‘ Differential Topology .
Lectures by John Milnor, Princeton University, Fall term 1958
) | Notes by James Munkres

, ' Differential topology may be defined as the study of
those properties of differentiable manifolds which are invari-
ant under diffeomorphism (differentisble homeomorphism).

_Typical problems falling under this heading are the followilng:

(1) Given two differentiable manifolds, under what
condlitions are they diffeomorphic?

(2) Given a differentiab;e manifold, is it the
boundary of some differentiable manifold-
with-boundary? '

A ‘{ﬁl

(3) Given a differentiable manifold, is it
parallelizable? 5§ ,

All of these problems concern more than the topology of the
manifold, yet they do not belong to differential geametry,-
which usually assumes additional structure (e. g., a connec-

tion or & metric)

The most powerful tools in this subject have been

‘derived from the methods of algebraic topology. 1In particu-

lar, the theory of characteristic classes 1s cruclal, where-
by one passes from the manifold M to its tangent bundle, and
thence to a cohomology class in M which depends on this bundle.

These notes are intended as an introduction to ﬁhe
subject; we will go as far as possible without bringing in
algebraic topology. Cur two main goals are Whitney's theorem
that a differentiable n-manifold can be imbedded as a closed
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2n+l (see §1.32); and Thom's

theorem that the non-orientable cobordism group n is

subset of the euclidean space R

isomorphic to a certain stable homotopy group (see §3.15).

Chapter I is mainly concerned with approximation
theorems. First the basic definitions are glven and the in-
verse function theorem is exploited. (§1l.1 - L.12). Next
two local approximation theorems are proved, showing that a
given mapcan be approximated by one of maximal rank.

(61.13 - 1.21). Finally locally finite coverings are used
to derive the corresponding global theorems: namely Whitney's
imbedding theorem and Thom's transversality lemma (§1.35).

Chapter II is an introduction to the theory of’
vector space bundles, with emphasis on the tangent bundle
of a manifold. Chapter III makes use of the preceding
material in order to study the cobordism groups n .
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Chapter I Imbeddings and Immersions of Manifolds.

Notation. If # is in the euclidean space RY, '
the coordinates of x are denoted by (xl,...,xp). Iet
lIx)] = max lxil; let Cn(r)“ denote the set of x such that
Ixll < r; and Cn(xo,r) the set of x such that ”x-xO" <r.

The closure of a cube C 1s denoted by C.

A real valued function f(xl,...,xn) is

differentiable if the partials of f of all orders exist

and are continuous (i.e., "differentiable" means C ). A
mep f: U —> R’ (where U ié an open set, in R°) 1is
differentiable if -each of the coordinste functions
fl,...,fp is differentiable. Df denotes fhe Jacoblan

matrix of f; one verifies that D(gf) = Dg-Df. The notation

a(fl,...,fp)/a(xl,...,x?) 1s also used. If n =p, [pf|

éenotes the determinant.

1.1. Definition. An n-manifold M® is a Hausdorff
space with a countable basis which is locally homeomorphic to .
R". - L~

A differentiable structure ol on & manifold M®

is a collection of real-valued functions, each defined on an

open subset of M, such that:

1) For every point p of M thefe is a neighborhood U of
P and a homeomorphism h of U onto an open subset of R®
such that & function £, defined on the open subset W of U,

16 1n o 1r ana only 1f fnt is differentiable.

P



P

Y T hed ,-‘"~~.;»{:" i

2) If U, are open sets contained in the domains of f and
U=, then £|ue S ir and omiy if 2]u, is in L,

for each 1.

A differentiasble manifold M® 1s a manifold

provided with a differentiable structure ny, 3 the elements

of :0 are called the differentiable functions on M. Any

:}qpen set U and homeomorphism h which satisfy the

S
>,

‘reQﬁirements of 1) above are called a coordinate system on
A .

M.’ Notation. A coordinate system is sometimes denoted by

the coordinate functions: h(p) = (u;(p),...,up(p)).

1.2. Alternate definition. Iet a collection

_ (Ui’hi) be given, where h; 1is a homeomorphism of the open

subset Ui of M® onto an opeh subset of RF, guch that

" &) the Ui' cover M

b) hJ h:l‘is a differentiable map on hi' (U1 n UJ)’

for all 1,].

Define a coordinate system as an open set U and homeomor-

phism h of U onto an open subset of R such that hiP-l

~end hh lj are. differentiable on h(U n U, ) and h (U n U )

1

A 5 R Sl EREARS

respectively s for each 1. Define a differentidble structure

on M as the colleetion of all such coordinate systems. A

function £, defined on the open set vV, 1s differentiable
-1 '

if £ h is differentiable on h(U N V), for all )

coordinate systems (U, h). . | -
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One shows readily that these two definitions are

entirely equivalent.

1l.3. Definition. Iet ‘”l’ Mé be differentiable

mgnifolds. If U 18 an open subset of Mi, f: U —> Mé is

differentiable if for every differentiable function g on

Mé, gf 1s differentiable on Mi.

CIf ACMl, a function f: A—>M, is

differentiable i1f it can be extended to a differentisble

‘function defined on a neighborhood U of A.

1

f: Mi _ Mé is a diffeomorphism if f and £~

are defined and differentisble.

(A coordinate system (U,h) on M" 4s then an
open set U in M and a diffeomorphism h of U onto an

open set in R".)

If ACM, we have just defined the notion of
differentiable function for subsets of A. Suppose thaﬁ A
is locally diffeomorphic to Rk: this collection is easily
shown to be a differentisble structure on A. In this case;

A 1is said to be a differentiable submanifold of M.

The following lemms is familiar from elementary

calculus.

1.k, Iemma. Let £: ¢™r) —> R satisfy the

condition
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for all x,y € et .

<b, forell 1,). Ten lle(x)-2(x)l <bn feyl, o

1.5. Theorem (inverse function theorem). Iet U
be an open subset of Rn, let f£: U—~—> RS be differentiable,
| and let Df be non-singular at xo. Then f 1is a diffeomor-
phism of some neighborhood of X, onto someineighborhood of

f(xo).

Proof: We may assume x_ = f(xo) = 0, and that

Df(xo) is the identity matrix.

Iet g(x) = £f(x) - x, so that Dg(0) is the zero
matrix. Choose r >0 so that x ¢ U and Df(x) is non-
singular and Iagi/ale <1/zn, for all x with [x| <r.
Assertion. If y e C(r/2), there is exactly one x e C(r)

such that f(x) = y:

(%) " By the previous lemms, ”g(X)-g(xgﬂ < 1/2”x-x0” on
.C(r). Let us. define X, =0, X =¥, X, =¥ - g(xn). This
is defined, since x - X, g = g(xh_z) - g(xn_l), so that
e,z M <3/2 lx _p-x oI5 end thus Il <2llyll for
each n. Hence the sequence X, converges to & point x
wiéh 'Hx" < 2llyll, so that x e C(r). Then % = y - g(x),

8o that f(x) = y. This proves the existence of x. To show
unigueness, note that if f(x) = f(xl) =y, then

8(x1) - g(x) =x - x,, contradicting (*).
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| Hence £ 71 c(r/2) —> ¢(r) exists. Note that
Ilf(x)-f(:;l) > Ix=x Il - le(x)-g(xpll > 1/2 lhe-xy I, m0 that £
;"y-xl" >1/2 "f-l(y)-f-l(yi)ﬂ. Hence £ T 1is continuous; ‘
the image of C(r/2) under £ 1g open because it equals
¢(r) n f-;(C(r/2)), the intersection of two open sets.

To ghow that g1

is differentiable, note that
- £f(x) = f(xl) + Df(xl)-(x-xl) + h(x,xl), where (x—xl) 18
.written as & column matrix end the dot stands for matrix

multiplication. Here h(x,xl)/ux-xl" ~> 0 a8 X —> X,.

Iet A be the inverse matrix of Df(x;). Then

A-(f(x)-f(xl)) = (x—xl) + A-h(x,xl), or

 A(yy) + A (y,y,) = £75(y) - £™H(y,)
were ny(v,y,) = a(eNy), £Xy)): Wow

() n(ex)  ex)
. "Y'ylﬂ o "x"‘xl" ]]Y"yl”

since [lx-x, I/ lyv, Il <2, By ly=yyl =0 as vy —> v, .

Hence (™)) = A - (o(£) .

' This means that D(f-l) is obtained as the compo-

gition of the following maps: ¢

C(r/2) ;:i> C(r> _5f> GL(n) matrix inversioi GL(n); .

vhere GL(n) denotes the set of non-singular n X n matrices,

considered eas a subspace of ne—dimensional euclidean space.



Since f-l i8 continuous and Df and matrix inversion are

c”, D(f_l) is continuous, i.e., £l 45 ¢t In general,

1 -l)

if £ is Ck, then by this argument D(f is also,

i.e., f-l is of class Ck+l. This completes the proof.

1.6. Iemma. Iet U be an open subset of R®,

let £: U—>F (n<p), £(0) =0, and let DF(0) have

{
‘

renk n. Then there exists a diffeomorphism g of one

neighborhood of the origin 1@ Rp onto another so that_

. ool n 1 n
g(O) =0 and BE(X ,.00yX ) = (X ,000,X,0,..4,0), 1n

some neighborhood of the origin.

Proof: Since a(fl,...,fp)/a(xl,...,xp) has rank

n, we may assume that B(fl,...,fn)/a(xl,...,x?) is the

- gubmatrix which 18 non-singular. Define F: U X P — R®

by the equation

1 1 n n+l
F(x ,l..,g) = f(x ,...’x ) + (o,.'.,o"x ’I.l,g).
F 1is an extension of f, since ,F(x;,...,xn,o,...,o) =

f(xl’ LI J .’xn) L]

. DF  is non-singular at the origin, sincerits

determinant everywhere equals |5(fl,.;.,fn)/a(xl;...,gé)l.
”Hence F has a local inverse &, 80 that .g mape one

‘ - neighborhood of the origin in Rp onto asnother, and

P, ) = (1),
Hence . v ¢

1 ny, ~,.1 n
gf(x ,-».,x ) = (x ,'--,x ,0,,‘...,0).



1.7. Corollary. ILet Ak be a differentlable sub-

manifold of M". Given x € A, there is a coordinate system
(U,h) on M about x, such that n(Uu n A) = w(U) N R®
(where Rk 1s consildered as the subspace Rk X 0 of

R x B°°¥ = gY).

Proof: Iet (Ui’hl) be a coordinate system on M
about x; by hypothesis, there is a differentiable map f
of a neighborhood V of x 4in M intoc R such that

flv NA-= fl is; a diffeomorphism whose range is an open set
k

W in R . We may assume U, =V, eand hl(x) = £(x) = 0.
-1 -1
Now ¢f hl hl fl is the identity on W, so that

its Jacobian, which equals D(fh;_l)-D(hl fil) is non-

singular. Hence D(hl fil) has renk k, so that by the
previous lemma, there is a diffeomorphism g of some
neighborhood V; C hl(Ul) of O onto another such that

-1, 1 k 1 k
g(0) =0 and gh, £7 (X ,c00,x ) = (X ,000,X% »05444,0).

171

ghl

Then U = hil(Vl) and h will satisfy the

requirements of the lemma.

1.8. Iemma. ILet U be an open subset of R?,
let £: U—>R°, £(0) = 0)(n > p), and let D£(0) have
rank p. Then there is a diffeomorphism h of some
neighborhood of the origin in R" . onto another such that

n(0) = 0 and fh(x’,...,%®) = («F,...,%P).



