C

(1)
X ↪→ E admits a left inverse, given by the

construction
~Y0 → ~Y1 → · · · → ~Yp 7→ ~Y0.

This left inverse is also a right homotopy inverse by means of the evident natural map

~Y0
id //

��

~Y0
//

��

· · ·

��

// ~Y0

��
~Y0

// ~Y1
// · · · // ~Yp.

It will be convenient to consider a slightly smaller bisimplicial set. We say that a morphism ~Y → ~Y ′ in

hSn C
(1)
X is a cofibration if the induced map Y ′i qYi

Yi+1 → Y ′i+1 is a monomorphism of simplicial sets for

each i. Let N′′(hC
(1)
X )•• denote the bisimplicial set whose objects are diagrams

~Y0,0
//

��

· · · //

��

~Y0,q

��
· · ·

��

// · · · //

��

· · ·

��
~Yp,0 // · · · // ~Yp,q

where the horizontal maps are cofibrations and levelwise weak homotopy equivalences and the vertical maps
are cell-like.

Lemma 5. The inclusion of bisimplicial sets

N′′(hSn C
(1)
X )•,• ↪→ N′(hSn C

(1)
X )•,•

is a weak homotopy equivalence (after geometric realization).

Proof. It will suffice to show that for each integer p ≥ 0, the inclusion

N′′(hSn C
(1)
X )p,• ↪→ N′(hSn C

(1)
X )p,•

is a weak homotopy equivalence. In other words, if we let E be the category appearing in the proof of Lemma
4 and we let E0 ⊆ E be the subcategory of E whose morphisms are given by diagrams

~Y0
id //

��

~Y1
//

��

· · ·

��

// ~Yp

��
~Y ′0 // ~Y ′1 // · · · // ~Y ′p ,
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where the vertical maps are cofibrations (as well as being weak homotopy equivalences), then we wish to
show that the inclusion E0 ↪→ E is a weak homotopy equivalence. Let us assume for simplicity that p = n = 0

(the proof in the general case is differs only by notation): then E is the subcategory of C
(1)
X whose morphisms

are weak homotopy equivalences, and E0 is the subcategory of C
(1)
X whose morphisms are trivial cofibrations.

We will prove that the inclusion E0 ↪→ E is a weak homotopy equivalence by showing that it is right cofinal.
To this end, fix an object Y ∈ E; we wish to show that the category D = E0×E E/Y is weakly contractible.
Unwinding the definitions, we can identify the objects of D with weak homotopy equivalences f : Y ′ → Y

in C
(1)
X . To prove that D is weakly contractible, it suffices to observe that every such object is connected to

the identity map id : Y → Y by a canonical zig-zag of trivial cofibrations

Y ′ ↪→ (M(f)qX×∆1 X)←↩ Y

where M(f) = (Y ′ ×∆1)qY ′×{1} Y is the mapping cylinder of f .

Let us now reorganize a bit. For each q ≥ 0, let Fq(C
(1)
X ) denote the category whose objects are sequences

of trivial cofibrations
Y0 ↪→ Y1 ↪→ Y2 ↪→ · · · ↪→ Yq

in C
(1)
X . Then we can regard Fq C

(1)
X as a category with cofibrations (defined as above, with the roles of n

and q switched) and weak equivalences (given by the collection s of levelwise cell-like maps). This category

with cofibrations and weak equivalences depends functorially on [q], so we can regard F• C
(1)
X as a simplicial

category with cofibrations and weak equivalences. Unwinding the definitions, we have

K(Fq C
(1)
X ) ' |N(hS• C

(1)
X )•,q|.

Passing to the geometric realization as [q] varies and invoking Lemmas 4 and 5, we obtain a homotopy
equivalence

K(C
(1)
X , h) ' |K(F• C

(1)
X , s)|.

Given a cofibration Y ↪→ Y ′ in CX , let Y ′/Y denote the pushout Y ′ qY X. It is clear that if Y ↪→ Y ′

is a weak homotopy equivalence, then the quotient Y ′/Y is weakly homotopy equivalent to X. If Y ′ and Y

both belong to C
(1)
X , then the converse holds: this follows from the observation that for any local system of

abelian groups A on X, we have an isomorphism

H∗(Y
′, Y ;A |Y ′) ' H∗(Y

′/Y,X;A |Y ′/Y ).

