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Introduction

Surgery theory investigates the homotopy types of manifolds, using a
combination of algebra and topology. It is the aim of these notes to provide
an introduction to the more algebraic aspects of the theory, without losing
sight of the geometric motivation.

0.1 Historical background

A closed m-dimensional topological manifold M has Poincaré duality
isomorphisms

Hm−∗(M) ∼= H∗(M) .

In order for a space X to be homotopy equivalent to an m-dimensional
manifold it is thus necessary (but not in general sufficient) for X to be
an m-dimensional Poincaré duality space, with Hm−∗(X) ∼= H∗(X). The
topological structure set STOP (X) is defined to be the set of equivalence
classes of pairs

(m-dimensional manifold M , homotopy equivalence h : M → X)

subject to the equivalence relation
(M,h) ∼ (M ′, h′) if there exists a homeomorphism

f : M → M ′ such that h′f ' h : M → X.

The basic problem of surgery theory is to decide if a Poincaré complex X
is homotopy equivalent to a manifold (i.e. if STOP (X) is non-empty), and
if so to compute STOP (X) in terms of the algebraic topology of X.

Surgery theory was first developed for differentiable manifolds, and then
extended to PL and topological manifolds.

The classic Browder–Novikov–Sullivan–Wall obstruction theory for de-
ciding if a Poincaré complex X is homotopy equivalent to a manifold has
two stages :
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(i) the primary topological K-theory obstruction νX ∈ [X, B(G/TOP )]
to a TOP reduction ν̃X : X → BTOP of the Spivak normal fibration
νX : X → BG, which vanishes if and only if there exists a manifold M
with a normal map (f, b) : M → X, that is a degree 1 map f : M → X
with a bundle map b : νM → ν̃X ,

(ii) a secondary algebraic L-theory obstruction

σ∗(f, b) ∈ Lm(Z[π1(X)])

in the surgery obstruction group of Wall [29], which is defined if the
obstruction in (i) vanishes, and which depends on the choice of TOP
reduction ν̃X , or equivalently on the bordism class of the normal map
(f, b) : M → X. The surgery obstruction is such that σ∗(f, b) = 0
if (and for m ≥ 5 only if) (f, b) is normal bordant to a homotopy
equivalence.

There exists a TOP reduction ν̃X of νX for which the corresponding normal
map (f, b) : M → X has zero surgery obstruction if (and for m ≥ 5
only if) the structure set STOP (X) is non-empty. A relative version of the
theory gives a two-stage obstruction for deciding if a homotopy equivalence
M → X from a manifold M is homotopic to a homeomorphism, which is
traditionally formulated as the surgery exact sequence

. . . → Lm+1(Z[π1(X)]) → STOP (X) → [X, G/TOP ] → Lm(Z[π1(X)]) .

See the paper by Browder [2] for an account of the original Sullivan-Wall
surgery exact sequence in the differentiable category in the case when X
has the homotopy type of a differentiable manifold

. . . → Lm+1(Z[π1(X)]) → SO(X) → [X,G/O] → Lm(Z[π1(X)]) .

The algebraic L-groups L∗(Λ) of a ring with involution Λ are defined
using quadratic forms over Λ and their automorphisms, and are 4-periodic

Lm(Λ) = Lm+4(Λ) .

The surgery classification of exotic spheres of Kervaire and Milnor [7] in-
cluded the first computation of the L-groups, namely

Lm(Z) =





Z if m ≡ 0 (mod 4)
0 if m ≡ 1 (mod 4)
Z2 if m ≡ 2 (mod 4)
0 if m ≡ 3 (mod 4) .

The relationship between topological and PL manifolds was investigated
using surgery methods in the 1960’s by Novikov, Casson, Sullivan, Kirby
and Siebenmann [8] (cf. Ranicki [23]), culminating in a disproof of the
manifold Hauptvermutung : there exist homeomorphisms of PL manifolds
which are not homotopic to PL homeomorphisms, and in fact there exist
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topological manifolds without PL structure. The surgery exact sequence
for the PL manifold structure set SPL(M) for a PL manifold M was re-
lated to the exact sequence for STOP (M) by a commutative braid of exact
sequences

H3(M ;Z2)

&&MMMMMM

$$
[M, G/PL]

&&MMM
MMM

M

$$
Lm(Z[π1(M)])

SPL(M)

88qqqqqq

&&MMMMMM
[M, G/TOP ]

88qqqqqqq

&&MMMMMM

Lm+1(Z[π1(M)])

88qqqqqq

::
STOP (M)

88qqqqqq

::
H4(M ;Z2)

with

π∗(G/TOP ) = L∗(Z) .

Quinn [17] gave a geometric construction of a spectrum of simplicial sets
for any group π

L•(Z[π]) = {Ln(Z[π]) |ΩLn(Z[π]) ' Ln+1(Z[π])}
with homotopy groups

πn(L•(Z[π])) = πn+k(L−k(Z[π])) = Ln(Z[π]) ,

and

L0(Z) ' L0(Z)×G/TOP .

The construction included an assembly map

A : H∗(X;L•(Z)) → L∗(Z[π1(X)])

and for a manifold X the surgery obstruction function is given by

[X, G/TOP ] ⊂ [X,L0(Z)×G/TOP ] ∼= Hn(X;L•(Z))
A
→ Lm(Z[π1(X)]) .

The surgery classifying spectra L•(Λ) and the assembly map A were con-
structed algebraically in Ranicki [22] for any ring with involution Λ, using
quadratic Poincaré complex n-ads over Λ. The spectrum L•(Z) is appropri-
ate for the surgery classification of homology manifold structures (Bryant,
Ferry, Mio and Weinberger [3]); for topological manifolds it is necessary
to work with the 1-connective spectrum L• = L•(Z)〈1〉, such that Ln is
n-connected with L0 ' G/TOP . The relative homotopy groups of the
spectrum-level assembly map

Sm(X) = πm(A : X+ ∧ L• → L•(Z[π1(X)]))
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fit into the algebraic surgery exact sequence

. . . → Lm+1(Z[π1(X)]) → Sm+1(X)

→ Hm(X;L•)
A−→ Lm(Z[π1(X)]) → . . . .

The algebraic surgery theory of Ranicki [20], [22] provided one-stage ob-
structions :

(i) An m-dimensional Poincaré duality space X has a total surgery ob-
struction s(X) ∈ Sm(X) such that s(X) = 0 if (and for m ≥ 5 only
if) X is homotopy equivalent to a manifold.

(ii) A homotopy equivalence of m-dimensional manifolds h : M ′ → M
has a total surgery obstruction s(h) ∈ Sm+1(M) such that s(h) = 0 if
(and for m ≥ 5 only if) h is homotopic to a homeomorphism.

Moreover, if X is an m-dimensional manifold and m ≥ 5 the geometric
surgery exact sequence is isomorphic to the algebraic surgery exact se-
quence

. . . // Lm+1(Z[π1(X)]) // STOP (X)

∼=
²²

// [X,G/TOP ]

∼=
²²

// Lm(Z[π1(X)])

. . . // Lm+1(Z[π1(X)]) // Sm+1(X) // Hm(X;L•)
A // Lm(Z[π1(X)])

with

STOP (X) → Sm+1(X) ; (M,h : M → X) 7−→ s(h) .

Given a normal map (f, b) : Mm → X it is possible to kill an element
x ∈ πr(f) by surgery if and only if x can be represented by an embedding
Sr−1 ×Dn−r+1 ↪→ M with a null-homotopy in X, in which case the trace
of the surgery is a normal bordism

((g, c); (f, b), (f ′, b′)) : (N ; M, M ′) → X × ([0, 1]; {0}, {1})
with

Nm+1 = M × I ∪Dr ×Dm−r+1 ,

M ′m = (M\Sr−1 ×Dm−r+1) ∪Dr × Sm−r .

The normal map (f ′, b′) : M ′ → X is the geometric effect of the surgery on
(f, b). Surgery theory investigates the extent to which a normal map can be
made bordant to a homotopy equivalence by killing as much of π∗(f) as pos-
sible. The original definition of the non-simply-connected surgery obstruc-
tion σ∗(f, b) ∈ Lm(Z[π1(X)]) (Wall [29]) was obtained after preliminary
surgeries below the middle dimension, to kill the relative homotopy groups
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πr(f) for 2r ≤ m. It could thus be assumed that (f, b) : M → X is [m/2]-
connected, with πr(f) = 0 for 2r ≤ m, and σ∗(f, b) was defined using the
Poincaré duality structure on the middle-dimensional homotopy kernel(s).
The surgery obstruction theory is much easier in the even-dimensional case
m = 2n when πr(f) can be non-zero at most for r = m + 1 than in the
odd-dimensional case m = 2n+1 when πr(f) can be non-zero for r = m+1
and r = m + 2.

Wall [29,§18G] asked for a chain complex formulation of surgery, in which
the obstruction groups Lm(Λ) would appear as the cobordism groups of
chain complexes with m-dimensional quadratic Poincaré duality, by anal-
ogy with the cobordism groups of manifolds Ω∗. Mishchenko [15] initiated
such a theory of “m-dimensional symmetric Poincaré complexes” (C, φ)
with C an m-dimensional f. g. free Λ-module chain complex

C : Cm

d−−→Cm−1

d−−→Cm−2 → . . . → C1

d−−→C0

and φ a quadratic structure inducing m-dimensional Poincaré duality iso-
morphisms φ0 : H∗(C) → Hm−∗(C). The cobordism groups Lm(Λ) (which
are covariant in Λ) are such that for any m-dimensional geometric Poincaré
complex X there is defined a symmetric signature invariant

σ∗(X) = (C(X̃), φ) ∈ Lm(Z[π1(X)]) .

The corresponding quadratic theory was developed in Ranicki [19]; the
m-dimensional quadratic L-groups Lm(Λ) for any m ≥ 0 were obtained
as the groups of equivalence classes of “m-dimensional quadratic Poincaré
complexes” (C, ψ). The surgery obstruction of an m-dimensional normal
map (f, b) : Mm → X was expressed as a cobordism class

σ∗(f, b) = (C,ψ) ∈ Lm(Z[π1(X)])

with

H∗(C) = K∗(M) = H∗+1(f̃ : M̃ → X̃) .

The symmetrization maps 1 + T : L∗(Λ) → L∗(Λ) are isomorphisms mod-
ulo 8-torsion, and the symmetrization of the surgery obstruction is the
difference of the symmetric signatures

(1 + T )σ∗(f, b) = σ∗(M)− σ∗(X) ∈ Lm(Z[π1(X)]) .

However, the theory of [19] is fairly elaborate. The algebra of [18] and [19]
is used in these notes to simplify the original theory of Wall [29] in the
odd-dimensional case, without invoking the full theory of [19]. Ranicki [25]
is a companion paper to this one, which provides an introduction to the
use of algebraic Poincaré complexes in surgery theory.
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0.2 What is in these notes

These notes give an elementary account of the construction of the L-
groups L∗ and the surgery obstruction σ∗ for differentiable manifolds. For
the more computational aspects of the L-groups see the papers by Ham-
bleton and Taylor [4] and Stark [26].

The even-dimensional L-groups L2n(Λ) are the Witt groups of nonsin-
gular (−1)n-quadratic forms over Λ. It is relatively easy to pass from
an n-connected 2n-dimensional normal map (f, b) : M2n → X to a (−1)n-
quadratic form representing σ∗(f, b), and to see how the form changes under
a surgery on (f, b). This will be done in §§1–5 of these notes.

The odd-dimensional L-groups L2n+1(Λ) are the stable automorphism
groups of nonsingular (−1)n-quadratic forms over Λ. It is relatively hard
to pass from an n-connected (2n + 1)-dimensional normal map (f, b) :
M2n+1 → X to an automorphism of a (−1)n-quadratic form representing
σ∗(f, b), and even harder to follow through in algebra the effect of a surgery
on (f, b). Novikov [16] suggested the reformulation of the odd-dimensional
theory in terms of the language of hamiltonian physics, and to replace the
automorphisms by ordered pairs of lagrangians (= maximal isotropic sub-
spaces). This reformulation was carried out in Ranicki [18], where such
pairs were called ‘formations’, but it was still hard to follow the algebraic
effects of individual surgeries. This became easier after the further refor-
mulation of Ranicki [19] in terms of chain complexes with Poincaré duality
– see §§8,9 for a description of how the kernel formation changes under a
surgery on (f, b).

The original definition of L∗(Λ) in Wall [29] was for the category of based
f. g. free Λ-modules and simple isomorphisms, for surgery up to simple
homotopy equivalence. Here, f. g. stands for finitely generated and simple
means that the Whitehead torsion is trivial, as in the hypothesis of the s-
cobordism theorem. These notes will only deal with free L-groups L∗(Λ) =
Lh
∗(Λ), the obstruction groups for surgery up to homotopy equivalence.

The algebraic theory of ε-quadratic forms (K,λ, µ) over a ring Λ with an
involution Λ → Λ; a 7→ ā is developed in §§1,2, with ε = ±1 and

λ : K ×K → Λ ; (x, y) 7−→ λ(x, y)

an ε-symmetric pairing on a Λ-module K such that

λ(x, y) = ελ(y, x) ∈ Λ (x, y ∈ K)

and

µ : K → Qε(Λ) = Λ/{a− εā | a ∈ Λ}
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an ε-quadratic refinement of λ such that

λ(x, x) = µ(x) + εµ(x) ∈ Λ (x ∈ K) .

For an n-connected 2n-dimensional normal map (f, b) : M2n → X geomet-
ric (intersection, self-intersection) numbers define a (−1)n-quadratic form
(Kn(M), λ, µ) on the kernel stably f. g. free Z[π1(X)]-module

Kn(M) = ker(f̃∗ : Hn(M̃) → Hn(X̃))

with X̃ the universal cover of X and M̃ = f∗X̃ the pullback of X̃ to M .

The hyperbolic ε-quadratic form on a f. g. free Λ-module Λk

Hε(Λk) = (Λ2k, λ, µ)

is defined by

λ : Λ2k × Λ2k → Λ ;

((a1, a2, . . . , a2k), (b1, b2, . . . , b2k)) 7−→
k∑

i=1

(b2i−1ā2i + εb2iā2i−1) ,

µ : Λ2k → Qε(Λ) ; (a1, a2, . . . , a2k) 7−→
k∑

i=1

a2i−1ā2i .

The even-dimensional L-group L2n(Λ) is defined in §3 to be the abelian
group of stable isomorphism classes of nonsingular (−1)n-quadratic forms
on (stably) f. g. free Λ-modules, where stabilization is with respect to
the hyperbolic forms H(−1)n(Λk). A nonsingular (−1)n-quadratic form
(K,λ, µ) represents 0 in L2n(Λ) if and only if there exists an isomorphism

(K,λ, µ)⊕H(−1)n(Λk) ∼= H(−1)n(Λk′)

for some integers k, k′ ≥ 0. The surgery obstruction of an n-connected
2n-dimensional normal map (f, b) : M2n → X is defined by

σ∗(f, b) = (Kn(M), λ, µ) ∈ L2n(Z[π1(X)]) .

The algebraic effect of a geometric surgery on an n-connected 2n-
dimensional normal map (f, b) is given in §5. Assuming that the result of
the surgery is still n-connected, the effect on the kernel form of a surgery
on Sn−1×Dn+1 ↪→ M (resp. Sn×Dn ↪→ M) is to add on (resp. split off)
a hyperbolic (−1)n-quadratic form H(−1)n(Z[π1(X)]).

§6 introduces the notion of a “(2n + 1)-complex” (C, ψ), which is a f. g.
free Λ-module chain complex of the type

C : . . . → 0 → Cn+1

d−−→ Cn → 0 → . . .

together with a quadratic structure ψ inducing Poincaré duality isomor-
phisms (1 + T )ψ : H2n+1−∗(C) → H∗(C). (This is just a (2n + 1)-
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dimensional quadratic Poincaré complex (C, ψ) in the sense of [19], with
Cr = 0 for r 6= n, n+1.) An n-connected (2n+1)-dimensional normal map
(f, b) : M2n+1 → X determines a kernel (2n+1)-complex (C,ψ) (or rather
a homotopy equivalence class of such complexes) with

H∗(C) = K∗(M) = ker(f̃∗ : H∗(M̃) → H∗(X̃)) .

The cobordism of (2n+1)-complexes is defined in §7. The odd-dimensional
L-group L2n+1(Λ) is defined in §8 as the cobordism group of (2n + 1)-
complexes. The surgery obstruction of an n-connected normal map (f, b) :
M2n+1 → X is the cobordism class of the kernel complex

σ∗(f, b) = (C,ψ) ∈ L2n+1(Z[π1(X)]) .

The odd-dimensional L-group L2n+1(Λ) was originally defined in [29]
as a potentially non-abelian quotient of the stable unitary group of the
matrices of automorphisms of hyperbolic (−1)n-quadratic forms over Λ

L2n+1(Λ) = U(−1)n(Λ)/EU(−1)n(Λ)

with

U(−1)n(Λ) =
∞⋃

k=1

AutΛH(−1)n(Λk)

and EU(−1)n(Λ) / U(−1)n(Λ) the normal subgroup generated by the ele-
mentary matrices of the type(

α 0
0 α∗−1

)
,

(
1 0

β + (−1)n+1β∗ 1

)
,

(
0 1

(−1)n 0

)

for any invertible matrix α, and any square matrix β. The group L2n+1(Λ)
is abelian, since

[U(−1)n(Λ), U(−1)n(Λ)] ⊆ EU(−1)n(Λ) .

The surgery obstruction σ∗(f, b) ∈ L2n+1(Z[π1(X)]) of an n-connected
(2n + 1)-dimensional normal map (f, b) : M2n+1 → X is represented
by an automorphism of a hyperbolic (−1)n-quadratic form obtained from
a high-dimensional generalization of the Heegaard decompositions of 3-
dimensional manifolds as twisted doubles.

§8, §9 and §10 describe three equivalent ways of defining L2n+1(Λ), using
unitary matrices, formations and chain complexes. In each case it is nec-
essary to make some choices in passing from the geometry to the algebra,
and to verify that the equivalence class in the L-group is independent of
the choices.

The definition of L2n+1(Λ) using complexes given in §8 is a special case
of the general theory of chain complexes with Poincaré duality of Ranicki
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[19]. The 4-periodicity in the quadratic L-groups

Lm(Λ) = Lm+4(Λ)

(given geometrically by taking product with CP 2, as in Chapter 9 of Wall
[29]) was proved in [19] using an algebraic analogue of surgery below the
middle dimension: it is possible to represent every element of Lm(Λ) by a
quadratic Poincaré complex (C, ψ) which is “highly-connected”, meaning
that

Cr = 0 for
{

r 6= n if m = 2n

r 6= n, n + 1 if m = 2n + 1 .
In these notes only the highly-connected (2n + 1)-dimensional quadratic
Poincaré complexes are considered, namely the “(2n+1)-complexes” of §6.

I am grateful to the referee for suggesting several improvements.

The titles of the sections are:

§1. Duality
§2. Quadratic forms
§3. The even-dimensional L-groups
§4. Split forms
§5. Surgery on forms
§6. Short odd complexes
§7. Complex cobordism
§8. The odd-dimensional L-groups
§9. Formations
§10. Automorphisms

§1. Duality

§1 considers rings Λ equipped with an “involution” reversing the order of
multiplication. An involution allows right Λ-modules to be regarded as left
Λ-modules, especially the right Λ-modules which arise as the duals of left Λ-
modules. In particular, the group ring Z[π1(M)] of the fundamental group
π1(M) of a manifold M has an involution, which allows the Poincaré duality
of the universal cover M̃ to be regarded as Z[π1(M)]-module isomorphisms.

Let X be a connected space, and let X̃ be a regular cover of X with group
of covering translations π. The action of π on X̃ by covering translations

π × X̃ → X̃ ; (g, x) 7−→ gx

induces a left action of the group ring Z[π] on the homology of X̃

Z[π]×H∗(X̃) → H∗(X̃) ; (
∑
g∈π

ngg, x) 7−→
∑
g∈π

nggx
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so that the homology groups H∗(X̃) are left Z[π]-modules. In dealing with
cohomology let

H∗(X̃) = H∗
cpt(X̃)

be the compactly supported cohomology groups, regarded as left Z[π]-
modules by

Z[π]×H∗(X̃) → H∗(X̃) ; (
∑
g∈π

ngg, x) 7−→
∑
g∈π

ngxg−1 .

(For finite π H∗(X̃) is just the ordinary cohomology of X̃.) Cap product
with any homology class [X] ∈ Hm(X) defines Z[π]-module morphisms

[X] ∩ − : H∗(X̃) → Hm−∗(X̃) .

Definition 1.1 An oriented m-dimensional geometric Poincaré complex
(Wall [28]) is a finite CW complex X with a fundamental class [X] ∈
Hm(X) such that cap product defines Z[π1(X)]-module isomorphisms

[X] ∩ − : H∗(X̃)
∼=→ Hm−∗(X̃)

with X̃ the universal cover of X.

See 1.14 below for the general definition of a geometric Poincaré complex,
including the nonorientable case.

Example 1.2 A compact oriented m-dimensional manifold is an oriented
m-dimensional geometric Poincaré complex.

In order to also deal with nonorientable manifolds and Poincaré com-
plexes it is convenient to have an involution:

Definition 1.3 Let Λ be an associative ring with 1. An involution on Λ
is a function

Λ → Λ ; a 7−→ a

satisfying

(a + b) = a + b , (ab) = b.a , a = a , 1 = 1 ∈ Λ .

Example 1.4 A commutative ring Λ admits the identity involution

Λ → Λ ; a 7−→ a = a .

Definition 1.5 Given a group π and a group morphism

w : π → Z2 = {±1}
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define the w-twisted involution on the integral group ring Λ = Z[π]

Λ → Λ ; a =
∑
g∈π

ngg 7−→ ā =
∑
g∈π

w(g)ngg
−1 (ng ∈ Z) .

In the topological application π is the fundamental group of a space with
w : π → Z2 an orientation character. In the oriented case w(g) = +1 for
all g ∈ π.

Example 1.6 Complex conjugation defines an involution on the ring of
complex numbers Λ = C

C→ C ; z = a + ib 7−→ z = a− ib .

A “hermitian” form is a symmetric form on a (finite-dimensional) vector
space over C with respect to this involution. The study of forms over
rings with involution is sometimes called “hermitian K-theory”, although
“algebraic L-theory” seems preferable.

The dual of a left Λ-module K is the right Λ-module

K∗ = HomΛ(K, Λ)

with

K∗ × Λ → K∗ ; (f, a) 7−→ (x 7−→ f(x).a) .

An involution Λ → Λ; a 7−→ ā determines an isomorphism of categories

{right Λ-modules}
∼=→ {left Λ-modules} ; L 7−→ Lop ,

with Lop the left Λ-module with the same additive group as the right Λ-
module L and Λ acting by

Λ× Lop → Lop ; (a, x) 7−→ xa .

From now on we shall work with a ring Λ which is equipped with a
particular choice of involution Λ → Λ. Also, Λ-modules will always be
understood to be left Λ-modules.