 Proof: We may assume B(fl,...,fp) is non-

a(xl,...,xp)
ginguler at O, since Df(0) has rank p. Define
F:r U — R by the equation -
F(xl,...,xn) = (fl(x),...,fp(x), xp+l,...,xn). Then Df(o)
is non-singular; let h Dbe the local inverse of F. ILet g
project R® onto the subspace RY; f = &F. Then

1 1 , 1 1
fh(x,...,x") = gF h(x e, X)) = g(x e ,x) = (x ee e, ).

1.9. Exercise. Iet U be an open subset of R,
£1 U —>RY, £(0) = 0; and let Df(x) have rank k for all
x in U. Then there are local diffeomorphisms h and g

n

of R° and R° respectively such that

1 n 1 k
gfh (X ,0eeyx) = (X ,000,%x,0,...,0).

1.10. Definition. If f: Ml — M2, the rank of
f at x is the rank of D(hzf hil) at hl(x), where
(Ul, hl) and (Ué, h2) are coordinate systems about x
and f(x), respectively. The differentiable map f: M —> MP
is an immergion if rank f =n everywhere (n <p). It 1s

an imbedding if it is also a homeomorphism into.

It f£: M —> MP, then y € W is a regular value

of £ if rank f =p on the entire set f'l(y). Otherwise,

y 18 a critical value. (If y £ £(M"), y 1s thus =

regular value of £.)



1.11. Exercise. If A 1s a differentiable sub-
manifold of M, the inclusion A ~> M 1is an imbedding and
conversely if f: M, —> M is an imbedding then f(Ml) is

a differentiable submanifold.

1.12. Exercise. If y 1is a regular value of
£ MF — Mp, then f-l(y) is a differentiable submanifold

of M* of dimension n - p (or is empty).

-

1.13. Definition. A subset A of R" has

messure zero if it may be covered by a countable collection

of cubes C(x,r) . having arbifrarily small total volume. In
such a case, R" - A is everywhere dense (i.e., it intersects

every open set).

1.1k. Iemma. Iet U be an open subset of R°;
let f£: U ~—> R® be differentisble. If A C U has measure

0, so does f(A).

Proof: ILet C be any cube with CC U. Iet b
denote the maximum of |8fi/5x3| on € for all 4,j. By

1.4, Jle(x)-2(y) < v n lx-yll for x,y eC.

Now AN C has measure'zero; let us cover AN C

m .
by eubes C(xi,#i) contained in C, such that = rin < €,
i=1

Then f£(C(x,r,)) C C(£(x,), bn r;), so that (AN C) is

covered by cubes of total volume b n" = rin < b® n"e.

Hence f(A N C) has measure zero.
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- Since A can be covered by countably many such

cubes C, f(A) has measure zero.

1.15. Corollary. If f: U—>R® 1s differenti-
able, where U 1s an open subset of R® and n <p, then

£(U) has measure O .

Proof: Project U X R ™ onto U and epply f.

Since U X O has measure O in RY, so does £(U).

1.16. Definition. If ACM, A has measure O
if h(A N U) has measure O for every coordinate system

(u, n).

1.17. Corollary. If f: M' —> M is

differentiable and n < p, then f(Mn) has measure zero.

1.18. Definition. Iet M(p, n) denote the space
of p Xn matrices, with the differentiabie structure of
the euclidean space R°°. Iet M(p,n; k) denote the sub-
space consisting of matrices cf rank k. Thus M(p,n;n) is
an open subset of M(p,n) 1if P > n; the determinental

criterion for rank pi-oves this. More generally, we have:

1.19. Iemma. M(p,n;k) is a differentiable sub-
manifold of M(p,n) of dimension k(ptn-k), where

k < min (p,n).



Proof: Let E_ e M (p,n;k); we may assume that

o] (o]

c D

Eo is of the form fA B s Wwhere Ab is a non-singular
o o

'k X k matrix. There is an € > 0 such that if all the
entries of A - A.o are less than €, A must also be non-
gingular. lLet U consist of all matrices in M(p,n) of the

form E = (A B) , with all the entries of A - A, less

C D
than E.
Then E is in M(p,n;k) if and only if D = CA_lB:
For the matrix &
— ,/‘\
Ik 0 ‘ A .B ) A B
X I, | \¢c D XA+C  XB+D
has the same rank as E. If X = -CA-l, this matrix is
AR 0\ .. D= cA™'B, this matrix hes rank
0 -CA ~ B+D

k. The converse also holds, for if any element of -ca™ 1B+

is different from zero, this matrix has rank > k.

Iet W be the open set in euclidean space of

dimension (pn-(p-k)(n-k)) = k(p+n-k) consisting of matrices

cC o
The map A B A B is then a diffeomorphism
' cC o ¢ calB

of W onto the neighborhood U N M(p,n;k) of E, .

(A B) , with all the entries of A - A less then «.



1.20. Theorem. Let ﬁ be an open set in Rn,‘
and let f: U —~—> R be differentiable, where p > 2n.
Given € >0, there is a p X n matrix A = (az) with each
|a3| < €, such that g(x) = f(x) + A-x 1is an im?ersion.

(x written as a column matrix.)
Proof: Dg(x) = Df(x) + A; we would like to

choose A 1in such a way that Dg(x) has rank n for all

x. I.e., A should be of the form Q - Df, where Q has

rank n.
We define Fy: M(p,n;k) X U —> M(p,n) by the
equation f |
| F,(Q,x) = Q - DE(x) .
“Now Fk is a differentisble map, and the domain of Fk

has dimension k(p+n-k) + n. As long as k <n, this
expression is monotonic in k (its partisl with respect to
k is p + n-2k). Hence the domain of Fy has dimension
not greater than (n-1) (p+n-(n-1)) + n = (2n-p) + pn - 1
for k <n. S8ince p > 2n, this dimension is strictly less

than pn = dim M(p,n). °"

k
g0 that there is an element A of M(p,n), arbitrarily

Hence the image of F, has measure zero in M(p,n),

2] B
close to the zero matrix, which is not in the image of Fk

for each x. ®

ks s

" gy
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1.2)1. Theorem. Iet U be an open subset of Rn;
end let £: U —> R° be differentieble. Given £ > 0,
there are matrices A (p X n) and B (p X 1) with entries
less then € in absolute value, such that
g(x) = £(x) + A.x+ B
has the origin as a regular value.
Remark. The following much more delicate result

has been proved by A. Sard: The set of critical values of

" any differentiable map has measure zero.

Proof of 1.21. Note that the theorem is trivial

:if p > n, since then £(U) has measure zero, and we may
choose A =0 and B small in such a way that O 18 not

in the image of g.
_Assume p < n. We wish Dg(xo) = Df(xo) + A to
have rank p, vhere X, ranges over all points such that
g(xo) =0 = f(xo) + A-x + B.
Hence A is of the form Q - Df(x), and B 1is of the form
-f(x) - A-x, where Q 1is to have rank p.

Ve define F: M(p,njk) X U —> M(p,n) X R by

the equation

]

B Q%) = (@-D2(x), -2(x) - (@-DE(x))-x).

Then Fk is differentieble. If k < p, the dimension of



1k,

its domain is not greater than (p-1)(p+n-(p-1)) + n =p + pn -1.
Hence the image of F', k = 0,...,p~-1 has measure zero; so
that there is a point (A,B) ' arbitrarily close to the origin

which is not in any such image set. This completes the proof.

1.22. Definition. A covering of X is locally-
finite if every point has a neighborhood Which intersects only
finitely many elements of the co&ering. A refinement of a
covering of X 1s a second covering each element of which is
contained in an element of the first covering. A Hausdorff
space is paracompact 1f every open covering has a locally-
fini£e open refinement.

It X/\is paracohpact, and Ua is an open covering,
there is a locally-finite open covering Va with Va(: Ud
ifor each- . For let W6 be a locally-finite refinemént of
U,; choose a(p) so that Wﬁ(: Ua(ﬁ) for each B. Set

v, =U W_. Given a neighborhood intersecting onl
o, a(p)=a "B g ng y
finitely many wa, it intersects only finitely many Va as

well.

1.23. Theorem. If X 1is locally compact and

Hausdorff, having a countable basis, X 1is paracompact.

Proof: Ilet Ul’U ;ee+« be a basis for X with ﬁi
compact‘for each 1. There exists a sequence Al’A2"'° of

compact sets whose union is X, such that Ai_C:Int Ai+l:
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Set Al =lﬁl. Given Ai compact, let k Dbe the smallest

integer such that Ai 1 UsoolU Uk; let .

equal the closure of this set union ﬁk+l'

is contained in U

A

Iet O be an open covering of X. Cover the com-

pact set AL+ « Int Ai by a finite number of open sets

1
Vl,...,Vn where eaéh Vi is contalned in some element of
0, and in the open set Int Ai+2 - Ai-l' Iet Pi denote

the collection .{V

1reeeoVy), end let P o= Pou‘P Useu ®

1
P refines O, and since any compact closed neighborhood C
is contalned in some Ai’ C cen intersect only finitely

many elements of P.

1.24. Exercise. Prove: A paracompact space 1s

normal. (First prove that it is regular.)

1.25. Theorem. Iet M" be a differentiable mani-

- fold, {Ud) an open covering of M. There is a collection

(VJ, hj) of coordinate systems on M such that
1) {vj} is a locally-finite refinement of {Ud}.

n
2) hJ(VJ) = C (3)
3) If W

]

3 hsl(c(l)), then’ {WJ) covers M.

Proof: The proof proceeds along lines similar to
the previous one. The only difference 1s that one chooses

the V, to satisfy 2), and makes sure that the sets

J
-1 ‘
hJ (c(1)) also cover Ajq - Int Al

| cty %
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1.26. We wish to construct a Cé function
¢(xl,,..,xn) such that @ =1 on C(1), 0<¢<1l on

c(2) - ®1),9=0 on R - c(2).

This function may be defined by the equation

¢(xl,...,xn) = II§ W(xi), where

v(x) = M2+x) A (2-x)
. Motx) -AM2-%x) + ANx-1) + N -x-1)

and
e-l/x

il

M x) if x>0

=0 ir  x <0.

Note that the denominator in the expression for V 18 always
positive, and that ¥(x) =1 for |x]| <1
o< y(x) <1 if 1< |x|<e2

w(x) =0 1f |x|>2.

1.27. Definition. ILet f,g: X —> Y, where Y
is metrizable, and let B8(x) be a positive continuous

function defined on X. Then g 1is a bJ-approximation to f

if d(f(x), g(x)) < 6(x) for all x. [If one takes the
S-gpproximations to f to be a neighborhood of £ in the
function space F(X,Y), this imposes a topology on the function

space; independent of the metric on Y (X Y parécompact).]
R )

1.28; Theoremn. Given a differentiable map
£: M —> R® where \P-Z on, and a continuous positive

function ® on Mrﬂ there exists an immersion é: M ——>'Rp
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which is a b-approximation to f. If rank f = n on the

closed set N, we may choose g|N=f]N.

Proof: Rank f =n on a neighborhood U of N.
Cover M* by U and M® - N. Iet (vi’hi) be a refine-
ment of this covering, constructed as in 1.25. As before,
hi(Wi) = ¢(1) and hi(Vi) = C(3). Let hi(U_i) = ¢(2). 1Iet

the V, be so indexed with positive and negative integers

1
that those Vi,.with non-positive indices are the ones

contained in U. Iet €, = min of ®(x) on the compact set

i
Ui'
Set fo = f. Given fk-l: e —> Rp, having rank
— 7 -lo [,
n on N, = Uj<k Wj, consider £, , h ": c(3) —> .