It follows that Fq(C
(1)
X ) admits an alternative description: it can be identified with the category whose objects

are sequences of cofibrations
Y0 ↪→ Y1 ↪→ Y2 ↪→ · · · ↪→ Yq

in C
(1)
X where each quotient Yi/Yi−1 belongs to Ch

X .
There is a natural map

θq : C
(1)
X ×(Ch

X)q → Fq(C
(1)
X ),

given on objects by

(Y, (Z1, . . . , Zq)) 7→ (Y ↪→ Y qX Z1 ↪→ · · · ↪→ Y qX Z1 qX · · · qX Zq)

This induces a map on K-theory spaces

K(C
(1)
X , s)×K(Ch

X , s)
q → K(Fq(C

(1)
X ), s).

Passing to the geometric realization as q varies, we obtain a map

K(C
(1)
X , s)/K(Ch

X , s)
q → |K(F• C

(1)
X , s)| ' K(C

(1)
X , h).
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To prove Proposition 1, it will suffice to show that this map is a homotopy equivalence. In fact, we will prove
something stronger: each of the maps θq induces a homotopy equivalence at the level of K-theory. Note that
θq has a left homotopy inverse ρ, given by the construction

(Y0 ↪→ · · · ↪→ Yq) 7→ (Y0, (Y1/Y0, · · · , Yq/Yq−1)).

The composition θq ◦ ρ is not homotopic to the identity at the level of categories, but induces the identity
map on K-theory spaces (up to homotopy) by virtue of the additivity theorem.
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Digression: Microbundles (Lecture 33)

December 1, 2014

Let M be a smooth manifold. To each point x ∈ M , one can associate a real vector space TM,x, called
the tangent space to x in M . The union

⋃
x∈M TM,x can be regarded as a vector bundle over M , which we

denote by TM and refer to as the tangent bundle of M .
If M is a topological manifold which does not have a smooth structure, then one generally cannot associate

to M a tangent vector bundle. To remedy the situation, Milnor introduced the theory of microbundles.

Definition 1 (Milnor). Let B be a topological space. An topological microbundle on X (of rank n) is a map
p : E → B equipped with a section s : B → E satisfying the following condition:

(∗) For every point x ∈ B, there exists a neighborhood of U ⊆ B containing x and an open subset of E
homeomorphic to U×Rn, such that the section s can be identified with the zero section U ' U×{0} ↪→
U × Rn.

An equivalence of microbundles E and E′ over B is a homeomorphism h : U ' U ′ fitting into a commu-
tative diagram

U
h //

  

U ′

~~
X,

where U is an open subset of E containing the image of the section s : B → E, U ′ is an open subset of E′

containing the image of s′ : B → E′, and we have h ◦ s = s′.

Example 2. Let M be a topological manifold. The tangent microbundle TM is defined to be the product
M ×M , mapping to M via the projection π1 : M ×M → M , with section s : M → M ×M given by the
diagonal map.

Variant 3. In Definition 1, we can require E and B to be (not necessarily finite) polyhedra and all of the
relevant homeomorphisms to be PL maps. This gives us the notion of a PL microbundle over a polyhedron
B.

If M is a PL manifold, then the product M ×M can be regarded as a PL microbundle over M (denoted
also by TM ).

Variant 4. In Definition 1, we can require p to be a smooth submersion: that is, we can require E to admit
a system of charts homeomorphic to U ×Rn where U is an open subset of B, where the transition functions
between charts are continuous in the first variable and infinitely differentiable in the second. This leads to
the notion of a smooth microbundle over B.

If M is a smooth manifold, then the product M ×M can be regarded as a smooth microbundle over M
(again denoted by TM ).

Example 5. Let E be a vector bundle over a space B. Then E can be regarded as a smooth microbundle
over B (since linear maps are infinitely differentiable).
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Conversely, if E → B is a smooth microbundle with zero section s : B → E, then the relative tangent
bundle TE/B is a vector bundle over E whose pullback s∗TE/B can be regarded as a vector bundle over B.
This construction determines a map

{ smooth microbundles over B}/ equivalence → { vector bundles over B}/ isomorphism .