For any Λ-module K the Λ-module (K∗)op is written as K∗. Here is the
definition of K∗ all at once:

Definition 1.7 The dual of a Λ-module K is the Λ-module

K∗ = HomΛ(K, Λ) ,

with Λ acting by

Λ×K∗ → K∗ ; (a, f) 7−→ (x 7−→ f(x).a)
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for all a ∈ Λ, f ∈ K∗, x ∈ K.

There is a corresponding notion for morphisms:

Definition 1.8 The dual of a Λ-module morphism f : K → L is the
Λ-module morphism

f∗ : L∗ → K∗ ; g 7−→ (
x 7−→ g(f(x))

)
.

Thus duality is a contravariant functor

∗ : {Λ-modules} → {Λ-modules} ; K 7−→ K∗ .

Definition 1.9 For any Λ-module K define the Λ-module morphism

eK : K → K∗∗ ; x 7−→ (f 7−→ f(x)) .

The morphism eK is natural in the sense that for any Λ-module mor-
phism f : K → L there is defined a commutative diagram

K
f //

eK

²²

L

eL

²²
K∗∗ f∗∗ // L∗∗

Definition 1.10 (i) A Λ-module K is f. g. projective if there exists a
Λ-module L such that K ⊕ L is isomorphic to the f. g. free Λ-module Λn,
for some n ≥ 0.
(ii) A Λ-module K is stably f. g. free if K ⊕ Λm is isomorphic to Λn, for
some m,n ≥ 0.

In particular, f. g. free Λ-modules are stably f. g. free, and stably f. g.
free Λ-modules are f. g. projective.

Proposition 1.11 The dual of a f. g. projective Λ-module K is a f. g.
projective Λ-module K∗, and eK : K → K∗∗ is an isomorphism. Moreover,
if K is stably f. g. free then so is K∗.
Proof : For any Λ-modules K, L there are evident identifications

(K ⊕ L)∗ = K∗ ⊕ L∗ ,

eK⊕L = eK ⊕ eL : K ⊕ L → (K ⊕ L)∗∗ = K∗∗ ⊕ L∗∗ ,

so it suffices to consider the special case K = Λ. The Λ-module isomor-
phism

f : Λ
∼=→ Λ∗ ; a 7−→ (b 7−→ ba) ,
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can be used to construct an explicit inverse for eΛ

(eΛ)−1 : Λ∗∗ → Λ ; g 7−→ g(f(1)) .

In dealing with f. g. projective Λ-modules K use the natural isomorphism
eK : K ∼= K∗∗ to identify K∗∗ = K. For any morphism f : K → L of f. g.
projective Λ-modules there is a corresponding identification

f∗∗ = f : K∗∗ = K → L∗∗ = L .

Remark 1.12 The additive group HomΛ(Λm, Λn) of the morphisms
Λm → Λn between f. g. free Λ-modules Λm, Λn may be identified with
the additive group Mm,n(Λ) of m × n matrices (aij)1≤i≤m,1≤j≤n with en-
tries aij ∈ Λ, using the isomorphism

Mm,n(Λ)
∼=→ HomΛ(Λm, Λn) ;

(aij) 7−→ ((x1, x2, . . . , xm) 7−→ (
m∑

i=1

xiai1,

m∑

i=1

xiai2, . . . ,

m∑

i=1

xiain)) .

The composition of morphisms

HomΛ(Λm, Λn)×HomΛ(Λn, Λp) → HomΛ(Λm,Λp) ;

(f, g) 7−→ (
gf : x 7−→ (gf)(x) = g(f(x))

)

corresponds to the multiplication of matrices

Mm,n(Λ)×Mn,p(Λ) → Mm,p(Λ) ; ((aij), (bjk)) 7−→ (cik)

( cik =
n∑

j=1

aijbjk (1 ≤ i ≤ m, 1 ≤ k ≤ p) ) .

Use the isomorphism of f. g. free Λ-modules

Λm
∼=→ (Λm)∗ ; (x1, x2, . . . , xm) 7−→ ((y1, y2, . . . , ym) 7−→

m∑

i=1

yixi)

to identify

(Λm)∗ = Λm .

The duality isomorphism

∗ : HomΛ(Λm, Λn)
∼=→ HomΛ((Λn)∗, (Λm)∗) = HomΛ(Λn, Λm) ;

f 7−→ f∗

can be identified with the isomorphism defined by conjugate transposition
of matrices

Mm,n(Λ)
∼=→ Mn,m(Λ) ; α = (aij) 7−→ α∗ = (bji) , bji = aij .
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Example 1.13 A 2× 2 matrix(
a b

c d

)
∈ M2,2(Λ)

corresponds to the Λ-module morphism

f =
(

a b

c d

)
: Λ⊕ Λ → Λ⊕ Λ ; (x, y) 7−→ (xa + yb, xc + yd) .

The conjugate transpose matrix
(

a c

b d

)
∈ M2,2(Λ)

corresponds to the dual Λ-module morphism

f∗ =
(

a c

b d

)
: (Λ⊕ Λ)∗ = Λ⊕ Λ → (Λ⊕ Λ)∗ = Λ⊕ Λ ;

(x, y) 7−→ (xa + yc, xb + yd) .

The dual of a chain complex of modules over a ring with involution Λ

C : . . . // Cr+1
d // Cr

d // Cr−1
// . . .

is the cochain complex

C∗ : . . . // Cr−1 d∗ // Cr d∗ // Cr+1 // . . .

with

Cr = (Cr)∗ = HomΛ(Cr,Λ) .

Definition 1.14 An m-dimensional geometric Poincaré complex (Wall
[28]) is a finite CW complex X with an orientation character w(X) :
π1(X) → Z2 and a w(X)-twisted fundamental class [X] ∈ Hm(X;Zw(X))
such that cap product defines Z[π1(X)]-module isomorphisms

[X] ∩ − : H∗
w(X)(X̃)

∼=→ Hm−∗(X̃)

with X̃ the universal cover of X. The w(X)-twisted cohomology groups
are given by

H∗
w(X)(X̃) = H∗(C(X̃)∗)

with C(X̃) the cellular Z[π1(X)]-module chain complex, using the w(X)-
twisted involution on Z[π1(X)] (1.5) to define the left Z[π1(X)]-module
structure on the dual cochain complex

C(X̃)∗ = HomZ[π1(X)](C(X̃),Z[π1(X)]) .
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The orientation character w(X) : π1(X) → Z2 sends a loop g : S1 → X
to w(g) = +1 (resp. = −1) if g is orientation-preserving (resp. orientation-
reversing).

An oriented Poincaré complex X (1.1) is just a Poincaré complex (1.14)
with w(X) = +1.

Example 1.15 A compact m-dimensional manifold is an m-dimensional
geometric Poincaré complex.

§2. Quadratic forms

In the first instance suppose that the ground ring Λ is commutative, with
the identity involution ā = a (1.4). A symmetric form (K,λ) over Λ is a
Λ-module K together with a bilinear pairing

λ : K ×K → Λ ; (x, y) 7−→ λ(x, y)

such that for all x, y, z ∈ K and a ∈ Λ

λ(x, ay) = aλ(x, y) ,

λ(x, y + z) = λ(x, y) + λ(x, z) ,

λ(x, y) = λ(y, x) ∈ Λ .

A quadratic form (K, λ, µ) over Λ is a symmetric form (K,λ) together with
a function

µ : K → Q+1(Λ) = Λ ; x 7−→ µ(x)

such that for all x, y ∈ K and a ∈ Λ

µ(x + y) = µ(x) + µ(y) + λ(x, y) ,

µ(ax) = a2µ(x) ∈ Q+1(Λ) .

In particular, for every x ∈ K

2µ(x) = λ(x, x) ∈ Q+1(Λ) = Λ .

If 2 ∈ Λ is invertible (e.g. if Λ is a field of characteristic 6= 2, such as
R,C,Q) there is no difference between symmetric and quadratic forms,
with µ determined by λ according to µ(x) = λ(x, x)/2.

A symplectic form (K, λ) over a commutative ring Λ is a Λ-module K
together with a bilinear pairing λ : K×K → Λ such that for all x, y, z ∈ K
and a ∈ Λ

λ(x, at) = aλ(x, y) ,

λ(x, y + z) = λ(x, y) + λ(x, z) ,

λ(x, y) = −λ(y, x) ∈ Λ .
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A (−1)-quadratic form (K, λ, µ) over Λ is a symplectic form (K,λ) together
with a function

µ : K → Q−1(Λ) = Λ/{2a | a ∈ Λ} ; x 7−→ µ(x)

such that for all x, y ∈ K and a ∈ Λ

µ(x + y) = µ(x) + µ(y) + λ(x, y) ,

µ(ax) = a2µ(x) ∈ Q−1(Λ) .

In particular, for every x ∈ K

2µ(x) = λ(x, x) ∈ Q−1(Λ) = {a ∈ Λ | 2a = 0} .

If 2 ∈ Λ is invertible then Q−1(Λ) = 0 and there is no difference between
symplectic and (−1)-quadratic forms, with µ = 0.

In the applications of forms to surgery theory it is necessary to work with
quadratic and (−1)-quadratic forms over noncommutative group rings with
the involution as in 1.5. §2 develops the general theory of forms over rings
with involution, taking account of these differences.

Let X be an m-dimensional geometric Poincaré complex with universal
cover X̃ and fundamental group ring Λ = Z[π1(X)], with the w(X)-twisted
involution. The Poincaré duality isomorphism

φ = [X] ∩ − : Hm−r
w(X)(X̃)

∼=→ Hr(X̃)

and the evaluation pairing

Hr
w(X)(X̃) → Hr(X̃)∗ = HomΛ(Hr(X̃), Λ) ; y 7−→ (x 7−→ 〈y, x〉)

can be combined to define a sesquilinear pairing

λ : Hr(X̃)×Hm−r(X̃) → Λ ; (x, φ(y)) 7−→ 〈y, x〉
such that

λ(y, x) = (−1)r(m−r)λ(x, y)

with Λ → Λ; a 7−→ ā the involution of 1.5.

If M is an m-dimensional manifold with fundamental group ring Λ =
Z[π1(M)] the pairing λ : Hr(M̃) × Hm−r(M̃) → Λ can be interpreted
geometrically using the geometric intersection numbers of cycles. For any
two immersions x : Sr # M̃ , y : Sm−r # M̃ in general position

λ(x, y) =
∑

g∈π1(M)

ngg ∈ Λ

with ng ∈ Z the algebraic number of intersections in M̃ of x and gy. In
particular, for m = 2n there is defined a (−1)n-symmetric pairing

λ : Hn(M̃)×Hn(M̃) → Λ



An introduction to algebraic surgery 97

which is relevant to surgery in the middle dimension n. An element
x ∈ πn(M) can be killed by surgery if and only if it is represented by
an embedding Sn ×Dn ↪→ M2n. The condition that the Hurewicz image
x ∈ Hn(M̃) be such that λ(x, x) = 0 ∈ Λ is necessary but not sufficient to
kill x ∈ πn(M) by surgery. The theory of forms developed in §2 is required
for an algebraic formulation of the necessary and sufficient condition for
an element in the kernel Kn(M) of an n-connected 2n-dimensional normal
map (f, b) : M → X to be killed by surgery, assuming n ≥ 3.

As in §1 let Λ be a ring with involution, not necessarily a group ring.

Definition 2.1 A sesquilinear pairing (K, L, λ) on Λ-modules K, L is a
function

λ : K × L → Λ ; (x, y) 7−→ λ(x, y)

such that for all w, x ∈ K, y, z ∈ L, a, b ∈ Λ
(i) λ(w + x, y + z) = λ(w, y) + λ(w, z) + λ(x, y) + λ(x, z) ∈ Λ ,
(ii) λ(ax, by) = bλ(x, y)a ∈ Λ .

The dual (or transpose) sesquilinear pairing is

Tλ : L×K → Λ ; (y, x) 7−→ Tλ(y, x) = λ(x, y) .

Definition 2.2 Given Λ-modules K, L let S(K, L) be the additive group of
sesquilinear pairings λ : K×L → Λ. Transposition defines an isomorphism

T : S(K, L) ∼= S(L,K)

such that

T 2 = id. : S(K, L)
∼=→ S(L,K)

∼=→ S(K,L) .

Proposition 2.3 For any Λ-modules K, L there is a natural isomorphism
of additive groups

S(K, L)
∼=→ HomΛ(K, L∗) ;

(λ : K × L → Λ) 7−→ (λ : K → L∗ ; x 7−→ ( y 7−→ λ(x, y) )) .

For f. g. projective K,L the transposition isomorphism T : S(K,L) ∼=
S(L, K) corresponds to the duality isomorphism

∗ : HomΛ(K, L∗)
∼=→ HomΛ(L,K∗) ;

(λ : K → L∗) 7−→ (λ∗ : L → K∗ ; y 7−→ (x 7−→ λ(y, x))) .
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Use 2.3 to identify

S(K, L) = HomΛ(K, L∗) , S(K) = HomΛ(K, K∗) ,

Qε(K) = ker(1− Tε : HomΛ(K, K∗) → HomΛ(K, K∗)) ,

Qε(K) = coker(1− Tε : HomΛ(K,K∗) → HomΛ(K, K∗))

for any f. g. projective Λ-modules K,L.

Remark 2.4 For f. g. free Λ-modules Λm, Λn it is possible to identify
S(Λm,Λn) with the additive group Mm,n(Λ) of m× n matrices (aij) with
entries aij ∈ Λ, using the isomorphism

Mm,n(Λ)
∼=→ S(Λm, Λn) ; (aij) 7−→ λ

defined by

λ((x1, x2, . . . , xm), (y1, y2, . . . , yn)) =
m∑

i=1

n∑

j=1

yjaijxi .

The transposition isomorphism T : S(Λm,Λn) ∼= S(Λn, Λm) corresponds
to the isomorphism defined by conjugate transposition of matrices

T : Mm,n(Λ)
∼=→ Mn,m(Λ) ; (aij) 7−→ (bji) , bji = aij .

The group S(K, L) is particularly significant in the case K = L :

Definition 2.5 (i) Given a Λ-module K let

S(K) = S(K,K)

be the abelian group of sesquilinear pairings λ : K ×K → Λ.
(ii) The ε-transposition involution is given for ε = ±1 by

Tε : S(K)
∼=→ S(K) ; λ 7−→ Tελ = ε(Tλ) ,

such that

Tελ(x, y) = ελ(y, x) ∈ Λ , (Tε)2 = id : S(K) → S(K) .

Definition 2.6 The ε-symmetric group of a Λ-module K is the additive
group

Qε(K) = ker(1− Tε : S(K) → S(K)) .

The ε-quadratic group of K is the additive group

Qε(K) = coker(1− Tε : S(K) → S(K)) .

The ε-symmetrization morphism is given by

1 + Tε : Qε(K) → Qε(K) ; ψ 7−→ ψ + Tεψ .
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For ε = +1 it is customary to refer to ε-symmetric and ε-quadratic
objects as symmetric and quadratic, as in the commutative case.

For K = Λ there is an isomorphism of additive groups with involution

Λ
∼=→ S(Λ) ; a 7−→ ((x, y) 7−→ yax)

allowing the identifications

Qε(Λ) = {a ∈ Λ | εa = a} ,

Qε(Λ) = Λ/{a− εa | a ∈ Λ} ,

1 + Tε : Qε(Λ) → Qε(Λ) ; a 7−→ a + εa .

Example 2.7 Let Λ = Z. The ε-symmetric and ε-quadratic groups of
K = Z are given by

Qε(Z) =
{
Z if ε = +1
0 if ε = −1 ,

Qε(Z) =
{
Z if ε = +1
Z/2 if ε = −1

with generators represented by 1 ∈ Z, and with

1 + T+ = 2 : Q+1(Z) = Z→ Q+1(Z) = Z .

Definition 2.8 An ε-symmetric form (K, λ) over Λ is a Λ-module K to-
gether with an element λ ∈ Qε(K). Thus λ is a sesquilinear pairing

λ : K ×K → Λ ; (x, y) 7−→ λ(x, y)

such that for all x, y ∈ K

λ(x, y) = ελ(y, x) ∈ Λ .

The adjoint of (K, λ) is the Λ-module morphism

K → K∗ ; x 7−→ (y 7−→ λ(x, y))

which is also denoted by λ. The form is nonsingular if λ : K → K∗ is an
isomorphism.

Unless specified otherwise, only forms (K, λ) with K a f. g. projective
Λ-module will be considered.

Example 2.9 The symmetric form (Λ, λ) defined by

λ = 1 : Λ → Λ∗ ; a 7−→ (b 7−→ ba)

is nonsingular.
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Definition 2.10 For any f. g. projective Λ-module L define the nonsin-
gular hyperbolic ε-symmetric form

Hε(L) = (L⊕ L∗, λ)

by

λ =
(

0 1
ε 0

)
: L⊕ L∗ → (L⊕ L∗)∗ = L∗ ⊕ L ;

(x, f) 7−→ ((y, g) 7−→ f(y) + εg(x)) .

Example 2.11 Let X be an m-dimensional geometric Poincaré complex,
and let X̃ be a regular oriented covering of X with group of covering trans-
lations π and orientation character w : π → Z2. An element g ∈ π has
w(g) = +1 (resp. −1) if and only if the covering translation g : X̃ → X̃ is
orientation-preserving (resp. reversing).
(i) Cap product with the fundamental class [X] ∈ Hm(X;Zw) defines the
Poincaré duality Z[π]-module isomorphisms

[X] ∩ − : Hm−∗
w (X̃)

∼=→ H∗(X̃) .

If m = 2n and X is a manifold geometric intersection numbers define a
(−1)n-symmetric form (Hn(X̃), λ) over Z[π] with adjoint the composite

λ : Hn(X̃)
([X]∩−)−1

−−−−−−−→ Hn
w(X̃)

evaluation−−−−−−−→ Hn(X̃)∗ .

(ii) In general Hn(X̃) is not a f. g. projective Z[π]-module. If Hn(X̃) is f.
g. projective then the evaluation map is an isomorphism, and (Hn(X̃), λ)
is a nonsingular form.

Remark 2.12 (i) Let M be a 2n-dimensional manifold, with universal
cover M̃ and intersection pairing λ : Hn(M̃) × Hn(M̃) → Z[π1(M)]. An
element x ∈ im(πn(M) → Hn(M̃)) can be killed by surgery if and only
if it can be represented by an embedding x : Sn × Dn ↪→ M , in which
case the homology class x ∈ Hn(M̃) is such that λ(x, x) = 0. However,
the condition λ(x, x) = 0 given by the symmetric structure alone is not
sufficient for the existence of such an embedding – see (ii) below for an
explicit example.
(ii) The intersection form over Z for M2n = Sn×Sn is the hyperbolic form
(2.10)

(Hn(Sn × Sn), λ) = H(−1)n

(Z) .

The element x = (1, 1) ∈ Hn(Sn × Sn) is such that

λ(x, x) = χ(Sn) = 1 + (−1)n ∈ Z ,

so that λ(x, x) = 0 for odd n. The diagonal embedding ∆ : Sn ↪→ Sn×Sn

has normal bundle ν∆ = τSn : Sn → BO(n), which is non-trivial for
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n 6= 1, 3, 7, so that it is not possible to kill x = ∆∗[Sn] ∈ Hn(Sn × Sn) by
surgery in these dimensions.

Definition 2.13 An ε-quadratic form (K, λ, µ) over Λ is an ε-symmetric
form (K, λ) together with a function

µ : K → Qε(Λ) ; x 7−→ µ(x)

such that for all x, y ∈ K, a ∈ Λ

(i) µ(x + y)− µ(x)− µ(y) = λ(x, y) ∈ Qε(Λ) ,

(ii) µ(x) + εµ(x) = λ(x, x) ∈ im(1 + Tε : Qε(Λ) → Qε(Λ)) ,

(iii) µ(ax) = aµ(x)a ∈ Qε(Λ) .

Definition 2.14 For any f. g. projective Λ-module L define the nonsin-
gular hyperbolic ε-quadratic form over Λ by

Hε(L) = (L⊕ L∗, λ, µ)

with

λ =
(

0 1
ε 0

)
: L⊕ L∗ → (L⊕ L∗)∗ = L∗ ⊕ L ;

(x, f) 7−→ ((y, g) 7−→ f(y) + εg(x)) ,

µ : L⊕ L∗ → Qε(Λ) ; (x, f) 7−→ f(x) .

(L⊕ L∗, λ) is the hyperbolic ε-symmetric form Hε(L) of 2.10.

Example 2.15 (Wall [29, Chapter 5]) An n-connected normal map (f, b) :
M2n → X from a 2n-dimensional manifold with boundary (M, ∂M) to a
geometric Poincaré pair (X, ∂X) with ∂f = f | : ∂M → ∂X a homotopy
equivalence determines a (−1)n-quadratic form (Kn(M), λ, µ) over Λ =
Z[π1(X)] with the w(X)-twisted involution (1.5), with

Kn(M) = πn+1(f) = Hn+1(f̃) = ker(f̃∗ : Hn(M̃) → Hn(X̃))

the stably f. g. free kernel Λ-module, and f̃ : M̃ → X̃ a π1(X)-equivariant
lift of f to the universal covers. Note that Kn(M) = 0 if (and for
n ≥ 2 only if) f : M → X is a homotopy equivalence, by the theorem
of J.H.C. Whitehead.
(i) The pairing λ : Kn(M)×Kn(M) → Λ is defined by geometric intersec-
tion numbers, as follows. Every element x ∈ Kn(M) is represented by an
X-nullhomotopic framed immersion g : Sn # M with a choice of path in
g(Sn) ⊂ M from the base point ∗ ∈ M to g(1) ∈ M . Any two elements
x, y ∈ Kn(M) can be represented by such immersions g, h : Sn # M with
transverse intersections and self-intersections. The intersection of g and h

D(g, h) = {(a, b) ∈ Sn × Sn | g(a) = h(b) ∈ M}
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is finite. For each intersection point (a, b) ∈ D(g, h) let

γ(a, b) ∈ π1(M) = π1(X)

be the homotopy class of the loop in M obtained by joining the path in
g(Sn) ⊂ M from the base point ∗ ∈ M to g(a) to the path in h(Sn) ⊂ M
from h(b) back to the base point. Choose an orientation for τ∗(M) and
transport it to an orientation for τg(a)(M) = τh(b)(M) by the path for g,
and let

ε(a, b) = [τa(Sn)⊕ τb(Sn) : τg(a)(M)] ∈ {±1}
be +1 (resp. −1) if the isomorphism

(dg dh) : τa(Sn)⊕ τb(Sn)
∼=→ τg(a)(M)

is orientation-preserving (resp. reversing). The geometric intersection of
x, y ∈ Kn(M) is given by

λ(x, y) =
∑

(a,b)∈D(g,h)

I(a, b) ∈ Λ

with

I(a, b) = ε(a, b)γ(a, b) ∈ Λ .