Iet A bea pXn matrix; let FA: c(3) ~> R be

defined by the equation
-1
EA(x) =f, 1B (x) + o(x) A-(x),

where (x) 1s written (as usual) as a column matrix (n X 1);
A is yet to be chosen; and @(x) 1is the function defined in
e T
First, we want FA(X) to have rank n on the set
- -1 :
K = hk(Nk-l n Uk)’ we are given that fk—l hk has rank n

on K. Now

D(Fy(x)) = (£, ; B l(x)) + A(x)-Do(x) + o(x)A.

(Dp is & 1 X n matrix.) The map of KxM(p,n) into
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M(p,n) which carries (x,A) into D(FA(x)) is continuous.
It carries kx(0) into the open subset M(p,n;n) of )
M(p,n). Hence if A is sufficiently small, this map will

carry K X A into M(p,n;n); our first requirement is that

‘A be this small.
Secondly, we.require A to be small enough that
lla-(x) | < Ek/2k for all x e C(3).

‘ Finally, by 1.20, A may be chosen arbitrarily
emall so that f, h;l(x) + A.(x) has renk n on C(2).

Iet A Dbe chosen to satisfy this requirement.

We then define fk: M —> RP by the equation:

£,.(¥) fie1 (y) + o(n (¥)) A-(n (y)) for y eV

=f, 3 (y) for y e M-U .

These definitions agree on the overlapping domains, so that

fk is differentisble. By the first condition om A, 1t

has rank n on Nk by the third condition it hes rank

-4
n on ﬁi. By the second condition, fk is a 8/2k

approximation to fk-l'

We define g(x) = lim fk(x). Since the covering
k>0
v

i is locally finite, all the fk agree on a given compact

get for k sufficiently large; it follows that g 1s

differentisble and has rank n evefywhere. It is also a

’

b-approximation to f.



19.

1.29. lemma. If p > 2n, any immersion
£ M —> Rp can be 6-épproximated by a 1l-1 d1mmersion g.
If £ 4is 1-1 1in a neighborhood U of the closed set N,

we mey choose g|N=f[N.

Proof: Choose & covering (Ud} of M such that
fIUd is an imbedding (possible by 1.6). Iet »(Vi, hi) be
the locally finite refinement consﬁructed in 1.25; let o(x)
be the function constructed in 1.26. Iet ¢i(y) = @(hi(y)).
for y e V,; =0 for other y. Then P is différentiable.
As before, we assume (Vi’ hi) ‘refines the covering
(U, M-N) and that those V, with non-positive indices are
the ones contained in U. ILet fo = f. Given the

M —> Rp, we define £ by the equation

immersion f k

k-1°

£,(y) = £ ,(¥) + o (y)b,, where b_ is

a point of Rp yet to be chosen. By thé argument of the

previous theorem, if bk k

will have rank =n everywhere. The first requirement is that

is chosen sufficiently small, £

bk be this small; the second requirement is that bk be

small enough that f, be a 5/2k approximation to fi .
Finally, let N°® be the open subset of M® x M®

consisting of pairs (y, yo), with Qk(y) # ¢k(yo). Consider

the differentiable map of N2n into RP which carries

(v, v,) into -[f, (y) - £, (v ))/[e(y)-9(v,)]. Since

en < p, the image of N2n has measure O, so that b, may

k
be chosen arbitrarily small and not in this image.
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It follows that fk(y) - fk(yo) = 0 1if snd only if

o (¥) - 9 ly,) =0 end £ ,(y) - 1 ;(y)) =0 (k>0).

Define g(y) = Um £,(y). If g(y) = &(y,) and
k>
y # Yo» 1t would follow that fk_l(y) = £, _y(y,) end
q;k(y) = (pk(yo) for all k > 0. The former condition implies
that f(y) = f(yo),‘ so that y end y_ cannot belong to
any one set Ui' Because of the latter condition, this
means that neither 1s in any set Ui for 1 > 0. Hence,

they lie in U, contradicting the fact that £ 1s 1l-1 on U.

1.30. Definition. Iet f£: M* —> RP. The limit

set L(f) 1s the set of y ¢ R’ such that y = 1lim f(xn)
for some sequence {xl,x2 y+++} which has no limit point
on 1, -

Exercise. Show the following:

1) £(M) is a closed subset of R® 1f and only if
() C £(u) |
2) £ 1is a topological imbedding if and only if f is

1-1 and IL(f) N £(M) is vacuous.
"y
&
1.31. Iemma. There exists a differentiable map

£: M —> R with L(f) empty.

Proof: Iet (Vi’ hi) and ¢ be chosen as in 1.25
end 1.26 with 1 ranging over positive integers; let

‘Pi(Y) =gh,(y) 1f yeV;; =0 3pherwise.

: -
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Define f(y) = }.‘.J(;] cpj(y))'. This sun is finite, since V,
is a locally finite covering. If {xi] is a set of
points of M having no 1imi£ point, only finitely manj lie

in any compact subset of M. Glven m, there 1ls an integer

—

1 is not in Wl Usoal Wm. Hence xi € WJ

for some J > m, whence f(xi) > m. Thus the sequence

i such that x

f(xm) cannot converge.

1.32. Corollarz. Every Mp can be differentiably

imbedded in R2n+l as & closed subset.
Proof: Iet £: M® —> RC B2°'1 Qifferentiebly,

with IL(f) = 0. Set ®(x) =1, and let g be a 1-1
immersion which is a S-approximation to f£. Then I(g) 1is

empty, so that g 1s a homeomorphism.

1.33. Definition. Iet f£: M* —> N aifferentiably.
et Ni-q be a differentiable submanifold of N. ILet

£(x) e N,. Let (ul,...,un) be a coordinate system about

1
L
x; and let (v ,...,v) Dbe a coordinate system about
£(x) such that on N, == vi=0 (see 1.6). Consider
the condition that
ot 1=1,...,q
u? J=21..05n

have rank q at x. This is the transverse regularity

condition for f and Nl-

condition 1is independenf of coordinate system.] Note that

at x. [Exercise: Show that this
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the set of points on which the transverse regularity condition
1s satisfied is en open subset of f'l(Nl). f 1s said to be

transverse regular on Nl if the condition 1s satisfied for

each x in f_l(Nl).

1.3%. Lemma. If £: M° —> X° is transverse
: e -1
regular on N; then f (Nl) is a differentiable sub~-

manifold of dimension n - q¢ (or is empty).

Proof: Let T project R’ onto its first q
components; T: R —> r% 1f (V,h) = (vl,...,vp) is the
coordinate system hypothetesized in 1.33, then
NNV = h-lv-l(o) (here O denotes the origin in rY);

R -1
and f (Nl N V) = (whf) (0). Since 7Thf has rank q at
X € f-l(Nl N V), the origin is a regular value of 7hf.
| Hence (nhf)'l (0) 1is & differentisble submanifold of M

of dim n-g (see 1.12).

1.35. Theorem. Iet f£: M —> N be aifferenti-
sble; lct Nﬁ'q be & closed differentiable submanifold of
N. Iet A bde a closed subgset of M such that the
transverse regularity condition for f and N

1
each x in AN f_l(Nl). let ® be a positive continuous

holds at

function on M. There exists a differentiable map
g: M —> N such that
(1) g 1s a B-approximation to £,

(2) g 1s transverse regular on N, eand
(3) gla= fIAf
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Proof: There is a neighborhood U of A in M
such that £, satisfies the transverse regularity condition
. on UN f'l(Nl). Cover N by N - N, =Y and coordinate
system (Yi, ki) for 1> 0; with coordinate functions
(vl,...,vP) such that v* =...=v%=0 on N,. ' Now the
open sets f—l(Yi) cover M, as do the open sets U,
M- A. Lét (VJ, hj) be a refinement of botﬁ coverings,
' constructed as in 1.25. Recall that hj(vj) = ¢(3),
hj (UJ) = ¢(2), hj(WJ) = ¢(1), end the wj cover M. The

VY, are to be indexed with positive and negative integers

J

. go that those V, which are contained in U are the ones

J
with non-positive indices.

. - et ¢ be as in 1.26, and define ¢i(x) = @(hi(x))
for x eV, eand ¢1(x) = 0 elsewhere. For each J choose

1(3) > 0 so that f(VJ) is contained in Yi(J).
set f_ = f.

Suppose fk-l is defined and satisfies the trans-

t verse regularity condition for Nl at each point of the
T -1 .., =
- intersection of fi ,(N;) with Use Wy

. v = v
T i\jhat fk_l(UJ) C:Yi(J) for each ‘j. Setting 1 = 1(k), it

i
i

Furthermore suppose

follows in particular that fk-l(Uk) C Y.

’ Consider T k, T n "l c(2) —> rY; by 1.21. .0
1 k-1 ° 3By Leede v

there is an erbitrarily small affine function I(x) = A.(x)+B

. such that when added to the previous function, the resulting

map has the origin as a regular value. Congilder Rq as the



first q coordinates in Rp, and define

2k,

rfk(x) = k;l(kifk_l(x)+L(hk(x)) ¢k(x)) for x in a neighbor-

’ - ' s -1
hood of Uk oL &y

= fk_l(x) for X in M-U .,

Here L 1is yet to be chosen. Of course, we must

S
choose L small enough that k£, + Ly */ldes in c(1) for

1 k-1
-1

£ ! - WY e )
}g,;txy R i

X € ﬁk,‘ in order that k- may be applied to it. This 1s

the first requirement on L. Secondly, we choose I, small

enough that fk is a 6/2k approxlmation to fk-l' Thirdly

choose I small enough so that fk(ﬁa) is
Yi(j) for each 3. This is possible sihce

number of the sets UJ can intersect ‘ﬁk.

Now fk by definition satisfies
regularity condition for Nl at each point
We want to choose L small enough that the

satisfied at each point of the intersection

Uj<k Wj'

PR
Ry U
contained in
only a finite
the transverse e

-1 —
of £ (Nl) 0 W.
condition is

-1
of £ (Nl) with

it ig sufficient to consider the intersection of

this set with ﬁ#; let this intersection be denoted by K.

Consider the function which maps the pair (x,L) (x € K) 1into

(fk(x) s D(atki £, h;l)(hk(x)) in N X M{(q,n). This function.

is continuous and carries K X (0) into the set

i
z ’i.‘-' ;

v[(N—Nl) X M(q,n)] v [N4X M(q,n;q)], which is open in

N X M(q,n). Hence for L sufficlently small, (x,1) 1is
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carried into this set, so that fk satisfies the transverse

regularity condition for Nl at each point of

-1 -
£ (Nl) n (u'j <k wj).

We define g(x) = 1lim f (x), as usual.
v k
: ’ k~> o

. .
Nx
N
L~
k
v
603 ')“r%)
. g

1}
L
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Chapter II

VEctbr Space Bundles

2.1 Definition. An n-dimensional real vector space

bundle ¢ 1s a triple (r,ays). T 1s a continuous map of
E onto B (E,B topological spaces; B Hausdorff). Let
F = 71(b); it 15 called a fibre. s maps R X E ~—> B
and carries R X Fb into Fb 3 & 1is defined on

'Ub(Fb X Fb)C Ex E and carries F X F into F .

The following must be satisfied:
ok _ (1) F, is an n-dimensional real vector space with & and

a as scalar product and vector addition, respectively,

(2) (Local triviality) For each b in B , there is a
-k neighborhood U of b and a homeomoxﬁhism
9 : UXR' ——>~W—1(U) such that ¢ 1is a vector space

isomorphism of D' X R® onto For s fpr each b' in U.