It is easy to see that this construction is left inverse to the construction which regards each vector bundle
as a smooth microbundle. If B is paracompact, then it is also a right inverse: in other words, any smooth
microbundle E → B is equivalent (as a smooth microbundle) to the vector bundle s∗TE/B . One can produce
an equivalence by choosing a Riemannian metric on each fiber of E (depending continuously on B) and using
it to define a map s∗TE/B → E by means of the “exponential spray”.

Definition 6. Let B be a topological space. A Top(n)-bundle over B is a fiber bundle p : E → B whose
fibers are homeomorphic to Rn.

Remark 7. If B is paracompact (which we should always assume here), then any Top(n)-bundle E → B
admits a section and can therefore be regarded as a topological microbundle over B.

Variant 8. If B is a polyhedron, then we also have the notion of a PL(n)-bundle over B: that is, a map of
polyhedra E → B which is locally PL isomorphic to the product of the base with Rn. Any PL(n)-bundle
can be regarded as a PL microbundle.

Theorem 9 (Kister-Mazur). Let B be paracompact. Then the natural map

{ Top(n)-bundles over B}/ isomorphism → { rank n microbundles over B}/ equivalence

is bijective. In other words, every topological microbundle admits an essentially unique refinement to a
Top(n)-bundle.

Variant 10 (Kuiper-Lashof). Let B be a polyhedron. Then the natural map

{ PL(n)-bundles over B }/ isomorphism → { rank n PL microbundles over B }/ equivalence

is bijective. In other words, every PL microbundle admits an essentially unique refinement to a PL(n)-bundle.

Example 11. Let M be a (paracompact) topological manifold. Then every point x ∈ M admits an open
neighborhood Ux which is homeomorphic to a Euclidean space Rn. It follows from Theorem 9 that the open
sets Ux can be chosen “uniformly” so that the disjoint union qx∈MUx = {(x, y) ∈ M ×M : y ∈ Ux} is an
open subset of M ×M (to get a feeling for the content of Theorem 9, try proving this directly).

We can regard Top(n) and PL(n) as simplicial groups, whose k-simplices are homeomorphisms (required
to be PL in the second case) of Rn×∆k with itself which commute with projection onto the second factor.
The classifying spaces BTop(n) and BPL(n) classify Top(n)-bundles and PL(n)-bundles, respectively. By
virtue of the above results, we can think of BTop(n) and BPL(n) as classifying spaces for topological and
PL microbundles of rank n, respectively. Similarly, BO(n) is a classifying space for smooth microbundles of
rank n.
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Overview of Part 3 (Lecture 34)

December 3, 2014

We begin with the following:

Question 1. Let X be a space. Under what circumstances does X have the homotopy type of a compact
manifold M?

The answer to this question depends heavily on exactly what sorts of manifolds we allow. If we require
M to be a closed manifold, then this places strong constraints on the space X: it must satisfy Poincare
duality. Let us therefore be a bit more liberal, and allow M to be a manifold with boundary. In this case,
there is a simple necessary condition:

Claim 2. Let M be a compact manifold with boundary. Then M is homotopy equivalent to a finite CW
complex.

Proof. If M is a piecewise-linear manifold, this is clear: any finite polyhedron M is actually homeomorphic
to a finite CW complex, with a CW structure given by a choice of triangulation of M .

If M is a smooth manifold, then we can choose a Whitehead triangulation of M and thereby reduce to
the piecewise-linear case.

If M is merely a topological manifold, then Claim 2 is nontrivial (as we remarked in Lecture 2). It is easy
to see that M is a finitely dominated space, but it is not easy to show that its Wall finiteness obstruction
vanishes. This follows from a theorem of Chapman, which asserts that for any compact ANR M , there exists
a finite polyhedron N and a homeomorphism M ×Q ' N ×Q, where Q is the Hilbert cube.

This necessary condition turns out to be sufficient. First, we note that any CW complex is homotopy
equivalent to a finite polyhedron (since the collection of homotopy types of finite polyhedra contains the
empty and one point space and is closed under the formation of homotopy pushouts). If X is a finite
polyhedron, then we can choose a PL embedding X ↪→ Rn for n sufficiently large.

Definition 3. Let X ⊆ Rn be a finite polyhedron. A regular neighborhood of X is a finite polyhedron
N ⊆ Rn satisfying the following conditions:

• The polyhedron X is contained in the interior of N .