It follows from
ε(b, a) = [τbS

n ⊕ τaSn : τaSn ⊕ τbS
n]ε(a, b)

= det(
(

0 1
1 0

)
: Rn ⊕ Rn → Rn ⊕ Rn)ε(a, b)

= (−1)nε(a, b) ∈ {±1} ,

γ(b, a) = w(X)(γ(a, b))γ(a, b)−1 ∈ π1(X) ,

I(b, a) = (−1)nI(a, b) ∈ Λ

that

λ(y, x) = (−1)nλ(x, y) ∈ Λ

(which also holds from purely homological considerations).
(ii) The quadratic function µ : Kn(M) → Q(−1)n(Λ) is defined by geo-
metric self-intersection numbers, as follows. Represent x ∈ Kn(M) by an
immersion g : Sn # M as in (i), with transverse self-intersections. The
double point set of g

D2(g) = D(g, g)\∆(Sn)
= {(a, b) ∈ Sn × Sn | a 6= b ∈ Sn, g(a) = g(b) ∈ M}

is finite, with a free Z2-action (a, b) 7→ (b, a). For each (a, b) ∈ D2(g) let
γ(a, b) be the loop in M obtained by transporting to the base point the
image under g of a path in Sn from a to b. The geometric self-intersection
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of x is defined by

µ(x) =
∑

(a,b)∈D2(g)/Z2

I(a, b) ∈ Q(−1)n(Λ) ,

with I(a, b) = ε(a, b)γ(a, b) as in (i). Note that µ(x) is independent of the
choice of ordering of (a, b) since I(b, a) = (−1)nI(a, b) ∈ Λ.
(iii) The kernel (−1)n-quadratic form (Kn(M), λ, µ) is such that µ(x) = 0 if
(and for n ≥ 3 only if) x ∈ Kn(M) can be killed by surgery on Sn ⊂ M2n,
i.e. represented by an embedding Sn ×Dn ↪→ M with a nullhomotopy in
X – the condition µ(x) = 0 allows the double points of a representative
framed immersion g : Sn # M to be matched in pairs, which for n ≥ 3 can
be cancelled by the Whitney trick. The effect of the surgery is a bordant
(n− 1)-connected normal map

(f ′, b′) : M ′2n = cl.(M\Sn ×Dn) ∪Dn+1 × Sn−1 → X

with kernel Λ-modules

Ki(M ′) =





coker(x∗λ : Kn(M) → Λ∗) if i = n− 1
ker(x∗λ : Kn(M) → Λ∗)

im(x : Λ → Kn(M)) if i = n

ker(x : Λ → Kn(M)) if i = n + 1
0 otherwise .

Thus (f ′, b′) is n-connected if and only if x generates a direct summand
L = 〈x〉 ⊂ Kn(M), in which case L is a sublagrangian of (Kn(M), λ, µ) in
the terminology of §5, with

L ⊆ L⊥ = {y ∈ Kn(M) |λ(x, y) = 0} ,

(Kn(M ′), λ′, µ′) = (L⊥/L, [λ], [µ]) ,

(Kn(M), λ, µ) ∼= (Kn(M ′), λ′, µ′)⊕H(−1)n(Λ) .

(iv) The effect on (f, b) of a surgery on an X-nullhomotopic embedding
Sn−1 ×Dn+1 ↪→ M is an n-connected bordant normal map

(f ′′, b′′) : M ′′2n = cl.(M\Sn−1×Dn+1)∪Dn×Sn = M#(Sn×Sn) → X

with kernel Λ-modules

Ki(M ′′) =
{

Kn(M)⊕ Λ⊕ Λ∗ if i = n

0 otherwise
and kernel (−1)n-quadratic form

(Kn(M ′′), λ′′, µ′′) = (Kn(M), λ, µ)⊕H(−1)n(Λ) .

(v) The main result of even-dimensional surgery obstruction theory is that
for n ≥ 3 an n-connected 2n-dimensional normal map (f, b) : M2n → X
is normal bordant to a homotopy equivalence if and only if there exists an
isomorphism of (−1)n-quadratic forms over Λ = Z[π1(X)] of the type

(Kn(M), λ, µ)⊕H(−1)n(Λk)
∼=→ H(−1)n(Λk′)
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for some k, k′ ≥ 0.

Example 2.16 There is also a relative version of 2.15. An n-connected
2n-dimensional normal map of pairs (f, b) : (M2n, ∂M) → (X, ∂X) has a
kernel (−1)n-quadratic form (Kn(M), λ, µ) over Z[π1(X)] is nonsingular if
and only if ∂f : ∂M → ∂X is a homotopy equivalence (assuming π1(∂X) ∼=
π1(X)).

Remark 2.17 (Realization of even-dimensional surgery obstructions, Wall
[29, 5.8])
(i) Let X2n−1 be a (2n − 1)-dimensional manifold, and suppose given an
embedding e : Sn−1 × Dn ↪→ X, together with a null-homotopy δe of
e| : Sn−1 ↪→ X and a null-homotopy of the map Sn−1 → O comparing the
(stable) trivializations of νe| : Sn−1 → BO(n) given by e and δe. Then
there is defined an n-connected 2n-dimensional normal map

(f, b) : (M ; ∂−M, ∂+M) → X × ([0, 1]; {0}, {1})
with

∂−f = id. : ∂−M = X → X ,

M2n = X × [0, 1] ∪e Dn ×Dn ,

∂+M = cl.(X\e(Sn−1 ×Dn)) ∪Dn × Sn−1 .

The kernel (−1)n-quadratic form (Λ, λ, µ) over Λ (2.16) is the (self-)-
intersection of the framed immersion Sn−1 × [0, 1] # X × [0, 1] defined
by the track of a regular homotopy e0 ' e : Sn−1×Dn → X from a trivial
unlinked embedding

e0 : Sn−1×Dn ↪→ S2n−1 = Sn−1×Dn∪Dn×Sn−1 ↪→ X#S2n−1 = X .

Moreover, every form (Λ, λ, µ) arises in this way : starting with e0 construct
a regular homotopy e0 ' e to a (self-)linked embedding e such that the track
has (self-)intersection (λ, µ).
(ii) Let (K, λ, µ) be a (−1)n-quadratic form over Z[π], with π a finitely
presented group and K = Z[π]k f. g. free. Let n ≥ 3, so that there exists a
(2n−1)-dimensional manifold X2n−1 with π1(X) = π. For any such n ≥ 3,
X there exists an n-connected 2n-dimensional normal map

(f, b) : (M2n; ∂−M, ∂+M) → X2n−1 × ([0, 1]; {0}, {1})
with kernel form (K, λ, µ) and

∂−f = id. : ∂−M = X → X , Kn(M) = K ,

Kn−1(∂+M) = coker(λ : K → K∗) ,

Kn(∂+M) = ker(λ : K → K∗) .

The map ∂+f : ∂+M → X is a homotopy equivalence if and only if the
form (K, λ, µ) is nonsingular. Given (K, λ, µ), X the construction of (f, b)



An introduction to algebraic surgery 105

proceeds as in (i).

Example 2.18 For π1(X) = {1} the realization of even-dimensional
surgery obstructions (2.17) is essentially the same as the Milnor [11], [12]
construction of (n − 1)-connected 2n-dimensional manifolds by plumbing
together n-plane bundles over Sn. Let G be a finite connected graph with-
out loops (= edges joining a vertex to itself), with vertices v1, v2, . . . , vk.
Suppose given an oriented n-plane bundle over Sn at each vertex

ω1, ω2, . . . , ωk ∈ πn(BSO(n)) = πn−1(SO(n)) ,

regarded as a weight. Let (Zk, λ) be the (−1)n-symmetric form over Z
defined by the (−1)n-symmetrized adjacency matrix of G and the Euler
numbers χ(ωi) ∈ Z, with

λij =





no. of edges in G joining vi to vj if i < j
(−1)n(no. of edges in G joining vi to vj) if i > j
χ(ωi) if i = j ,

λ : Zk × Zk → Z ; ((x1, x2, . . . , xk), (y1, y2, . . . , yk)) 7→
k∑

i=1

k∑

j=1

λijxiyj .

The graph G and the Euler numbers χ(ωi) determine and are determined
by the form (Zk, λ).
(i) See Browder [1, Chapter V] for a detailed account of the plumbing con-
struction which uses G to glue together the (Dn, Sn−1)-bundles

(Dn, Sn−1) → (E(ωi), S(ωi)) → Sn (i = 1, 2, . . . , k)

to obtain a connected 2n-dimensional manifold with boundary

(P, ∂P ) = (P (G,ω), ∂P (G,ω))

such that P is an identification space

P = (
k∐

i=1

E(ωi))/ ∼

with 1-skeleton homotopy equivalent to G, fundamental group

π1(P ) = π1(G) = ∗gZ

the free group on g = 1− χ(G) generators, homology

Hr(P ) =





Z if r = 0
Zg if r = 1
Zk if r = n
0 otherwise ,

and intersection form (Hn(P ), λ). Killing π1(P ) by surgeries removing g
embeddings S1×D2n−1 ⊂ P representing the generators, there is obtained
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an (n− 1)-connected 2n-dimensional manifold with boundary

(M,∂M) = (M(G,ω), ∂M(G, ω))

such that

Hr(M) =

{Z if r = 0
Zk if r = n
0 otherwise ,

λ : Hn(M)×Hn(M) → Z ;

((x1, x2, . . . , xk), (y1, y2, . . . , yk)) 7→
k∑

i=1

k∑

j=1

λijxiyj ,

τM '
k∨

i=1

(ωi ⊕ εn) : M '
k∨

i=1

Sn → BSO(2n) ,

Hr(∂M) =





Z if r = 0, 2n− 1
coker(λ : Zk → Zk) if r = n− 1
ker(λ : Zk → Zk) if r = n
0 otherwise .

If G is a tree then g = 0, π1(P (G, ω)) = {1}, and

(M(G,ω), ∂M(G,ω)) = (P (G,ω), ∂P (G,ω)) .

(ii) By Wall [27] for n ≥ 3 an integral (−1)n-symmetric matrix (λij)1≤i,j≤k

and elements ω1, ω2, . . . , ωk ∈ πn(BSO(n)) with

λii = χ(ωi) ∈ Z (i = 1, 2, . . . , k)

determine an embedding

x =
⋃

k

xi :
⋃

k

Sn−1 ×Dn ↪→ S2n−1

such that :
(a) for 1 ≤ i < j ≤ k

linking number(xi(Sn−1 × 0) ∩ xj(Sn−1 × 0) ↪→ S2n−1) = λij ∈ Z ,

(b) for 1 ≤ i ≤ k xi : Sn−1 ×Dn ↪→ S2n−1 is isotopic to the embedding

eωi : Sn−1 ×Dn ↪→ S2n−1 = Sn−1 ×Dn ∪Dn × Sn−1 ;
(s, t) 7→ (s, ωi(s)(t)) .

Using x to attach k n-handles to D2n there is obtained an oriented (n−1)-
connected 2n-dimensional manifold

M(G,ω) = D2n ∪x

⋃

k

n-handles Dn ×Dn
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with boundary an oriented (n−2)-connected (2n−1)-dimensional manifold

∂M(G,ω) = cl.(S2n−1\x(
⋃

k

Sn−1 ×Dn)) ∪
⋃

k

Dn × Sn−1 .

Moreover, every oriented (n− 1)-connected 2n-dimensional manifold with
non-empty (n−2)-connected boundary is of the form (M(G,ω), ∂M(G,ω)),
with (λij , ωi) the complete set of diffeomorphism invariants.
(iii) Stably trivialized n-plane bundles over Sn are classified by Q(−1)n(Z),
with an isomorphism

Q(−1)n(Z)
∼=→ πn+1(BSO,BSO(n)) ; 1 7→ (δτSn , τSn)

with

δτSn : τSn ⊕ ε ∼= εn+1

the stable trivialization given by the standard embedding Sn ⊂ Sn+1. The
map

Q(−1)n(Z) = πn+1(BSO,BSO(n)) → πn(BSO(n)) ; 1 7→ τSn

is an injection for n 6= 1, 3, 7. With G as above, suppose now that the
vertices v1, v2, . . . , vk are weighted by elements

µ1, µ2, . . . , µk ∈ πn+1(BSO, BSO(n)) = Q(−1)n(Z) .

Define
ωi = [µi] ∈ im(πn+1(BSO, BSO(n)) → πn(BSO(n)))

= ker(πn(BSO(n)) → πn(BSO))

and let (Zk, λ, µ) be the (−1)n-quadratic form over Z with λ as before and

µ : Zk → Q(−1)nZ ; (x1, x2, . . . , xk) 7→
∑

1≤i<j≤k

λijxixj +
k∑

i=1

µi(xi)2 ,

such that

λii = χ(ωi) = (1 + (−1)n)µi ∈ Z .

The (n− 1)-connected 2n-dimensional manifold

M(G,µ1, µ2, . . . , µn) = M(G, ω1, ω2, . . . , ωn)

is stably parallelizable, with an n-connected normal map

(M(G,µ1, µ2, . . . , µn), ∂M(G,µ1, µ2, . . . , µn)) → (D2n, S2n−1)

with kernel form (Zk, λ, µ).
(iv) For n ≥ 3 the realization of a (−1)n-quadratic form (Zk, λ, µ) over Z
(2.17) is an n-connected 2n-dimensional normal map

(f, b) : (M2n; S2n−1, ∂+M)

= (cl.(M(G, µ1, . . . , µk)\D2n); S2n−1, ∂M(G,µ1, . . . , µk))

→ S2n−1 × ([0, 1]; {0}, {1}) .
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with kernel form (Zk, λ, µ). If (Zk, λ, µ) is nonsingular then

∂+f : Σ2n−1 = ∂M(G,µ1, . . . , µk) → S2n−1

is a homotopy equivalence, and Σ2n−1 is a homotopy sphere with a poten-
tially exotic differentiable structure (Milnor [10], Kervaire and Milnor [7])
– see 2.20, 3.6 and 3.7 below.

Example 2.19 (i) Consider the special case k = 1 of 2.18 (i). Here G =
{v1} is the graph with one vertex, and

ω ∈ πn(BSO(n)) = πn−1(SO(n))

classifies an n-plane bundle over Sn. The plumbed (n − 1)-connected 2n-
dimensional manifold with boundary is the (Dn, Sn−1)-bundle over Sn

(M(G, ω), ∂M(G,ω)) = (E(ω), S(ω))

with
E(ω) = Sn−1 ×Dn ∪(x,y)∼(x,ω(x)(y)) Sn−1 ×Dn

= D2n ∪eω Dn ×Dn

obtained from D2n by attaching an n-handle along the embedding

eω : Sn−1 ×Dn ↪→ S2n−1 = Sn−1 ×Dn ∪Dn × Sn−1 ;
(x, y) 7→ (x, ω(x)(y)) .

(ii) Consider the special case k = 1 of 2.18 (iii), the realization of a (−1)n-
quadratic form (Z, λ, µ) over Z, with G = {v1} as in (i). An element

µ = (δω, ω) ∈ πn+1(BSO,BSO(n)) = Q(−1)n(Z)

=
{
Z if n ≡ 0(mod 2)
Z2 if n ≡ 1(mod 2)

classifies an n-plane bundle ω : Sn → BSO(n) with a stable trivialization

δω : ω ⊕ ε∞ ∼= εn+∞ ,

and

(M(G,µ), ∂M(G,µ)) = (E(ω), S(ω)) .

For n 6= 1, 3, 7 δω is determined by ω. For even n µ ∈ Q+1(Z) = Z and

ω = µ∗τSn : Sn µ // Sn τSn // BSO(n)

is the unique stably trivial n-plane bundle over Sn with Euler number

χ(ω) = 2µ ∈ Z .

For odd n 6= 1, 3, 7 µ ∈ Q−1(Z) = Z2 and

ω =
{

τSn if µ = 1
εn if µ = 0 .
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For n = 1, 3, 7

ω = τSn = εn : Sn → BSO(n)

and δω is the (stable) trivialization of ω with mod 2 Hopf invariant µ.
The plumbed (n− 1)-connected 2n-dimensional manifold

(M(G, µ), ∂M(G,µ)) = (M(G,ω), ∂M(G,ω)) = (E(ω), S(ω))

(as in (i)) is stably parallelizable. The trace of the surgery on the normal
map

(f−, b−) = id. : ∂−Mω = S2n−1 → S2n−1

killing eω : Sn−1 ×Dn ↪→ S2n−1 is an n-connected 2n-dimensional normal
map

(fω, bδω) : (M2n
ω ; ∂−Mω, ∂+Mω) → S2n−1 × ([0, 1]; {0}, {1})

with
Mω = cl.(M(G,µ)\D2n) = cl.(E(ω)\D2n)

= S2n−1 × [0, 1] ∪eω Dn ×Dn ,

∂+Mω = cl.(S2n−1\eω(Sn−1 ×Dn)) ∪Dn × Sn−1

= Dn × Sn−1 ∪ω Dn × Sn−1 = S(ω) ,

Kn(Mω) = Z
and kernel form (Z, λ, µ). If µ = 0 ∈ Q(−1)n(Z) then

ω = εn : Sn → BSO(n) , ∂+Mω = S(εn) = Sn−1 × Sn ,

If µ = 1 ∈ Q(−1)n(Z) then

ω = τSn : Sn → BSO(n) , ∂+Mω = S(τSn) = O(n + 1)/O(n− 1) .

(iii) Consider the special case k = 2 of 2.18 (i), with G = I the graph with
1 edge and 2 vertices

.....................................................................................................• •
v1 v2

I

For any weights ω1, ω2 ∈ πn(BSO(n)) there is obtained an (n − 1)-
connected 2n-dimensional manifold

M(I, ω1, ω2) = D2n ∪eω1∪eω2
(Dn ×Dn ∪Dn ×Dn)

by plumbing as in Milnor [11], [12], with intersection form the (−1)n-
symmetric form (Z⊕ Z, λ) over Z defined by

λ : Z⊕ Z× Z⊕ Z→ Z ;
((x1, x2), (y1, y2)) 7→ χ(ω1)x1y1 + χ(ω2)x2y2 + x1y2 + (−1)nx2y1 .

(iv) Consider the special case k = 2 of 2.18 (iii), with G = I as in (iii). For
µ1, µ2 ∈ Q(−1)n(Z) and

ωi = [µi] ∈ im(Q(−1)n(Z) → πn(BSO(n)))
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the (−1)n-quadratic form (Z⊕ Z, λ, µ) over Z defined by

µ : Z⊕ Z→ Q(−1)n(Z) ; (x1, x2) 7→ µ1(x1)2 + µ2(x2)2 + x1x2

is the kernel form of an n-connected 2n-dimensional normal map

(f, b) : M(I, µ1, µ2) = M(I, ω1, ω2) → D2n .

If µ1 = µ2 = 0 then (Z⊕Z, λ, µ) = H(−1)n(Z) is hyperbolic (−1)n-quadratic
form over Z, with

λ : Z⊕ Z× Z⊕ Z→ Z ; ((x1, x2), (y1, y2)) 7→ x1y2 + (−1)nx2y1 ,

µ : Z⊕ Z→ Q(−1)n(Z) = Z/{1 + (−1)n−1} ; (x1, x2) 7→ x1x2 ,

and the plumbed manifold is a punctured torus

(M(I, 0, 0)2n, ∂M(I, 0, 0)) = (cl.(Sn × Sn\D2n), S2n−1) .

The hyperbolic form is the kernel of the n-connected 2n-dimensional normal
map

(f, b) : (M ; ∂−M,∂+M) = (cl.(M(I, 0, 0)\D2n); S2n−1, S2n−1)

→ S2n−1 × ([0, 1]; {0}, {1})
defined by the trace of surgeries on the linked spheres

Sn−1 ∪ Sn−1 ↪→ S2n−1 = Sn−1 ×Dn ∪Dn × Sn−1

with no self-linking. These are the attaching maps for the cores of the
n-handles in the decomposition

M(I, 0, 0) = D2n ∪Dn ×Dn ∪Dn ×Dn ,

using the standard framings of Sn−1 ⊂ S2n−1. If n is odd, say n = 2k + 1,
and µ0 = µ1 = 1 ∈ Q−1(Z) the form in 2.18 (i) is just the Arf (−1)-
quadratic form over Z (Z⊕ Z, λ, µ′) with

µ′ : Z⊕ Z→ Q(−1)(Z) = Z2 ; (x, y) 7−→ x2 + xy + y2 .

The plumbed manifold

M(I, 1, 1)4k+2 = D4k+2 ∪D2k+1 ×D2k+1 ∪D2k+1 ×D2k+1

has the same attaching maps for the cores of the (2k + 1)-handles as
M(I, 0, 0), but now using the framings of S2k ⊂ S4k+1 classified by

τS2k+1 ∈ π2k+1(BSO(2k + 1)) = π2k(SO(2k + 1))

(which is zero if and only if k = 0, 1, 3). The Arf form is the kernel of the
(2k + 1)-connected (4k + 2)-dimensional normal map

(f ′, b′) : (M ′; ∂−M ′, ∂+M ′) = (cl.(M(I, 1, 1)\D4k+2); S4k+1, Σ4k+1)

→ S4k+1 × ([0, 1]; {0}, {1})
defined by the trace of surgeries on the linked spheres

S2k ∪ S2k ↪→ S4k+1 = S2k ×D2k+1 ∪D2k+1 × S2k ,
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with self-linking given by the non-standard framing. (See 3.7 below for a
brief account of the exotic sphere Σ4k+1).

Example 2.20 The sphere bundles S(ω) of certain oriented 4-plane bundles
ω over S4 (the special case n = 4 of 2.19 (i)) give explicit exotic 7-spheres.
An oriented 4-plane bundle ω : S4 → BSO(4) is determined by the Euler
number and first Pontrjagin class

χ(ω), p1(ω) ∈ H4(S4) = Z ,

which must be such that

2χ(ω) ≡ p1(ω)(mod 4) ,

with an isomorphism

π4(BSO(4))
∼=→ Z⊕ Z ; ω 7−→ ((2χ(ω) + p1(ω))/4, (2χ(ω)− p1(ω))/4) .

If χ(ω) = 1 then S(ω) is a homotopy 7-sphere, and

p1(ω) = 2` ∈ H4(S4) = Z
for some odd integer `. The 7-dimensional differentiable manifold Σ7

` =
S(ω) is homeomorphic to S7 (by Smale’s generalized Poincaré conjecture,
or by a direct Morse-theoretic argument). If Σ7

` is diffeomorphic to S7 then

M8 = E(ω) ∪Σ7
`
D8

is a closed 8-dimensional differentiable manifold with

p1(M) = p1(ω) = 2` ∈ H4(M) = Z , σ(M) = 1 ∈ Z .

By the Hirzebruch signature theorem

σ(M) = 〈L(M), [M ]〉
= (7p2(M)− p1(M)2)/45

= (7p2(M)− 4`2)/45 = 1 ∈ Z .

If ` 6≡ ±1(mod 7) then

p2(M) = (45 + 4`2)/7 6∈ H8(M) = Z
so that there is no such diffeomorphism, and Σ7

` is an exotic 7-sphere (Mil-
nor [10], Milnor and Stasheff [14, p.247]).

Definition 2.21 An isomorphism of ε-symmetric forms

f : (K, λ)
∼=→ (K ′, λ′)

is a Λ-module isomorphism f : K ∼= K ′ such that

λ′(f(x), f(y)) = λ(x, y) ∈ Λ .