If in (2) the nelghborhood U may be taken as all of B,

the bundle 1is said to be the trivial bundle.

If ¢&,n are n-dimensional and p-dimensional vector

space bundles, respectlively, we define the product bundle

£ X1 as follows:

]

E(t) x E(n)
B(¢) x B(n)
(mr(x), NMy))

E(¢ X n)
B(t x 1)

‘('IT X'N)(x, ¥)

H



where v, A are thefprojections in ¢, 1 respectively and

Fb(g X 1) has the usual product structure for vector spaces.

s

If U is a subset of B(t), then ¢|U denotes the
bundle T v‘l(U) —> U . It is called the restriction of

the bundle to U .

5.0 Definition. Let MY be a differentiable mani-

fold and let X, }$e in M. A tangent vector at X, is an
opération X which assigns to each differentiable functiéh
£ defined in.a neighborhood of x,, & real number. The fol-
lowing conditions must be satisfied:

1) If g is’a restriction of £, X(g) = X(£).

2) X (ef + dg) = cX(£) + ax(g) (c,d real numbers)

3) X(f£g) = X(f)-g(xo) + f(xo)'X(g) s where the dot means

ordinary real multiplication.

en X(1) = X(1-1) = X(1) + X(1), by 3). Hemce X(1) =0

and X(c) also = 0, by 2).

If one thinks of a tangent vector as being the velocity
vector of a curve lylng in the manifold, then X(f) 1s merely
the derivative of f with respect to the parameter of the

curve. This is made more precise below.

2.3 Lemma. Let (ul,...,un) be a coordinate system

" about x . Let X be a tangent vector at x . Then X may
9
aii

be written uniquely as a linear combination of the operators

.
.
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Proof: We assume u(x) is the origin. Given any

-~ f(ul, oo u’) define

1 n
g‘(u yeess )

f(ull...,un) = f(o,u2,~...,un) 12 ot £0
i
u

&f/all (O,u2,...,un) 12 wt=0.

To see that g is differentiable, note that

2 n 1 2 .n
g(s,u",...,u )=fo —i;—i;(st,u,...,u )at .
t : o

1 1 1 n 2 n
(Then f(u™,...,u") =u gl(u yeessw ) + £(0,u05,...,u).)

- " 2
- . Similarly, £(0,u%,...,u") =u gg(uz,...,un) + £(0,0,u3, ...,u"),

where g2(0) = ,81‘/&12(0) . Finally, we have |
i
< (0) -

f(ul,oo',un) = z u
o

g + £(0) , where gi(o) =

Tus X(f)

= x(ud) g (0) + 0X (g))

ro 9—‘?1 (0) , where o =x(l).
ou

Remark. If (vl,...,vn) is another coordinate system

’ J 1_ o4 3 2t
about x, and X = Z B Sv-:j- , then o =X(u™) = Z P -

" fThe o are called the components of the vector X with

respect to the coordinate system (ul,...,un) .
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2.4 Alternate definition. A tangent vector at x is

en assignment to every coordinate system (ul yoee ,un) about
x of an element (dl ,....,dn ) of R , with the requirement

that if (pj) is assigned to the system (vl,...,vp) , then

1 .
oti =% 941—— B, . The derivation operator X ise then defined
d BVJ J ;
i o ‘
as L Q -7 One checks readily that
a1

a) X(£) is independent of the coordinate system used, and
b) X(f) satisfies requirements 1),2), and 3) for a tangent

vector.

2,5. Definition. For each x in M, the tangents
at x form an n-dimensional vector space (the operations df 2t
form & basis, by 2.3). Let the totality of these be denoted
E(t); define 7: E(t) —>M as mapping the tangent vector X
at X, Into X, - The ioca.l product structure is given by
@, UX R® —> E, where (U,h) = (ul,...,un) is a coordinate
systemon M , and ¢ 1s defined as follows:

o(x ,a.l,...,an) = the tangent vector X = X al O at x .
o aui o}

Since ¢ 1s to be a homeomorphlsm, this structure imposes a

topology on E ; since q»;l ®, is a homeomorphism on (U A V)X r®
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this topology is unamblguously determined. One checks im-
mediately that @ glves us a vector space isomorphism for

g

each fibre.

Indeed, cpv-l o, isa ¢® map on (UNV)XR™, so
that E is a differentiable manifold of dimension 2n (using
definition 1.2 of a differentiable manifold). The map 7 is

differentiable of rank n .

This bundle 7 is called the tangent bundle of M .

2.6 Definition. If f: M, —> M, , there is aﬁ

" induced map df: E(Tl) ——>~E(72) defined as follows :

afr(x) = Y , vhere ¥(g) = X(gf) . If X is a vector at x_,
Y is a vector at f(xo). This is clearly linear on each

fibre; it is called the derivative map.

If (U,h) and (V,k) are coordinate systems about
X5 f(xo) respectively, and (a}), (53) are the respective
components of X and Y with respect to these coordinate

systems, then (ﬁj) = D(kfh'l)-(oé) where the vector com-

ponents are written as column matrices, as usual.

2.7 Definition. Tet ¢,n be two n-dimensional

vector space bundles.

A bundle map f: ¢ —> 1 1s a continuous map of

E(¢) into E(n) which carries each fibre isomorphically

33




onto a fibre. The induced map fgp: B(E) —> B(n) is auto-

matically continuous.

1f B(t) = B(n) and the induced map is the identity,
£ 4is said to be an equivalence. Note that if £ d1s an equiv-
alence, it is a homeomorphism: Locally f 1is Just a map
Ux R —>VxR'. The projection of £ into ‘the factor
U is continuous, because 1 i the identity. But f “may

B
be glven by a non-singular matrix function of x ¢ U ; f-l
is the inverse of this matrix, so that the projection of ful

:1ntb the factor Rn is continuous. Hence f_l is continuous. .

If there is an equivalence of § onto 17, we

write Ea~ 7 .

2.8 lemma. Given a bundle n‘ with projection map

A: E(y) —> B(n) , and amap f: B, —> B(n) , there is &

bundle T: E, —> B, end a bundle map g: E, —> E(n) such

that Ag = T . Eurthermpi'e ) El 12 unique up to an equiv-

alence.

[El is called induced bundle and is often denoted

by %y .]

Proof: Let E, be that subset of B)X E(n) con-

sisting of points (b,e) such that £(b) = A(e) . Deflne

w(b,e) =b ; g(b,e) =e . To show that F, is a vector
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space bundle, let ¢: V X R® —> E(y) be a product neighbor-
hood in E(q) , and let f(U)C V . Then define @: U X R—> E
by cpl(b,x) = (b,p (£(b),x)) . This is continuous ,lz;nd 1-1;
its image equa]:s 'n‘_l(U) . Tts inverse carries (b,e) dnto

(v,p qfl(e)) (where p projects V X R® onto R°) , so that

it is continuous. The map g is an isomorphism on each fibre.

Now suppose g': E' —> E(n) is a bundle map, where

f. P
T: E ——->Bl

by mepping e' —> (r'(e'), g'(e*)) in E, . Because g! is

an lsomorphism on j'each fibre, so is this map; and it induces

is a bundle and Ag'=fT . Ve map E'——>~El

the ldentity on the base space. Hence it is an equivalence.

2.9 'D'é'finition. Let E&,m Dbe two bundles over B.
The Whitney sun ¢ @1 1s a bundle defined as follows:.
Consider the product bundle E(g)x E(n) —>B X B ; let d be
the diagonal map B —> B. x B . 'The induced bundle a*(t x 1)

is defined as the Whitney sum £ &7 .

Note that the fibre over b in ¢ ¢ 1n 1s merely.

Fb(§) X Fb('fl) , so that dim( @q) =dim ¢ + dim 7 .

Note also the commtativity and associativity of & .,

I.e., E@n~n 6& and (ton) 0t~ to(noet). The

proof is left as an exercise.

vt
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2.10 Definition. If E,n are bundles over B , then

g: E(¢) —> E(y) is a homomorphism if

1) it maps each fibre linearly into a fibre, and

2) the induced mep on B is the identity.

.\ .
\,

Note that an)equivalence is both a bundle map and & homomor-

3
<s
2.11 |Theorem. If f: E(¢) — E(n) maps each fibre

phism. An ‘S.'bedding of bundles is a 1 - 1 homomorphism.

[ ’
linearly into é, fibre, then f may be factored into a homo-

morphism follo%:'ed by a bundle map.
| .
Proof: i{et T

respectively., ¢

/

Y.

Leic/ish:" B(§) —> B(y) be the map induced by £ .

,T, be the projections in § »>Ts

Let E, = Zf;n be the bundle induced by fp; let g be the

‘bundle map E,—> E(n) and w the projection E,—> B(t) .
Define h: E(¢) — B() x E(y) by the equation

h(e) = ('n‘l(e), f(e)) . The image of h actually lies in

that subset of B(&) X E(y) vhich is E, ; then h is a

homomorphism. From the definition, f = gh .

B(e) 2> 5 -8 E(y)

Im b l’fa

B(¢) > B(¢) ;.;—>B(n)

™~
™
~N
&)
\
=
~
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2.2 Lemma. Let §,n be bundles over B of dimen-
sions n,p, respectively; let g: £ —> 7 be a homomorphism.
If g i1s onto, then kernel g is a bundle. If g 1is1 -1,

then cokernel g (i.e., the quotient, n/image g) is a bundle.

Proof: Suppose g 1s 1 - 1 (i.e., has rank n when

restricted to each fibre). In E(7), we.défine’ en~ne' if
e - e' exlists and is In the image of g . Wé 1denti£y the
elements of these equivalence classes; the.resulting ldenti-
fication space is defined to be E(n/g(g)); It is a bundle
over B with projection natﬁrally defined and each fibre is
a vector space of dim p - n . We need only to show the exist-

ence of a local product structure,

»

Let U be an open set in B , with §‘U eqﬁivélent
to UXR®' and q]U equivalent to UXR . ILet & denote
the homomorphism of U X R*—>U X R’ induced by & . Now
(n/g(é))lu 1s equivalent to the quotient U X R®/e (U x "),
so that it suffices to show that this latter quotlent is

locally a product.

g, is given by a matrix M(b) e.M(p,n). ﬁhich'dépends
continugusly on the point be U. Given bo, we may assume'
that in a neighborhood Ub of bo, the first n rows are
independent. We define h: U X R" x RP2 —>U_ X R as

the linear function on R° whose matrix (non-singular) is
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{uw) H_
_ ;P_n
The image of U X R* x 0 under h is just go(Ub x R%) ;

since h 1s an equivalence, it induces an equivalence of

o onRanp'n onRp
UOXRP Y a onto -——-—--—--n e
. U XR X0 . go(onR)

. sie ™ 20y
Secondly, suppose g is onto (i.e., it has rank p
on each fibre). E(g-l(o» is defined as that subset. of E(t)
consisting of points e with' g(e);= 0 . Again, we need to
show the existence of a local product structure. Let U, 8,
and M(b) be as above. Given b _, We may assume that the
first p columns of M(b) are independent in the neighbor-
nood U, of b_ . We define h: U x Rn—-—>qu x R® x R"P

by the matrix function

M(b)
()

Nov h followed by the natural projection of UX RPx r*P

onto U X R® equals gO]U6 . Hence h™' meps

v, X 0 xR P onto g;l(Ub X 0) ; since h is an equivalence,

the restriction of h™* to U, X 0 X R*P 15 also.