• The polyhedron N is a PL manifold with boundary.

• The inclusion of X into N can be written as a composition of (polyhedral) elementary expansions (in
other words, N “collapses” onto X).

Theorem 4. Let X ⊆ Rn be a finite polyhedron. Then there exists a regular neighborhood of X in Rn.
Moreover, if N and N ′ are two regular neighborhoods of X in Rn, then there exists a PL homeomorphism of
N with N ′ which is the identity on X (in fact, one can be more precise: there is a PL isotopy of Rn which
carries N to N ′, and is the identity on X).

Theorem 4 supplies an answer to Question 1:
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Corollary 5. Let X be a finite CW complex. Then there exists a homotopy equivalence X ' N , where N
is a compact manifold with boundary.

For the existence part of Theorem 4, choose a cube C ⊆ Rn which contains X in its interior, and choose
a triangulation Σ(C) of C which restricts to a triangulation Σ(X) of X. Let Σ′(C) denote the barycentric
subdivision of this triangulation and Σ′′(C) the barycentric subdivision of Σ′(C). We can then take N to be
the union of those (closed) simplices of Σ′′(C) which intersect X. For a proof that this construction works
(and of the uniqueness asserted in Theorem 4), we refer the reader to [3].

Exercise 6. Let X be the boundary of a 2-simplex σ embedded in R2. Then we can choose a triangulation
of R2 which includes σ as a simplex. Contemplate this example to appreciate the need to take a second
barycentric subdivision in the construction sketched above.

The deduction of Corollary 5 from Theorem 4 actually yields more precise information:

(a) The homotopy equivalence X ' N can be chosen to be a simple homotopy equivalence (after replacing
X by a finite polyhedron, we can arrange that the inclusion X ↪→ N is a composition of elementary
expansions).

(b) The manifold N can be chosen to be piecewise-linear.

(c) The manifold N can be chosen to have trivial tangent microbundle TN .

Remark 7. If N is a PL manifold with boundary, then the projection map N × N → N is not a PL
microbundle in the sense of the previous lecture, because N is not locally homeomorphic to Rn on its
boundary. However, if N◦ denotes the interior of N , then the projection N ×N◦ → N◦ is a PL microbundle
over N◦, and the inclusion N◦ ↪→ N is a homotopy equivalence; this determines a PL microbundle on N ,
which we denote by TN and refer to as the tangent microbundle to N .

Definition 8. Let N be a PL manifold of dimension n (possibly with boundary). A parallelization of N is
a microbundle equivalence of TN with Rn×N .

More generally, suppose that p : E → B is a PL fiber bundle whose fibers are PL manifolds of dimension
n. Then the projection map E ×B E → E can be regarded as a PL microbundle over E (at least away from
the boundary), which we denote by TE/B . A parallelization of E → B is an equivalence of microbundles
TE/B ' E ×Rn.

Construction 9. For each integer n ≥ 0, we define a simplicial set Mn as follows: a k-simplex of Mn

consists of a finite polyhedron E ⊆ ∆k × R∞ for which the projection E → ∆k is a PL fiber bundle whose
fibers are PL manifolds (with boundary) of dimension n, together with a parallelization of E.

In what follows, we will generally abuse notation and identify k-simplices fo Mn with the PL fiber bundle
E → ∆k, regarding the embedding E ↪→ ∆k × R∞ and the parallelization of E as implicitly specified.

The construction
(E → ∆k) 7→ (E × [0, 1]→ ∆k)

determines a stabilization map σn : Mn →Mn+1. We let M∞ denote the direct limit of the sequence

M0 →M1 →M2 → · · · .

Note that every fiber bundle E → ∆k as in Construction 9 is, in particular, a fibration. Consequently,
we have evident forgetful functors θn : Mn →M. Moreover, the diagrams

Mn

θn

!!

σn // Mn+1

θn+1

||
M
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commute up to canonical homotopy, so that the maps θn can be amalgamated to a map

θ : M∞ →M .

Our objective in the next part of this course is to prove the following result:

Theorem 10. The map θ : M∞ →M is a homotopy equivalence.