An isomorphism of ε-quadratic forms f : (K, λ, µ) ∼= (K ′, λ′, µ′) is an iso-
morphism of the underlying ε-symmetric forms f : (K, λ) ∼= (K ′, λ′) such
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that

µ′(f(x)) = µ(x) ∈ Qε(Λ) .

Proposition 2.22 If there exists a central element s ∈ Λ such that

s + s = 1 ∈ Λ

there is an identification of categories

{ε-quadratic forms over Λ} = {ε-symmetric forms over Λ} .

Proof : The ε-symmetrization map 1+Tε : Qε(K) → Qε(K) is an isomor-
phism for any Λ-module K, with inverse

Qε(K) → Qε(K) ; λ 7−→ ((x, y) 7−→ sλ(x, y)) .

For any ε-quadratic form (K,λ, µ) the ε-quadratic function µ is determined
by the ε-symmetric pairing λ, with

µ(x) = sλ(x, x) ∈ Qε(Λ) .

Example 2.23 If 2 ∈ Λ is invertible then 2.22 applies with s = 1/2 ∈ Λ.

For any ε-symmetric form (K, λ) and x ∈ K

λ(x, x) ∈ Qε(Λ) .

Definition 2.24 An ε-symmetric form (K, λ) is even if for all x ∈ K

λ(x, x) ∈ im(1 + Tε : Qε(Λ) → Qε(Λ)) .

Proposition 2.25 Let ε = 1 or −1. If the ε-symmetrization map

1 + Tε : Qε(Λ) → Qε(Λ)

is an injection there is an identification of categories

{ε-quadratic forms over Λ} = {even ε-symmetric forms over Λ} .

Proof : Given an even ε-symmetric form (K, λ) over Λ there is a unique
function µ : K → Qε(Λ) such that for all x ∈ K

(1 + Tε)(µ(x)) = λ(x, x) ∈ Qε(Λ) ,

which then automatically satisfies the conditions of 2.13 for (K, λ, µ) to be
an ε-quadratic form.

Example 2.26 The symmetrization map

1 + T = 2 : Q+1(Z) = Z→ Q+1(Z) = Z
is an injection, so that quadratic forms over Z coincide with the even sym-
metric forms.
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Example 2.27 The (−1)-symmetrization map

1 + T− : Q−1(Z) = Z2 → Q−1(Z) = 0

is not an injection, so that (−1)-quadratic forms over Z have a richer struc-
ture than even (−1)-symmetric forms. The hyperbolic (−1)-symmetric
form (K, λ) = H−1(Z) over Z

K = Z⊕ Z , λ : K ×K → Z ; ((a, b), (c, d)) 7−→ ad− bc

admits two distinct (−1)-quadratic refinements (K, λ, µ), (K, λ, µ′), with

µ : K → Q−1(Z) = Z/2 ; (x, y) 7−→ xy ,

µ′ : K → Q−1(Z) = Z/2 ; (x, y) 7−→ x2 + xy + y2 .

See §3 below for the definition of the Arf invariant, which distinguishes
the hyperbolic (−1)-quadratic form (K,λ, µ) = H−1(Z) from the Arf form
(K,λ, µ′) (which already appeared in 2.19 (iv)).

§3. The even-dimensional L-groups

The even-dimensional surgery obstruction groups L2n(Λ) will now be
defined, using the following preliminary result.

Lemma 3.1 For any nonsingular ε-quadratic form (K, λ, µ) there is defined
an isomorphism

(K, λ, µ)⊕ (K,−λ,−µ) ∼= Hε(K) ,

with Hε(K) the hyperbolic ε-quadratic form (2.14).
Proof : Let L be a f. g. projective Λ-module such that K⊕L is f. g. free,
with basis elements {x1, x2, . . . , xk} say. Let

λij = (λ⊕ 0)(xj , xi) ∈ Λ (1 ≤ i < j ≤ k)

and choose representatives µi ∈ Λ of µ(xi) ∈ Qε(Λ) (1 ≤ i ≤ k). Define
the Λ-module morphism

ψK⊕L : K ⊕ L → (K ⊕ L)∗ ;

k∑

i=1

aixi 7−→ (
k∑

j=1

bjxj 7−→
k∑

i=1

biµiai +
∑

1≤i<j≤k

bjλijai) .

The Λ-module morphism defined by

ψ : K
inclusion−−−−−−→ K ⊕ L

ψK⊕L−−−−→ (K ⊕ L)∗ = K∗ ⊕ L∗
projection−−−−−−→ K∗

is such that
λ = ψ + εψ∗ : K → K∗,

µ(x) = ψ(x, x) ∈ Qε(Λ) (x ∈ K) .
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As (K,λ, µ) is nonsingular ψ + εψ∗ : K → K∗ is an isomorphism. The
Λ-module morphism defined by

ψ̃ = (ψ + εψ∗)−1ψ(ψ + εψ∗)−1 : K∗ → K

is such that

(ψ + εψ∗)−1 = ψ̃ + εψ̃∗ : K∗ → K .

Define an isomorphism of ε-quadratic forms

f : Hε(K)
∼=→ (K ⊕K,λ⊕−λ, µ⊕−µ)

by

f =
(

1 −εψ̃∗

1 ψ̃

)
: K ⊕K∗ → K ⊕K .

Definition 3.2 The 2n-dimensional L-group L2n(Λ) is the group of equiv-
alence classes of nonsingular (−1)n-quadratic forms (K, λ, µ) on stably
f. g. free Λ-modules, subject to the equivalence relation

(K,λ, µ) ∼ (K ′, λ′, µ′)

if there exists an isomorphism of (−1)n-quadratic forms

(K,λ, µ)⊕H(−1)n(Λk)
∼=→ (K ′, λ′, µ′)⊕H(−1)n(Λk′)

for some f. g. free Λ-modules Λk,Λk′ .

Addition and inverses in L2n(Λ) are given by

(K1, λ1, µ1) + (K2, λ2, µ2) = (K1 ⊕K2, λ1 ⊕ λ2, µ1 ⊕ µ2) ,

−(K, λ, µ) = (K,−λ,−µ) ∈ L2n(Λ) .

The groups L2n(Λ) only depend on the residue n(mod 2), so that only
two L-groups have actually been defined, L0(Λ) and L2(Λ). Note that 3.2
uses Lemma 3.1 to justify (K, λ, µ)⊕ (K,−λ,−µ) ∼ 0.

Remark 3.3 The surgery obstruction of an n-connected 2n-dimensional
normal map (f, b) : M2n → X is an element

σ∗(f, b) = (Kn(M), λ, µ) ∈ L2n(Z[π1(X)])

such that σ∗(f, b) = 0 if (and for n ≥ 3 only if) (f, b) is normal bordant to
a homotopy equivalence.

Example 3.4 Let M = M2
g be the orientable 2-manifold (= surface) of

genus g, with degree 1 map f : M → S2. A choice of framing of the
stable normal bundle of an embedding M ↪→ R3 determines a 1-connected
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2-dimensional normal map (f, b) : M → S2. For a standard choice of
framing (i.e. one which extends to a 3-manifold N with ∂N = M) the
kernel form and the surgery obstruction are given by

σ∗(f, b) = H−1(Zg) = 0 ∈ L2(Z)

and (f, b) is normal bordant to a homotopy equivalence, i.e. M is framed
null-cobordant.

Example 3.5 The even-dimensional L-groups of the ring Λ = R of real
numbers with the identity involution are given by

L2n(R) =
{
Z if n is even
0 if n is odd .

Since 1/2 ∈ R there is no difference between symmetric and quadratic
forms over R.

The signature (alias index) of a nonsingular symmetric form (K, λ) over
R is defined by

σ(K, λ) = no. of positive eigenvalues of λ

− no. of negative eigenvalues of λ ∈ Z .

Here, the symmetric form λ ∈ Q+1(K) is identified with the symmetric
k× k matrix (λ(xi, xj)1≤i,j≤k) ∈ Mk,k(R) determined by any choice of ba-
sis x1, x2, . . . , xk for K. By Sylvester’s law of inertia the rank k and the
signature σ(K, λ) define a complete set of invariants for the isomorphism
classification of nonsingular symmetric forms (K,λ) over R, meaning that
two forms are isomorphic if and only if they have the same rank and sig-
nature. A nonsingular quadratic form (K, ψ) over R is isomorphic to a
hyperbolic form if and only if it has signature 0. Two such forms (K, λ),
(K ′, λ′) are related by an isomorphism

(K, λ)⊕H+(Rm)
∼=→ (K ′, λ′)⊕H+(Rm′

)

if and only if they have the same signature

σ(K,λ) = σ(K ′, λ′) ∈ Z .

Moreover, every integer is the signature of a form, since 1 ∈ Z is the
signature of the nonsingular symmetric form (R,1) with

1 : R→ R∗ ; x 7−→ (y 7−→ xy)

and for any nonsingular symmetric forms (K, λ), (K ′, λ′) over R

σ((K, λ)⊕ (K ′, λ′)) = σ(K, λ) + σ(K ′, λ′) ,

σ(K,−λ) = −σ(K, λ) ∈ Z .
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The isomorphism of 3.5 in the case n ≡ 0(mod 2) is defined by

L0(R)
∼=→ Z ; (K, λ) 7−→ σ(K, λ) .

L2(R) = 0 because every nonsingular (−1)-symmetric (alias symplectic)
form over R admits is isomorphic to a hyperbolic form.

It is not possible to obtain a complete isomorphism classification of non-
singular symmetric and quadratic forms over Z – see Chapter II of Milnor
and Husemoller [13] for the state of the art in 1973. Fortunately, it is much
easier to decide if two forms become isomorphic after adding hyperbolics
then whether they are actually isomorphic. Define the signature of a non-
singular symmetric form (K, λ) over Z to be the signature of the induced
nonsingular symmetric form over R

σ(K,λ) = σ(R⊗K, 1⊗ λ) ∈ Z .

It is a non-trivial theorem that two nonsingular even symmetric forms
(K,λ), (K ′, λ′) are related by an isomorphism

(K,λ)⊕H+(Zm)
∼=→ (K ′, λ′)⊕H+(Zm′

)

if and only if they have the same signature

σ(K,λ) = σ(K ′, λ′) ∈ Z .

Moreover, not every integer arises as the signature of an even symmetric
form, only those divisible by 8. The Dynkin diagram of the exceptional Lie
group E8 is a tree

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
.....

• • • • • • •

•
v1

v2 v3 v4 v5 v6 v7 v8

Weighing each vertex by 1 ∈ Q+1(Z) = Z gives (by the method recalled in
2.18) a nonsingular quadratic form (Z8, λE8 , µE8) with signature

σ(Z8, λE8) = 8 ∈ Z ,



An introduction to algebraic surgery 117

where

λE8 =




2 0 0 1 0 0 0 0
0 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
1 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2




: Z8 → (Z8)∗

and µE8 is determined by λE8 .

Example 3.6 (i) The signature divided by 8 defines an isomorphism

σ : L4k(Z) → Z ; (K, λ, µ) 7→ σ(K, λ)/8

so that (Z8, λE8 , µE8) ∈ L4k(Z) represents a generator.
(ii) See Kervaire and Milnor [7] and Levine [9] for the surgery classifica-
tion of high-dimensional exotic spheres, including the expression of the
h-cobordism group Θn of n-dimensional exotic spheres for n ≥ 5 as

Θn = πn(TOP/O) = πn(PL/O)

and the exact sequence

. . . → πn+1(G/O) → Ln+1(Z) → Θn → πn(G/O) → . . . .

(iii) In the original case n = 7 (Milnor [10]) there is defined an isomorphism

Θ7
∼=→ Z28 ; Σ7 7→ σ(W )/8

for any framed 8-dimensional manifold W with ∂W = Σ7. The realization
(2.17) of (Z8, λE8 , µE8) as the kernel form of a 4-connected 8-dimensional
normal bordism

(f, b) : (M8, S7, ∂+M) = (cl.(M(E8, 1, . . . , 1)\D8); S7, ∂M(E8, 1, . . . , 1))

→ S7 × ([0, 1]; {0}, {1})
gives the exotic sphere

Σ7 = ∂+M = ∂M(E8, 1, . . . , 1)

generating Θ7 : the framed 8-dimensional manifold W = M(E8, 1, . . . , 1)
obtained by the E8-plumbing of 8 copies of τS4 (2.18) has σ(W ) = 8. The 7-
dimensional homotopy sphere Σ7

` defined for any odd integer ` in 2.20 is the
boundary of a framed 8-dimensional manifold W` with σ(W`) = 8(`2 − 1).
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For any nonsingular (−1)-quadratic form (K, λ, µ) over Z there exists a
symplectic basis x1, . . . , x2m for K, such that

λ(xi, xj) =

{ 1 if i− j = m
−1 if j − i = m
0 otherwise .

The Arf invariant of (K, λ, µ) is defined using any such basis to be

c(K, λ, µ) =
m∑

i=1

µ(xi)µ(xi+m) ∈ Z2 .

Example 3.7 (i) The Arf invariant defines an isomorphism

c : L4k+2(Z) → Z2 ; (K,λ, µ) 7→ c(K, λ, µ)

The nonsingular (−1)-quadratic form (Z⊕ Z, λ, µ) over Z defined by

λ((x, y), (x′, y′)) = x′y − xy′ ∈ Z ,

µ(x, y) = x2 + xy + y2 ∈ Q−1(Z) = Z2

has Arf invariant c(Z⊕ Z, λ, µ) = 1, and so generates L4k+2(Z).
(ii) The realization (2.19 (iv)) of the Arf form (Z ⊕ Z, λ, µ) as the kernel
form of a 5-connected 10-dimensional normal bordism

(f, b) : (M10, S9, ∂+M) = (cl.(M(I, 1, 1)\D10); S9, ∂M(I, 1, 1))

→ S9 × ([0, 1]; {0}, {1})
is obtained by plumbing together 2 copies of τS5 (2.18) where I is the tree
with 1 edge and 2 vertices

.....................................................................................................• •
I

and Σ9 = ∂+M = ∂M(I, 1, 1) is the exotic 9-sphere generating Θ9 = Z2.
Coning off the boundary components gives the closed 10-dimensional PL
manifold cS9 ∪M ∪ cΣ9 without differentiable structure of Kervaire [5].

§4. Split forms

A “split form” on a Λ-module K is an element

ψ ∈ S(K) = HomΛ(K, K∗) ,

which can be regarded as a sesquilinear pairing

ψ : K ×K → Λ ; (x, y) 7→ ψ(x, y) .

Split forms are more convenient to deal with than ε-quadratic forms in
describing the algebraic effects of even-dimensional surgery (in §5 below),
and are closer to the geometric applications such as knot theory.

The main result of §4 is that the ε-quadratic structures (λ, µ) on a f.g.
projective Λ-module K correspond to the elements of the ε-quadratic group
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of 2.6

Qε(K) = coker(1− Tε : S(K) → S(K)) .

The pair of functions (λ, µ) used to define an ε-quadratic form (K, λ, µ)
can thus be replaced by an equivalence class of Λ-module morphisms ψ :
K → K∗ such that

λ(x, y) = ψ(x, y) + εψ(y, x) ∈ Λ ,

µ(x) = ψ(x, x) ∈ Qε(Λ)

i.e. by an equivalence class of split forms.

Definition 4.1 (i) A split form (K, ψ) over Λ is a f. g. projective Λ-module
K together with an element ψ ∈ S(K).
(ii) A morphism (resp. isomorphism) of split forms over Λ

f : (K,ψ) → (K ′, ψ′)

is a Λ-module morphism (resp. isomorphism) f : K → K ′ such that

f∗ψ′f = ψ : K → K∗ .

(iii) An ε-quadratic morphism (resp. isomorphism) of split forms over Λ

(f, χ) : (K, ψ) → (K ′, ψ′)

is a Λ-module morphism (resp. isomorphism) f : K → K ′ together with
an element χ ∈ Q−ε(K) such that

f∗ψ′f − ψ = χ− εχ∗ : K → K∗ .

(iv) A split form (K, ψ) is ε-nonsingular if ψ+εψ∗ : K → K∗ is a Λ-module
isomorphism.

Proposition 4.2 (i) A split form (K, ψ) determines an ε-quadratic form
(K,λ, µ) by

λ = ψ + εψ∗ : K → K∗ ; x 7−→ (y 7−→ ψ(x, y) + εψ(y, x)) ,

µ : K → Qε(Λ) ; x 7−→ ψ(x, x) .

(ii) Every ε-quadratic form (K, λ, µ) is determined by a split form (K,ψ),
which is unique up to

ψ ∼ ψ′ if ψ′ − ψ = χ− εχ∗ for some χ : K → K∗ .

(iii) The isomorphism classes of (nonsingular) ε-quadratic forms (K, λ, µ)
over Λ are in one-one correspondence with the ε-quadratic isomorphism
classes of (ε-nonsingular) split forms (K, ψ) over Λ.
Proof : (i) By construction.
(ii) There is no loss of generality in taking K to be f.g. free, K = Λk.
An ε-quadratic form (Λk, λ, µ) over Λ is determined by a k × k-matrix
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λ = {λij ∈ Λ | 1 ≤ i, j ≤ k} such that

λij = ελji ∈ Λ

and a collection of elements µ = {µi ∈ Qε(Λ) | 1 ≤ i ≤ k} such that

µi + εµi = λii ∈ Qε(Λ) .

Choosing any representatives µi ∈ Λ of µi ∈ Qε(Λk) there is defined a split
form (Λk, ψ) with ψ = {ψij ∈ Λ | 1 ≤ i, j ≤ k} the k × k matrix defined by

ψij =





λij if i < j

µi if i = j

0 otherwise .
(iii) An ε-quadratic (iso)morphism (f, χ) : (K, ψ) → (K ′, ψ′) of split forms
determines an (iso)morphism f : (K, λ, µ) → (K ′, λ′, µ′) of ε-quadratic
forms. Conversely, an ε-quadratic form (K, λ, µ) determines an ε-quadratic
isomorphism class of split forms (K, ψ) as in 3.1, and every (iso)morphism
of ε-quadratic forms lifts to an ε-quadratic (iso)morphism of split forms.

Thus Qε(K) is both the group of isomorphism classes of ε-quadratic
forms and the group of ε-quadratic isomorphism classes of split forms on a
f. g. projective Λ-module K.

The following algebraic result will be used in 4.6 below to obtain a ho-
mological split form ψ on the kernel Z[π1(X)]-module Kn(M) of an n-
connected 2n-dimensional normal map (f, b) : M → X with some extra
structure, which determines the kernel (−1)n-quadratic form (Kn(M), λ, µ)
as in 4.2 (i).

Lemma 4.3 Let (K,λ, µ) be an ε-quadratic form over Λ.
(i) If s : K → K is an endomorphism such that(

s
1− s

)
: (K, 0, 0) → (K,λ, µ)⊕ (K,−λ,−µ)

defines a morphism of ε-quadratic forms then (K, λs) is a split form which
determines the ε-quadratic form (K,λ, µ).
(ii) If (K, λ, µ) is nonsingular and (K, ψ) is a split form which determines
(K,λ, µ) then

s = λ−1ψ : K → K

is an endomorphism such that(
s

1− s

)
: (K, 0, 0) → (K,λ, µ)⊕ (K,−λ,−µ)

defines a morphism of ε-quadratic forms.
Proof : (i) By 4.2 there exist a split form (K, ψ) which determines
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(K,λ, µ) and an ε-quadratic morphism of split forms
( (

s
1− s

)
, χ

)
: (K, 0) → (K,ψ)⊕ (K,−ψ) .

It follows from
λ = ψ + εψ∗ : K → K∗ ,
(

s
1− s

)∗(
ψ 0
0 −ψ

)(
s

1− s

)
= χ− εχ∗ : K → K∗

that

λs− ψ = χ′ − εχ′∗ : K → K∗

with

χ′ = χ− s∗ψ : K → K∗ .

(ii) From the definitions.

In the terminology of §5 the morphism of 4.3 (ii)(
s

1− s

)
: (K, 0, 0) → (K, λ, µ)⊕ (K,−λ,−µ)

is the inclusion of a lagrangian

L = im(
(

s
1− s

)
: K → K ⊕K)

= ker(( (−1)n−1ψ∗ ψ ) : K ⊕K → K∗) .

Example 4.4 A (2n − 1)-knot is an embedding of a homotopy (2n − 1)-
sphere in a standard (2n + 1)-sphere

` : Σ2n−1 ↪→ S2n+1 .

For n = 1 this is just a classical knot ` : Σ1 = S1 ↪→ S3; for n ≥ 3 Σ2n−1 is
homeomorphic to S2n−1, by the generalized Poincaré conjecture, but may
have an exotic differentiable structure. Split forms (K, ψ) first appeared as
the Seifert forms over Z of (2n−1)-knots, originally for n = 1. See Ranicki
[21, 7.8], [24] for a surgery treatment of high-dimensional knot theory. In
particular, a Seifert form is an integral refinement of an even-dimensional
surgery kernel form, as follows.
(i) A (2n− 1)-knot ` : Σ2n−1 ↪→ S2n+1 is simple if

πr(S2n+1\`(Σ2n−1)) = πr(S1) (1 ≤ r ≤ n− 1) .

(Every 1-knot is simple). A simple (2n − 1)-knot ` has a simple Seifert
surface, that is an (n − 1)-connected framed codimension 1 submanifold
M2n ⊂ S2n+1 with boundary

∂M = `(Σ2n−1) ⊂ S2n+1 .
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The kernel of the n-connected normal map

(f, b) = inclusion : (M, ∂M) → (X, ∂X) = (D2n+2, `(Σ2n−1))

is a nonsingular (−1)n-quadratic form (Hn(M), λ, µ) over Z. The Seifert
form of ` with respect to M is the refinement of (Hn(M), λ, µ) to a (−1)n-
nonsingular split form (Hn(M), ψ) over Z which is defined using Alexander
duality and the universal coefficient theorem

ψ = i∗ : Hn(M) → Hn(S2n+1\M) ∼= Hn(M) ∼= Hn(M)∗

with i : M → S2n+1\M the map pushing M off itself along a normal
direction in S2n+1. If i′ : M → S2n+1\M pushes M off itself in the
opposite direction

i′∗ = (−1)n+1ψ∗ : Hn(M) → Hn(S2n+1\M) ∼= Hn(M) ∼= Hn(M)∗

with
i∗ − i′∗ = ψ + (−1)nψ∗ = λ

= ([M ] ∩ −)−1 : Hn(M) → Hn(M) ∼= Hn(M)∗

the Poincaré duality isomorphism. If x1, x2, . . . , xk ∈ Hn(M) is a basis then
(ψ(xj , xj′)) is a Seifert matrix for the (2n−1)-knot `. For any embeddings
x, y : Sn ↪→ M

ψ(x, y) = linking number(ix(Sn) ∪ y(Sn) ⊂ S2n+1)

= degree(y∗ix : Sn → Sn) ∈ Z
with

y∗ix : Sn x // M
i // S2n+1\M y∗ // S2n+1\y(Sn) ' Sn .