Lt betnio i o S i P
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Remark. If g is onto, §/g_l(0) is a bundle,
being the quotient of the inclusion homomorphism g—l(O) >t .
If g is1 -1, g(&¢) is a bundle, being the kernel of the

projection homomorphism n —> n/g(E).

2.13 Definition. If ¢ 1s a non-negative function
on B, the carrier of ¢ i1s the closure of the set of x

with @(x) > 0 . A partition of unity is a collection Py

of continuous non-negative functions on B , such that the
sets Cy = caxrrier @ form a locally-finite covering of B ,

and X q)a(x) =1 (this is a finite sum for each x).

2.14 Lemma. Let B be a normal space; U, &
locally-finite open covering of B . Then there is a parti-

tion of unity with carrier U, for each ¢ .
Y %y o

Proof: TFirst, we show that there is an open cover-
ing vV, of B with. VaC. Ua for each @ . Assume the U,
indexed by a set of ordinals (well. ordering theoren). Let
V, be defined for all o< B and assume that the sets Va

o]
along with the sets Ua for a>p cover B . Consider

the set A(B) =B - Ug < ﬁVa " Uy > 5Ua.' Then A(ﬁ)CUﬁ_. »

Let Vﬁ be an open set containing the closed set A(B) ,

with Vﬁc U5 (normelity). This completes the construction

of the Va .
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Now let &y be a function which is positive on Va
and O outside Uy, (normality again). Define
e (x) =g (x)/2 g (x) . Since U, is locally-finite, the
ao CYO (0 (9
sum in the denominator is finite and positive, so @y is

well-defined.

Remark. If B is a differentiable manifold, Py
may be chosen to be differentiable: Cover B with coordinate

systems (Vi ,hi) as in 1.25 refining the covering U, B - vy -
Let q)i(y) ="q)(hi(y)) for yeV, , and =0 otherwise (@ as
in 1.26). Let ga(y) =Zq (y) , vwhere the sum extends over

all 1 such that V, C Uy -

2.15 Lemma. Let B be paracompact and let

O —>¢ L 1 2> ¢ —> 0 be an exact sequence of homo-
morphisms of bundles. Then there is equivalence f: 7 —> ¢ @ ¢,
with fi the natural inclusion and ¢ £ the natural pro-

Jection.

Proof. Let dim ¢ =n ; dim { =p .
We first construct a Riemannian metric on 1y (i.e., a
continuous inner product in E(q)) . i.et Uy be a loéa.lly-

finite covering of B with n[U, trivial; let g, be the

corresponding projection of nan onto R™P, ret ¢, bea

partition of unity with carrier cpdC u,



If e,e' are in E(y) and w(e) =w(e') , define

0! = . t :
e-e Ty q;a('rr(e)) ga(e) ga(e ) , where the dot on the right
hand side 1s the ordinary scalar product in P | mis is

a finite sum; it satisfies the axloms for a scalar product.

The way we use the Rieménnian metric is to break 1
up into 1iE(¢) and its orthogonal complement. Let &' be
the image of ¢ in 7 and let E(f{') be defined as that
subset of E(7) consisting of elements which are orthogonal
to i(E(¢)) . In order to show that t' has a local pro-

duct structure, consider the homomorphism
h: 37— ¢!

which sends eéch vector into its orthogonal projection in &°
[Verification that h is continuous. Over any coordinate
neighborhood U we can choose & basis al,..;,an for the
fibre of ' . Then the function h carries v e E(n) dinto
) tjaje E(t*)C E(n) , where tJ =X Bjk(v-ak) and where
(Bjk) denotes the inverse matrix to (aj'ak)] Since h i1s

onto, its kernel (' dis again a vector space bundle.

Now the bundle i(g) = &' is equivalen£ to £ . It
remains to show that §' i1s equivalent to ¢ and that 1 1s
equivalent to &' & {' . The former follows immediately from
the fact that ¢1§' 1s a homomorphism; from rank considera-

tions it must be 1 - 1 and bnto as well. The latter follows
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by noting that E(¢'o £') is defined as the subset of
E(g').x E(t') consisting of points (el’eé)',SUCh thét .
n(el) = W(ea) . Consider the map f of E(&'e t') into
E(n) obtained by teking (el,e2) into their sum in E(q)

(this sum exists because e, and e, lle in the same fibre).

1 2
This is clearly a homomorphism; from rank considerations, it

must be 1L ~ 1 and onto.

" 2.16 Definition. Let Mi,Mé be differentigble mani-

folds.

Tet £ be an immersion Mi ——>-Mé . AThe normal bundlé'

Ve is defined as follows:

Tet = e the tangent bundles of M’l,M2 respec-

1°%2
tively. By 2.11, the map d4f: E(Tl) —> E(Tz) may be

factored into a homomorphism h of E}(Tl) into E(f*re)

.fbllowed by a bundle map g . Now h 1is a 1l - ) homomorphism

because f 1is an immersion} hence by 2.12, f*'re/image g'L\is

& bundle over M1 . It is called the normal bundle vf .

Then 0 —> 1, —> £*1¢ —> Vv, —> 0 is an exact

1 2

sequence of homomorphisms, so that by 2.15, f*Tz is equiva-

lent to T 0 vf . Indeed, given a Riemannian metric on
¥ 1

5 vf is equivalent to the orthogonal complement of

the image of Ty e
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Let us consider the case M2 = RMP , where dim Ml =n .

Then v, 1s the trivial bundle, so that f£* T, is as well.

2
(Proof: If f: B —>B(y) and n is trivial, so is f£* 7 .

We have n
B XR

l'w

p ! Bl —> B

E(f* n) is defined as that subset of B, X (B X R') consist-
1 1

ing of points (bl,b,x) such that f(bl) = 1(b,x) ; i.e., of
all points (bl;f(bl),x) . If we map this into (bl,x) , we

obtain an equivalence of f£* 1 with the bundle Bl X R B, .)

Thus Ty ¥ol Vf is equivalent to a trivial bundle. In
what follows, we investigate the following question: Given ¢ ,
does there exist an 7 with £ ¢ 3y trivial? Using 1.28,
this is always the case for ¢ +the tangent bundle of an n-
manifold, and indeed 17 may be chosen also to have dimension

n . A more general answer appears in 2.19.
2.17 Definition. Let £: M1 ———>-Mé ; let dim Mi= n,

dim M, =p . If f has rank p at every point of Mi , 1t

is said to be régular. If £ is regular, the homomorphism

h: 1, —> ¥ 12 given by 2.11 1s an onto map. By‘2.12, the

1

kernel of h 1s a bundle Qp - It is called the bundle along

the fibre.
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Note that f'l(y) is a submenifold of M, of dim n-p
(by 1.12 or 1.34). The inclusion iy of f"l(y) into Mi‘
induces an inclusion diy of its tangent bundle into Tl .
Te kernel of h consists precisely of the vectors which are

in the Iimage of some diy , 1.e., the vectors tangent to the

submanifolds f-l(y) are the ones carried into O by h .

One has the exact sequence 0 —> Q—> Tl§4> £* >0,
so that by 2.15, T, is equivalent to Q. & S F

2.18 Definition. A bundle § is of finite type if B
is normal and may be covered by a finite number of nelghbor-

hoods Ui,...,Uk such that g[Ui is trivial for each 1 .

2,19 Lemma. £ 1s of finite type 1f B is compact,
or paracompact finite dimensional.

The former statement 1s clear; let us éonsider the
latter. By definition, the dimension of B 1s not greater
than n if every open covering has an 6pen refinement such
that‘(*) no point of B is contained in more than n + lJ
elements of the refinement. It is a standard theorem of topol-

ogy than an n-manifold has dimension n 1in this sense.

Cover B by open sets U, with ¢|U trivial; let

{ng be an open refinement of this covering satisfylng (*).
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By 1.22, we may assume that {Va] is locally-finite as well.
Let @, be a partition of unity with carrier 'q)aC Va for

each a (2.1h).
Let Ai be the set of unordered i + 1 +tuples of
distinct elements of the index set of {cpna]. . Given a in

A; , vhere a = {ao,...,ai} ; let W, ~be the set of all x

such that (p-a(x) < min[cpa (x),...,q;ai(x)] for all « # ao,..:,ai .
A ,

Each set W is open, and Wia. and wib are disjoint 1f

]

ia
& #b . Meo W, is contained in the intersection of the

carriers of @, ;¢ ®y and hence in some set V . If we
o i

set Xi equal to the union .6:5‘ all sets Wi

the result is that glxi ié trivial. (For g‘lwia is trivial,

8 ? for fixed 1 ,

and the W are disjoint.)

ia

Finally, the sets Xo,...,Xn cover B . Given x in
B, x is contéined in at most n + 1 of the sets Va ; 80O
that at most n+l of the functlons @ are positive at x. Since
some @, 1s positive at x, x is contained in one of the
sets Wia.~ for 0<i<n.

" [The intuitive idea of the proof is as follows: ‘Co-.n-
sider an n-dimensional simplicial complex, with Py the bary-
centric coordinate of x. with respect to the vertex «.

The sets woa will be disjoint neighborhoods of the vertices,

1

and so-on.]

the sets W a disjoint neighborhoods of the open 1 - simplices,
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p.0o0 Theorem. If ¢ 1s of finite type, there is a

bundle 1 such that £ & n is trivial.

P‘_E_O__qf_: We proceed by showing that § may be imbedded
in a trivial bundle B X R" , 80 that we have the exact se-
quence O —> £ > B X R* —> B X R'/i(g) —> 0 by 2.12.
e theorem then follows from 2.15. (Paracompactness is not

needed since the triviel bundle clearly has a Riemannian metric.)

Cover ‘B by finitely many neighborhoods Ul’ ses ’Uk

with glui triviel for each 1 . ILet @ ..., DPe 8 parti-
tion of unity with carrier @, C U, for each 1 (2.1h).

Let f; denote the equivalence of E(glUi) onto U; X R ;

let f}: ,...,f; denote the coordinate functions of its pro-

jection into R .
" _nk
We define h: E(t¢) —> B X R as follows:

l,oo"k
l,‘.o‘,n

n(e) = (re) , g (n(e))j(e))

e
nou

4

(né éuﬁmation is indicated). This is well-defined, since
q)i('n'(e)) = 0 unless € € E(g]Ui) . It is clearly 8 homomor-
phism, since each fi is linear on E(4[U;) . To show that
it 181 -1, let e #0. gﬁi{g’n for some 1, (pi('n'(e)) >0.
Since f, i1s an equivalence, fi(e) # 0 for some J .

i
Hence h(e) # (m(e),0), as desired.



2.21 Definitioh. The bundle ¢ 1is s—équivalent to 7

if there are trivial bundles of,o" such that £ ® oo 7 @ O .

Here P = B X RP . Symmetry and reflexivity are clear,
To show transitivity, assume £ ® of ~n 8 o and neé oﬁx t o o°.
Then § 6 of ©0 o § &0 602,

Note that s-equivalence differs from equivalence. E.g.,
consider the two-sphere 82 in R3. Then 12 ] vl = 03 . The
normal bundle vl is easily seen to be trivial; but it is a
ciéssical theorem of topology that 1? is not (it dogs not

admit & non-zero cross-section). Hence 72 is s-trivial, but

not triviel.

2.22 Theorem. The set of g~equlvalence classes of
vector space bundles of finite type over B forms an abelilan

group under & .

Proof. To avoid logicai difficulties, we consider
only subbundles of B X R , for ell m . This suffices,
" since any bundle ¢ of finite type may be imbedded in some

B X R* , by 2.20.