Remark 11. The simplest consequence of Theorem 10 is that the map θ is surjective on connected compo-
nents. This asserts that every point of M (given by a finite polyhedron X) can be connected by a path in M

(that is, a simple homotopy equivalence) to a point lying in the image of θ (that is, a polyhedron which is
a parallelized PL manifold with boundary). This is equivalent to the contents of Corollary 5, together with
the strengthenings (a), (b), and (c) indicated above.

Theorem 10 is a stronger result: it asserts that for a finite polyhedron X, not only can we choose a simple
homotopy equivalence X ' N to a parallelized PL manifold N , but that modulo “stabilization” (given by
iterated product with [0, 1]), the PL manifold N is unique up to a contractible space of choices. In particular,
if N and N ′ are parallelized PL manifolds equipped with simple homotopy equivalences to X (and therefore
to each other), then we can find integers a, b ≥ 0 and a PL homeomorphism N × [0, 1]a ' N ′ × [0, 1]b. This
recovers a form of the uniqueness asserted in Theorem 4.

We can summarize the situation informally by saying that Theorem 10 can be regarded as providing a
parametrized version of regular neighborhood theory, at least after stabilization.

Combining Theorem 10 with the main result of the second part of this course, we obtain the following:

Corollary 12. Let X be a finitely dominated space. Then there is a homotopy equivalence

M∞×Mh{X} ' Ω∞(X+ ∧A(∗))×Ω∞A(X) {[X]}.

One can ask analogous questions in the setting of smooth manifolds. For each n ≥ 0, one can introduce
a simplicial set Mn

sm analogous to Mn, whose k-simplices are given by smooth submersions E → ∆k of
parallelized manifolds. The direct limit M∞sm = lim−→Mn

sm maps to M via a map θsm : M∞sm →M, but the map

θsm is not a homotopy equivalence. However, we will show that the relationship between M∞sm and Mh is
also governed by an A-theory assembly map. More precisely, we will prove the following version of Corollary
12:

Variant 13. Let X be a finitely dominated space. Then the homotopy fiber product M∞sm×Mh{X} can
be identified with the homotopy fiber of the map u : Ω∞Σ∞+ X → Ω∞A(X) over the point [X] ∈ Ω∞A(X).
Here u is given by composing the A-theory assembly map with map Σ∞+ X → X+ ∧A(∗) determined by the
unit map S → A(∗).

To understand the relationship between Corollary 12 and Variant 13, let us consider the problem of
smoothing a PL manifold with boundary. For any PL n-manifold with boundaryM , the tangent microbundles
of M and ∂M are classified by a map of pairs

χ : (M,∂M)→ (BPL(n),BPL(n− 1)).

In order to choose a smooth structure on M , we need to factor this classifying map through the pair
(BO(n),BO(n− 1)).

If we assume that M is equipped with a parallelization, then the situation simplifies: a parallelization of
M is a nullhomotopy of the map M → BPL(n), so that we can regard χ as a map from ∂M to the homotopy
fiber fib(BPL(n−1)→ BPL(n)) = PL(n)/PL(n−1). In order to lift M to a (parallelized) smooth manifold,
we need to factor this map through the quotient fib(BO(n− 1)→ BO(n)) ' O(n)/O(n− 1) ' Sn−1.

Note that the sequence of spaces {O(n+1)/O(n)}n≥0 can be regarded as a prespectrum which represents
the sphere spectrum S. There is an analogous result for the groups PL(n):
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Theorem 14. The sequence of spaces {PL(n + 1)/PL(n)}n≥0 can be regarded as a prespectrum, whose
associated spectrum is A(∗).

For any parallelized PL n-manifold M , the classifying map χ above determines a map

∂M → PL(n)/PL(n− 1)→ Ω∞−n+1A(∗),

whch we can regard as an element of Ω∞−n+1A(∗)∂ M .

Theorem 15. The boundary map

Ω∞−n+1A(∗)∂ M → Ω∞−nA(∗)M/∂M

carries the classifying map χ defined above to the image of 〈M〉 under the Atiyah duality map Ω−nA(∗)M/∂M '
(M+ ∧A(∗)).

We will see that Variant 13 is a formal consequence of Theorem 15, since the natural maps BO(n) →
BPL(n) give rise to a map of prespectra

Sn ' O(n+ 1)/O(n)→ PL(n+ 1)/PL(n)

which represents the unit map S → A(∗).
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