For n ≥ 3 every element x ∈ Hn(M) is represented by an embedding
e : Sn ↪→ M , using the Whitney embedding theorem, and π1(M) = {1}.
Moreover, for any embedding x : Sn ↪→ M the framed embedding M ↪→
S2n+1 determines a stable trivialization of the normal bundle νx : Sn →
BSO(n)

δνx : νx ⊕ ε ∼= εn+1

such that

ψ(x, x) = (δνx, νx) ∈ πn+1(BSO(n + 1), BSO(n)) = Z .

Every element x ∈ Hn(M) is represented by an embedding

e1 × e2 : Sn ↪→ M × R
with e1 : Sn # M a framed immersion such that the composite

Sn e1 × e2 // M × R ↪→ S2n+1
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is isotopic to the standard framed embedding Sn ↪→ S2n+1. Then

ψ(x, x) =
∑

(a,b)∈D2(e1),e2(a)<e2(b)

I(a, b) ∈ Z

is an integral lift of the geometric self-intersection (2.15 (ii))

µ(x) =
∑

(a,b)∈D2(e1)/Z2

I(a, b) ∈ Q(−1)n(Z) ,

with

D2(e1) = {(a, b) ∈ Sn × Sn | a 6= b ∈ Sn, e1(a) = e1(b) ∈ M}
the double point set. For even n ψ(x, x) = µ(x) ∈ Q+1(Z) = Z, while
for odd n ψ(x, x) ∈ Z is a lift of µ(x) ∈ Q−1(Z) = Z2. The Seifert form
(Hn(M), ψ) is such that ψ(x, x) = 0 if (and for n ≥ 3 only if) x ∈ Hn(M)
can be killed by an ambient surgery on M2n ⊂ S2n+1, i.e. represented by
a framed embedding of pairs

x : (Dn+1 ×Dn, Sn ×Dn) ↪→ (S2n+1 × [0, 1],M × {0})
so that the effect of the surgery on M is another Seifert surface for the
(2n− 1)-knot `

M ′ = cl.(M × x(Sn ×Dn)) ∪Dn+1 × Sn−1 ⊂ S2n+1 .

If x ∈ Hn(M) generates a direct summand L = 〈x〉 ⊂ Hn(M) then M ′ is
also (n− 1)-connected, with Seifert form

(Hn(M ′), ψ′) = (L⊥/L, [ψ]) ,

where

L⊥ = {y ∈ Hn(M) | (ψ + (−1)nψ∗)(x)(y) = 0 for x ∈ L} ⊆ Hn(M) .

(ii) Every (−1)n-nonsingular split form (K,ψ) over Z is realized as the
Seifert form of a simple (2n − 1)-knot ` : Σ2n−1 ↪→ S2n+1 (Kervaire [6]).
From the algebraic surgery point of view the realization proceeds as fol-
lows. By 2.17 the nonsingular (−1)n-quadratic form (K, λ, µ) determined
by (K,ψ) (4.2 (i)) is the kernel form of an n-connected 2n-dimensional
normal map

(f, b) : (M2n, Σ2n−1) → (D2n, S2n−1)

with f | : Σ2n−1 → S2n−1 a homotopy equivalence. The double of (f, b)
defines an n-connected 2n-dimensional normal map

(g, c) = (f, b)∪−(f, b) : N2n = M∪Σ2n−1−M → D2n∪S2n−1−D2n = S2n

with kernel form (K ⊕K,λ⊕−λ, µ⊕−µ). The direct summand

L = ker(( (−1)n−1ψ∗ ψ ) : K ⊕K → K∗) ⊂ K ⊕K

is such that for any (x, y) ∈ L

µ(x)− µ(y) = (1 + (−1)n−1)ψ(x, x) = 0 ∈ Q(−1)n(Z) .
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Let k = rankZ(K). The trace of the k surgeries on (g, c) killing a ba-
sis (xj , yj) ∈ K ⊕ K (j = 1, 2, . . . , k) for L is an n-connected (2n + 1)-
dimensional normal map

(W 2n+1; N, S2n) → S2n × ([0, 1]; {0}, {1})
such that

` : Σ2n−1 ↪→ (Σ2n−1 ×D2) ∪ (W ∪D2n+1) ∪ (M × [0, 1]) ∼= S2n+1

is a simple (2n − 1)-knot with Seifert surface M and Seifert form (K,ψ).
Note that M itself is entirely determined by the (−1)n-quadratic form
(K,λ, µ), with cl.(M\D2n) the trace of k surgeries on S2n−1 removing

⋃

k

Sn−1 ×Dn ↪→ S2n−1

with (self-)linking numbers (λ, µ). The embedding M ↪→ S2n+1 is deter-
mined by the choice of split structure ψ for (λ, µ).
(iii) In particular, (ii) gives a knot version of the plumbing construction
(2.18): let G be a finite graph with vertices v1, v2, . . . , vk, weighted by
µ1, µ2, . . . , µk ∈ Q(−1)n(Z), so that there are defined a (−1)n-quadratic
form (Zk, λ, µ) and a plumbed stably parallelizable (n − 1)-connected 2n-
dimensional manifold with boundary

M2n = M(G,µ1, µ2, . . . , µk) ,

killing H1(G) by surgery if G is not a tree. A choice of split form ψ for
(λ, µ) determines a compression of a framed embedding M ↪→ S2n+j (j
large) to a framed embedding M ↪→ S2n+1, so that ∂M ↪→ S2n+1 is a
codimension 2 framed embedding. The form (Zk, λ, µ) is nonsingular if
and only if Σ2n−1 = ∂M is a homotopy (2n − 1)-sphere, in which case
Σ2n−1 ↪→ S2n+1 is a simple (2n− 1)-knot with simple Seifert surface M .
(iv) Given a simple (2n− 1)-knot ` : Σ2n−1 ↪→ S2n+1 and a simple Seifert
surface M2n ↪→ S2n+1 there is defined an n-connected 2n-dimensional nor-
mal map

(f, b) = inclusion : (M, ∂M) → (X, ∂X) = (D2n+2, `(Σ2n−1))

as in (i). The knot complement is a (2n + 1)-dimensional manifold with
boundary

(W,∂W ) = (cl.(S2n+1\(`(Σ2n−1)×D2)), `(Σ2n−1)× S1)

with a Z-homology equivalence p : (W,∂W ) → S1 such that

p| = projection : ∂W = Σ2n−1 × S1 → S1 ,

p−1(pt.) = M ⊂ W .

Cutting W along M ⊂ W there is obtained a cobordism (N ;M, M ′) with
M ′ a copy of M , and N a deformation retract of S2n+1\M , such that (f, b)
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extends to an n-connected normal map

(g, c) : (N ;M, M ′) → X × ([0, 1]; {0}, {1})
with (g, c)| = (f ′, b′) : M ′ → X a copy of (f, b). The n-connected (2n + 1)-
dimensional normal map

(h, d) = (g, c)/((f, b) = (f ′, b′)) :

(W,∂W ) = (N ;M, M ′)/(M = M ′) → (X, ∂X)× S1

is a Z-homology equivalence which is the identity on ∂W , and such that

(f, b) = (h, d)| : (M,∂M) = h−1((X, ∂X)× {pt.}) → (X, ∂X) .

Example 4.5 (i) Split forms over group rings arise in the following geo-
metric situation, generalizing 4.4 (iv).
Let X be a 2n-dimensional Poincaré complex, and let (h, d) : W → X×S1

be an n-connected (2n + 1)-dimensional normal map which is a Z[π1(X)]-
homology equivalence. Cut (h, d) along X × {pt.} ⊂ X × S1 to obtain an
n-connected 2n-dimensional normal map

(f, b) = (h, d)| : M = h−1({pt.}) → X

and an n-connected normal bordism

(g, c) : (N ;M, M ′) → X × ([0, 1]; {0}, {1})
with N a deformation retract of W\M , such that (g, c)| = (f, b) : M → X,
and such that (g, c)| = (f ′, b′) : M ′ → X is a copy of (f, b). The inclusions
i : M ↪→ N , i′ : M ′ ↪→ N induce Z[π1(X)]-module morphisms

i∗ : Kn(M) → Kn(N) , i′∗ : Kn(M ′) = Kn(M) → Kn(N)

which fit into an exact sequence

Kn+1(W ) = 0 // Kn(M)
i∗ − i′∗ // Kn(N) // Kn(W ) = 0 ,

so that i∗ − i′∗ : Kn(M) → Kn(N) is an isomorphism. Let (Kn(M), λ, µ)
be the kernel (−1)n-quadratic form of (f, b). The endomorphism

s = (i∗ − i′∗)
−1i∗ : Kn(M) → Kn(M)

is such that(
s

1− s

)
: (Kn(M), 0, 0) → (Kn(M), λ, µ)⊕ (Kn(M),−λ,−µ)

defines a morphism of (−1)n-quadratic forms, so that by 4.3 the split form
(Kn(M), ψ) with

ψ = λs : Kn(M) → Kn(M)∗

determines (Kn(M), λ, µ). Every element x ∈ Kn(M) can be represented
by a framed immersion x : Sn # M with a null-homotopy fx ' ∗ : Sn →
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X. Use the null-homotopy and the normal Z[π1(X)]-homology equivalence
(h, d) : W → X×S1 to extend x to a framed immersion δx : Dn+1 # W . If
x1, x2, . . . , xk ∈ Kn(M) is a basis for the kernel f.g. free Z[π1(X)]-module
then

s(xj) =
k∑

j′=1

sjj′xj′ ∈ Kn(M)

with
sjj′ = linking number(ixj(Sn) ∪ xj′(Sn) ⊂ W )

= intersection number(ixj(Sn) ∩ δxj′(Dn+1) ⊂ W ) ∈ Z[π1(X)] .

The split form (Kn(M), ψ) is thus a (non-simply connected) Seifert form.
(ii) Suppose given an n-connected 2n-dimensional normal map (f, b) :
(M, ∂M) → (X, ∂X), with kernel (−1)n-quadratic form (Kn(M), λ, µ) over
Z[π1(X)]. A choice of split form ψ for (λ, µ) can be realized by an (n + 1)-
connected (2n + 2)-dimensional normal map

(g, c) : (L, ∂L) → (X ×D2, X × S1 ∪ ∂X ×D2)

which is a Z[π1(X)]-homology equivalence with

(f, b) = (g, c)| : (M,∂M) = g−1((X, ∂X)× {0}) → (X, ∂X) ,

H∗+1(L̃, M̃) = K∗(M) (= 0 for ∗ 6= n)

as follows. The inclusion ∂M ↪→ ∂L is a codimension 2 embedding with
Seifert surface M ↪→ ∂L and Seifert form (Kn(M), ψ) as in the relative
version of (i), with

(h, d) = (g, c)| : W = ∂L → X × S1 ∪ ∂X ×D2 .

The choice of split form ψ for (λ, µ) determines a sequence of surgeries on
the n-connected (2n + 1)-dimensional normal map

(f, b)× 1[0,1] : M × ([0, 1]; {0}, {1}) → X × ([0, 1]; {0}, {1})
killing the (stably) f. g. free Z[π1(X)]-module

Kn(M × [0, 1]) = Kn(M) ,

obtaining a rel ∂ normal bordant map

(fN , bN ) : (N ;M, M ′) → X × ([0, 1]; {0}, {1})
with Ki(N) = 0 for i 6= n. The Z[π1(X)]-module morphisms induced by
the inclusions i : M ↪→ N , i′ : M ′ ↪→ N

i∗ : Kn(M) → Kn(N) , i′∗ : Kn(M) = Kn(M ′) → Kn(N)

are such that i∗−i′∗ : Kn(M) → Kn(N) is a Z[π1(X)]-module isomorphism,
with

ψ : Kn(M)
(i∗−i′∗)

−1i∗−−−−−−−→ Kn(M)
adjoint(λ)

−−−−−−−→ Kn(M)∗ .
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Thus it is possible to identify

i∗ = ψ : Kn(M) → Kn(N) ∼= Kn(M)∗ ,

i′∗ = (−1)n+1ψ∗ : Kn(M) = Kn(M ′) → Kn(N) ∼= Kn(M)∗

with

i∗ − i′∗ = ψ + (−1)nψ∗ = adjoint(λ) : Kn(M)
∼=→ Kn(M)∗ .

The (2n + 1)-dimensional manifold with boundary defined by

(V, ∂V ) = (N/(M = M ′), ∂M × S1)

is equipped with a normal map

(fV , bV ) : (V, ∂V ) → (X × S1, ∂X × S1)

which is an n-connected Z[π1(X)]-homology equivalence, with Kj(V ) = 0
for j 6= n + 1 and

Kn+1(V ) = coker(zψ + (−1)nψ∗ : Kn(M)[z, z−1] → Kn(M)∗[z, z−1])

identifying

Z[π1(X × S1)] = Z[π1(X)][z, z−1] (z = z−1) .

The trace of the surgeries on (f, b)× 1[0,1] gives an extension of (fV , bV ) to
an (n + 1)-connected (2n + 2)-dimensional normal bordism

(fU , bU ) : (U ; V, M × S1) → X × S1 × ([0, 1]; {0}, {1})
with Ki(U) = 0 for i 6= n+1 and (singular) kernel (−1)n+1-quadratic form
over Z[π1(X)][z, z−1]

(Kn+1(U), λU , µU )

= (Kn(M)[z, z−1], (1− z)ψ + (−1)n+1(1− z−1)ψ∗, (1− z)ψ) .

The (2n + 2)-dimensional manifold with boundary defined by

(W,∂W ) = (M ×D2 ∪ U, ∂M ×D2 ∪ V )

is such that (f, b) extends to an (n + 1)-connected normal map

(g, c) = (f, b)×1D2 ∪ (fU , bU ) : (W,∂W ) → (X×D2, ∂X×D2∪X×S1)

which is a Z[π1(X)]-homology equivalence, with Hn+1(W̃ , M̃) = Kn(M).
See Example 27.9 of Ranicki [24] for further details (noting that the split
form ψ here corresponds to the asymmetric form λ there).
(iii) Given a simple knot ` : Σ2n−1 ↪→ S2n+1 and a simple Seifert surface
M2n ⊂ S2n+1 there is defined an n-connected normal map

(f, b) = inclusion : (M2n, ∂M) → (X, ∂X) = (D2n+2, `(Σ2n−1))

with a Seifert form ψ on Kn(M) = Hn(M), as in 4.4. For n ≥ 2 the surgery
construction of (i) applied to (f, b), ψ recovers the knot

` : Σ2n−1 = ∂M ↪→ ∂W = S2n+1



128 Andrew Ranicki

with M2n ⊂ W = D2n+2 the Seifert surface pushed into the interior of
D2n+2. The knot complement

(V 2n+1, ∂V ) = (cl.
(
S2n+1\(`(Σ2n−1)×D2)

)
, `(Σ2n−1)× S1)

is such that there is defined an n-connected (2n + 1)-dimensional normal
map

(fV , bV ) : (V, ∂V ) → (X, ∂X)× S1

which is a homology equivalence, with

(fV , bV )| = (f, b) : (M, ∂M) = (fV )−1((X, ∂X)× {∗}) → (X, ∂X) .

Cutting (fV , bV ) along (f, b) results in a normal map as in (i)

(fN , bN ) : (N2n+1; M2n,M ′2n) → X × ([0, 1]; {0}, {1}) .

§5. Surgery on forms

§5 develops algebraic surgery on forms. The effect of a geometric surgery
on an n-connected 2n-dimensional normal map is an algebraic surgery on
the kernel (−1)n-quadratic form. Moreover, geometric surgery is possible
if and only if algebraic surgery is possible.

Given an ε-quadratic form (K,λ, µ) over Λ it is possible to kill an element
x ∈ K by algebraic surgery if and only if µ(x) = 0 ∈ Qε(Λ) and x generates
a direct summand 〈x〉 = Λx ⊂ K. The effect of the surgery is the ε-
quadratic form (K ′, λ′, µ′) defined on the subquotient K ′ = 〈x〉⊥/〈x〉 of K,
with 〈x〉⊥ = {y ∈ K |λ(x, y) = 0 ∈ Λ}.

Definition 5.1 (i) Given an ε-symmetric form (K, λ) and a submodule
L ⊆ K define the orthogonal submodule

L⊥ = {x ∈ K |λ(x, y) = 0 ∈ Λ for all y ∈ L}
= ker(i∗λ : K → L∗)

with i : L → K the inclusion. If (K, λ) is nonsingular and L is a direct
summand of K then so is L⊥.
(ii) A sublagrangian of a nonsingular ε-quadratic form (K, λ, µ) over Λ is a
direct summand L ⊆ K such that

µ(L) = {0} ⊆ Qε(Λ) ,

and

λ(L)(L) = {0} , L ⊆ L⊥ .

(iii) A lagrangian of (K, λ, µ) is a sublagrangian L such that L⊥ = L.
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The main result of §5 is that the inclusion of a sublagrangian is a mor-
phism of ε-quadratic forms

i : (L, 0, 0) → (K, λ, µ)

which extends to an isomorphism

f : Hε(L)⊕ (L⊥/L, [λ], [µ])
∼=→ (K, λ, µ)

with Hε(L) the hyperbolic ε-quadratic form (2.14).

Example 5.2 Let (f, b) : M2n → X be an n-connected 2n-dimensional nor-
mal map with kernel (−1)n-quadratic form (Kn(M), λ, µ) over Z[π1(X)],
and n ≥ 3. An element x ∈ Kn(M) generates a sublagrangian L = 〈x〉 ⊂
Kn(M) if and only if it can be killed by surgery on Sn × Dn ↪→ M with
trace an n-connected normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+1;M2n, M ′2n) → X × ([0, 1]; {0}, {1})
such that Kn+1(W,M ′) = 0. The kernel form of the effect of such a surgery

(f ′, b′) : M ′ = cl.(M\Sn ×Dn) ∪Dn+1 × Sn−1 → X

is given by

(Kn(M ′), λ′, µ′) = (L⊥/L, [λ], [µ]) .

There exists an n-connected normal bordism (g, c) of (f, b) to a homotopy
equivalence (f ′, b′) with Kn+1(W,M ′) = 0 if and only if (Kn(M), λ, µ)
admits a lagrangian.

Remark 5.3 There are other terminologies. In the classical theory of
quadratic forms over fields a lagrangian is a “maximal isotropic subspace”.
Wall called hyperbolic forms “kernels” and the lagrangians “subkernels”.
Novikov called hyperbolic forms “hamiltonian”, and introduced the name
“lagrangian”, because of the analogy with the hamiltonian formulation of
physics.

Example 5.4 An n-connected (2n + 1)-dimensional normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+1;M2n, M ′2n) → X × ([0, 1]; {0}, {1})
with Kn+1(W,M ′) = 0 determines a sublagrangian

L = im(Kn+1(W,M) → Kn(M)) ⊂ Kn(M)

of the kernel (−1)n-quadratic form (K,λ, µ) of (f, b), with K = Kn(M).
The sublagrangian L is a lagrangian if and only if (f ′, b′) is a homotopy
equivalence. W has a handle decomposition on M of the type

W = M × I ∪
⋃

k

(n + 1)-handles Dn+1 ×Dn ,
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and L ∼= Kn+1(W,M) ∼= Z[π1(X)]k is a f. g. free Z[π1(X)]-module with
rank the number k of (n + 1)-handles. The exact sequences of stably f. g.
free Z[π1(X)]-modules

0 → Kn+1(W,M) → Kn(M) → Kn(W ) → 0 ,

0 → Kn(M ′) → Kn(W ) → Kn(W,M ′) → 0

are isomorphic to

0 → L
i−−→ K → K/L → 0 ,

0 → L⊥/L → K/L
[i∗λ]

−−−→ L∗ → 0 .

Definition 5.5 (i) A sublagrangian of an ε-nonsingular split form (K, ψ)
is an ε-quadratic morphism of split forms

(i, θ) : (L, 0) → (K, ψ)

with i : L → K a split injection.
(ii) A lagrangian of (K,ψ) is a sublagrangian such that the sequence

0 → L
i−−→ K

i∗(ψ+εψ∗)
−−−−−−→ L∗ → 0

is exact.

An ε-nonsingular split form (K, ψ) admits a (sub)lagrangian if and
only if the associated ε-quadratic form (K, λ, µ) admits a (sub)lagrang-
ian. (Sub)lagrangians in split ε-quadratic forms are thus (sub)lagrangians
in ε-quadratic forms with the (−ε)-quadratic structure θ, which (following
Novikov) is sometimes called the “hessian” form.

Definition 5.6 The ε-nonsingular hyperbolic split form Hε(L) is given for
any f. g. projective Λ-module L by

Hε(L) = (L⊕ L∗,
(

0 1
0 0

)
: L⊕ L∗ → (L⊕ L∗)∗ = L∗ ⊕ L) ,

with lagrangian (i =
(

1
0

)
, 0) : (L, 0) → Hε(L).

Theorem 5.7 An ε-nonsingular split form (K, ψ) admits a lagrangian if
and only if it is ε-quadratic isomorphic isomorphic to the hyperbolic form
Hε(L). Moreover, the inclusion (i, θ) : (L, 0) → (K, ψ) of a lagrangian ex-
tends to an ε-quadratic isomorphism of split forms (f, χ) : Hε(L) ∼= (K,ψ).
Proof : An isomorphism of forms sends lagrangians to lagrangians, so
any form isomorphic to a hyperbolic has at least one lagrangian. Con-
versely suppose that (K, ψ) has a lagrangian (i, θ) : (L, 0) → (K, ψ). An
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extension of (i, θ) to an ε-quadratic isomorphism (f, χ) : Hε(L) ∼= (K, ψ)
determines a lagrangian f(L∗) ⊂ K complementary to L. Construct an iso-
morphism f by choosing a complementary lagrangian to L in (K, ψ). Let
i ∈ HomΛ(L,K) be the inclusion, and choose a splitting j′ ∈ HomΛ(L∗,K)
of i∗(ψ + εψ∗) ∈ HomΛ(K, L∗), so that

i∗(ψ + εψ∗)j′ = 1 ∈ HomΛ(L∗, L∗) .

In general, j′ : L∗ → K is not the inclusion of a lagrangian, with j′∗ψj′ 6=
0 ∈ Qε(L∗). Given any k ∈ HomΛ(L∗, L) there is defined another splitting

j = j′ + ik : L∗ → K

such that
j∗ψj = j′∗ψj′ + k∗i∗ψik + k∗i∗ψj′ + j′∗ψik

= j′∗ψj′ + k ∈ Qε(L∗) .

Choosing a representative ψ ∈ HomΛ(K,K∗) of ψ ∈ Qε(K) and setting

k = −j′∗ψj′ : L∗ → L∗

there is obtained a splitting j : L∗ → K which is the inclusion of a la-
grangian

(j, ν) : (L∗, 0) → (K, ψ) .

The isomorphism of ε-quadratic forms

(i j) =
(

θ 0
j∗ψi ψ

)
: Hε(L)

∼=→ (K,ψ)

is an ε-quadratic isomorphism of split forms.

Remark 5.8 Theorem 5.7 is a generalization of Witt’s theorem on the
extension to isomorphism of an isometry of quadratic forms over fields. The
procedure for modifying the choice of complement to be a lagrangian is a
generalization of the Gram-Schmidt method of constructing orthonormal
bases in an inner product space. Ignoring the split structure 5.7 shows
that a nonsingular ε-quadratic form admits a lagrangian (in the sense of
5.1 (iii)) if and only if it is isomorphic to a hyperbolic form.