The class of trivial bundles of is the identity

element. The existence of Inverses is the substance of 2.20.
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2.23 Corollary. Gliven two immersions of the differ-
entiable manifold M in euclidean space, their normal bundles

are s~equivalent.

2.04 Definition. M is a T-manifold if M may be

immersed in some Rnfp s0 that its normal bundle is trivial.

This is equivalent to the requirement that Tn be s~
trivial: Let ™ be s-trivial. If we take some immersion
of M into R°P , then " & v* is trivial by 2.16, so
that V¥ is s-trivial, 1l.e. VP 0 0% = P for some q .
Consider the composite immersion M —~>-RPA1)C:Ran+q . The
normal bundle of M in RYT®TY 15 just VP © o, which is
trivial.

Conversely, if v is triviél for some Iimmersion,

then Tn is s~trivial because Tn 2} vp is trivial.

2.25 Definition. Let G? n denote the set of all
n-dimensional vector subspaces of Rn+P (1.e., all n-dim hyper-

planes through the origin). It is called the Grassman manifold

of n-planes in n+p space.

Its topology is obtained as follows: Consider
M(n,n+p;n) ; we ldentify two elements of this set if the hyper-
planes spanned by thelr row vectors are the same. GP n is in

1 - 1 correspondence with this identification space, and 1is



6.

glven the identification topology. Let p be the projection

of M(n,n+pzn) —> G .

pn
Now p(A) = p(B) 1f and only if A = CB for some non-

singular n X n matric C : The hyperplane p(A) consists

of all points (x',...,xn+p) e %P vhich equal (c')ue.,c)-A

for some choice of constants . oar p(A) = p(B) , then

1 n
(1,0,...,0):A = (ci,...,cl)-B

(0,1,...’,0)-A = (cg",.,.,cg)-B ,ete., for some choice of ci

Then JA =CB , where C has rank n Dbecause A does. The

converse 1s clear.

(a) G:p n 18 locally euclidean. Let. A € M(n,n+p;n) ;
after permuting the coluuns, we may assume A = (P,Q) where
P ds nXn and non-singulaf. Let U be the set of all such
A ; it is an open set in M(n,n+p;n) , being the inverse image'
of the non-zero reals under the continuous map (P,Q) ~> det P .
If p(P,Q) = p(R,8) , vhere P is non-singular, then
(P,Q) = (CR,CS) for some non-singular C . Hence R is

necessarily non-singular; it follows that p-l(p(U)) =U, so

that p(U) is open in GP n (by definition of the identifi-

cation topology).

We show p(U) homeomorphic with RE® .  Define

¢:U—>R" vy ¢(p,Q) = Plq . Ir p(P,Q) = p(R,S) then
(»,Q) = (CR,CS) , so that P'1Q= (CR)'l(cs) =’1s . Hence
v . .
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¢ induces a continuous map' @, p(U) —> RP ™ . Define
y: B2 —>p(U) by ¥(Q) =p(1,Q) where Q isen nXp
matrix. One checks immediately that ¢ and @, are in-

verses of each other.

M(n,n4p;n) D U

le le

\2

%
Gpn Dp(U;W an

(b) To show that Gp n. 1s Hausdorff, we show that
maps every compact set Epto a closed set (this will clearly
suffice). Let K be & compact subset of g ; we show
é‘l(K) is closed in M(m,ntp;n) . cp-l(K) consists of all
matrices (P,Q) with P non-singular and Pl Qek. Let
(P,Q) € M(n,n+p;n) be the limit of the sequence (Pi,Ql) of
elements of qp_l(K) . Since K is compact some subsequence
of the sequence q)(Pi,Qi) = P;l Q converges to a polnt R
of K . »Thel\the corresponding subsequence of the éequenée Qi
converges to PR , so that (P,Q) = P(I,R) . Since (»,Q)
has rank n it follows that P 1is non-singular, so that

(»,Q) € cp-l(K) , as desired.

. Hence GP n is a manifold of dimension pn .



| (c) G n is & differentiable manifold and p 1s &
differentiable map. A function f on the open set V in qp n
belongs to the differentiable structure & 1f fp is differ-
entiable. To show that this satisfies the conditions for a
differentieble structure, we show that (p(U)’QB) , as defined
in (a), is a coordinate system. Let f be defined on V(_ p(U).
Given Qe R %, f qgl(Q) = fp (1,Q) so that £ @%l is
differentiable if fp 1s . Conversely, given (P,Q) e V,
£0(P,Q) = £ ¢ @ p(P,Q) = £ . (P71Q) , so that fp is

differentiable if f ¢;l is .

(a) GP , 18 compact. Let L be the subset of
M(n,nt+p;n) consisting of matrices whose rows are orthonormal
vectors. L. is a closed and bounded subset of Rn(n+p) .

Since p(L) = GP N (the Gram-Schmidt orthogonalization process

proves this), GP n is compact.

(e) G, is diffeomorphic to G_ o . Geometrically,
the homeomorphism h 1isg defined as carrying each hyperplane
into its orthogonal complement, It is clearly 1 - 1; to éhow
it differentiable we use the coordinate system (p(U),éb)
defined in (a). Let g map U into M(p,ntp;p) by carry-
ing (P,Q) into (-(P';Q)T, ;P) ;it is differentiable (7

denotes transpose). The row space of (P,Q) is the same as
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that of (In,P-lQ) , while the row vectors of this matrix are
orthogonal to those of (-(P_lQ)T,IP) (multiply the one by the
transpose of the other). Hence g induces h|p(U) , so that

the latter is differentiable.

2,26 Definition. Let E(‘)'g) be defined as that sub-

Rn+P consisting of pairs (H,x) vhere x 1s

set of G X
P D
a vector lying in the hyperplane H . It is called the uni-

verssl bundle (for reasons we shall see). The projection T

meps (H,x) dinto H ; the fibre is thus an n-dimensional sub-
space of Rn+P .

73 is an n-dimensional vector space bundle over GP n "

We need to show the existence of a local product structure.

Let (p(U),(po) be a coordinajbe neighborhood on Gp , » 88 in

(a) above. We define h: p(U) X R™ —4>'W—lp(U) as carrying
(H,(xl,...,xn)) into (xl,...,xn) ° (In’Q) where Q = @b(H).

This is a vector in the hyperplane H ; h is clearly an iso-

morphism on each fibre. Its inverse is continuous, since it

sends (H,(yl,...,ynfp)) in GP 0 X R fin%gf(H,(yl,...,yn)) 5%“H

N
in p(U) x R® .

2.27 Definition. ¢ d4s a differentliable vector space
bundle if E(g¢) and B(g¢) are differentiable manifolds, and

1f the homeomorphilsms



U x R® —> 7 (U)

which specify the local product structure can be chosen as

‘ diffeomorphisms.

It follows that 7r,:‘E —~—> B 1is differentiable of
meximum rank. Note that B can be differentiably imbedded
in E by mapping b into the O-vector of Fb . The normal

bundle of this imbedding is Just ¢ .

Examples of differentiable bﬁndles include the tangent
bundle of a manifold, the normel bundle of an ilmmersed mani -
fold, and the universal bundle ')‘g above. In the latter case,

E@;) is imbedded diffeventisbly in G, , X P .

2.28 Theorem. Let &° be an n-dimensional vector

space bundle. The following conditions are equiva.leﬁt:

A

(a) & 1is of finite type.
(b) There is a bundle nf such that e o qf is trivial.
(¢) There is a bundle map e —-97; for some P . (Taus -

the terminology "universal bundle" for 7; .)

Proof: We have already shown that (a) implies (b) (2.20);
the bundle 'qp there‘co,nstructed has dimension ri(k -1),
where k dis the number of elements in the covering Ul""’Uk

of B(§) =B such that E[U, 1s trivial.
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(b) implies (c): Condition (b) means that t* may be
imbedded in the trivial bundle B(g) X R°° ; let £ be this
imbedding. We wish to define g and gy in the following

diagram:

B(t) E—> E<7;§>

o |

B(g)'é']?Gpn
Since f is a 1 -1 homomorphism, f(Fb) is the cartesian
product Qf b and an n-dim hyperplane Hp in Rnfp 3 let
gB(b) equal this hyperplane H . If ec F,, then
f(e) = (b,x) , where x is a vector in the hyperplane B ;
let g(e) = (Hp,x) in ¢ _XRP ., fhen g(e) actually

pn
lies in the subset of G X R

which constitihes E(yg) .
From rank considerations, g is automatically an isomorphism

on each fibre.

It remains to show that g is continuous. Locally,

g Just looks like a map U X R® ——%?}szlx Rnfp . We factor

it into a continuous map h: U X Rn';—+>-M(n,nfp;n) X Rn+p

followed by the projection p X 1 imto G . X R*P,  Locally,

£ looks like a map U X R® —>B X B°P.  Let &psenre,

be a basis for R ; we define h(b,x) as (4, 18 f(b,x)) .

~

P

Here Py projects B X R™ onto 1ts second factor and A

I | | | 7
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is the matrix having p. f(b,e.),...,p £(b,e ) as its rows.
2 1 2 n

Then h is continuous, and (pXl)h equals g.

(Note: The converse assertion, (c) implies (b), can be

proved by the same argument. )

(c) implies (a): Being compact, Qpn is covered by
finitely many nelghborhoods U, with 73[Ui trivial. (In
fact (n+p)!/nip! neighborhoods will suffice.) If £ is &
bundle map E- ———>-7g then the sets fgl(Ui) =V, cover. B,
and §|V1 is equivalent to the bundle induced by fB: Vi—%> gpn
(the uniqueness part of 2.5). Then g[vi is trivial (since it

is induced from a trivial bundle).

AN
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Chapter IIX

The Cobordism Theory of Thom

3.1 Definition. An n-manifold-with-boundary @ is a

Heusdorff space with a countable basis which is locally homeo-

morphic with H* (the subset of R® such that x- > 0). The

boundary o Q 1s that subset of @ corresponding to Rn—l
under the local homeomorphism (Rn'l being the subset of )
with x1 =0). 0 Q is well-defined, since the image of an

open set in Rn under a homéémorphism of it into Rn must be

open (Brouwer theorem on invariance of domain). It is clear

that 0 Q is an (n~l)-manifold.

A differentiable structure Zﬁ’ on Q is a collection

of real-valued functions f defined on open subsets of Q
such that

1) every point of Q has an oﬁen neighborhood U and a
homecmorphism h of U into an open subset of H. , such that
£ is in [ if and only if fh™' is differentiable. (f is
defined on an open subset of Uj; fh'l differentiable means

that it may be extended to a neighborhood of h(U) in R® 5o

as to be differentiablie).

2) 1If Ui are open sets contained in the domain of f and

U=UU; , then £[U ¢/ 1f and only if £|u;el) for each 1 .



As before, (U,h) is called a coordipate gystem on Q ,

and one cen define differentiable structures alternatively by

means of coordinate systems.
We impose an additlonal condition on @/ in 3.2.

© 3.2 Definition. TLet MM, be compact differentiable

n-manifolds. They are said to lie in the same cobordism class

(Ml ~n ME) if there is a compact differentiable n+l manifold-
with-boundary Q such that d Q@ is diffeomorphic with the

disjoint union of M, end M, (denéted by M, + Me) .

Symmetry apnd reflexivity of this relation are clear.
To show transitivity, we impose the additional conditlon on Yol
that there is a neighborhood U of o Q in Q which is diffeo-
morphic with 3Q X [0,1), the diffeomorphism being the identity
on QX O . This is redundant, But we assume it to avoid

proving it. Transitivity follows:
Let MJ. + M, be diffeomorphic with o Q and M, + M3

diffeomorphic with o Q, ; let h,,h, be the diffeomorphisms.

We form a new space Q3 from Q’.L U Q2 by identifying each

point of h]_(ME) with its image under h2 h;_l . 'There.is then

& homeomorphism of M, X (-1,1) into this space which equals
hl vhen restricted to M2 X 0 , and is a diffeomorphism of
M, X [0,(-1)1) into Q for 1 = 1,2 . (It is derived from

the postulated "product neighborhoods" o Q X [0,1).) If this
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is taken to be a coordinatelsystem on Q3 s 3' becomes a 4if-
ferentiable manifold-with-boundary, and M1 + M3 is diffeomor-
phic with 9o Q3 . Q and Q, are diffeomorphic with subsets

of Q3 .

3.3 Definition. As usual, there are logical difficul-~
tie; involved in considéring these cobordism classes. One vay
.of avoiding them is to consider only manifolds;witthoundary
imbedded in some euclidean space RP: If Ql is a differen-~
£iable manifold-with-boundary and @Q, = o Q X [0,1) , then’
the space Q

3
differentiable manifold, so that it may be imbedded 1in some

constructed in the preceding paragraph is a

euclidean space. Hence Ql may s0 be imbedded.

With these restrictions, the set of cobordism classes
of n-manifolds forms an abelian group (denoted by‘fcan) under
the operation + (disjoint union). If M &M and Myn M5,
this means that M, + M! is diffeomorphic with o Q . Then

i i
(Ml + MQ) + (Mi + Mé) is diffeomorphic with a(Ql U Q.E) , SO
that M, +M,~ Mj + M, end the operation + 1s well-defined
on cobordism classes. The zero element is the vacuous mani-
fold or the n-~sphere (or 0 Q, vhere Q i1s any compact dif-
ferentiable (n+l)-manifold-with-boundary). The remaining
axioms are clear. Note that M + M is diffeomorphic with

3(M x [0,1]) , so that ecvery element is of order 2.

)
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The groups Y(J % are called the (non-orientable) cobordism
groups. Let Y{ denote the direct sum ¥ 9 J"‘(,l o )6%e....
There is a bilinear symmetric pairing of r’é 1 5 ﬂ/ J into

r(/ 43 , i1.e. a homomorphism of ]"{, 1 ® ﬁ/j into m 1+J

induced by the operation of cartesian product.

First, (M1 + M2) X M3 = (Ml X M3) + (M2 X M3) by defi-
nition of cartesian product. Second, 1f M 0, i.e. M = JQ,
then Ml X M, is diffeomorphic with 3(Q X ME) , 80 that

Ml X MQ ~ 0 .

Since M, X M,~ M, X M, , and since M) X P~ M) (where
P 1s a point-manifold), this pairing mekes TC into a (graded )
commutative ring with unit. Indeed, it 1s a graded algebra over

the fleld 22 .

3.4 Remark. The general result of Thom is the following

Theorem., )"{/ is a polynomial algebra over 22 with
one generator in each positive dimension except those of the

form 2m -1 . If n is even, projective n-space is a generator.

This theorem means that there are compact m&nifolds M2 N
Mh, M5,... such that every compsact manifold is in the cobordism
class of a disjoint union of products of these manifolds, and

thut there are no relations among the generators (except com-

mutativity and associativity of products).
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Thom's procedure is to show that ]ﬂ R ois isomorphic
th .
with the (n+k)— homotopy group of a certain space ?k , and
then to compute these homotopy groups. We shall consider only

the first of these two problems in the present notes.

3.5 Definitién. ILet h be an imbedding of the 4if-
ferentisble manifold M' in Rp+k ; consider the normal bundle
of this imbedding. Using the standard Riemannian metric for
the tangent bundle to Rn+k , this normal bundle 1s equivalent
to the orthogonal complement of the lmage in the tangent bundle
of R of the tangent bundle of M© (2.16); this comple-
ment we denote by vk . Define e as the canonical map of
E(vk) into R which maps the vector v mnormal to MY at
x into 1ts end point. (Described differently, one maps the

tangent bundle to Rpﬁk into itself canonically by mapping the

vector v , based at x , into the point x + v of Rn+k .
This map is differentiable; its restriction to E(vk) is the

map € .)

Consider M as the zero vectors of E(Qk) . Then we

have the

3.6 Theorem. 'There is a neighborhood of M in

E(vk) which is mapped diffeomorphically onto a neighborhood

of M in ™.



Proof: Note that e dis differentisble, and that it
has rank n+k at points of M C E(vk) « (This is‘ easil.y
checked by computing the derivative matrix of e with respect
to a local coordlnste system.) Hence e has rank nt+k in
gome neighborhood of M' in E(vk) , s0 that it is a local
homeomorphism at points of Mn: it maps a neighborhood of
each x € M® homeomorphically onto a neighborhood of £(x) .

We then appeal to the topological lemma:

If f: X —> Y is a local homeomorphism and the re-
striction of f to the closed subset A 1is a homeomorphlsm,
then f 1s a homeomorphism on some neighborhood V of A .
(X,Y. are Hausdorff spaces with countable bases; X is loecally

compact.) This lemma is proved as follows:

(1) If A is compact, the lemma holds. For otherwise,
there would be points X,y arbitrarily cloe;e to A such that
f(x) = f(y) . Since A has a compact nelghborhood, we may
choose sequences xn,yn converging to x,y, respectively, in.
A such that x # y, end f(xn) = f(yn) . Hence
£f(x) = £(y) so that x =y , T being a bomeomorphism on A .

But then f is not a local homeomorpLism at x .

2) Let A be a compact subset of A . Then there 1s a
o]

neighborhood Uo of Ao such that U o is compact and f is

& homeomorphism on ﬁo UA : Itwill suffice for £ to bel-~-1,
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gince f 1s a local homeomorphism. By (1), let v, be
& neighborhood of A 6o that f[V  1s 1-1 . If no neigh-
borhood of Ao in Vb satisfies the requirements for Ub »
there is a sequence of points X, of X - A. converging to

x e A with f(xn) e £(A). Choose Y, € A with f(xn) = f(yn).
Since f 1s continuous, f(yn) converges to f(x) ; since

£ 418 & homeomorphism on A , Yy converges to x . Since

X, f Yn o this contradicts the fact that f 1s a local homeo-

morpbhicm at x .

(3) Express A as the union of an ascending sequence of

compact sets CAa,C.ee . Let V., be a neighborhood of
2 1

Al such that Vi 1s compact and f 18 & homeomorphism on

Vi UA (by (2)). Given V, a neighborhood of A satisfying

these conditions, consider the set Vi UA L, + Itisa com-

pact subset of Vi UA, and f 1s a homeomorphism on Vi UA.

Hence by (2) there 1s a nelghborhood Vi of Vi U A1 with

+1
~Vi+l compact, such that f 1is a homeomorphism on Vi+l UA.
We proceed by induction. £dis 1 -1 on V =U Vi+l , 80 that

1t 1s a homeomorphism on V (being a local homeomorphlism -onto).

3.7 Corollary. Any differentiasble submanifold of Rn+k

is & differenﬁiable neighborhood retract.

>
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" ,
The projection of E(V') —s M* induces (under e) a
differentiable map of & neighborhood of MP in Rn+k onto

M® vhich is the identity on M .

3.8 Definition. ILet E be a vector space bundle with
B(¢) compact; let T(¢) denote the l;point compacfification
of E(t) . It 1s called the Thom space of & . Let o denote
the added point.

Let t have a Riemanhian metric. Let Te(g) be qbQ
tained from E(¢) by identifying all vectors of length greater
then or equel to € ‘to-a point. Let a(x) be a c® .function
‘with @'(x) > 0 which eﬁua.ls 1 in a neighborhood of x =0
end —> o as x —> 1 . The map of E(¢) into T(g) which’
carries the vector e dinto the vector e a(llell/e) induces a
homeomorphism of -I"E(g) onto T(¢) which is a diffeomorphism
on the set E8(§) , consisting of vectors of length less than

€ . Te fact that B is compact is used here.

-

3.9 Definition. Let the compact manifold M* be im-

bedded in RrH”k . vk is given the Riemannian metric of Rn+k;

by 3.6 there is a neighborhood of M* in R yhich is aif-
feomorphic to the subset E, E(vl.{) of E(vk) . Such a neigh-

borhood is called a tubular neighborhood of Mp .
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By 3.8, we see that T(vk) is homeomorphic with the
space obtained from Rp+k by.collapsing the exterior of the

tubular g-neighborhood of M +to a point.

We will need three lemmas concerning approximation by

differentiable functions.

3.10 Lemma. Let A be a closed subset of the differ-
entiable manifold M , let f: M ~> R" be differentiable on

A. Let B be a positive continuous function on M . There
exists g: M —~>-Rm such that

(1) g 4is differentiable

(2) g is a d-approximation to f

(3) gla = £|a.

Proof: It suffices to prove this lemma in the case m = 1.

Given x € A, fIA may be extended to a differentiable
function fx in a neighborhoocd Nx of x . Let Ni be chosen
small enough that [f () - £(y)] < 8(y) for all ye N, .

Given x ¢ M-A , choose a neighborhood Ng of 2 small
enough that |[f(y) - £(x)| < 8(y) for all yeN_. Define

vfx(y) = f(x) for y eN .

Let Py be a differentiable partition of unity'with

carrier @, contained in some Nx , say Nx(a) , for each o .
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Define g(y) == Q&(Y) fx(aj(y) . One checks the conditions

of the lemma easily.
More generally:

3.11 Lemma. Let f: M1 ———>-M2 be a continuous map
of differentiable manifolds which is differentiable on the
closed subset A of M . Let €(x) > 0 be glven; and give
M2 the metric determined by some imbedding M2<: R® . Then

there exists g: M1 ———>~Mé such that

(1) g 1s differentiable
(2) & is an e-approximation to £

(3) gla=rla. , )

Proof: There isra neighborhood U of M.2 in R° pf
which M, 1s a differentiable retract (3.7). Let p be
the differentiable retractioﬁ\of U onto M2 . Let 3(x)
be a positive function on M2 80 chosen that the cubical |

neighborhood of f£(x) of radius &(x) 1lies in U, and so

that its image under p has radius less than e(x) . Let

fl: Mi ~—> R’ be a differentiable map which 1s a d-approxi-

mation to f , such that fllA = f[A (by‘3.10). Define

g(x) = p(£; (x)).
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3,12 Lemma. Let f:'Ml—-—->M2

of differentiable manifolds; let the metric on M2 be obtained

by imbedding it in some euclidean space. Given g(x) , there

be a continuous map

is a ®(x) such that if g: M; —>M, 1s a S-approximation

to £, g is homotopic to f under a homotopy F (x,t) with

»

(1) F(x,t) = £(x) for a.ﬁy x such that g(x) = £(x) and

(2) F(x,t) is an e-approximation to f for any t.

Proof: Let U,p, and 5(x) be chosen as as in 3.11.

Let g: M1 manal be a d-approximation to f .,

Then the line segment from g(x) to f£(x) lies in U,
so that F(x,t) = p(tg(x) + (L - t) £(x)) 1s well—defined.

Furthermore F(x,t) is an e-appronmation to f(x) for any t.

3.13 Definition. Let gk be s differentiable vector
space bundle with B(¢) compact and m-dimensional; let E(gk)
be given a metric by imbedding it as a closed differentiable

submanifold in some euclidean space (it is an (m+k)-manifold).