Corollary 5.9 For any ε-nonsingular split form (K,ψ) the diagonal in-
clusion

∆ : K → K ⊕K ; x 7−→ (x, x)

extends to an ε-quadratic isomorphism of split forms

Hε(K)
∼=→ (K, ψ)⊕ (K,−ψ) .

Proof : Apply 5.7 to the inclusion of the lagrangian

(∆, 0) : (K, 0) → (K ⊕K, ψ ⊕−ψ) .
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(This result has already been used in 3.1).

Proposition 5.10 The inclusion (i, θ) : (L, 0) → (K, ψ) of a sublagrangian
in an ε-nonsingular split form (K,ψ) extends to an isomorphism of forms

(f, χ) : Hε(L)⊕ (L⊥/L, [ψ])
∼=→ (K, ψ) .

Proof : For any direct complement L1 to L⊥ in K there is defined a
Λ-module isomorphism

e : L1

∼=→ L∗ ; x 7−→ (y 7−→ (1 + Tε)ψ(x, y)) .

Define a Λ-module morphism

j : L∗
e−1

−−−−→ L1

inclusion−−−−−→ K .

The ε-nonsingular split form defined by

(H,φ) = (L⊕ L∗,
(

0 1
0 j∗ψj

)
)

has lagrangian L, so that it is isomorphic to the hyperbolic form Hε(L) by
5.7. Also, there is defined an ε-quadratic morphism of split forms

(g = (i j) ,

(
θ i∗ψj

0 0

)
) : (H, φ) → (K,ψ)

with g : H → K an injection split by

h = ((1 + Tε)φ)−1g∗(1 + Tε)ψ : K → H .

The direct summand of K defined by

H⊥ = {x ∈ K | (1 + Tε)ψ(x, gy) = 0 for all y ∈ H}
= ker(g∗(1 + Tε)ψ : K → H∗) = ker(h : K → H)

is such that

K = g(H)⊕H⊥ .

It follows from the factorization

i∗(1 + Tε)ψ : K
h−−→ H = L⊕ L∗

projection−−−−−−→ L∗

that

L⊥ = ker(i∗(1 + Tε)ψ : K → L∗) = L⊕H⊥ .

The restriction of ψ ∈ S(K) to H⊥ defines an ε-nonsingular split form
(H⊥, φ⊥). The injection g and the inclusion g⊥ : H⊥ → K are the compo-
nents of a Λ-module isomorphism

f = (g g⊥) : H ⊕H⊥ → K

which defines an ε-quadratic isomorphism of split forms

(f, χ) : (H, φ)⊕ (H⊥, φ⊥)
∼=→ (K, ψ)
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with

(H⊥, φ⊥) ∼= (L⊥/L, [ψ]) .

Example 5.11 An n-connected (2n + 1)-dimensional normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+1;M2n, M ′2n) → X × ([0, 1]; {0}, {1})
is such that W has a handle decomposition on M of the type

W = M × I ∪
⋃

k

n-handles Dn ×Dn+1 ∪
⋃

k′
(n + 1)-handles Dn+1 ×Dn .

Let

(W ; M,M ′) = (W ′; M, M ′′) ∪M ′′ (W ′′; M ′′,M ′)

with

W ′ = M × [0, 1] ∪
⋃

k

n-handles Dn ×Dn+1 ,

M ′′ = cl.(∂W ′\M) ,

W ′′ = M ′′ × [0, 1] ∪
⋃

k′
(n + 1)-handles Dn+1 ×Dn .

The restriction of (g, c) to M ′′ is an n-connected 2n-dimensional normal
map

(f ′′, b′′) : M ′′ ∼= M#(#kSn × Sn) ∼= M ′#(#k′S
n × Sn) → X

with kernel (−1)n-quadratic form

(Kn(M ′′), λ′′, µ′′) ∼= (Kn(M), λ, µ)⊕H(−1)n(Z[π1(X)]k)

∼= (Kn(M ′), λ′, µ′)⊕H(−1)n(Z[π1(X)]k
′
) .

Thus (Kn(M ′′), λ′′, µ′′) has sublagrangians

L = im(Kn+1(W ′,M ′′) → Kn(M ′′)) ∼= Z[π1(X)]k ,

L′ = im(Kn+1(W ′′, M ′′) → Kn(M ′′)) ∼= Z[π1(X)]k
′

such that
(L⊥/L, [λ′′], [µ′′]) ∼= (Kn(M), λ, µ) ,

(L′⊥/L′, [λ′′]′, [µ′′]′) ∼= (Kn(M ′), λ′, µ′) .

Note that L is a lagrangian if and only if (f, b) : M → X is a homotopy
equivalence. Similarly for L′ and (f ′, b′) : M ′ → X.

§6. Short odd complexes

A “(2n+1)-complex” is the algebraic structure best suited to describing
the surgery obstruction of an n-connected (2n + 1)-dimensional normal
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map. In essence it is a 1-dimensional chain complex with (−1)n-quadratic
Poincaré duality.

As before, let Λ be a ring with involution.

Definition 6.1 A (2n + 1)-complex over Λ (C, ψ) is a f. g. free Λ-module
chain complex of the type

C : . . . → 0 → Cn+1

d−−→ Cn → 0 → . . .

together with two Λ-module morphisms

ψ0 : Cn = (Cn)∗ → Cn+1 , ψ1 : Cn → Cn

such that

dψ0 + ψ1 + (−1)n+1ψ∗1 = 0 : Cn → Cn ,

and such that the chain map

(1 + T )ψ0 : C2n+1−∗ → C

defined by

dC2n+1−∗ = (−1)n+1d∗ :

(C2n+1−∗)n+1 = Cn → (C2n+1−∗)n = Cn+1 ,

(1 + T )ψ0 =
{

ψ0 : (C2n+1−∗)n+1 = Cn → Cn+1

ψ∗0 : (C2n+1−∗)n = Cn+1 → Cn ,

(C2n+1−∗)r = C2n+1−r = 0 for r 6= n, n + 1

is a chain equivalence

C2n+1−∗ : . . .

(1 + T )ψ0

²²

// 0 //

²²

Cn
(−1)n+1d∗

//

ψ0
²²

Cn+1 //

ψ∗0
²²

0

²²

// . . .

C : . . . // 0 // Cn+1
d // Cn

// 0 // . . .

Remark 6.2 A (2n+1)-complex is essentially the inclusion of a lagrangian
in a hyperbolic split (−1)n-quadratic form

(
(

ψ0

d∗

)
,−ψ1) : (Cn, 0) → H(−1)n(Cn+1) .

The chain map (1+T )ψ0 : C2n+1−∗ → C is a chain equivalence if and only
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if the algebraic mapping cone

0 → Cn

(
ψ0

d∗

)

−−−−−−−→ Cn+1 ⊕ Cn+1
(d (−1)nψ∗0 )
−−−−−−−−−−→ Cn → 0

is contractible, which is just the lagrangian condition. The triple

( form ; lagrangian , lagrangian ) = (H(−1)n(Cn+1); Cn+1, im
(

ψ0

d∗

)
)

is an example of a “(−1)n-quadratic formation”. Formations will be studied
in greater detail in §9 below.

Example 6.3 Define a presentation of an n-connected (2n+1)-dimensional
normal map (f, b) : M2n+1 → X to be a normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+2; M2n+1, M ′2n+1) → X × ([0, 1]; {0}, {1})
such that W → X × [0, 1] is n-connected, with

Kr(W ) = 0 for r 6= n + 1 .

Then Kn+1(W ) a f. g. free Z[π1(X)]-module and W has a handle decom-
position on M of the type

W = M × I ∪
⋃

k

(n + 1)-handles Dn+1 ×Dn+1 ,

and Kn+1(W,M) ∼= Z[π1(X)]k is a f. g. free Z[π1(X)]-module with rank
the number k of (n + 1)-handles. Thus (W ; M,M ′) is the trace of surg-
eries on k disjoint embeddings Sn ×Dn+1 ↪→ M2n+1 with null-homotopy
in X representing a set of Z[π1(X)]-module generators of Kn(M). For
every n-connected (2n + 1)-dimensional normal map (f, b) : M2n+1 → X
the kernel Z[π1(X)]-module Kn(M) is f. g., so that there exists a presen-
tation (g, c) : (W ;M, M ′) → X × ([0, 1]; {0}, {1}). Poincaré duality and
the universal coefficient theorem give natural identifications of f. g. free
Z[π1(X)]-modules

Kn+1(W ) = Kn+1(W,∂W ) = Kn+1(W,∂W )∗ (∂W = M ∪M ′) ,

Kn+1(W,M) = Kn+1(W,M ′) = Kn+1(W,M ′)∗ .

The presentation determines a (2n + 1)-complex (C, ψ) such that

H∗(C) = K∗(M) ,

with
d = (inclusion)∗ : Cn+1 = Kn+1(W,M ′) → Cn = Kn+1(W,∂W ) ,

ψ0 = (inclusion)∗ : Cn = Kn+1(W ) → Cn+1 = Kn+1(W,M ′) .

The hessian (Cn,−ψ1 ∈ Q(−1)n+1(Cn)) is the geometric self-intersection
(−1)n+1-quadratic form on the kernel Cn = Kn+1(W ) of the normal map
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W 2n+2 → X × [0, 1], such that

− (ψ1 + (−1)n+1ψ∗1) = dψ0 = inclusion∗ :

Cn = Kn+1(W ) → Cn = Kn+1(W,∂W ) = Kn+1(W )∗ .

The chain equivalence (1 + T )ψ0 : C2n+1−∗ → C induces the Poincaré
duality isomorphisms

[M ] ∩ − : H2n+1−∗(C) = K2n+1−∗(M)
∼=→ H∗(C) = K∗(M) .

Remark 6.4 The (2n + 1)-complex (C, ψ) of 6.3 can also be obtained by
working inside M , assuming that X has a single (2n + 1)-cell

X = X0 ∪D2n+1

(as is possible by the Poincaré disc theorem of Wall [28]) so that there is
defined a degree 1 map

collapse : X → X/X0 = S2n+1 .

Let U ⊂ M2n+1 be the disjoint union of the k embeddings Sn×Dn+1 ↪→ M
with null-homotopies in X, so that (f, b) has a Heegaard splitting as a union
of normal maps

(f, b) = (e, a) ∪ (f0, b0) :

M = (U, ∂U) ∪ (M0, ∂M0) → X = (D2n+1, S2n) ∪ (X0, ∂X0)

with the inclusion (6.2) of the lagrangian
(

ψ0

d∗

)
: Cn → Cn+1 ⊕ Cn+1

in the hyperbolic (−1)n-quadratic form H(−1)n(Cn+1) given by

inclusion∗ : Kn+1(M0, ∂U) → Kn(∂U) = Kn+1(U, ∂U)⊕Kn(U) .

Wall obtained the surgery obstruction of (f, b) using an extension (cf. 5.7)
of this inclusion to an automorphism

α : H(−1)n(Cn+1)
∼=→ H(−1)n(Cn+1) ,

which will be discussed further in §10 below. The presentation of (f, b)
used to obtain (C, ψ) in 6.3 is the trace of the k surgeries on U ⊂ M

(g, c) = (e1, a1) ∪ (f0, b0)× id :

(W ; M, M ′) = (V ; U,U ′) ∪M0 × ([0, 1]; {0}, {1}) → X × ([0, 1]; {0}, {1})
with

(V ; U,U ′) =
⋃

k

(Dn+1 ×Dn+1;Sn ×Dn+1, Dn+1 × Sn) .
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Example 6.5 There is also a relative version of 6.3. A presentation of an
n-connected normal map (f, b) : M2n → X from a (2n + 1)-dimensional
manifold with boundary (M,∂M) to a geometric Poincaré pair (X, ∂X)
with ∂f = f | : ∂M → ∂X a homotopy equivalence is a normal map of
triads

(W 2n+2;M2n+1,M ′2n+1; ∂M × [0, 1])

→ (X × [0, 1]; X × {0}, X × {1}; ∂X × [0, 1])

such that W → X × [0, 1] is n-connected. Again, the presentation deter-
mines a (2n + 1)-complex (C, ψ) over Z[π1(X)] with

Cn = Kn+1(W,∂W ) , Cn+1 = Kn+1(W,M ′) , H∗(C) = K∗(M) .

Remark 6.6 (Realization of odd-dimensional surgery obstructions, Wall
[29, 6.5]) The theorem of [29] realizing automorphisms of hyperbolic forms
as odd-dimensional surgery obstructions has the following interpretation in
terms of complexes. Let (C,ψ) be a (2n + 1)-complex over Z[π], with π a
finitely presented group. Let n ≥ 2, so that there exists a 2n-dimensional
manifold X2n with π1(X) = π. For any such n ≥ 2, X there exists an
n-connected (2n + 1)-dimensional normal map

(f, b) : (M2n+1; ∂−M, ∂+M) → X2n × ([0, 1]; {0}, {1})
with ∂−M = X → X the identity and ∂+M → X a homotopy equivalence,
and with a presentation with respect to which (f, b) has kernel (2n + 1)-
complex (C, ψ). Such a normal map is constructed from the identity X →
X in two stages. First, choose a basis {b1, b2, . . . , bk} for Cn+1, and perform
surgeries on k disjoint trivial embeddings Sn−1 ×Dn+1 ↪→ X2n with trace

(U ; X, ∂+U) = (X × [0, 1] ∪
⋃

k

Dn ×Dn+1; X × {0}, X##kSn × Sn)

→ X × ([0, 1/2]; {0}, {1/2}) .

The n-connected 2n-dimensional normal map ∂+U → X×{1/2} has kernel
(−1)n-quadratic form

(Kn(∂+U), λ, µ) = H(−1)n(Z[π]k) = H(−1)n(Cn+1) .

Second, choose a basis {c1, c2, . . . , ck} for Cn and realize the inclusion of
the lagrangian in H(−1)n(Cn+1) by surgeries on k disjoint embeddings Sn×
Dn ↪→ ∂+U with trace

(M0; ∂+U, ∂+M) → X × ([0, 1]; {0}, {1})
such that(

ψ0

d∗

)
= ∂ : Cn = Kn+1(M0, ∂+U)

→ Cn+1 ⊕ Cn+1 = Kn+1(U, ∂+U)⊕Kn(U) = Kn(∂+U) .
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The required (2n+1)-dimensional normal map realizing (C, ψ) is the union

(M ; ∂−M, ∂+M) = (U ;X, ∂+U)∪(M0; ∂+U, ∂+M) → X×([0, 1]; {0}, {1}) .

The corresponding presentation is the trace of surgeries on k disjoint em-
beddings Sn ×Dn+1 ↪→ U ⊂ M2n+1. This is the terminology (and result)
of Wall [29, Chapter 6].

The choice of presentation (6.3) for an n-connected (2n+1)-dimensional
normal map (f, b) : M2n+1 → X does not change the “homotopy type” of
the associated (2n + 1)-complex (C, ψ), in the following sense.

Definition 6.7 (i) A map of (2n + 1)-complexes over Λ

f : (C, ψ) → (C ′, ψ′)

is a chain map f : C → C ′ such that there exist Λ-module morphisms

χ0 : C ′n+1 → C ′n+1 , χ1 : C ′n → C ′n
with

fψ0f
∗ − ψ′0 = (χ0 + (−1)n+1χ∗0)d

′∗ : C ′n → C ′n+1 ,

fψ1f
∗ − ψ′1 = −d′χ0d

′∗ + χ1 + (−1)nχ∗1 : C ′n → C ′n .

(ii) A homotopy equivalence of (2n+1)-complexes is a map with f : C → C ′

a chain equivalence.
(iii) An isomorphism of (2n + 1)-complexes is a map with f : C → C ′ an
isomorphism of chain complexes.

Proposition 6.8 Homotopy equivalence is an equivalence relation on (2n+
1)-complexes.
Proof : For m ≥ 0 let E(m) be the contractible f. g. free Λ-module chain
complex defined by

dE(m) = 1 : E(m)n+1 = Λm → E(m)n = Λm ,

E(m)r = 0 for r 6= n, n + 1 .

A map f : (C, ψ) → (C ′, ψ′) is a homotopy equivalence if and only if for
some m,m′ ≥ 0 there exists an isomorphism

f ′ : (C,ψ)⊕ (E(m), 0)
∼=→ (C ′, ψ′)⊕ (E(m′), 0)

such that the underlying chain map f ′ is chain homotopic to

f ⊕ 0 : C ⊕ E(m) → C ′ ⊕ E(m′) .

Isomorphism is an equivalence relation on (2n + 1)-complexes, and hence
so is homotopy equivalence.

Example 6.9 The (2n + 1)-complexes (C, ψ), (C ′, ψ′) associated by 6.3 to
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any two presentations

(W ; M, M̂) → X × ([0, 1]; {0}, {1}) , (W ′;M, M̂ ′) → X × ([0, 1]; {0}, {1})
of an n-connected normal map M2n+1 → X are homotopy equivalent.
Without loss of generality it may be assumed that W and W ′ are the
traces of surgeries on disjoint embeddings

gi : Sn ×Dn+1 ↪→ M , g′j : Sn ×Dn+1 ↪→ M ,

corresponding to two sets of Z[π1(X)]-module generators of Kn(M). Define
a presentation of M → X

(W ′′; M, M ′′) = (W ;M, M̂)∪(V ; M̂,M ′′) = (W ′; M, M̂ ′)∪(V ′; M̂ ′,M ′′)

with (V ; M̂,M ′′) the presentation of M̂ → X defined by the trace of the
surgeries on the copies ĝ′j : Sn × Dn+1 ↪→ M̂ of g′j : Sn × Dn+1 ↪→ M ,
and (V ′; M̂ ′,M ′′) the presentation of M̂ ′ → X defined by the trace of the
surgeries on the copies ĝi : Sn ×Dn+1 ↪→ M̂ ′ of gi : Sn ×Dn+1 ↪→ M .
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M W M̂ V M ′′

M W ′ M̂ ′ V ′ M ′′

W ′′ = W ∪
M̂

V = W ′ ∪
M̂ ′ V ′

The projections C ′′ → C, C ′′ → C ′ define homotopy equivalences of (2n +
1)-complexes

(C ′′, ψ′′) → (C, ψ) , (C ′′, ψ′′) → (C ′, ψ′) .

Definition 6.10 A (2n + 1)-complex (C, ψ) over Λ is contractible if it
is homotopy equivalent to the zero complex (0, 0), or equivalently if d :
Cn+1 → Cn is a Λ-module isomorphism.

Example 6.11 A (2n + 1)-complex (C, ψ) associated to an n-connected
(2n+1)-dimensional normal map (f, b) : M2n+1 → X is contractible if (and
for n ≥ 2 only if) f is a homotopy equivalence, by the theorem of J.H.C.
Whitehead. The (2n + 1)-complexes (C,ψ) associated to the various pre-
sentations of a homotopy equivalence (f, b) : M2n+1 → X are contractible,
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by 6.9. The zero complex (0, 0) is associated to the presentation

(f, b)× id. : M × ([0, 1]; {0}, {1}) → X × ([0, 1]; {0}, {1}) .

§7. Complex cobordism

The cobordism of (2n + 1)-complexes is the equivalence relation which
corresponds to the normal bordism of n-connected (2n+1)-dimensional nor-
mal maps. The (2n + 1)-dimensional surgery obstruction group L2n+1(Λ)
will be defined in §8 below to be the cobordism group of (2n+1)-complexes
over Λ.

Definition 7.1 A cobordism of (2n + 1)-complexes (C, ψ), (C ′, ψ′)

((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′))

is a f. g. free Λ-module chain complex of the type

D : . . . → 0 → Dn+1 → 0 → . . .

together with Λ-module morphisms

j : Cn+1 → Dn+1 , j′ : C ′n+1 → Dn+1 ,

δψ0 : Dn+1 = (Dn+1)∗ → Dn+1

such that the duality Λ-module chain map

(1 + T )(δψ0, ψ0 ⊕−ψ′0) : C(j′)2n+2−∗ → C(j)

defined by

(1 + T )(δψ0, ψ0 ⊕−ψ′0) =
(

δψ0 + (−1)n+1δψ∗0 j′ψ′0
ψ∗0j∗ 0

)

: C(j′)2n+1 = Dn+1 ⊕ C ′n → C(j)n+1 = Dn+1 ⊕ Cn

is a chain equivalence, with C(j), C(j′) the algebraic mapping cones of the
chain maps j : C → D, j′ : C ′ → D.

The duality chain map C(j′)2n+2−∗ → C(j) is given by

C(j′)2n+2−∗ : . . .

(1+T )δψ0

²²

// 0 //

²²

0 //

²²

Dn+1 ⊕ C ′n //

²²

C ′n+1 //

²²

0 //

²²

. . .

C(j) : . . . // 0 // Cn+1
// Dn+1 ⊕ Cn

// 0 // 0 // . . .

The condition for it to be a chain equivalence is just that the Λ-module
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morphism



d 0 ψ∗0j∗

0 d′∗ j′∗

(−1)n+1j j′ψ′0 δψ0 + (−1)n+1δψ∗0




: Cn+1 ⊕ C ′n ⊕Dn+1 → Cn ⊕ C ′n+1 ⊕Dn+1

be an isomorphism.

Example 7.2 Suppose given two n-connected (2n+1)-dimensional normal
maps M2n+1 → X, M ′2n+1 → X with presentations (6.3)

(W 2n+2;M2n+1, M̂2n+1) → X × ([0, 1]; {0}, {1}) ,

(W ′2n+2; M ′2n+1, M̂ ′2n+1) → X × ([0, 1]; {0}, {1})
and corresponding (2n + 1)-complexes (C, ψ), (C ′, ψ′). An n-connected
normal bordism

(V 2n+2; M2n+1,M ′2n+1) → X × ([0, 1]; {0}, {1})
determines a cobordism ((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕ −ψ′)) (again, up
to some choices) from (C, ψ) to (C ′, ψ′). Define an n-connected normal
bordism

(V ′; M̂, M̂ ′) = (W ; M̂, M) ∪ (V ; M,M ′) ∪ (W ′;M ′, M̂ ′)

→ X × ([0, 1]; {0}, {1}) .

The exact sequence of stably f. g. free Z[π1(X)]-modules

0 → Kn+1(V ) → Kn+1(V ′, ∂V ′)

→ Kn+1(W,∂W )⊕Kn+1(W ′, ∂W ′) → 0

splits. Choosing any splitting Kn+1(V ′, ∂V ′) → Kn+1(V ) define j, j′ by

(j j′) : Cn+1 ⊕ C ′n+1 = Kn+1(W, M̂)⊕Kn+1(W ′, M̂ ′)
incl∗⊕incl∗−−−−−−−−−→ Kn+1(V ′, ∂V ′) → Kn+1(V ) = Dn+1 .

Geometric intersection numbers provide a (−1)n+1-quadratic form (Dn+1,
δψ0) over Z[π1(X)] such that the duality chain map C(j′)2n+2−∗ → C(j) is
a chain equivalence inducing the Poincaré duality isomorphisms

[V ] ∩ − : H2n+2−∗(j′) = K2n+2−∗(V, M ′)
∼=→ H∗(j) = K∗(V, M) .

Definition 7.3 A null-cobordism of a (2n + 1)-complex (C,ψ) is a cobor-
dism (j : C → D, (δψ, ψ)) to (0, 0).

Example 7.4 Let (W 2n+2; M ′2n+1,M2n+1) → X × ([0, 1]; {0}, {1}) be a
presentation of an n-connected (2n + 1)-dimensional normal map M → X,



142 Andrew Ranicki

with (2n+1)-complex (C, ψ). For n ≥ 2 there is a one-one correspondence
between n-connected normal bordisms of M → X

(V 2n+2; M2n+1, N2n+1) → X × ([0, 1]; {0}, {1})
to homotopy equivalences N → X and null-cobordisms (j : C → D, (δψ,
ψ)). (Every normal bordism of n-connected (2n + 1)-dimensional normal
maps can be made n-connected by surgery below the middle dimension on
the interior.)
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M ′ W M V N

V ′ = W ∪M V

Any such (V ; M, N) → X × ([0, 1]; {0}, {1}) determines by 7.2 a null-cob-
ordism (j : C → D, (δψ, ψ)) of (C, ψ).

Cobordisms of (2n + 1)-complexes arise in the following way:

Construction 7.5 An isomorphism of hyperbolic split (−1)n-quadratic
forms over Λ((

γ γ̃

µ µ̃

)
,

(
θ 0

γ̃∗µ θ̃

))
: H(−1)n(G)

∼=→ H(−1)n(F )

with F, G f. g. free determines a cobordism of (2n + 1)-complexes

((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′))

by

d = µ∗ : Cn+1 = F → Cn = G∗ ,

ψ0 = γ : Cn = G → Cn+1 = F ,

ψ1 = −θ : Cn = G → Cn = G∗ ,

j = µ̃∗ : Cn+1 = F → Dn+1 = G ,

d′ = γ∗ : C ′n+1 = F ∗ → Cn = G∗ ,

ψ′0 = µ : C ′n = G → C ′n+1 = F ∗ ,

ψ′1 = −θ : C ′n = G → C ′n = G∗ ,

j′ = γ̃∗ : C ′n+1 = F ∗ → Dn+1 = G ,

δψ0 = 0 : Dn+1 = G∗ → Dn+1 = G .
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It can be shown that every cobordism of (2n+1)-complexes is homotopy
equivalent to one constructed as in 7.5.

Example 7.6 An n-connected (2n + 2)-dimensional normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+2; M2n+1, M ′2n+1) → X × ([0, 1]; {0}, {1})
with g : W → X × [0, 1] n-connected can be regarded both as a pre-
sentation of (f, b) and as a presentation of (f ′, b′). The cobordism of
(2n + 1)-complexes ((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕ −ψ′)) obtained in 7.2
with W = V = W ′, M̂ = M ′, M̂ ′ = M ′ is the construction of 7.5 for an
extension of the inclusion of the lagrangian (6.2)

(
(

γ

µ

)
, θ) = (

(
ψ0

d∗

)
,−ψ1) : (Cn, 0) → H(−1)n(Cn+1)

to an isomorphism of hyperbolic split (−1)n-quadratic forms((
γ γ̃

µ µ̃

)
,

(
θ 0

γ̃∗µ θ̃

))
: H(−1)n(Cn)

∼=→ H(−1)n(Cn+1) ,

with
j = µ̃∗ : Cn+1 = Kn+1(W,M ′) → Dn+1 = Kn+1(W ) ,

j′ = γ̃∗ : C ′n+1 = Kn+1(W,M) → Dn+1 = Kn+1(W ) .

Remark 7.7 Fix a (2n + 1)-dimensional geometric Poincaré complex X
with reducible Spivak normal fibration, and choose a stable vector bun-
dle νX : X → BO in the Spivak normal class, e.g. a manifold with
the stable normal bundle. Consider the set of n-connected normal maps
(f : M2n+1 → X, b : νM → νX). The relation defined on this set by

(M → X) ∼ (M ′ → X) if there exists an (n + 1)-connected normal
bordism (W ;M, M ′) → X × ([0, 1]; {0}, {1})

is an equivalence relation. Symmetry and transitivity are verified in the
same way as for any geometric cobordism relation. For reflexivity form
the cartesian product of an n-connected normal map M2n+1 → X with
([0, 1]; {0}, {1}), as usual. The product is an n-connected normal bordism

M × ([0, 1]; {0}, {1}) → X × ([0, 1]; {0}, {1})
which can be made (n + 1)-connected by surgery killing the n-dimensional
kernel Kn(M × [0, 1]) = Kn(M). The following verification that the cobor-
dism of (2n+1)-complexes is an equivalence relation uses algebraic surgery
in exactly the same way.

Proposition 7.8 Cobordism is an equivalence relation on (2n + 1)-com-
plexes (C,ψ) over Λ, such that (C, ψ)⊕ (C,−ψ) is null-cobordant. Homo-
topy equivalent complexes are cobordant.
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Proof : Symmetry is easy: if ((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕ −ψ′)) is a
cobordism from (C,ψ) to (C ′, ψ′) then

((j′ j) : C ′ ⊕ C → D′, (−δψ, ψ′ ⊕−ψ))

is a cobordism from (C ′, ψ′) to (C, ψ). For transitivity, suppose given
adjoining cobordisms of (2n + 1)-complexes

((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′)) ,

((j̃′ j′′) : C ′ ⊕ C ′′ → D′, (δψ′, ψ′ ⊕−ψ′′)) .

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........



.......................................................................................................................................................

C D C ′ D′ C ′′

D′′ = D ∪C′ D′

Define the union cobordism between (C, ψ) and (C ′′, ψ′′)

((j̃ j̃′′) : C ⊕ C ′′ → D′′, (δψ′′, ψ ⊕−ψ′′))

by

D′′
n+1 = coker(i =




j′

d′

j̃′


 : C ′n+1 → Dn+1 ⊕ C ′n ⊕D′

n+1) ,

j̃ = [j ⊕ 0⊕ 0] : Cn+1 → D′′
n+1,

j̃′′ = [0⊕ 0⊕ j′′] : C ′′n+1 → D′′
n+1 ,

δψ′′0 =




δψ0 0 0
0 0 0
0 0 δψ′0


 : D′′n+1 → D′′

n+1 .

The Λ-module morphism i : C ′n+1 → Dn+1⊕C ′n⊕D′
n+1 is a split injection

since the dual Λ-module morphism i∗ is a surjection, as follows from the
Mayer-Vietoris exact sequence

Hn+2(D, C ′)⊕Hn+2(D′, C ′) = 0⊕ 0 → Hn+2(D′′) → Hn+2(C ′) = 0 .

Given any (2n + 1)-complex (C, ψ) let (C ′, ψ′) be the (2n + 1)-complex
defined by

d′ = (−1)nψ∗0 : C ′n+1 = Cn+1 → C ′n = Cn ,

ψ′0 = d∗ : C ′n = Cn → C ′n+1 = Cn+1 ,

ψ′1 = −ψ1 : C ′n = Cn → C ′n = Cn .
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Apply 5.7 to extend the inclusion of the lagrangian in H(−1)n(Cn+1)(
ψ0

d∗

)
: Cn → Cn+1 ⊕ Cn+1

to an isomorphism of (−1)n-quadratic forms
(

ψ0 ψ̃0

d∗ d̃∗

)
: H(−1)n(Cn)

∼=→ H(−1)n(Cn+1)

with ψ̃0 ∈ HomΛ(Cn, Cn+1), d̃ ∈ HomΛ(Cn+1, C
n). Now apply 7.5 to

construct from any such extension a cobordism

((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′))

with
j = d̃ : Cn+1 → Dn+1 = Cn ,

j′ = ψ̃∗0 : C ′n+1 = Cn+1 → Dn+1 = Cn ,

d′ = ψ∗0 : C ′n+1 = Cn+1 → C ′n = Cn ,

ψ′0 = d∗ : C ′n = Cn → C ′n+1 = Cn+1 ,

δψ0 = 0 : Dn+1 = Cn → Dn+1 = Cn .

(This is the algebraic analogue of the construction of a presentation (6.3)

(W 2n+2; M2n+1,M ′2n+1) → X × ([0, 1]; {0}, {1})
of an n-connected (2n+1)-dimensional normal map M2n+1 → X by surgery
on a finite set of Z[π1(X)]-module generators of Kn(M)). The union of the
cobordisms

((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′)) ,

((j′ j) : C ′ ⊕ C → D, (−δψ, ψ′ ⊕−ψ))

is a cobordism

((j̃ j̃′) : C ⊕ C → D′, (δψ′, ψ ⊕−ψ))

with a Λ-module isomorphism[
1 0 −1
ψ0 (−1)nψ̃0 0

]
:

D′
n+1 = coker(




ψ̃∗0
ψ∗0
ψ̃∗0


 : Cn+1 → Cn ⊕ Cn ⊕ Cn)

∼=→ Cn ⊕ Cn+1 .

This verifies that cobordism is reflexive, and also that (C, ψ)⊕ (C,−ψ) is
null-cobordant.

Suppose given a homotopy equivalence of (2n + 1)-complexes

f : (C,ψ) → (C ′, ψ′) ,
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with χ0 : C ′n+1 → C ′n+1 as in 6.6. By reflexivity there exists a cobordism
((j′′ j′) : C ′ ⊕ C ′ → D, (δψ′, ψ′ ⊕ −ψ′)) from (C ′, ψ′) to itself. Define a
cobordism ((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′)) from (C,ψ) to (C ′, ψ′) by

j = j′′f : Cn+1

f−−→ C ′n+1

j′′−−→ Dn+1 ,

δψ0 = δψ′0 + j′′χ0j
′′∗ : Dn+1 → Dn+1 .

Definition 7.9 (i) A weak map of (2n + 1)-complexes over Λ

f : (C, ψ) → (C ′, ψ′)

is a chain map f : C → C ′ such that there exist Λ-module morphisms

χ0 : C ′n+1 → C ′n+1 , χ1 : C ′n → C ′n

with

fψ0f
∗ − ψ′0 = (χ0 + (−1)n+1χ∗0)d

′∗ : C ′n → C ′n+1 .

(ii) A weak equivalence of (2n+1)-complexes is a weak map with f : C → C ′

a chain equivalence.
(iii) A weak isomorphism of (2n + 1)-complexes is a weak map with f :
C → C ′ an isomorphism of chain complexes.

Proposition 7.10 Weakly equivalent (2n + 1)-complexes are cobordant.
Proof : The proof in 7.8 that homotopy equivalent (2n+1)-complexes are
cobordant works just as well for weakly equivalent ones.

Given a (2n + 1)-complex (C,ψ) let

(
(

ψ0

d∗

)
,−ψ1) : (Cn, 0) → H(−1)n(Cn+1)

be the inclusion of a lagrangian in a hyperbolic split (−1)n-quadratic form
given by 6.2. The result of 7.10 is that the cobordism class of (C, ψ) is
independent of the hessian (−1)n+1-quadratic form (Cn,−ψ1).

§8. The odd-dimensional L-groups

The odd-dimensional surgery obstruction groups L2n+1(Λ) of a ring with
involution Λ will now be defined to be the cobordism groups of (2n + 1)-
complexes over Λ.

Definition 8.1 Let L2n+1(Λ) be the abelian group of cobordism classes
of (2n + 1)-complexes over Λ, with addition and inverses by

(C, ψ) + (C ′, ψ′) = (C ⊕ C ′, ψ ⊕ ψ′) ,

− (C, ψ) = (C,−ψ) ∈ L2n+1(Λ) .
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The groups L2n+1(Λ) only depend on the residue n( mod 2), so that only
two L-groups have actually been defined, L1(Λ) and L3(Λ). Note that 8.1
uses 7.8 to justify (C, ψ)⊕ (C,−ψ) = 0 ∈ L2n+1(Λ).

Example 8.2 The odd-dimensional L-groups of Λ = Z are trivial

L2n+1(Z) = 0 .

8.2 was implicit in the work of Kervaire and Milnor [7] on the surgery
classification of even-dimensional exotic spheres.

Example 8.3 The surgery obstruction of an n-connected (2n + 1)-dimen-
sional normal map (f, b) : M2n+1 → X is the cobordism class

σ∗(f, b) = (C, ψ) ∈ L2n+1(Z[π1(X)])

of the (2n+1)-complex (C, ψ) associated in 6.3 to any choice of presentation

(W ;M, M ′) → X × ([0, 1]; {0}, {1}) .

The surgery obstruction vanishes σ∗(f, b) = 0 if (and for n ≥ 2 only if)
(f, b) is normal bordant to a homotopy equivalence.

Definition 8.4 A surgery (j : C → D, (δψ, ψ)) on a (2n + 1)-complex
(C,ψ) is a Λ-module chain map j : C → D with Dr = 0 for r 6= n + 1 and
Dn+1 a f. g. free Λ-module, together with a Λ-module morphism

δψ0 : Dn+1 = (Dn+1)∗ → Dn+1 ,

such that the Λ-module morphism

( d ψ∗0j∗ ) : Cn+1 ⊕Dn+1 → Cn

is onto. The effect of the surgery is the (2n + 1)-complex (C ′, ψ′) defined
by

d′ =
(

d ψ∗0j∗

(−1)n+1j δψ0 + (−1)n+1δψ∗0

)

: C ′n+1 = Cn+1 ⊕Dn+1 → C ′n = Cn ⊕Dn+1 ,

ψ′0 =
(

ψ0 0
0 1

)
: C ′n = Cn ⊕Dn+1 → C ′n+1 = Cn+1 ⊕Dn+1 ,

ψ′1 =
(

ψ1 −ψ∗0j∗

0 −δψ0

)
: C ′n = Cn ⊕Dn+1 → C ′n = Cn ⊕Dn+1 .

The trace of the surgery is the cobordism of (2n + 1)-complexes ((j′ j′′) :
C ⊕ C ′ → D′, (0, ψ ⊕−ψ′)), with

j′′ = (j′ k) : C ′n+1 = Cn+1 ⊕Dn+1

→ D′
n+1 = ker(( d ψ0j

∗ ) : Cn+1 ⊕Dn+1 → Cn)
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a splitting of the split injection (d ψ∗0j∗) : Cn+1 ⊕Dn+1 → Cn.

Example 8.5 Let

((e, a); (f, b), (f ′, b′)) : (V 2n+2; M2n+1, M ′2n+1) → X × ([0, 1]; {0}, {1})
be the trace of a sequence of k surgeries on an n-connected (2n + 1)-
dimensional normal map (f, b) : M → X killing elements x1, x2, . . . , xk ∈
Kn(M), with e n-connected and f ′ n-connected. V has a handle decom-
position on M of the type

V = M × I ∪
⋃

k

(n + 1)-handles Dn+1 ×Dn+1 ,

and also a handle decomposition on M ′ of the same type

V = M ′ × I ∪
⋃

k

(n + 1)-handles Dn+1 ×Dn+1 .

A presentation of (f, b)

((g, c); (f̂ , b̂), (f, b)) : (W 2n+2; M̂2n+1,M2n+1) → X × ([0, 1]; {0}, {1})
with (2n + 1)-complex (C, ψ) determines a presentation of (f ′, b′)

((g′, c′); (f̂ , b̂), (f ′, b′)) = ((g, c); (f̂ , b̂), (f, b)) ∪ ((e, a); (f, b), (f ′, b′)) :

(W ′; M̂, M ′) = (W ; M̂, M) ∪ (V ;M, M ′) → X × ([0, 1]; {0}, {1})
such that the (2n + 1)-complex (C ′, ψ′) is the effect of a surgery (j : C →
D, (δψ, ψ)) on (C, ψ) with

Dn+1 = Kn+1(V,M ′) = Z[π1(X)]k ,

C ′n+1 = Kn+1(W ′, M̂) = Kn+1(W, M̂)⊕Kn+1(V, M) = Cn+1 ⊕Dn+1 ,

C ′n = Kn+1(W ′, ∂W ′) = Kn+1(W,∂W )⊕Kn+1(V, M ′) = Cn ⊕Dn+1 .

Also, the geometric trace determines the algebraic trace, with

D′
n+1 = Kn+1(V ) .

It can be shown that (2n + 1)-complexes (C, ψ), (C ′, ψ′) are cobordant
if and only if (C ′, ψ′) is homotopy equivalent to the effect of a surgery on
(C,ψ). This result will only be needed for (C ′, ψ′) = (0, 0), so it will only
be proved in this special case:

Proposition 8.6 A (2n + 1)-complex (C, ψ) represents 0 in L2n+1(Λ) if
and only if there exists a surgery (j : C → D, (δψ, ψ)) with contractible
effect.
Proof : The effect of a surgery is contractible if and only if it is a null-
cobordism.
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Given an n-connected (2n+1)-dimensional normal map (f, b) : M2n+1−−→
X it is possible to kill every element x ∈ Kn(M) by an embedding
Sn ×Dn+1 ↪→ M to obtain a bordant normal map

(f ′, b′) : M ′2n+1 = cl.(M\Sn ×Dn+1) ∪Dn+1 × Sn → X .

There are many ways of carrying out the surgery, which are quantified by
the surgeries on the kernel (2n + 1)-complex (C,ψ). In general, Kn(M ′)
need not be smaller than Kn(M).

Example 8.7 The kernel (2n + 1)-complex (C,ψ) over Z of the identity
normal map

(f, b) = id. : M2n+1 = S2n+1 → S2n+1

is (0, 0). For any element

µ ∈ πn+1(SO, SO(n + 1)) = Q(−1)n+1(Z)

let ω = ∂µ ∈ πn(SO(n+1)), and define a null-homotopic embedding of Sn

in M

eω : Sn ×Dn+1 ↪→ M ; (x, y) 7−→ (x, ω(x)(y))/ ‖ (x, ω(x)(y)) ‖ .

Use µ to kill 0 ∈ Kn(M) by surgery on (f, b), with effect a normal bordant
n-connected (2n + 1)-dimensional normal map

(fµ, bµ) : M2n+1
µ = cl.(M\eω(Sn ×Dn+1)) ∪Dn+1 × Sn → S2n+1

exactly as in 2.18, with the kernel complex (C ′, ψ′) given by

d′ = (1 + T(−1)n+1)(µ) : C ′n+1 = Z→ C ′n = Z .

In particular, for µ = 0, 1 this gives the (2n + 1)-dimensional manifolds

M ′ = M0 = Sn × Sn+1 ,

M ′′ = M1 = S(τSn+1), the tangent Sn-bundle of Sn+1

= O(n + 2)/O(n)

= Vn+2,2, the Stiefel manifold of orthonormal 2-frames in Rn+2

( = SO(3) = RP3 for n = 1 ) ,

corresponding to the algebraic surgeries on (0, 0)

(0 : 0 → D, (δψ′, 0)) , (0 : 0 → D, (δψ′′, 0))

with

Dn+1 = Z , δψ′0 = 0 , δψ′′0 = 1 .
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§9. Formations

As before, let Λ be a ring with involution, and let ε = ±1.

Definition 9.1 An ε-quadratic formation over Λ (Q,φ; F, G) is a non-
singular ε-quadratic form (Q, φ) together with an ordered pair of la-
grangians F ,G.

Formations with ε = (−1)n are essentially the (2n + 1)-complexes of §6
expressed in the language of forms and lagrangians of §4. In the general
theory it is possible to consider formations (Q,φ; F, G) with Q,F,G f. g.
projective, but in view of the more immediate topological applications only
the f. g. free case is considered here. Strictly speaking, 9.1 defines a
“nonsingular formation”. In the general theory a formation (Q,φ;F,G) is
a nonsingular form (Q,φ) together with a lagrangian F and a sublagrangian
G. The automorphisms of hyperbolic forms in the original treatment due
to Wall [29] of odd-dimensional surgery theory were replaced by formations
by Novikov [16] and Ranicki [18].

In dealing with formations assume that the ground ring Λ is such that
the rank of f. g. free Λ-modules is well-defined (e.g. Λ = Z[π]). The rank
of a f. g. free Λ-module K is such that

rankΛ(K) = k ∈ Z+

if and only if K is isomorphic to Λk. Also, since Λk ∼= (Λk)∗

rankΛ(K) = rankΛ(K∗) ∈ Z+ .

Definition 9.2 An isomorphism of ε-quadratic formations over Λ

f : (Q,φ;F,G)
∼=→ (Q′, φ′; F ′, G′)

is an isomorphism of forms f : (Q, φ) ∼= (Q′, φ′) such that

f(F ) = F ′ , f(G) = G′ .

Proposition 9.3 (i) Every ε-quadratic formation (Q,φ; F, G) is isomor-
phic to one of the type (Hε(F ); F,G).
(ii) Every ε-quadratic formation (Q,φ;F,G) is isomorphic to one of the
type (Hε(F ); F, α(F )) for some automorphism α : Hε(F ) ∼= Hε(F ).
Proof : (i) By Theorem 5.7 the inclusion of the lagrangian F → Q extends
to an isomorphism of forms f : Hε(F ) ∼= (Q,φ), defining an isomorphism
of formations

f : (Hε(F ); F, f−1(G))
∼=→ (Q,φ;F,G) .
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(ii) As in (i) extend the inclusions of the lagrangians to isomorphisms of
forms

f : Hε(F )
∼=→ (Q, φ) , g : Hε(G)

∼=→ (Q, φ) .

Then

rankΛ(F ) = rankΛ(Q)/2 = rankΛ(G) ∈ Z+ ,

so that F is isomorphic to G. Choosing a Λ-module isomorphism β : G ∼= F
there is defined an automorphism of Hε(F )

α : Hε(F )
f
−−→ (Q,φ)

g−1

−−−−−→ Hε(G)

(
β 0
0 β∗−1

)

−−−−−−−−→ Hε(F )

such that there is defined an isomorphism of formations

f : (Hε(F ); F, α(F ))
∼=→ (Q, φ; F,G) .

Proposition 9.4 The weak isomorphism classes of (2n + 1)-complexes
(C,ψ) over Λ are in natural one-one correspondence with the isomorphism
classes of (−1)n-quadratic formations (Q,φ; F, G) over Λ, with

Hn(C) = Q/(F + G) , Hn+1(C) = F ∩G .

Moreover, if the complex (C,ψ) corresponds to the formation (Q,φ; F, G)
then (C,−ψ) corresponds to (Q,−φ; F, G).
Proof : Given a (2n + 1)-complex (C, ψ) define a (−1)n-quadratic forma-
tion

(Q,φ;F,G) = (H(−1)n(Cn+1); Cn+1, im(
(

ψ0

d∗

)
: Cn → Cn+1 ⊕ Cn+1)) .

The formation associated in this way to the (2n + 1)-complex (C,−ψ) is
isomorphic to (Q,−φ; F, G), by the isomorphism(−1 0

0 1

)
: (Q,−φ;F, G)

∼=→

(H(−1)n(Cn+1); Cn+1, im(
(−ψ0

d∗

)
: Cn → Cn+1 ⊕ Cn+1)) .