Given an element of T n +k(T(gk) ,o) , let 1t be repre-

’ sented' by the map

£ (6

n+k’ n+k) - (T(§ )y) 5



n+k

vhere C .. is the closed cube [0,1] and 0O Coy is its‘

k
boundary.
-1 k

Let U denote the open subset f (E(¢7)) of Coik *
Iet g: U —> E(gk) be a differentiable d-approximation to
f |U , where ® 1s so chosen that 5<1 and g 1s homotopic
to f , the homotopy F also being a 1l-approximation to £ .
(This ensures that F will be continuous if we define

F(x,t) =w for xeC , ~U .)

Now g may be approximated in turn by a differentiable
map h: U —> E(¢) which is transverse regular on the sub-
manifold B(¢) of E(t) . We choose the approximation close
enough .that g 1s homotople to h , the homotopy H being a
l-approximation to g for each + . Extend h to én +k by
defining h(x) =« for x e 6n+k -~U. Then h is in the

‘homotopy class of T .

nt(B(t)) 1s a differentisble submanifold M2 of U

which is closed in ﬁn L » 8nd thus compact.
_De:t‘inition: Iet A assign to the homotopy class of h

in ’rrn+k(‘l‘(gk),w) the cobordism class of M- in J{ o

3,14 Theorem. A 1is & well-defined homomorphism.
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= - k
Proof: Let H‘(Cn+k xI, écm§ X I) —> (1(e ),m)
be a homotopy between Qg/= H(x,0) and h, = H(x,1) . Let

ho’ hl satlsfy the conditions

v
-1
(1) h, is differentisble on h, (E(¢))
(2) h, 1is transverse reguler on B(E) . (if&:g.)

We wish to show that EéiﬂB) end hil(B) belong to the same

cobordism class.

We may assume that H(x,t) = H(x,0) for t<1/3, and
H(x,t) = H(x,1) for t>2/3. Let
U= Hul(E(E)) n [an+k x (0,1)] ; then U 1s an open subset of

R3+k+1

. Let G: U~>E(t) be a differentiable l-approximation
to H which equals H on the closed subset A , where
A=Un [6n+k x((0,1/4] u [3/4,1))] . (see 3.11. H is dif-

ferentiable on A .)

Now G satisfles the transverse regularity condition

for B(¢) at points in A (since h "and h, are transverse

1
regular on B) so that by 1.35 there is a differentiable map
F: U—~> E(¢) which equals G on A , is transverse regular
on B(t), and is a l-approximation to G . Because F is a
2-gpproximation to H , it remains continuous 1f we define
F(x,t) = @ for (x,t)e (an+k x (0,1)) - U. Because F

equals H on A , it remains contlimuous 1f we define



F(x,t) = H(x,t) for t = 0,1 . Hence F_l(B) is a compact '

subset of C being closed and bounded.

n+k ’ ’

Because F|U 1is transverse regular en B, (F]U)"l'(B)
is & @ifferentisble (n+l)-submanifold of & . % (0,1) . Its

intersection with C .

and h;l(B) Xt for t>3/k. Hence F"l(B) is a differ-

Xt equals h'' (B)xt for t<1/k

entiable manifold-with-boundary whose boundary is h;l(B) + hil(B).

Thus ‘AN is well-défined:

It is trivial to show A dis a homomorphism, because
the sum in J{,Il is derived from disjoint unions Of represent-

ative manifolds.

. 3.15 Theorem. If §k is the uniyérsal bundle 7ﬁ
vhere k >n+l , m>n then A\ 'rrn+k(T(711;),eo) — Y0 " is

onto.

Proof: Let M be a compact n-manifold; let k> il .
Let M' be tmbedded in an;k (1.32); let VX be the normal
bundle of this imbedding. The Riemannian ﬁetfic on ‘E(vk)‘ is
is that;derived from the'ngtural scalar ﬁ;oduct on the fangent

bundle to R

ik ? in which vk is contained.

By 3.6, for small & the subset of Epe (vk) of E(vk)
is diffeomor@hic with 8 tubﬁlar neighborhood of MP in C

n+k 5
let U be the image of E_ (V) .
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Let p, project an-!-k onto. the space obtained from

C

K by identi:t“ying C ik -‘-‘U to a poi@l; (denqted-by

u) .

Let Py be the diffeomorphism of U"onto‘ fEé(Vk) )

followed by the map of E(vk) into Te(vk) which identifies

all vectors of length > e (3.8). p2 is then extended by’

‘mapping Cn+k - U into «. )

Let pé be the homeomorphism of Te(vk) qn’do T(vk)

| constructed in 3.8. The composite map p3 Py Py is a diffeo-

)

morphism of U onto E(vk) .

Finally, let p) be the bundle mep of v into 7:1

induped from the imbedding of M in Rn +kC Rm R Because

'both fibres have dimension k , this map satisfies the trans-
verse regularity condition for Gk m at each po'int'of Mn .
Extend p), in the vaioﬁs vway to map 'I‘(vk) into T(yﬁ) .

Let g=PhP3P2?l' . Then g: 0C —>w. Let
p(M®) denote the homotopy class of g in vn+k(T(7xl:1)’°°) .

. T §

Now g is transvgrse'rggtllar. on G and M = g (Gk m)._
By definition, the cobordism class of M} is the image of

p(M*) under A, so that Xp(Mn) = M) .

~

ey



3.16 Theorem. If gk is the universal bundle 7:;

with k > n+2, m > n then A is one-to-one.

Proof: Given an element of T (T()'I;I),oo) , We may

i n+k
suppose it represented by a map

21 B 3 8y) —> (2GE),@)

which is differentiable on :f:‘_l(E) and transverse regular on
6, (by3.13). Let M= £71(G, ) 5 ve wish to show that
1f M® 18 the boundary of an (n+1 )-manifold-with-boundary Q,

then >f is homotopic to thé constant map.

M® 1is a submanifold of Cn X '; let its normal bundle
be vk . Let & bYe chosen so that E, E(vk) is diffeomor-
phic with the 2 g-neighborhood of M® ; 1let U, be the image
of the vectors of Ee(vk) « Impose a Riemannian metric on
7§ ;3 let ® be so chosen that |x|| > € implies le(x)| >
for x e E‘(vk ) .

Step 1. £ is homotopic to a map 'f) “such that
(1) fl. is differentiable on f_{l(E) and transverse regular

on Gy

(2) £=1£, on Mn=f;_l(an)‘.

(3) ‘1’1 carries everything outside Ue into w ..
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Define F: E(711;) XI—> T(yfl) by the equation

Fle,t) = e aftllell/6) , where « is the function defined in

3.8. Let fl(x) = F(£(x),1) . '.

Step 2. By .the diffeomqlfphism of U2 e with E2 e’

£, dinduces a map f‘l of Ea(vk). ‘into T(yﬁ) vhich carries

. B(EE) into ® . Any homotopy of .fl which leaves a(gé)
‘at « induces a homotopy of fl‘. |

" Now fl is homotopic to a map fa such that

(1) ,fz is differentiable on f;l(E) and transverse regular

on Gm K *

(2) 3,=% on =51 ).

:(3)"f2 is locally a bundle map in some neighborhood of M.
‘The homotopy leaves B(QE) at o .

Consider G: E E(v ) X I —> T(ym) defined by the
’ equation G(e,t) = fl(te )4£&; As t —> 0, G(e,t) approaches

& limit which is non-zero if e # O (since fl

and t-regular). It is easily seen to be a bundle map. It will

 is differentiable

nbt suffice for our purposes, since it does not carry B(Ee) X I
into ® . Choose &> O so that Ixll > e 1mpiies [la(x,t)| > 5

for x ¢ B(VS), t ¢ I , and define H(e,t) = [a(e,t)] a (o(e,t)]/)
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If wve set f‘2 = H‘(e,ob) » then f‘2 is a bundle map for {”e"

’ b
small (since a(x) =1 for x smell). The map :

H(e,1) = f‘l(e) o (”f‘l(e)”/ﬁ): ‘does not equal f‘l , but it is

homotopic to f‘l » the homotopy iea.ving b(Ee)_ at © . The

v‘homotopy 1s defined by the eQﬁation

K(e,t) = i"i(e) a (ﬁ”f‘lj(e‘)‘l[/ﬁ), as in step‘l.

Step 3. Let @ bve the n+l manifold-with~boundary
such that M" = 0Q. ILet h ‘-be‘av. diffeomorphism of M® X {0,1]

into @ which carries Mnx O onto 9 q. .
Define hl: Q —> Cn 4k X I qs fqllowsf

Ifx =h (v,t) where yeM" and 0<t<1/2, let h) (x)=(y,t).

If .xé image h, let hl(x)=p, vhere p is some fixed point interior

If x =h(y,t) where y (-:'M‘n and 1/2 <t <1, let

by () = (1 - B(t)) B (7,1/2) + p(s)p , vhere

B(t) is a C¢° function with B'(t) >0, B(t)=0 ina

neighborhood of t =1/2 and B(t) =1 in a neighborhood of

t=1.
hl is a differentiable map of Int Q@ into Int(Cn+k X I);
and h, 1s al - 1 inmersion in a neighborhood of 9 q ,
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X I)>2(n+1) , h, may be approximated by a

Bince | dim(C K .
l « 1 d{mmersion h2 which equals hl in a neighborhood of

0 Q (by 1.29). It may be extended to an imbedding of Q
into € ., X I. (Bince Q 1s compact, a 1 - 1 immersion is

auﬁomatically an i;;ibédding.) Let Q now be considered as this

subset. of Cn+k X I . )

Step 4. We have a map £, o‘f C Lk X0 into T(ym)

which 1s a bundle mep when restricted to a small tubular

neighborhood of M® x 0 in Coy X O « We extend it to

C ., X [0,b) for b semall in the trivial way. Suppose

n+k
there exists u map g of the g'~neighborhood N of Q in

Ch X I into 'I’(ylf) which equals £, in some neighborhood

+k 2
of 0Q in Copx X I and maps each point of N - Q into a
non-zero vector in '-E(yﬁ) + Our thcorem then follows: Let

b be so choscn that, if the distance of x from Q is

>elf2, then |lg(x)] > 5.
A, .

ad

Define g2 C

ntk x I —> T(Ym) by the equation

g (x,8) = g(x,8) @ (le(x,s)lI/8) for (x,8) ¢ N, and

]

e;l(x,s ) = w otherwise.,

The restriction of gl to Cn+h

X O does not equal the map f2’



-

¥
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but it is homotopic to f2 ’ by the same technique as used at

the end of Step 2.

’gl is the homotopy required for our -

theorem.

To show that the extension g exists, we refer to

Steenrod, Fibre Bundles (Princeton Press,1951). According to

-§19.4 and 19.7 of this book, the principal bundle assoclated

with 7§ is an m-universal bundle. That is: given a vector

space bundle gk over a complex of dimension <m , any

" bundle map of gk , restricted to a subcomplex, into 7§ can

be extended throughout §k , We will assume the well known
result that Q can be triangulated. The dimension n+l of
Q is <m . Hence any bundle map of the normal bundle vk

of Q , restricted to a polyhedral neighborhood of 0 Q, into
K _

7, °an be extended throughout vk .

Applying this result to the map f2 , this completes

the proof of 3.16.

Letting ?k stand for the union‘éf the Thom spaces
T(yfl) C T(7m§l) C ... , in the weak topology, Theorems 3.15

and 3.16 imply the following.

3.17 Theorem. The cobordism group X(,n is canoni- -

cally isomorphic to the stable homotopy group nh+k(Tk) ’

for k>n+ 2.
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