Conversely, suppose given an (−1)n-quadratic formation (Q,φ;F,G). By
9.3 (i) this can be replaced by an isomorphic formation with (Q,φ) =
H(−1)n(F ). Let γ ∈ HomΛ(G,F ), µ ∈ HomΛ(G,F ∗) be the components of
the inclusion

i =
(

γ

µ

)
: G → Q = F ⊕ F ∗ .

Choose any θ ∈ HomΛ(G,G∗) such that

γ∗µ = θ + (−1)n+1θ∗ ∈ HomΛ(G,G∗) .
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Define a (2n + 1)-complex (C, ψ) by

d = µ∗ : Cn+1 = F → Cn = G∗ ,

ψ0 = γ : Cn = G → Cn+1 = F ,

ψ1 = (−1)nθ : Cn = G → Cn = G∗ .

The exact sequence

0 → G
i−−→ Q

i∗(φ + (−1)nφ∗)
−−−−−−−−−−−→ G∗ → 0

is the algebraic mapping cone

0 → G

(
γ

µ

)

−−−−−→ F ⊕ F ∗
(µ∗ (−1)nγ∗ )
−−−−−−−−−−−→ G∗ → 0

of the chain equivalence (1 + T )ψ0 : C2n+1−∗ → C.

Example 9.5 An n-connected (2n+1)-dimensional normal map M2n+1 →
X together with a choice of presentation (W ; M, M ′) → X×([0, 1]; {0}, {1})
determine by 9.3 a (2n + 1)-complex (C, ψ), and hence by 9.4 a (−1)n-
quadratic formation (Q,φ;F,G) over Z[π1(X)] such that

Q/(F + G) = Hn(C) = Kn(M) ,

F ∩G = Hn+1(C) = Kn+1(M) .

The following equivalence relation on formations corresponds to the weak
equivalence (7.9) of (2n + 1)-complexes.

Definition 9.6 (i) An ε-quadratic formation (Q,φ;F,G) is trivial if it is
isomorphic to (Hε(L); L,L∗) for some f. g. free Λ-module L.
(ii) A stable isomorphism of ε-quadratic formations

[f ] : (Q,φ; F, G)
∼=→ (Q′, φ′; F ′, G′)

is an isomorphism of ε-quadratic formations of the type

f : (Q,φ;F,G)⊕ (trivial)
∼=→ (Q′, φ′; F ′, G′)⊕ (trivial′) .

Example 9.7 The (−1)n-quadratic formations associated in 9.5 to all the
presentations of an n-connected (2n+1)-dimensional normal map M2n+1 →
X define a stable isomorphism class.

Proposition 9.8 The weak equivalence classes of (2n + 1)-complexes
over Λ are in natural one-one correspondence with the stable isomorphism
classes of (−1)n-quadratic formations over Λ.
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Proof : The (2n + 1)-complex (C, ψ) associated (up to weak equivalence)
to a (−1)n-quadratic formation (Q,φ;F,G) in 9.4 is contractible if and only
if the formation is trivial.

The following formations correspond to the null-cobordant complexes.

Definition 9.9 The boundary of a (−ε)-quadratic form (K,λ, µ) is the
ε-quadratic formation

∂(K, λ, µ) = (Hε(K); K, Γ(K,λ))

with Γ(K,λ) the graph lagrangian

Γ(K,λ) = {(x, λ(x)) ∈ K ⊕K∗ |x ∈ K} .

Note that the form (K, λ, µ) may be singular, that is the Λ-module mor-
phism λ : K → K∗ need not be an isomorphism. The graphs Γ(K,λ)

of (−ε)-quadratic forms (K,λ, µ) are precisely the lagrangians of Hε(K)
which are direct complements of K∗.

Proposition 9.10 A (−1)n-quadratic formation (Q,φ; F, G) is stably iso-
morphic to a boundary ∂(K, λ, µ) if and only if the corresponding (2n+1)-
complex (C,ψ) is null-cobordant.
Proof : Given a (−1)n+1-quadratic form (K, λ, µ) choose a split form
θ : K → K∗ (4.2) and let (C,ψ) be the (2n + 1)-complex associated by 9.4
to the boundary formation ∂(K, λ, µ), so that

d = λ = θ + (−1)n+1θ∗ : Cn+1 = K → Cn = K∗ ,

ψ0 = 1 : Cn = K → Cn+1 = K ,

ψ1 = −θ : Cn = K → Cn = K∗ .

Then (C, ψ) is null-cobordant, with a null-cobordism (j : C → D, (δψ, ψ))
defined by

j = 1 : Cn+1 = K → Dn+1 = K ,

δψ0 = 0 : Dn+1 = K∗ → Dn+1 = K .

Conversely, suppose given a (2n+1)-complex (C,ψ) with a null-cobordism
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(j : C → D, (δψ, ψ)) as in 8.1. The (2n + 1)-complex (E, θ) defined by

d =




ψ1 + (−1)n+1ψ∗1 d ψ∗0j∗

(−1)n+1d∗ 0 −j∗

(−1)n+1jψ∗0 (−1)nj δψ0 + (−1)n+1δψ∗0


 :

En+1 = Cn ⊕ Cn+1 ⊕Dn+1 → En = Cn ⊕ Cn+1 ⊕Dn+1 ,

θ0 = 1 : En = Cn ⊕ Cn+1 ⊕Dn+1 → En+1 = Cn ⊕ Cn+1 ⊕Dn+1 ,

θ1 =



−ψ1 −d −ψ∗0j∗

0 0 j∗

0 0 −δψ0


 :

En = Cn ⊕ Cn+1 ⊕Dn+1 → En = Cn ⊕ Cn+1 ⊕Dn+1

corresponds to the boundary (−1)n-quadratic formation ∂(En, λ1, µ1) of
the (−1)n+1-quadratic form (En, λ1, µ1) determined by the split form θ1,
and there is defined a homotopy equivalence f : (E, θ) → (C,ψ) with

fn = (1 ψ∗0 0) : En = Cn ⊕ Cn+1 ⊕Dn+1 → Cn ,

fn+1 = (0 1 0) : En+1 = Cn ⊕ Cn+1 ⊕Dn+1 → Cn+1 .

Proposition 9.11 The cobordism group L2n+1(Λ) of (2n+1)-complexes is
naturally isomorphic to the abelian group of equivalence classes of (−1)n-
quadratic formations over Λ, subject to the equivalence relation

(Q,φ;F, G) ∼ (Q′, φ′; F ′, G′) if there exists a stable isomorphism

[f ] : (Q,φ; F, G)⊕ (Q′,−φ′; F ′, G′)
∼=→ ∂(K, λ, µ)

for some (−1)n+1-quadratic form (K, λ, µ) over Λ ,

with addition and inverses by

(Q,φ; F, G) + (Q′, φ′; F ′, G′) = (Q⊕Q′, φ⊕ φ′;F ⊕ F ′, G⊕G′) ,

−(Q, φ;F,G) = (Q,−φ; F, G) ∈ L2n+1(Λ) .

Proof : This is just the translation of the definition (8.1) of L2n+1(Λ) into
the language of (−1)n-quadratic formations, using 9.4, 9.8 and 9.10.

Use 9.11 as an identification of L2n+1(Λ) with the group of equivalence
classes of (−1)n-quadratic formations over Λ.

Corollary 9.12 A (−1)n-quadratic formation (Q,φ; F, G) over Λ is such
that (Q,φ; F, G) = 0 ∈ L2n+1(Λ) if and only if it is stably isomorphic to
the boundary ∂(K,λ, µ) of a (−1)n+1-quadratic form (K,λ, µ) on a f. g.
free Λ-module K.
Proof : Immediate from 9.10.
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Next, it is necessary to establish the relation

(Q,φ; F, G)⊕ (Q,φ; G,H) = (Q,φ; F, H) ∈ L2n+1(Λ) .

This is the key step in the identification in §10 below of L2n+1(Λ) with a
stable unitary group.

Lemma 9.13 (i) An ε-quadratic formation (Q,φ; F, G) is trivial if and only
if the lagrangians F and G are direct complements in Q.
(ii) An ε-quadratic formation (Q,φ; F, G) is isomorphic to a boundary if
and only if (Q,φ) has a lagrangian H which is a direct complement of both
the lagrangians F ,G.
Proof : (i) If F and G are direct complements in Q express any represen-
tative φ ∈ HomΛ(Q,Q∗) of φ ∈ Qε(Q) as

φ =
(

λ− ελ∗ γ

δ µ− εµ∗

)
: Q = F ⊕G → Q∗ = F ∗ ⊕G∗ .

Then γ + εδ∗ ∈ HomΛ(G,F ∗) is an Λ-module isomorphism, and there is
defined an isomorphism of ε-quadratic formations

(
1 0
0 (γ + εδ∗)−1

)
: (Hε(F ); F, F ∗)

∼=→ (Q,φ; F, G)

so that (Q,φ;F,G) is trivial. The converse is obvious.
(ii) For the boundary ∂(K, λ, µ) of a (−ε)-quadratic form (K, λ, µ) the
lagrangian K∗ of Hε(K) is a direct complement of both the lagrangians
K, Γ(K,λ). Conversely, suppose that (Q,φ; F, G) is such that there exists a
lagrangian H in (Q,φ) which is a direct complement to both F and G. By
the proof of (i) there exists an isomorphism of formations

f : (Hε(F ); F, F ∗)
∼=→ (Q,φ;F, H)

which is the identity on F . Now f−1(G) is a lagrangian of Hε(F ) which is a
direct complement of F ∗, so that it is the graph Γ(F,λ) of a (−ε)-quadratic
form (F, λ, µ), and f defines an isomorphism of ε-quadratic formations

f : ∂(F, λ, µ) = (Hε(F ); F, Γ(F,λ))
∼=→ (Q,φ;F, G) .

Proposition 9.14 For any lagrangians F,G, H in a nonsingular (−1)n-
quadratic form (Q, φ) over Λ

(Q,φ; F, G)⊕ (Q,φ; G,H) = (Q,φ; F, H) ∈ L2n+1(Λ) .

Proof : Choose lagrangians F ∗, G∗,H∗ in (Q,φ) complementary to F, G,H
respectively. The (−1)n-quadratic formations (Qi, φi;Fi, Gi) (1 ≤ i ≤ 4)
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defined by

(Q1, φ1;F1, G1) = (Q,−φ; G∗, G∗) ,

(Q2, φ2;F2, G2) = (Q⊕Q,φ⊕−φ; F ⊕ F ∗,H ⊕G∗)

⊕ (Q⊕Q,−φ⊕ φ;∆Q,H∗ ⊕G) ,

(Q3, φ3;F3, G3) = (Q⊕Q,φ⊕−φ, F ⊕ F ∗, G⊕G∗) ,

(Q4, φ4;F4, G4) = (Q⊕Q,φ⊕−φ; G⊕G∗, H ⊕G∗)

⊕ (Q⊕Q,−φ⊕ φ;∆Q,H∗ ⊕G)

are such that
(Q,φ; F, G) ⊕ (Q,φ; G,H)⊕ (Q1, φ1;F1, G1)⊕ (Q2, φ2; F2, G2)

= (Q,φ; F, H)⊕ (Q3, φ3; F3, G3)⊕ (Q4, φ4; F4, G4) .

Each of (Qi, φi;Fi, Gi) (1 ≤ i ≤ 4) is isomorphic to a boundary, since there
exists a lagrangian Hi in (Qi, φi) complementary to both Fi and Gi, so that
9.13 (ii) applies and (Qi, φi; Fi, Gi) represents 0 in L2n+1(Λ). Explicitly,
take

H1 = G ⊂ Q1 = Q ,

H2 = ∆Q⊕Q ⊂ Q2 = (Q⊕Q)⊕ (Q⊕Q) ,

H3 = ∆Q ⊂ Q3 = Q⊕Q ,

H4 = ∆Q⊕Q ⊂ Q4 = (Q⊕Q)⊕ (Q⊕Q) .

Remark 9.15 It is also possible to express L2n+1(Λ) as the abelian group
of equivalence classes of (−1)n-quadratic formations over Λ subject to the
equivalence relation generated by

(i) (Q,φ;F,G) ∼ (Q′, φ′; F ′, G′) if (Q, φ; F,G) is stably isomorphic to
(Q′, φ′;F ′, G′),

(ii) (Q,φ;F,G) ⊕ (Q,φ; G,H) ∼ (Q, φ; F, H), with addition and inverses
by

(Q,φ; F, G) + (Q′, φ′; F ′, G′) = (Q⊕Q′, φ⊕ φ′;F ⊕ F ′, G⊕G′) ,

−(Q,φ;F,G) = (Q,φ; G,F ) ∈ L2n+1(Λ) .

This is immediate from 9.13 and the observation that for any (−1)n+1-
quadratic form (K,λ, µ) on a f. g. free Λ-module K the lagrangian K∗ in
H(−1)n(K) is a complement to both K and the graph Γ(K,λ), so that

∂(K, λ, µ) ∼ (H(−1)n(K); K, Γ(K,λ))⊕ (H(−1)n(K); Γ(K,λ), K
∗)

∼ (H(−1)n(K); K, K∗) ∼ 0 .
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§10. Automorphisms

The (2n+1)-dimensional L-group L2n+1(Λ) of a ring with involution Λ is
identified with a quotient of the stable automorphism group of hyperbolic
(−1)n-quadratic forms over Λ, as in the original definition of Wall [29].

Given a Λ-module K let AutΛ(K) be the group of automorphisms K →
K, with the composition as group law.

Example 10.1 The automorphism group of the f. g. free Λ-module Λk is
the general linear group GLk(Λ) of invertible k × k matrices in Λ

AutΛ(Λk) = GLk(Λ)

with the multiplication of matrices as group law (cf. Remark 1.12). The
general linear group is not abelian for k ≥ 2, since(

1 1
0 1

)(
1 0
1 1

)
6=

(
1 0
1 1

)(
1 1
0 1

)
.

Definition 10.2 For any ε-quadratic form (K, λ, µ) let AutΛ(K, λ, µ) be
the subgroup of AutΛ(K) consisting of the automorphisms f : (K, λ, µ) →
(K,λ, µ).

Definition 10.3 The (ε, k)-unitary group of Λ is defined for ε = ±1, k ≥ 0
to be the automorphism group

Uε,k(Λ) = AutΛ(Hε(Λk))

of the ε-quadratic hyperbolic form Hε(Λk).

Proposition 10.4 Uε,k(Λ) is the group of invertible 2k × 2k matrices(
α β

γ δ

)
∈ GL2k(Λ) such that

α∗δ + εγ∗β = 1 ∈ Mk,k(Λ) , α∗γ = β∗δ = 0 ∈ Qε(Λk) .

Proof : This is just the decoding of the condition(
α∗ γ∗

β∗ δ∗

)(
0 1
0 0

)(
α β

γ δ

)
=

(
0 1
0 0

)
∈ Qε(Λk ⊕ (Λk)∗)

for
(

α β

γ δ

)
to define an automorphism of the hyperbolic (split) ε-

quadratic form

Hε(Λk) = (Λk ⊕ (Λk)∗,
(

0 1
0 0

)
) .

Use 10.4 to express the automorphisms of Hε(Λk) as matrices.
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Example 10.5 Uε,1(Λ) is the subgroup of GL2(Λ) consisting of the 2 × 2

matrices
(

a b

c d

)
such that

dā + εbc̄ = 1 ∈ Λ , cā = db̄ = 0 ∈ Qε(Λ) .

Definition 10.6 The elementary (ε, k)-quadratic unitary group of Λ is the
normal subgroup

EUε,k(Λ) ⊆ Uε,k(Λ)

of the full (ε, k)-quadratic unitary group generated by the elements of the
following two types:

(i)
(

α 0
0 α∗−1

)
for any automorphism α ∈ GLk(Λ) ,

(ii)
(

1 0
θ − εθ∗ 1

)
for any split (−ε)-quadratic form (Λk, θ).

Lemma 10.7 For any (−ε)-quadratic form (Λk, θ ∈ Q−ε(Λk))(
1 θ − εθ∗

0 1

)
∈ EUε,k(Λ) .

Proof : This is immediate from the identity
(

1 θ − εθ∗

0 1

)
=

(
0 1
1 0

)−1 (
1 0

θ − εθ∗ 1

) (
0 1
1 0

)
.

Use the identifications

Λk+1 = Λk ⊕ Λ , Hε(Λk+1) = Hε(Λk)⊕Hε(Λ)

to define injections of groups

Uε,k(Λ) → Uε,k+1(Λ) ; f 7−→ f ⊕ 1,

such that EUε,k(Λ) is sent into EUε,k+1(Λ).

Definition 10.8 (i) The stable ε-quadratic unitary group of Λ is the union

Uε(Λ) =
∞⋃

k=1

Uε,k(Λ) .

(ii) The elementary stable ε-quadratic unitary group of Λ is the union

EUε(Λ) =
∞⋃

k=1

EUε,k(Λ) ,

a normal subgroup of Uε(Λ).
(iii) The ε-quadratic M -group of Λ is the quotient

Mε(Λ) = Uε(Λ)/{EUε(Λ), σε}
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with σε =
(

0 1
ε 0

)
∈ Uε,1(Λ) ⊆ Uε(Λ).

The automorphism group Mε(Λ) is the original definition due to Wall
[29, Chap. 6] of the odd-dimensional L-group L2n+1(Λ), with ε = (−1)n.
The original verification that Mε(Λ) is abelian used a somewhat compli-
cated matrix identity ([29, p.66]), corresponding to the formation identity
9.14. Formations will now be used to identify M(−1)n(Λ) with the a priori
abelian L-group L2n+1(Λ) defined in §8.

Given an automorphism of a hyperbolic (−1)n-quadratic form

α =
(

γ γ̃

µ µ̃

)
: H(−1)n(Λk)

∼=→ H(−1)n(Λk)

define a (2n + 1)-complex (C, ψ) by

d = µ∗ : Cn+1 = Λk → Cn = Λk ,

ψ0 = γ : Cn = Λk → Cn+1 = Λk ,

corresponding to the (−1)n-quadratic formation

Φk(α) = (H(−1)n(Λk); Λk, im(
(

γ

µ

)
: Λk → Λk ⊕ (Λk)∗)) .

Lemma 10.9 The formations Φk(α1), Φk(α2) associated to two automor-
phisms

αi =
(

γi γ̃i

µi µ̃i

)
: H(−1)n(Λk)

∼=→ H(−1)n(Λk) (i = 1, 2)

are isomorphic if and only if there exist βi ∈ GLk(Λ), θi ∈ S(Λk) such that
(

β1 0
0 β∗−1

1

)(
1 θ1 + (−1)n+1θ∗1
0 1

)(
γ1 γ̃1

µ1 µ̃1

)

=
(

γ2 γ̃2

µ2 µ̃2

) (
β2 0
0 β∗−1

2

)(
1 θ2 + (−1)n+1θ∗2
0 1

)

: H(−1)n(Λk)
∼=→ H(−1)n(Λk) .

Proof : An automorphism α of the hyperbolic (−1)n-quadratic form
H(−1)n(Λk) preserves the lagrangian Λk ⊂ Λk ⊕ (Λk)∗ if and only if there
exist β ∈ GLk(Λ), θ ∈ S(Λk) such that

α =
(

β 0
0 β∗−1

)(
1 θ + (−1)n+1θ∗

0 1

)
: H(−1)n(Λk)

∼=→ H(−1)n(Λk) .
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Proposition 10.10 The function

Φ : M(−1)n(Λ) → L2n+1(Λ) ; α 7−→ Φk(α) (α ∈ U(−1)n,k(Λ))

is an isomorphism of groups.
Proof : The function

Φk : U(−1)n,k(Λ) → L2n+1(Λ) ; α 7−→ Φk(α)

is a group morphism by 9.14. Each of the generators (10.6) of the elemen-
tary subgroup EU(−1)n,k(Λ) is sent to 0 with

(i) Φk

(
β 0
0 β∗−1

)
= (H(−1)n(Λk); Λk,Λk) = ∂(Λk, 0, 0) = 0 ∈ L2n+1(Λ),

(ii) Φk

(
1 0

θ + (−1)n+1θ∗ 1

)
= ∂(Λk, θ + (−1)n+1θ∗, θ) = 0 ∈ L2n+1(Λ).

Also, abbreviating σ(−1)n to σ

Φ1(σ) = (H(−1)n(Λ); Λ, Λ∗) = 0 ,

Φk+1(α⊕ 1) = Φk(α)⊕ (H(−1)n(Λ); Λ, Λ) = Φk(α) ∈ L2n+1(Λ) .

Thus the morphisms Φk (k ≥ 0) fit together to define a group morphism

Φ : M(−1)n(Λ) → L2n+1(Λ) ; α 7−→ Φk(α) if α ∈ U(−1)n,k(Λ)

such that

Φ(α1α2) = Φ(α1 ⊕ α2) = Φ(α1)⊕ Φ(α2) ∈ L2n+1(Λ) .

Φ is onto by 9.3 (ii). It remains to prove that Φ is one-one.
For any αi ∈ U(−1)n,ki

(Λ) (i = 1, 2)

α1 ⊕ α2 = α2 ⊕ α1 ∈ M(−1)n(Λ) ,

since (
α1 0
0 α2

)
=

(
0 1
1 0

)−1 (
α2 0
0 α1

)(
0 1
1 0

)

: H(−1)n(Λk1+k2) → H(−1)n(Λk1+k2) .

Now σ = 1 ∈ M(−1)n(Λ) (by construction), so that for any α ∈ U(−1)n,k(Λ)

α⊕ σ = σ ⊕ α = (σ ⊕ 1)(1⊕ α) = α ∈ M(−1)n(Λ) .

It follows that for every m ≥ 1

σ ⊕ σ ⊕ . . .⊕ σ = 1 ∈ M(−1)n(Λ) (m-fold sum) .

If α ∈ U(−1)n,k(Λ) is such that Φ(α) = 0 ∈ L2n+1(Λ) then by 9.12
the (−1)n-quadratic formation Φk(α) is stably isomorphic to the boundary
∂(Λk′ , λ, µ) of a (−1)n+1-quadratic form (Λk′ , λ, µ). Choosing a split form
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θ ∈ S(Λk′) for (λ, µ) this can be expressed as

∂(Λk′ , λ, µ) = Φk′

(
1 0

θ + (−1)n+1θ∗ 1

)
.

Thus for a sufficiently large k′′ ≥ 0 there exist by 10.9 βi ∈ GLk′′(Λ),
θi ∈ S(Λk′′) (i = 1, 2) such that(

β1 0
0 β∗−1

1

)(
1 θ1 + (−1)n+1θ∗1
0 1

)
(α⊕ σ ⊕ . . .⊕ σ)

=
( (

1 0
θ + (−1)n+1θ∗ 1

)
⊕ σ ⊕ . . .⊕ σ

)(
β2 0
0 β∗−1

2

)

(
1 θ2 + (−1)n+1θ∗2
0 1

)
: H(−1)n(Λk′′) → H(−1)n(Λk′′)

so that by another application of 10.7

α =
(

1 0
θ + (−1)n+1θ∗ 1

)
= 1 ∈ M(−1)n(Λ) ,

verifying that Φ is one-one.
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